
Noname manuscript No.
(will be inserted by the editor)

An Automated Framework for Detection and Resolution of
Cross References in Legal Texts

Nicolas Sannier · Morayo Adedjouma · Mehrdad Sabetzadeh · Lionel Briand

Received: date / Accepted: date

Abstract When identifying and elaborating compliance re-
quirements, analysts need to follow the cross references in
legal texts and consider the additional information in the
cited provisions. Enabling easier navigation and handling of
cross references requires automated support for the detec-
tion of the natural language expressions used in cross refer-
ences, the interpretation of cross references in their context,
and the linkage of cross references to the targeted provi-
sions. In this article, we propose an approach and tool sup-
port for automated detection and resolution of cross refer-
ences. The approach leverages the structure of legal texts,
formalized into a schema, and a set of natural language pat-
terns for legal cross reference expressions. These patterns
were developed based on an investigation of Luxembourg’s
legislation, written in French. To build confidence about their
applicability beyond the context where they were observed,
these patterns were validated against the Personal Health In-
formation Protection Act (PHIPA) by the Government of
Ontario, Canada, written in both French and English. We
report on an empirical evaluation where we assess the accu-
racy and scalability of our framework over several Luxem-
bourgish legislative texts as well as PHIPA.

Keywords Legal Compliance · Natural Language Process-
ing (NLP) · Cross References · Conceptual Modeling

1 Introduction

In many domains such as healthcare, finance and govern-
ment, software systems are subject to various laws and reg-
ulations, e.g., about security and privacy. Failure to comply
with the applicable laws and regulations can have serious

SnT Centre for Security, Reliability and Trust,
University of Luxembourg, Luxembourg.
E-mail: firstname.lastname@uni.lu

consequences, including fines, lawsuits, damage to public
trust, and even criminal prosecution. An important complex-
ity that arises in the analysis of legal texts is that legal pro-
visions are typically interrelated and spread over different
texts that cannot be considered in isolation of one another.
The relationships between different provisions in legal texts
are captured using cross references.

Fig. 1 provides two examples of cross references. Fig. 1(a)
is an excerpt of an article from Luxembourg’s Income Tax
Law [17] (translated from French). In order to fully under-
stand the scope of this provision, one needs to know what
local income exactly means for a non-resident taxpayer. The
necessary definition is provided in the cited provision, namely
Art. 156. The second example, shown in Fig. 1(b), is a section
excerpt from the Personal Health Information Protection Act
(PHIPA) of the Government of Ontario, Canada [32]. The
section constrains the circumstances under which personal
health information can be disclosed. In particular, disclosure
is possible only when the recipient entity meets the require-
ments that are elaborated in a different provision, namely

Art. 2. (...) Individuals are considered non-resident taxpayers if they do

not reside in Luxembourg but have a local income as per the definition of

Art. 156

Disclosure for planning and management of health system

45. (1) A health information custodian may disclose to a prescribed entity

personal health information for the purpose of analysis or compiling

statistical information with respect to the management of, evaluation or

monitoring of (...) the health system (...) if the entity meets the

requirements under subsection (3).

(3) A health information custodian may disclose personal health

information to a prescribed entity under subsection (1) if,

(a) the entity has in place practices and procedures to protect the privacy

of the individuals whose personal health information it receives and to

maintain the confidentiality of the information;

(a)

(b)

Fig. 1 Examples of Cross References in Legal Texts

2 Sannier et al.

subsection (3). In the examples of Fig. 1, the citing provisions
depend on the cited ones for definitions and further elabora-
tion. Cross references can be used for a variety of other rea-
sons, including stating exceptions and constraints, specify-
ing priorities between provisions, and making amendments
to other provisions [24].

Since laws reflect expectations in terms of rights and
obligations [34], they represent an important source for soft-
ware requirements. Consequently, although mainly an ap-
paratus of legal writing, cross references have implication
not only on legal texts but also on software requirements.
The relevance of cross references to software requirements
is highlighted by Maxwell et al. [23,24], who argue that fail-
ing to consider cross references or misunderstanding their
intent can lead to costly non-compliance issues in software.
Several strands of work concerned with legal analysis in
Requirements Engineering take cross references into con-
sideration. For example, Breaux & Antón [5] follow cross
references during requirements elaboration and analyze the
cited provisions for identifying constraints, priorities, ex-
ceptions, refinements, and conflicts between compliance re-
quirements. Ghanavati et al. [15,14] model legal cross ref-
erences as explicit goals and use these goals both for com-
pliance analysis of business processes and for change prop-
agation between requirements.

To perform the above activities in a more systematic and
efficient manner, it is important to have legal texts structured
as markup documents, e.g., in an XML format, with cross
references represented as navigable links [6,19]. The result-
ing links on the one hand enable easier and more structured
exploration of legal texts by analysts, and on the other hand,
provide a basis for further analysis, particularly traceability
and impact analysis [15].

Many legal texts are now available on-line via govern-
ment portals and legal information databases. Some of these
portal and databases provide the texts in PDF format (e.g.,
LegiLux1), and some others – in both PDF and a markup for-
mat such as XML or HTML (e.g., the French LegiFrance2,
the Canadian e-laws portal3, and the Belgian BelgiumLex4).
These portals sometimes further maintain navigation links
for the cross references in the legal texts; however, these
links are coarse-grained in the sense that they are only at
the level of articles or entire legal texts.

Fine-grained links that allow navigation to smaller units
of legal texts such as paragraphs and clauses are rare. Al-
though having such fine-grained links is important, both to
facilitate the navigation of legal texts and to enable estab-
lishing precise traceability links between legal requirements
and legal texts, creating such links manually would be ex-

1 http://www.legilux.public.lu
2 http://www.legifrance.gouv.fr
3 http://www.e-laws.gov.on.ca
4 http://www.belgielex.be/en/index.html

pensive. Automation is therefore essential for generating fine-
grained cross reference links. To do so, we need to be able
to automatically recognize the Natural Language (NL) ex-
pressions that denote cross references (cross reference de-
tection), and to interpret these expressions and link them to
the target provisions (cross reference resolution).

Several approaches already exist for cross reference de-
tection and resolution [26,11,6,18,33,34]; but, as we argue
in more detail in Section 11, certain aspects of the problem
have not been adequately addressed:

– There are books and best-practice guides for drafting le-
gal texts and cross references. For example, the Blue-
book [2] and the US Association of Legal Writing Direc-
tors’ (ALWD) Citation Manual [12] lay down specific
conventions for cross references. These best practices,
as already observed by others [18], are often inadequate
for accurate detection of cross references, particularly in
older legal texts. Grounded Theory studies of actual le-
gal texts, e.g., as done by Breaux [6] and de Maat et al.
[11], provide valuable insights about the flexible NL pat-
terns used for specifying cross references. However, fur-
ther investigation of actual legal texts is required to un-
derstand commonalities between legal texts across dif-
ferent countries and to develop reusable cross reference
patterns.

– Having legal texts in a markup format, e.g., XML, is
an important prerequisite for cross reference resolution.
However, significant manual work is still necessary to
transform a non-markup legal text (e.g., in PDF or plain
text) into a markup document.

– The majority of existing work does not clearly distin-
guish cross reference detection and the more complex
task of resolution. Important subtleties that arise during
resolution have not been sufficiently covered, e.g., dis-
ambiguation when the cross reference patterns are am-
biguous.

In this article, we attempt to address the above gaps by
developing a flexible framework for automated detection and
resolution of cross references. Fig. 2 shows our overall re-
search method. We start with a study of several legal drafting
guidelines and cross reference expressions within selected
texts from the Luxembourgish and Canadian legal corpora,
covering a total of 3612 expressions. Based on this study,
we devise (1) a technique for modeling the structure of le-
gal texts through schemas, and (2) a set of cross reference
patterns, which, to our knowledge, is the most detailed and
complete set of such patterns that exists to date. Schemas
are already commonly used for capturing the structure of
legal texts [13,6,19,29]; nevertheless, using these schemas
in a systematic way for automated markup generation has
not been studied before. Using techniques from Natural Lan-
guage Processing (NLP), we provide automation for trans-

Automated Detection and Resolution of Legal Cross References 3

Automated cross reference

detection and resolution framework

Selected texts from Luxembourg's

and Canada’s legal corpora
(containing 3612 cross references expressions)

Study of legal text organization and

cross references

Legal drafting guidelines
(ALWD Citation Manual, Bluebook, etc.)

Cross reference patternsLegal text schemas

Fig. 2 Overall Research Method

forming non-markup texts into texts with structural markup
based on schemas. We use the resulting markup along with
the identified cross reference patterns as a basis for our au-
tomated cross reference detection and resolution framework.
An important feature of our framework is that it addresses, in
an algorithmic way, subtleties that one needs to take into ac-
count with regards to the interpretation of complex cross ref-
erence expressions. We evaluate the accuracy of our frame-
work through a large-scale examination of cross reference
expressions in Luxembourgish and Canadian legal texts.

This article is an extension of a previous conference pa-
per [1] published at the 22nd IEEE International Require-
ments Engineering Conference (RE 2014). The main ex-
tensions in this article are: (1) a succinct and yet compre-
hensive guide for understanding the structure of legal texts,
(2) an extended description of the NLP machinery in our
approach with more details and a new set of illustrating ex-
amples, (3) expansion of our work to the Canadian legal cor-
pus through an investigation of cross references in both the
French and English editions of the Personal Health Infor-
mation Protection Act (PHIPA) [32]. This investigation is a
stepping stone towards assessing the generalizability of our
approach. And, (4) additional empirical evidence to demon-
strate the effectiveness of our approach. In particular, our
extended empirical evaluation discusses resolution accuracy
for four new legal texts from Luxembourg’s legislative cor-
pus that were not considered in our previous work, as well
as over PHIPA.

The remainder of this article is structured as follows:
Section 2 provides background information. Section 3 gives
an overview of our approach for automatic detection and
resolution of cross references. Sections 4 to 7 elaborate the
different steps in our approach. Section 8 outlines different
uses cases that our approach enables. Section 9 presents tool
support. Section 10 reports on our evaluation and discusses
limitations and threats to validity. Section 11 compares with
related work. Section 12 concludes the article.

The examples used throughout the article are derived
from Luxembourgish legislative texts and PHIPA. The Lux-
embourgish texts considered in our work are all in French.

PHIPA comes in both English and French. For presentation
purposes, we always use English translations while preserv-
ing the structure of the original cross reference expressions.

2 Background

In this section, we present background information on le-
gal texts and the Natural Language Processing (NLP) tech-
niques used in the article for automated cross references de-
tection and resolution.

2.1 Legal Texts

We begin with introductory material on how legal texts are
structured and then discuss some general characteristics of
cross references in these texts. The reader can find further in-
formation in legal guidelines, e.g., the ALWD Citation Man-
ual [12], LegiFrance, LegiLux, BelgiumLex or the European
Union (EU) guidelines [31].

2.1.1 Text Schemas

A natural and intuitive way to represent the structure of a
legal text is through a (text) schema [13,6,19,29]. To il-
lustrate, Fig. 3 shows a text schema derived from the EU
Legislation Drafting Guidelines [31].

id:String
name:String

LegalDocument id:String
name: String
head: Header

Element
1..*

ActRegulation

Part

HighLevelDivision

TitleChapter Section

Article LowerLevelDivision

Point Sentence Indent

Paragraph SubParagraph

1..*
* *

*

Fig. 3 Structure of European Legislative Texts as Prescribed by the EU
Legislation Drafting Guidelines

Articles are the basic structural elements of EU legisla-
tive texts. At a higher level, articles may be organized into
Titles, Chapters, Parts and Sections. At a lower level, subdi-
visions may be defined to break articles into (Sub)paragraphs,
Points, Sentences and Indents. Each article is numbered ac-
cording to its order of appearance in the text. If there is a new
article to be inserted in between other articles, it will use an
identifier composed of the preceding article’s number and
an extension. For example, a new article inserted between
articles 2 and 3 will use an identifier such as 2-1, 2.1, 2a,
2bis, or the like. Numbering is essential for traceability and

4 Sannier et al.

referencing. However, whereas requirements documents are
often precise in terms of providing a unique identifier for
each requirement, legal texts do not provide such a feature
for article subdivisions.

The structure of legislative texts in several EU countries,
e.g., the Netherlands [11] and Luxembourg [1], are close
(but not identical) to the structure depicted in Fig. 3. Nev-
ertheless, this schema is not universal, and important struc-
tural differences are to be expected in different countries
and different legal jurisdictions. To highlight such differ-
ences, consider the following example from the Canadian
legal corpus: Fig. 4 presents an excerpt of Section 43 of
the English edition of the Personal Health Insurance Protec-
tion Act (PHIPA) of Ontario. Rather than being organized
into Articles, Paragraphs and Subparagraphs, this excerpt
has the following organization: Sections, Subsections, and
Clauses. Specifically, the excerpt of Fig. 4 has subsections
(1) and (2); subsection (1) contains a number of clauses, of
which (a), (e), (f), and (h) are shown. The French edition of
PHIPA uses a different structure and is organized into Arti-
cles, Paragraphes and Alinéas. The detailed schema for the
English edition of PHIPA will be presented and discussed in
Section 4.

Aside from differences in the lexical terms used for la-
beling the structural elements, legal texts may further differ
with respect to the containment relationships between the el-
ements, even when the same labels are used. For example,
the French terms “paragraphe” and “alinéa” – often used as
synonyms in common language – match different hierarchi-
cal levels in different legal texts. In French legislative texts,
a paragraphe is a subdivision of an alinéa, whereas the op-
posite holds for Luxembourgish legislative texts.

A similar problem arises when legal texts need to be
translated in multiple languages (e.g., as is the case with
many EU and Canadian legal texts). For example, assuming
the hierarchies outlined above for the English and French
editions of PHIPA, the French term “paragraphe” maps onto
the English term “subsection”, and the English term “para-
graph” maps onto the French term “disposition”. Therefore
“paragraph” in English and “paragraphe” in French are not
the same, thus rendering the direct translation of “paragraph”
to “paragraphe” incorrect and misleading.

The absence of explicit unique identifiers for numbering
the provisions is yet another issue that needs attention. For
example, a unique identifier such as Clause 43 (1)(a) would
need to be derived from the structure of the underlying le-
gal text (here, the English edition of PHIPA). In the text
though, the clause is simply numbered (a) in Subsection (1)
of Section 43. Consequently, knowing the structure of the
text would be essential for resolving cross references to the
text at a fine level of granularity.

Disclosures related to this or other Acts
43. (1) A health information custodian may disclose personal health
information about an individual,
(a) for the purpose of determining, assessing or confirming capacity
under the Health Care Consent Act, 1996, the Substitute Decisions
Act, 1992 or this Act;
[...]
(e) to the Public Guardian and Trustee, the Children’s Lawyer, a chil-
dren’s aid society, a Residential Placement Advisory Committee es-
tablished under subsection 34 (2) of the Child and Family Services
Act or a designated custodian under section 162.1 of that Act so that
they can carry out their statutory functions;
(f) in the circumstances described in clause 42 (1) (c), (g) or (n) of the
Freedom of Information and Protection of Privacy Act or clause 32
(c), (g) or (l) of the Municipal Freedom of Information and Protection
of Privacy Act, if the custodian is an institution within the meaning
of whichever of those Acts applies, or is acting as part of such an in-
stitution;
[...]
(h) subject to the requirements and restrictions, if any, that are pre-
scribed, if permitted or required by law or by a treaty, agreement or
arrangement made under an Act or an Act of Canada. 2004, c. 3,
Sched. A, s. 43 (1); 2005, c. 25, s. 35; 2006, c. 34, Sched. C, s. 26;
2007, c. 10, Sched. H, s. 15.
Interpretation
(2) For the purposes of clause (1) (h) and subject to the regulations
made under this Act, if an Act, an Act of Canada or a regulation made
under any of those Acts specifically provides that information is ex-
empt, under stated circumstances, from a confidentiality or secrecy
requirement, that provision shall be deemed to permit the disclosure
of the information in the stated circumstances. 2004, c. 3, Sched. A,
s. 43 (2).

Fig. 4 Excerpt from PHIPA [32]

As we elaborate in Section 4, our solution uses schemas
in order to systematically deal with structural complexities
in legal texts.

2.1.2 Cross References

A (legal) cross reference is a citation that links one legal
provision to another [24]. We distinguish cross references
from cross reference expressions (CREs). A CRE is a natural
language phrase in a legal text that represents one or more
cross references. For example “clause 32 (c), (g) or (l) of the
Municipal Freedom of Information and Protection of Privacy Act”
is a CRE. This expression embodies three cross references:
one to section 32 clause (c), one to section 32 clause (g) and
another to section 32 clause (l) of the respective law.

We note that, in light of the above distinction made be-
tween cross references and cross references expressions, it
would be more accurate to refer to cross reference detection
and cross reference resolution as CRE detection and CRE

Automated Detection and Resolution of Legal Cross References 5

resolution. We ignore this technicality when referring to the
detection and resolution activities.

A cross reference is internal when it refers to a provision
within the same legal text and external when the cross ref-
erence cites a provision in a different legal text [22]. In the
example of Fig. 4, “clause (1) (h)” implies an internal cross
reference while, “clause 32 (c), (g) or (l) ...” implies external
cross references.

Cross references can be further classified as explicit, im-
plicit, or delegating. If a cross reference is defined using the
alphanumeric labels of the legal text, it is called explicit. All
our examples so far where provisions were referred to by
their numbers were explicit. In contrast, an implicit cross
reference is referred to via the use of adjectives, adverbs, or
anaphors [11]. For example, the cross references implied by
the following CREs are implicit: “this section” and “the follow-
ing paragraphs”.

The third class, namely delegating, exclusively applies
to external cross references. This class of cross references is
used when a text delegates authority to another text, without
explicitly naming the text, for further elaboration. For exam-
ple, legislative texts seldom refer to regulations in a precise
way and typically use cross references that only indicate the
nature of the regulations being cited. An example of a dele-
gating cross reference is “Grand-Ducal regulation” in the fol-
lowing: “A Grand-Ducal regulation shall provide the details for
. . . ”.

Finally and with regards to implicit cross references, there
are occasions where legal texts use vague terms such as “pro-
vision” (in French: “prescription”), e.g., “the above provision”.
We refer to the intended cross references as unspecific. Un-
specific cross references cannot be conclusively associated
with a particular structural element, e.g., a subsection or a
paragraph. They are thus difficult to resolve with reasonable
accuracy through automation. Except for delegating and un-
specific cross references, all cross references are in principle
resolvable via automation.

In Sections 6 and 7, we will describe the technical de-
tails of our cross reference detection and our cross reference
resolution solutions, respectively.

2.2 Natural Language Processing for Cross References

As we elaborate further in Section 6, we use a BNF grammar
to represent the structure of CREs. This abstract representa-
tion enables the definition of pattern matching rules for de-
tecting the CREs in legal texts. We use the GATE workbench
[10] – a mature open-source Natural Language Processing
(NLP) framework – for this purpose. We choose GATE pri-
marily because of its high usability, the availability of doc-
umentation and detailed guidelines for plugin development.
GATE provides various modules for processing natural lan-

guage. In our work, we are interested specifically in the Tok-
enizer, Sentence Splitter and Named Entity Recognizer mod-
ules. First, the Tokenizer is executed. This module breaks up
the text into units called tokens. Tokens can be words, num-
bers or punctuation. Next, the Sentence Splitter is executed
to identify the sentences within the text. Finally, the Named
Entity Recognizer is executed in order to classify text ele-
ments into certain predefined categories such as dates, loca-
tions and names. This module can be enhanced with custom
categories defined through keyword lists. The keyword lists
are commonly known as gazetteers [10]. In our case, we use
gazetteers to cover, among other things, the terms used in
implicit cross references, e.g., next and previous, as well as
law titles and names that have to be handled as a whole.

The output from the sequential execution of the above
modules is an annotated document with both generic an-
notations such as Token, Sentence, Date as well as specific
ones, such as Implicit Term. These annotations are used for
finding the CREs via pattern matching. For pattern match-
ing, GATE provides a rule-based language, called the Java
Annotation Patterns Engine (JAPE). Fig. 5 shows an exam-
ple of a JAPE rule, named MarkSectionReference. The rule
matches text regions starting with either Sec. or Section and
followed by an alphanumeric expression. When a match is
found, the matched region is annotated as Section Ref.

1. Phase: MarkReference
2. Input: Token
3. Options: control = Appelt
4. Rule: MarkSectionReference
5. (
6. ({Token.string==“Sec”}{Token.string==“.”} | {Token.string==“Section”})
7. ({Token.kind=="numberPrime"} | {Token.kind=="number”})
8.):label
9. --> label.Section_Ref = {rule=“MarkSectionRef”}

Fig. 5 JAPE Rule for Identifying Section References

Each JAPE rule is part of a phase, which is a collec-
tion of rules to be executed sequentially (L. 1). JAPE rules
match regular expressions over annotations rather than on
the strings of a document. To match a string, it is neces-
sary to match an annotation that covers that string, i.e., a
token defined by the Tokenizer. The GATE Tokenizer adds
a “string” feature to each Token annotation, containing the
string that the Token covers.

Each JAPE rule is made of two parts: a left-hand-side
(LHS) and a right-hand-side (RHS). The LHS is the part
preceding the “-->” and the RHS is the part that follows
it. The LHS specifies the pattern to be matched (L. 5-8).
The RHS specifies the operation(s) to be performed when
a match is found (L. 9). Annotations on the LHS may be
referred to on the RHS by means of labels (L. 8).

6 Sannier et al.

A JAPE rule considers only the annotation types that
are specified in the “Input”, here only Token (L. 2). One
can specify the features (and values) of an annotation to be
matched in order to filter the match (L. 6-7). For instance,
the annotation Token comes, by default, with the following
features: kind (to differentiate, for instance, between num-
bers and words), length (to check the size of the token), and
string (the text segment itself) (L. 6-7). JAPE provides the
classic operators for regular expressions including negation
(!), alternatives (|), repetitions (?,*,+), ranges ([]), equal-
ity (==, ! =), comparison (<,<=,>=,>). The language
further provides more advanced operators such as contains,
which checks whether an annotation completely contains
another. As JAPE rules are ultimately translated into Java,
the RHS of a JAPE rule can contain Java code to create or
manipulate annotations with more specific or advanced op-
erations.

JAPE rule collections can have different control options
(L. 3). We will not go into the details of these options. In
our case, we use the appelt style, which means that only
the rule that matches the longest text segment will be fired.
This option is particularly useful for ensuring that CREs are
matched in their entirety. For example, given a CRE such
as “clause 42 (1) (c), (g) or (n)”, different matches would be
possible: “clause 42 (1) (c)”, “clause 42 (1) (c), (g)” and “clause
42 (1) (c), (g) or (n)”. Using the appelt style, only the longest
segment will be matched.

3 Approach

Our approach for automated identification and resolution of
cross references is shown in Fig. 6. The approach has four
main steps. The first step is manual and the remaining three
steps are automated.

As explained earlier in Section 2.1, detecting and resolv-
ing cross references in a legal text requires precise knowl-
edge of the structure of the legal text under analysis. Step 1
is concerned with the definition of a schema for expressing
how a legal text is organized into subparts, e.g., sections,
clauses, paragraphs. Although legal writing guidelines in a
given jurisdiction typically prescribe a generic schema for
structuring legal texts, such schemas may need to be tailored
due to practical variations in actual legal texts. This tailoring
is discussed in Section 4.

Step 2, which is detailed in Section 5, is concerned with
transforming a non-markup text (e.g., in plain text or PDF
format) into a markup text (e.g., in HTML or XML format).
The transformation rules are automatically derived from the
schema of Step 1. The main step of the approach is Step 3,
which deals with the detection and resolution of cross ref-
erences. This step is discussed in Sections 6 and 7. Finally,
Step 4, discussed in Section 8, is concerned with using the

outcomes of the resolution step for different applications
such as visualization and analysis.

We note that Sections 6 and 7 are intended at providing a
detailed exposition of how we handle cross references in our
approach. A reader who is more interested in practical appli-
cations (Section 8) may wish to read only the beginning of
Sections 6 and 7, where we provide a synopsis of these sec-
tions, and skip the more technical material in Sections 6.1,
6.2, 7.1 and 7.2.

4 Capturing the Structure of Legal Texts

Schemas, as outlined in Section 2.1, constitute the basis for
capturing the structure of legal texts.

We define a schema through a UML class diagram, where
classes represent the structural elements (articles, clauses,
paragraphs, etc.) of a legal text. These classes are linked via
aggregation associations representing the hierarchical con-
tainment relationships between the elements. We further in-
clude in the schema the multiplicity constraints that need to
be satisfied for the legal text to be structurally sound.

Fig. 7 presents the detailed schema for the English edi-
tion of PHIPA. The main structural elements of this text
were already highlighted in Section 2.1.

PHIPA is an individual Act that is hierarchically orga-
nized into Chapters, Parts and SubParts. At a lower level
(under Part or Subpart), provisions are listed under Sections
in a way that no part of the text falls outside some section. A
Section is generally organized into Subsections. Subsections
may be divided into Clauses and Subclauses, or Paragraphs
and Subparagraphs, respectively. Optional levels in the hier-
archy are captured through different aggregation paths. For
example, in the schema of Fig. 7, one can go directly from
Part to Section if there is no SubPart in the text. Instances

id:String
name:String
head: Header

Act

id:String
name: String
head: Header

Part
id:String
name: String
head: Header

Subsection
name: String [0..1]
id:String
head: Header

Section

1..*

0..*

id:String
name: String
head: Header

Chapter
1..*

0..*

1..*

name: String
head: Header

SubPart

0..*

1..*

0..*

alpha
alphanum
arabic
roman
ordinalText
ordinalNum
...

Numbering
⟪enumeration⟫

startingDelimiters:Delimiter[]
conceptMarker:String[]
preDelimiters:Delimiter[]
segmentTitle:String[]
posDelimiters:Delimiter[]
numberingFormat:String[]
closingDelimiters:Delimiter[]

Header

split
space
dot
dash
bracket
...

Delimiter
⟪enumeration⟫

id:String
head: Header

SubClause
id:String
head: Header

Clause
id:String
head: Header

SubParagraph
id:String
head: Header

Paragraph

0..*

0..*

0..*

0..*

Fig. 7 (Text) Schema for the English Edition of PHIPA

Automated Detection and Resolution of Legal Cross References 7

Define schema for

structure of legal

text

Legal text

(non-markup)

!

"

$

Text schema from

recommendations

Tailored

schema

Text with structure markup

(hierarchical)

Natural Language cross

reference patterns

Detect and

resolve cross

references

Visualization &

Analysis

Transform into

markup text

Markup text +

cross references

links

Fig. 6 Approach Overview

of some of the classes of the schema of Fig. 7 can be seen in
the excerpt of Fig. 4.

Each structural element has a Header, and optionally an
id and a name. The header of a structural element C, called
CHeader, provides information about how to recognize an
instance of C in the text. In the schema of Fig. 7, only the
abstract header class is shown with its attributes. Each struc-
tural element is a (static) specialization of this abstract class.

startingDelimiters=[split]
conceptMarker=[]
preDelimiters=[]
segmentTitle=[string]
posDelimiters=[split]
numberingFormat=[alphanum]
closingDelimiters=[dot]

SectionHeader

(a)

Disclosures related to …

43.

(b)

SectionHeaderAttributes=[startingDelimiters, segmentTitle, posDelimiters,
numberingFormat, closingDelimiters]

(c)

Fig. 8 (a) Header Class for Section; (b) An instance of SectionHeader;
(c) Sequencing of Header Attributes of Section Expressed as a Vector

In Fig. 8(a), we present the SectionHeader class for a
section, as well as an example in Fig. 8(b), where “Disclo-
sures related to ...” (from Fig. 4) is the title of the section,
and “43” is its label. To recognize the CHeader, the class at-
tributes must be composed in a specific order. We encode
this order in a vector CHeaderAttributes, as presented in
Fig. 8(c). Here, the vector specifies that a section’s header
is composed in the following sequence: a starting delimiter,
a segment title, a post delimiter, a numbering, and finally a
closing delimiter. The starting delimiter is a split (carriage
return or linefeed). The segment title is a string “Disclosures
related to ...”, followed by a post-delimiter split. The num-
bering is an alphanumeric (“43”) representing the id of the
section in the legal text. The section header closes with a
dot. There is no structural element marker (i.e., an explicit
“Section” label) and no pre-delimiter (e.g., a tab or parenthe-
sis) before the start of the section content.

5 Transforming Non-Markup to Markup Text

We automatically derive from a schema, e.g., the one shown
in Fig. 7, regular expressions that transform non-markup le-
gal texts to texts with structural markup. The automation
builds on a simple observation: the natural structure of a tex-
tual document is such that a particular segment of text termi-
nates only when it reaches a new structural element that is
either at the same level as the current segment or is at a level
above the current segment. For example, given a document
structured according to the schema of Fig. 7, and assuming
that we are within a particular section, say Section 5, for this
section to terminate, we either have to reach the beginning
of Section 6, the beginning of a new higher-level division,
e.g., a subpart or a part, or the end of the document.

The containment relationships between structural ele-
ments is never recursive. This means that we cannot have a
structural element, for instance a part, which logically con-
tains another structural element, for instance a section, and
at the same time have sections that contain parts. More pre-
cisely, a schema, when viewed as a graph, is always a Di-
rected Acyclic Graph (DAG). Consequently, there is always
some ordering, known as a topological ordering, that re-
spects the containment relationships between the elements [9].
Computing the topological order is inexpensive and linear
in the size of the input DAG [9]. For example, one ascend-
ing topological order for the schema of Fig. 7 is: [SubPara-

graph, Paragraph, SubClause, Clause, Subsection, Section, SubPart, Part,

Act]. Equipped with this ordering and the information from
the Header classes in the schema, one can automatically
generate the regular expressions that recognize the hierar-
chical structure of a document. The algorithm for generating
and executing these regular expressions is shown in Algo-
rithm 1.

We illustrate the regular expressions for header identifi-
cation (HeadRegEx) and segmentation (SegmentRegEx) over the
Section class. Generating the regular expression for marking
the heads of sections (L. 3 of the algorithm) is based on in-

8 Sannier et al.

Algorithm 1 Build Markup for Legal Text
1: Let G be the DAG whose nodes are the classes in a schema and

whose (directed) edges are the aggregation associations in the
schema.

2: Let n be the number of nodes of G and let [C1, · · · ,Cn] be an as-
cending topological ordering of the nodes in G

3: For 1≤ i≤ n: Generate a regex HeadRegExi to recognize Ci headers
4: For 1 ≤ i ≤ n: Generate a regex SegmentRegExi to recognize Ci

segments; i.e., a Ci header followed by the header of any C j ∈
[Ci, · · · ,Cn]

5: Run all HeadRegExi (in any order) on the input text
6: Run all SegmentRegExi (in any order) on the input text

formation that is captured in the SectionHeader class (Fig.
8(a)) and the SectionHeaderAttributes vector (Fig. 8(c)).

Fig. 9(a) shows a JAPE script, named MarkSectionHead,
for marking section heads. The script simply matches the
following sequence: one or more splits, an alphanumeric
number, and a dot. Fig. 9(b) shows a script, named Mark-
SectionSegment, for marking section segments. This expres-
sion recognizes and annotates the text between the head of a
given section and the head of the next structural element that
is not containable in a section. From the topological order-
ing, we know which structural elements reside above Sec-
tion and cannot be contained in sections. As seen from the
expression in Fig. 9(b), a section’s segment starts when its
head is detected and stops when the immediately-following
section’s head or a higher level division is detected. In the
script, the special token EOD (End Of Document), which
has the largest topological order of all, terminates any seg-
ment at any other level.

(a)

(b)

Phase: DoMarkSectionHeader
Input: Token SpaceToken
Options: control = appelt
Rule: DoMarkSectionHeader
({Split})+
(
A A({Token.kind=="numberPrime"} | {Token.kind=="number"}) {Token.string=="."}
):referenceA
--> :reference.SectionHeader = {}A

Phase: DoMarkSectionSegment
Input: Part_Head Subpart_Head Section_Head EOD
Options: control = appelt
Rule: DoMarkSectionSegment
(
 ({Section_Head}):left
 ({Section_Head}| {Subpart_Head}| {Part_Head} | {EOD}):right
):reference
-->:reference.Section_Segment={}

Fig. 9 Markup Rules for Section Headers and Segments

The annotations produced over a non-markup legal text
by the regular expressions can be easily turned into a markup
format, e.g., XML. The resulting markup text is the basis for
cross reference detection and resolution addressed next.

Simple cross reference patterns
〈simple-ref-expr〉 ::= 〈explicit-expr〉 | 〈implicit-expr〉
〈explicit-expr〉 ::= 〈internal-expr〉 | 〈external-expr〉
〈internal-expr〉 ::= 〈marker-term〉〈num-expr〉 |

〈ordinal-expr〉〈marker-term〉 |
〈generic-term〉〈num-expr〉

〈marker-term〉 ::= “article” | “articles” | “art.” | “paragraph” | . . .
〈num-expr〉 ::= 〈NUMBER〉 | 〈LETTER〉 | 〈ALPHANUM〉
〈ordinal-expr〉 ::= 〈TEXT-ORDINAL〉 | 〈NUM-ORDINAL〉
〈generic-term〉 ::= “sub” | “under”
〈external-expr〉 ::= 〈external-expr1〉 | 〈external-expr2〉
〈external-expr1〉 ::= 〈name-term〉 | 〈category-term〉〈link-term〉 〈DATE〉|

〈adj-term〉〈category-term〉〈link-term〉 〈DATE〉 |
〈name-term〉〈link-term〉 〈DATE〉 | 〈delegating-expr〉

〈external-expr2〉 ::= 〈internal-expr〉〈auxiliary-term〉〈external-expr1〉
〈delegating-expr〉 ::= 〈delegation-term〉 | 〈adj-term〉〈delegation-term〉
〈category-term〉 ::= “law” | “decree” | “directive” |. . .
〈name-term〉 ::= “social insurance code”|“complementary pension law”| . . .
〈adj-term〉 ::= “modified” | “grand-ducal” | “ministerial”
〈auxiliary-term〉 ::= “as it was introduced by the” | . . .
〈delegation-term〉 ::= “regulation” | “memorial” | . . .
〈implicit-expr〉 ::= 〈implicit-term〉〈marker-term〉 |

〈implicit-term〉〈category-term〉|
〈marker-term〉〈implicit-term〉 |
〈category-term〉〈implicit-term〉|
〈internal-expr〉〈implicit-term〉|
〈implicit-term〉〈unspecific-term〉|
〈implicit-term〉〈num-expr〉〈marker-term〉 |
〈unspecific-term〉〈implicit-term〉

〈implicit-term〉 ::= “above” | “below” | “preceding” | “following” | “that follows” |
“next” | “previous” | “this” | “in question” | “same” | . . .

〈unspecific-term〉 ::= “provision”
〈link-term〉 ::= “of” | “of the” | “of a”

Complex cross reference patterns
〈complex-ref-expr〉 ::= 〈multivalued-expr〉 | 〈multilayered-expr〉
〈multivalued-expr〉 ::= 〈multivalued-expr1〉 | 〈multivalued-expr2〉
〈multivalued-expr1〉 ::= 〈internal-expr〉〈sep-term〉〈num-expr〉 |

〈external-expr〉〈sep-term〉〈num-expr〉〈sep-term〉〈DATE〉
〈multivalued-expr2〉 ::= 〈multivalued-expr1〉〈sep-term〉〈num-expr〉 |

〈multivalued-expr1〉〈sep-term〉〈implicit-term〉
〈multilayered-expr〉 ::= 〈multilayered-expr1〉 | 〈multilayered-expr2〉
〈multilayered-expr1〉::= 〈internal-expr〉 〈sep-term〉 〈internal-expr〉 |

〈internal-expr〉 〈sep-term〉 〈num-expr〉
〈multilayered-expr2〉::= 〈multilayered-expr1〉〈sep-term〉〈internal-expr〉 |

〈multilayered-expr1〉〈sep-term〉〈num-expr〉 |
〈multilayered-expr1〉〈link-term〉〈internal-expr〉 |
〈multilayered-expr1〉〈link-term〉〈num-expr〉 |
〈multilayered-expr1〉〈link-term〉〈multivalued-expr〉

〈sep-term〉 ::= “,” | “–” | “and” | “or” | “to” | . . .

1

9

10

7

8

6

5

4

3

2

11

19

20

17

18

16

15

14

13

12

21

27

26

25

24

23

22

Line

28

Fig. 10 Grammar for Natural Language Cross Reference Patterns

6 Detecting Cross Reference Expressions

Cross reference detection is based on the Natural Language
(NL) patterns in the CREs. In our previous work [1], we
conducted a Grounded Theory (GT) study [8] of Luxem-
bourg’s Income Tax Law (circa 2013) [17] with a total of
1223 CREs for identifying the NL patterns used in CREs.
To build confidence about the generalizability of our pat-
terns, we subsequently further studied the CREs in both the
English and French editions of PHIPA. The former has 1197
CREs and the latter – 1192 CREs5. The analysis of PHIPA
did not yield new patterns.

5 The discrepancy between the number of CREs in the French and
English editions of PHIPA is due to differences in the wording of
the provisions. For example, the statement “(3) Despite clause (1)
(b), the person described in that clause ...” from the English edi-
tion of PHIPA contains two CREs, namely “clause (1) (b)” and “that
clause”, whereas the corresponding statement in the French edition,
“(3) Malgré l’alinéa (1) b), la personne qui y est visée”, contains
only one CRE.

Automated Detection and Resolution of Legal Cross References 9

Fig. 10 formalizes as a BNF grammar the pattern derived
from our GT study. In the grammar, symbols in upper-case
letters, e.g., 〈NUMBER〉, denote terminals as identified by a
NL lexical analyzer. Non-terminals that end with term, e.g.,
〈marker-term〉 and 〈name-term〉, denote elements in prede-
fined dictionaries (gazetteers). These terms vary from one
legal jurisdiction and language to another and must be spec-
ified for a specific context.

The patterns are organized into two different types: sim-
ple and complex. Complex patterns are built on top of simple
patterns, providing certain advanced features that we discuss
over the course of this section. We illustrate the patterns us-
ing several examples. For presentation purposes, we use En-
glish translations for the examples drawn from French texts.

We have made minor simplifications to the patterns for
better readability. With regards to the French grammar, there
is only one simplification to note: In French, ordinals can ap-
pear both before and after nouns (e.g., “paragraphe premier”,
“premier paragraphe”); whereas in English, they can appear
only before (e.g., “first paragraph”).

6.1 Simple Cross Reference Expressions

A simple CRE can be explicit or implicit (L. 1 of Fig. 10).
Among explicit CREs, we distinguish internal and external
(L. 2). Non-terminals 〈internal-expr〉 (L. 3) and 〈external-
expr〉 (L. 8) respectively capture (explicit) internal and (ex-
plicit) external CREs.

An (explicit) internal CRE (L. 3-7) is either a structural
element marker (such as “article” and “section”) followed by a
numerical expression, or an ordinal expression followed by
a structural element marker. The numerical expression can
be an arabic number (“section 1”), a roman number (“chapter
IV”), an alphanumeric (“alinea 2bis”), a number written in
words (“alinea four”), or a letter (“letter a”). A numerical ex-
pression may have brackets around it or at the end (“paragraph
(2)”, “paragraph 2)”). An ordinal expression can be numerical
(“1st article”) or textual (“first article”). A variant of such pat-
tern is when a generic term (L. 7), e.g., under, replaces the
structural element marker, e.g., letter. For example, “under
a” may be used in an article instead of “letter a”.

An (explicit) external CRE (L. 8-16) can be as simple
as just the name of an external law, e.g., “freedom of infor-
mation and protection of privacy act”. Alternatively, an exter-
nal CRE may be a phrase starting with an optional auxiliary
term (e.g., “modified”) followed by a legal text category and a
date, e.g., “modified law of 23 July 1993”. It is further possible
for an external CRE to reference the internal provisions of
an external law, e.g., “article 54bis as it was introduced by the
Law of 23 July 1983”. Delegating references also fall under
external CREs.

A simple CRE may be implicit (L. 17-18), e.g., “this sec-
tion”. Implicit CREs may further combine implicit terms and

numerical expressions, e.g., “first four alineas”. Among im-
plicit CREs, some cannot be resolved accurately because
they use an unspecific term, e.g., “the following provisions”.

6.2 Complex Cross Reference Expressions

Complex CREs enhance simple CREs with three additional
features: enumerations, ranges, and navigation through lev-
els. Our classification of complex CREs follows de Maat et
al.’s [11]: multivalued and multilayered (L. 21). Multilay-
ered CREs can have multivalued parts (L. 27).

A multivalued CRE (L. 22-24) cites many provisions
within the same expression by specifying only once a struc-
tural element marker followed by a numerical expression.
The numerical expression may be: (1) an AND/OR enumer-
ation, e.g., “numbers 1, 1a, 2 and 3” and “articles 22bis or 102”;
(2) a range, e.g., “subsections (3) to (11)”; (3) a combination of
enumerations and ranges, e.g., “articles 119 to 121 and 124”.

Similar to simple CREs, multivalued CREs can use dif-
ferent numbering formats, e.g., ordinals as in “second and
third alineas”. Our grammar allows the repetition of enumer-
ations and ranges within a CRE to accommodate complex
cases seen in our study, e.g., “articles 144, 147, 148 to 150,
158 to 160, 161, 162, and 163”. We further allow multivalued
CREs to include implicit terms, e.g., “articles 26-2, 27 and the
following”. Neither of these features are captured by de Maat
et al. [11].

A multilayered CRE (L. 25-27) describes a navigation
path through the hierarchy of a legal text. The navigation
may be from an upper to a lower level, e.g., “article 91, 1st
alinea, No 2”. Alternatively, the navigation can be from a
lower to an upper level, e.g., “second alinea of article 10 of the
law of 23 may 1964”. Finally, a navigation can also be mixed-
mode. That is, a CRE may start at a convenient hierarchical
level, navigate upward or downward in the hierarchy, and
then go in the reverse direction. For example, consider the
following CREs: “article 3, paragraph 2 of the Law of 8 June
1999” and “numbers 3 and 4 of article 22bis, alinea 2”. The nav-
igation in the former is Article→ Paragraph→ Law and in
the latter Number→ Article→ Alinea. A multilayered CRE
may navigate downward in the hierarchy by specifying only
the structural element marker of the lower level, e.g., “clause
47 (15) (a)”. Multilayered CREs may further use multivalued
CREs in their makeup, e.g., “articles 59, alinea 3, 59bis, alinea
1, 170, alineas 2 and 3, 170bis, alineas 1 et 2, 170ter, alineas 1
and 2, and 172, alineas 4 and 5” or “clause 37 (1) (a), 38 (1) (a)
or 50 (1) (e)”.

7 Resolving Cross Reference Expressions

Text regions that match some NL pattern from those in the
grammar of Fig. 10 will be marked as CREs. The CREs then

10 Sannier et al.

Example 1 Example 6
CRE: current article CRE: articles 99ter to 102
Context: article 4 paragraph 2 Context: Lux. Income Tax Law
Interp.: article 4 Interp.: article 99ter, article 99quater, article 100, article 101, article 102

CRE: this section Example 7
Context: section 7 subsection (1) clause (a) CRE: paragraphs 1 to 3
Interp.: section 7 Context: article 50bis, paragraph 4

Parent context: article 50bis
Example 2 Interp.: paragraph 1, paragraph 2, paragraph 3
CRE: following paragraphs Note: First attempt in the context of article 50bis, paragraph 4 fails.
Context: article 122 paragraph 1 Second attempt at the level of article 50bis succeeds.
Interp.: paragraph 2, paragraph 2a, paragraph 3, paragraph 4

CRE: subsections (1) to (4)
CRE: following paragraphs Context: section 49, subsection 5
Context: section 3 subsection (1) Parent context: section 49
Interp.: subsection 1, subsection 2, subsection 3, subsection 4, Interp.: subsection 1, subsection 2, subsection 3
subsection 5, subsection 6, subsection 7, subsection 8 Note: First interpretation in the context of section 49, subsection 5 fails.

Second attempt at the level of section 49 succeeds.
Example 3
CRE: same law Example 8
Prev. CRE: law of 8 june 1999 CRE: 1st alinea, sub d) of article 131
Interp.: law of 8 june 1999 Interp.: article 131, 1st alinea, sub d)

CRE: that section CRE: subclause 21 (1) (e) (iii)
Prev. CRE: section 36.2 Interp.: section 21 subsection (1) clause (e) subclause (iii)
Interp.: section 36.2

Example 4 Example 9
CRE: alinea 2, sub a CRE: articles 109, 1st alinea, numbers 1 to 3, 127 and 154ter
Interp.: alinea 2, letter a Interp.: article 109 alinea 1 number 1, article 109 alinea 1 number 1a,

article 109 alinea 1 number 2, article 109 alinea 1 number 3,
Example 5 article 127, article 154ter
CRE: article 14, 61, 91 or 95
Interp.: article 14, article 61, article 91, article 95 CRE: clauses 44 (6) (a) to (f)

Interp.: section 44 subsection 6 clause a, section 44 subsection 6 clause b,
CRE: sections 11, 12, 15, 16, 17, 33 and 34 section 44 subsection 6 clause c, section 44 subsection 6 clause d,
Interp.: section 11, section 12, section 15, section 16, section 44 subsection 6 clause e, section 44 subsection 6 clause f
section 17, section 33 , section 34

Fig. 11 Examples of Cross Reference Expressions and their Interpretation

undergo an interpretation step and are linked to the cited tar-
gets. In this section, we focus on interpreting and linking of
internal cross references. Simple external CREs that men-
tion only the name of the external text or the date the text
was enacted can be resolved using a mapping from names
and dates onto the resource locators for the texts. As for ex-
ternal CREs that refer to the internal provisions of an exter-
nal text, interpretation is done in the same manner as that
for internal CREs, once the name (or date) of the external
text has been extracted from the CRE. Note that resolving
such external CREs requires the cited external text to be in
a markup format.

7.1 Interpreting Cross Reference Expressions

The aim of the interpretation phase is to translate each CRE
into a set of individual cross references. The main com-
plexity arising during interpretation is that some of the NL
patterns discussed in Section 6 are ambiguous, i.e., several
parse trees may exist for the same CRE. While a regular ex-
pression recognizer can delineate the start and end of each
CRE even when the grammar is ambiguous, without know-
ing the structural markup of the underlying legal text, one
cannot choose the parse tree that is suitable for the text.
Parser generators such as Yacc [21] require static priorities

to be defined in order to resolve ambiguities. This is inade-
quate for CREs, because the admissible parse tree depends
on the context, i.e., the actual legal text under analysis.

Custom interpretation rules are thus necessary, as we de-
tail in this section. To remain concise in our descriptions,
we assume that the legal text under analysis has been al-
ready preprocessed. In particular, we assume that: (1) ordi-
nals, roman numbers, and numbers spelled out in text have
been replaced with arabic numerals; alphanumerics remain
unchanged; (2) abbreviated structural element markers (e.g.,
art.) have been replaced with full labels (e.g., article).

Table 11 presents the CRE examples used in the remain-
der of this section for illustration. For each example, we pro-
vide (1) the CRE itself, (2) the CRE context, i.e., the precise
location of the CRE, and when necessary the parent con-
text, i.e., context at a higher hierarchical level, (3) where
relevant, the immediately-preceding CRE at a certain hier-
archical level, denoted Prev. CRE, and finally (4) the CRE
interpretation.

7.1.1 Interpreting Simple Cross Reference Expressions

Among simple CREs, only implicit ones and those using
generic terms (e.g., sub, current) need to be interpreted. We
distinguish two cases for implicit CREs.

Automated Detection and Resolution of Legal Cross References 11

(1) Implicit CREs that are semantically equivalent to
current, previous, or next followed by a structural element
marker C, for instance, “current article” and “this section” in
Example 1. These CREs are interpreted with respect to their
precise context. In the case of current, the CRE is interpreted
as referencing the segment of the same type as C containing
the CRE, “article 4” and “section 7” in the case of Example 1.
In the case of previous and next, e.g., “following paragraphs” in
Example 2, the CRE is interpreted as referencing segment(s)
of the same type as C that respectively precede or follow the
CRE.

(2) Implicit CREs that are semantically equivalent to
same or that followed by a structural element marker C such
as “same law” or “that section” in Example 3. These CREs,
commonly used to avoid repetition, need to be interpreted
based on the preceding CRE. Specifically, we interpret such
CREs as being equivalent to the closest CRE of type C which
precedes the CRE in question.

We note that the interpretation in both of the above cases
is a best-guess heuristic, as we do not interpret the semantics
of the underlying text.

Interpreting generic terms such as sub in Example 4 needs
to be done according to the conventions in the legal jurisdic-
tion to which the text belongs. In Luxembourg’s legislation,
the specific structural element marker for a generic term can
be inferred based on what is seen after the generic term.
If the generic term is followed by a letter, the appropriate
structural element marker is Letter; otherwise, the marker is
Number. We did not observe such CREs in PHIPA.

7.1.2 Interpreting Multivalued Cross Reference
Expressions

Multivalued CREs such as the ones in Example 5 are in-
terpreted with the structural element marker added to each
element of the enumeration. For example “article 14, 61, 91
or 95” will be treated as “article 14, article 61, ...”.

When the CREs include ranges, e.g., as in Examples 6
and 7, we distinguish structural elements that have unique
numbering across an entire legal text (e.g., Article) from
structural elements (e.g., Paragraph) whose numbering is
reset when a higher-level structural element is seen. For el-
ements of the first type, we browse the entire hierarchical
structure of the legal text to identify the elements in the
range. For elements of the second type, the interpretation
is similar but depends on the local context: We initially at-
tempt to interpret the CRE within the innermost segment in
the hierarchy where the CRE appears. If the CRE cannot be
interpreted meaningfully within this context, we recursively
attempt to resolve the CRE in the context of the (immediate)
parent of the current segment and then in the context of the
parent’s parent and so on, until the right level for interpret-

ing the CRE is reached. Recursive interpretation attempts
are illustrated in Example 7.

Note that, as shown by Example 6, the actual elements
of a range cannot be merely deduced by an integer enumer-
ation because alphanumerics may be involved. For multi-
valued CREs including implicit terms, we apply the same
process as that for simple implicit CREs, described earlier.

7.1.3 Interpreting Multilayered Cross Reference
Expressions

For multilayered CREs that do not contain a multivalued
segment, interpretation is performed by harmonizing the nav-
igation order so that it is strictly downwards. To illustrate,
consider the CRE “1st alinea, sub d) of article 131” in Exam-
ple 8. The following four CREs are equivalent to this CRE:
(1) “article 131, 1st alinea, sub d)”, (2) “sub d) of article 131,
1st alinea”, (3) “article 131 sub d) of 1st alinea”. Only (1) is in
harmonized (strictly downwards) form.

Multilayered CREs without multivalued segments may
also come in another variation, e.g., “subclause 21 (1) (e) (iii)”
in Example 8. This CRE follows a harmonized navigation
order already, except that it starts with the structural ele-
ment maker for the deepest hierarchical layer, leaving out
all the other (intermediate) layers. Such CREs are harmo-
nized by making explicit all the intermediate structural el-
ement markers. For example, “subclause 21 (1) (e) (iii)” will
be transformed into “section 21 subsection (1) clause (e) sub-
clause (iii)”.

The most complex form of multilayered CREs are those
in which layers are combined with multivalued parts (ranges
and enumerations). The regular expressions that detect such
CREs are ambiguous. To illustrate, consider the CRE “arti-
cles 109, 1st alinea, numbers 1 to 3, 127 and 154ter” in Ex-
ample 9. Without knowing the structural organization of the
underlying text, one cannot know whether “127 and 154ter”
refer to articles, paragraphs, or numbers. One could take
cues from punctuation and the singular versus plural struc-
tural element markers to rule out the fragment referring to
paragraphs. One could further deduce that either “127” or
“154ter” has to be an article because the article structural ele-
ment marker is in plural form. Unfortunately, such reasoning
is unreliable as punctuation and the use of singular versus
plural terms are not consistently followed in legal texts. For
example, the distinction between singular and plural disap-
pears when abbreviations (e.g., art.) are used.

We interpret multilayered CREs with ranges and enu-
merations in a similar way to multivalued CREs. When faced
with a CRE fragment whose type is unknown, an attempt is
made to interpret that fragment in the deepest context previ-
ously used for interpretation. In the case of the above CRE
in Example 9, this means that first, we take the numerical
expression “127”, whose type is unknown, to be the contin-

12 Sannier et al.

Example 10
(Combined) CRE: article 24, with the exception of paragraph 3
Regular CRE: article 24
Exception CRE: paragraph 3
Context (for Exception CRE): article 24
Interp. (Exception CRE): article 24 paragraph 3

(Combined) CRE: article 28, with the exception of letters h, k,
p, r and s
Regular CRE: article 28
Exception CRE: letters h, k, p, r and s
Context (for Exception CRE): article 28
Interp. (Exception CRE): article 28 letter h, article 28 letter k, article
28 letter p, article 28 letter r, article 28 letter s

Example 11
CRE: article 1quinquies
Art. 2. After article 1quater, a new article 1quinquies is added with
the following wording . . .
Context: Law of April 16th, 1979
Interp.: article 1quinquies of Law of April 16th, 1979

CRE: article 31.-1
Art. 36. Article 31.-1. is modified as follows:
Context: Law of April 16th, 1979
Interp.: article 31.-1 of Law of April 16th, 1979

Fig. 12 Examples of Exception and Amendment Cross Reference Ex-
pressions and their Interpretation

uation of “numbers 1 to 3”. The algorithm tries to interpret
“127” in the context of “article[s] 109, 1st alinea”, i.e., assum-
ing it is a number. If this attempt fails, we recursively switch
to the upper-level context in the CRE, i.e., “article[s] 109” (as-
suming it is an alinea) and finally assuming it is an article,
where the interpretation succeeds. Now that “127” has been
interpreted as an article, the CRE will be seen as if the struc-
tural element marker article appeared just before “127” in the
legal text. The remainder of the enumeration, i.e., “154ter”,
is interpreted as if the CRE is “articles 109, 1st alinea, num-
bers 1 to 3, article 127 and 154ter”. We identified multilay-
ered CREs with ranges and enumerations in PHIPA as well,
e.g., “clauses 44 (6) (a) to (f)” in Example 9. The multilayered
CREs in PHIPA are nevertheless structurally less complex
than those found in Luxembourg’s legislation.

7.1.4 Cross References Requiring Special Treatment

The interpretation rules described in Sections 7.1.1 to 7.1.3
provide the general behavior of the resolution process. There
are nevertheless two special situations where this general be-
havior needs to be altered to increase the accuracy of the res-
olution process. These two situations are discussed below,
with illustrative examples provided in Fig. 12.

Exception CREs. When citing one or a range of provisions,
certain constituent parts or elements within the range may
be excepted (excluded) from the scope of the citation. This
situation is illustrated in Example 10. In such cases, the ex-

ception CRE, for instance, “paragraph 3” in Example 10, has
to be interpreted in the context of the regular CRE, for in-
stance, “article 24” in Example 10, rather than in the context
of the actual provision where the exception CRE is located.
The large majority (but not all) of Exception CREs are iden-
tifiable based on certain keyphrases, e.g., “with the exception
of” which either precede or succeed the CREs.

Amendment CREs. Amendment CREs appear in provisions
that prescribe modifications to other (external) legal texts.
Two instances of Amendment CREs are shown in Exam-
ple 11. Without additional processing, Amendment CREs
will be treated as internal, although these CREs are always
external. Amendment CREs need to be resolved in the con-
text of the text being amended. For example, the resolution
of the CREs of Example 11 must be attempted in “the Modi-
fied Law of April 16, 1979”. Similar to Exception CREs, most
Amendment CREs can be identified based on keyphrases
preceding or succeeding them. Examples of these keyphrases
include: “is added”, “is modified”, “a new”, and “is repealed”.

7.2 Linking Cross References to Targeted Provisions

Once the interpretation phase is complete, each CRE is linked
to all the provisions resulting from its interpretation. The ex-
act mechanism used for capturing the links depends on the
type of markup in which the target texts are represented. For
example, the links can be captured using xlink when the tar-
get texts are in XML format, and using hyperlinks (href)
when the target texts are in HTML format. The technical
details of establishing the links are straightforward and a
matter of implementation, as the interpretation of each CRE
leads to uniquely identifiable elements. An example of links
for the case where the legal texts are rendered in HTML
is provided in Section 8 when discussing visualization and
navigation (Section 8.2).

8 Applications

In this section, we present some important use cases that
build on the results of cross reference detection and resolu-
tion. An instantiation of these use cases for Luxembourg’s
Income Tax Law and PHIPA is available at:
http://people.svv.lu/sannier/crossreferences/

8.1 Identifying Unresolvable CREs

A natural byproduct of resolution are diagnostics about CREs
that cannot be resolved. Failure to resolve a CRE is due to
one of the following: (1) our automatic interpretation be-
ing at fault, (2) well-formedness issues in how the CREs are

Automated Detection and Resolution of Legal Cross References 13

phrased, or (3) the citation targets of the CREs being non-
existing. Independently of the cause, it is important for legal
experts and for requirements analysts alike to be made aware
of CREs that cannot be resolved.

Case 1 typically occurs when external CREs are erro-
neously deemed as being internal. For instance, there are
certain circumstances where Amendment CREs (see Sec-
tion 7.1.4) are difficult to identify as such because of the
nuanced language of the law. An example would be the fol-
lowing: “The modified fiscal adjustment law of 16 October 1934
is amended with the following provision, inserted into the law
as paragraph 11bis: [...]”. Our approach would classify “para-
graph 11bis” as being internal although the correct treatment
would be “paragraph 11bis of the law of 16 October 1934”. Un-
less a specific rule is written for this situation, the nuanced
text that appears between the two CRE fragments makes it
difficult to relate the two fragments. As suggested by the ac-
curacy results in Section 10, such complex situations leading
to erroneous interpretation are not common.

Case 2 occurs, for instance, when many hierarchy levels
of a legal text are aggregated into a single numbering. An
example is “Number 3e”, when used as a shorthand for re-
ferring to “Number 3 Letter e”. In this case, our algorithm is
(legitimately) unable to resolve the CRE because the num-
bers that correspond to two successive levels of the hierarchy
have been joined together without a blank space or separator
between them.

Case 3 occurs when some target end of a CRE is dan-
gling. An example would be “previous alinea” appearing in
the first alinea of an article, i.e., where there is no previous
alinea. Another example is when some hierarchical level is
skipped, e.g., “Article 25 Alinea 7 Letter b” being erroneously
written as “Article 25 Letter b”. A CRE citing some provision
whose content has been repealed (and removed) will also
result in a non-existing target warning.

8.2 Visualization and Navigation

Cross reference detection and resolution is a prerequisite
for generating navigable views of legal texts. As discussed
previously, web portals such as LegiFrance and LegiLux
already provide electronic versions for laws and navigable
links. However, the markup upon which legal texts are built
for these portals is not as precise. Moreover, implicit CREs
and ranges are not adequately interpreted and resolved.

Our approach generates different views that can be used
for different purposes. Fig. 13 shows a small excerpt of an
HTML view of Subsection 37 (3) of PHIPA. In this view,
the resolved CREs appear as hyperlinks. Clicking on a CRE
brings up a tooltip box, allowing the user to navigate to
any of the cross references entailed by the CRE. Such a
view is useful during the elaboration of compliance require-

ments, when analysts often need to follow the cross refer-
ences while looking for additional information.

Research(3) Under clause (1) (j), a health information custodian may use
personal health information about an individual only if the custodian prepares a
research plan and has a research ethics board approve it and for that purpose
subsections 44 (2) to (4) and clauses 44 (6) (a) to (f) apply to the use as if it were
a disclosure.2004, c.3, Sched.A, s.37 (3).

Fig. 13 HTML View of PHIPA with Cross References Rendered as
Hyperlinks

In addition to hypertext content, our approach can pro-
vide alternative views on legal texts, such as an interactive
tree to facilitate the navigation within a law. An example of
such a view is shown in Fig. 14 where each structural ele-
ment is rendered as a tree node. The tree view is useful to
explore the detailed hierarchy of the legal text with subnodes
representing the hierarchical structure of the legal text and
color-coded nodes being internal (green) or external (red)
cross references.

8.3 Advanced Text Search

Another interesting application enabled by our approach is
the capability to perform advanced cross-reference search,
taking into account implicit and multivalued cross references.
As an illustration, consider the following example from Lux-
embourg’s Income Tax Law: “Article 24” of this law elabo-
rates the pension schemes recognized for taxation. A natural
query for an analyst who is elaborating the compliance re-
quirements for taxation of pensioners would be: Where is
“Article 24” cited? A naive lookup of the string “Article 24”
in the law’s text yields no results, despite the article being
internally cited in four places, within ranges: “Articles 4 to
155bis”, “Articles 14 to 108bis” and “Articles 16 to 60” (appear-
ing twice). A similar example from PHIPA is “Subsection 44
(3)”, which is cited within two ranges “Subsections 44 (2) to
(4)” and “Subsections (1) to (4) ”. For both examples, with-
out automation, identifying where the given provisions are
being cited requires a manual inspection of the entire text.

8.4 Trace Link Analysis

Trace link analysis is concerned with identifying the provi-
sions and artifacts that refer to a particular provision. With-
out automated trace link analysis, it would be difficult to
determine how a change in a given law impacts related laws
and also artifacts such requirements, websites, and forms.

14 Sannier et al.

Fig. 14 Tree-like View of a Legal Text (Fragment)

Once the structure of a legal text has been extracted and
its cross references have been resolved, link analysis can be
done through logical means. We use the Relational Manip-
ulation Language (RML) [4] for formulating link analysis.
RML provides the expressive power of first-order logic with
transitive closure and counting operators. Being able to com-
pute transitive closure is essential both because of the tran-
sitive nature of links between legal provisions and also the
hierarchical nesting of document elements. The use of RML
is motivated by RML’s simple syntax and its efficient inter-
preter, CrocoPat [4]. CrocoPat encodes relational predicates
as Binary Decision Diagrams (BDDs) [7], making it scalable
for handling large legal texts with potentially thousands of
structural elements and cross references.

To use CrocoPat for link analysis, we need to construct
a predicate database capturing the structure of the legal text
in question along with its cross references. This information
is conveniently expressed as a typed graph [27] – intuitively,
a graph whose nodes and edges are typed. In our problem,
graph nodes represent instances of the structural elements in
a legal text, e.g., individual sections and paragraphs. Node
types therefore correspond to the classes in the text schema,
e.g., the schema of PHIPA in Fig. 7. Edges represent two
types of relationships: (1) a containment relationship be-
tween structural elements, e.g. “Section 12” contains “Section
12 Subsection 3”; (2) a citation relationship between struc-
tural elements, e.g. “Section 12 Subsection 3” cites “Section
44 Subsection 1”.

In Fig. 15(a), we show a small fragment of the typed
graph for a legal text (PHIPA). Each node has a label:type
annotation. The label portion of the annotation is the quali-
fied name of the element that the node represents. Edges are
marked only with types and without labels. The algorithm
for transforming a typed graph into RML is straightforward
– see [28]. Fig. 15(b) shows the resulting RML predicates
for the typed graph of Fig. 15(a). To ensure that each graph
element is uniquely represented, the translation assigns a
unique uid to each node and edge.

Act 1

Section 1 Section 2
<<cites>>

(a)

(b)

Node("id0");
Label("id0","Act1");
Type("id0","Act");

Node("id1");
Label("id1","Act 1::Section 1");
Type("id1","Section");

Node("id3");
Label("id3","Act 1::Section 2");
Type("id3","Section");

Edge("id2");
Type("id2","Containment");
Src("id2","id0");
Tgt("id2","id1");

Edge("id4");
Type("id2","Containment");
Src("id4","id0");
Tgt("id4","id3");

Edge("id3192");
Type("id5","Citation");
Src("id5","id1");
Tgt("id5","id3");

Fig. 15 (a) Example Typed Graph (b) RML Predicates for the Graph

Given a predicate database for a legal text in the format
shown in Fig. 15(b), one can infer links between any pair
of structural element instances. For example, one can iden-
tify, for each Section X , all structural element instances that
directly link to X via a cross reference. The RML code snip-
pet for this computation is shown in Fig. 16. In the snippet,
we first compute a relation, Contains(x,y), that holds for all
(x,y) where y is a child of x in the legal text’s hierarchy tree.
TrContains(x, y) computes the reachability relations via con-
tainment using the transitive closure operator (TC). TrCon-
tains(x, y) thus holds for all (x,y) where y is a descendant
of x. Cites(x,y) computes (x,y) where x directly cites y via a
cross reference. Finally, LinkedToArt(x, y) computes all (x,y)
where y (i.e., the link target) is of type Section, and where x
cites some element z that is transitively contained in y (e.g., a
subsection of y, or a paragraph in a subsection of y). Results
of link analysis can be used for creating a traceability table.
An excerpt of the traceability table for PHIPA built based on
the above snippet is shown in Fig. 17.

Automated Detection and Resolution of Legal Cross References 15

Contains(x, y) := Node(x) & Node(y) & EX(e, Edge(e) &
Type(e, “Contains”) & Src(e, x) & Tgt(e, y);

TrContains(x, y) := TC(Contains(x,y)) | (x = y);
Cites(x, y) := Node(x) & Node(y) & EX(e, Edge(e) &

Type(e, ”Cites”) & Source(e, x) & Target(e, y));
LinkedToArt(x, y) := Node(x) & Type(y, ”Section”) &

EX(z, Cites(x, z) & TrContains(y, z));

Fig. 16 RML Snippet for Trace Link Analysis

Fig. 17 Excerpt of PHIPA Traceability Table

8.5 Circularity Analysis

Cyclic citations are common in legal texts. A frequent type
of usage is when a provision X cites a provision Y to state
that X depends on Y for a definition; and Y refers back to
X to state that Y provides a definition required by X . While
cycles seldom indicate errors, they need to be investigated
carefully to verify the absence of circular reasoning, e.g.,
cases where provisions X and Y both depend on each other
for a definition.

Circularity analysis is performed using logical queries
similar to those for trace link analysis. The RML snippet for
detecting cycles of length two is given in Fig. 18. Cycles of
longer lengths can be computed in an analogous manner.

XCitesY(x, y) := Node(x) & Node(y) & EX(e, Edge(e) &
Type(e, “Citation”) & Source(e, x) & Target(e, y));

C2(a1,a2) := (a1 < a2)
& XCitesY(a1,a2) & XCitesY(a2,a1) & (a1 != a2);

Fig. 18 RML Snippet for Circularity Analysis

In the snippet, we define the predicate for a citation be-
tween two nodes x and y. XCitesY(x, y) computes a relation
for two nodes x and y, where x is the source of an edge e
of type “citation”, and y it the target of the edge. The relation
C2(a1,a2) detects any cycle of length two between distinct
nodes a1 and a2 of the graph, with a1 citing a2 and a2 cit-

ing a1. The (a1< a2) is for symmetry breaking so that a cycle
is not detected and presented twice.

Part 1::Sec. 3::Subsec. 5 → Part 1::Sec. 3::Subsec. 6 → self
Part 1::Sec. 3::Subsec. 7 → Part 1::Sec. 3::Subsec. 8 → self
Part 4::Sec. 32::Subsec. 1 → Part 4::Sec. 32::Subsec. 2 → self
Part 4::Sec. 40::Subsec. 2 → Part 4::Sec. 40::Subsec. 3 → self
Part 4::Sec. 44::Subsec. 10 → Part 4::Sec. 44::Subsec. 11 → self
Part 4::Sec. 45::Subsec. 1 → Part 4::Sec. 45::Subsec. 3 → self
Part 5::Sec. 54::Subsec. 2 → Part 5::Sec. 54::Subsec. 3 → self
Part 7::Sec. 74::Subsec. 1 → Part 7::Sec. 74::Subsec. 7 → self

Fig. 19 Circular Citations of Length Two in PHIPA

The cyclic citations of length 2 in PHIPA are shown in
Fig.19. For each line, the first provision cites the second, and
the second cites back the first. We investigated these cycles
and determined that all the cycles were following the same
pattern where the source provision states that more details or
exceptions will be provided in the (cited) second provision.
The second provision cites back the first as a reminder for
the initial context.

9 Tool Support

Buidling on the GATE Workbench, we implement our ap-
proach into a tool named LeCA (Legal Cross Reference
Analyzer). LeCA provides automated support for (1) gen-
eration of text structure markup (Section 5), (2) cross ref-
erence detection (Section 6) and resolution (Section 7), and
(3) visualization and cross reference analysis (Section 8).

Fig. 20 shows an overview of LeCA. Eclipse’s model-
to-text transformation facilities are used in order to derive,
from a text schema, scripts for text structure markup. These
scripts are then executed by GATE, followed by those for
cross reference detection and resolution. The cross refer-
ence detection and resolution scripts rely on gazetteers for
structural element markers and domain-specific terms. The
gazetteers for structural element markers are derived from
the text schema. The gazetteers for domain-specific terms,
including the names of legal texts and the implicit terms,
depend on the corpus to which the legal text belongs and the
writing language of the text. These gazetteers thus need to
be provided by the user.

As output, LeCA produces an HTML view of the in-
put legal text with cross references represented as hyper-
links. Diagnostics are further provided for any unresolved
cross references. LeCA additionally generates a logical rep-
resentation of the input text’s structure and cross references,
which is in turn fed to CrocoPat for analysis.

LeCA has been developed primarily in JAPE. This has
enabled us to seamlessly integrate cross reference detection

16 Sannier et al.

GATE NLP
WorkbenchEclipse

Legal
Text

Text
Schema

Domain-
Specific

Lists
LST

Detection and
Resolution

Scripts

JAPE

Structure
Markup
Scripts

Structural
Element
Markers

LST JAPE

Crocopat

RML

HTML

HTML

Resolution
Diagnostics

Hyperlinked
Legal Text

RML

Analysis
Rules

Logical
Markup &

Links
HTML

Analysis
Results

Fig. 20 LeCA Tool Architecture

and resolution activities. The JAPE rules are augmented with
Java code for the interpretation and linking activities as well
as for the generation of HTML views and predicate databases
for interacting with CrocoPat. Excluding comments and third-
party components, LeCA consists of 114 JAPE scripts with
approximately 13K lines of JAPE code. LeCA includes ap-
proximately 5K lines of additional Java code, providing var-
ious functions that are used within the JAPE scripts.

10 Evaluation

In this section, we report on an evaluation of our approach
based on selected Luxembourgish legislative texts and also
PHIPA from the Canadian legal corpus. The evaluation is
aimed at investigating the effectiveness and scalability of
the approach. We start this section with a description of our
Research Questions (RQs). We then present our evaluation
results, followed by a discussion of limitations and threats
to validity.

10.1 Research Questions

Our evaluation is targeted at answering the following re-
search questions (RQ).

RQ1. Is our approach effective at identifying CREs? This
RQ aims at evaluating the completeness of our natural lan-
guage patterns for CREs by analyzing how accurately the
patterns can detect CREs in Luxembourg’s legislative texts
other than the Income Tax Law.

RQ2. Is our approach effective at resolving CREs? This
RQ aims at measuring how accurate our approach is in re-
solving already-detected CREs.

RQ3. How scalable is our approach? Legal texts can be
hundreds and sometimes thousands of pages long. This RQ
aims at establishing whether our approach runs within rea-
sonable time.

Table 1 Results for RQ1

CRE Type # of CREs Correctly
Identified

Partially
Identified

Missed

Internal 857 848 8 1
External 995 965 30 0
Explicit 1389 1350 38 1
Implicit 463 463 0 0
Simple 1031 1029 1 1
Complex 821 784 37 0
– Mutlivalued 373 372 1 0
– Multilayered 448 412 36 0

10.2 Evaluation Results and Discussion

Below, we present and discuss our evaluation results for
each of the three RQs stated in Section 10.1.

10.2.1 RQ1: Is our approach effective at identifying CREs?

To answer RQ1, we selected 13 legislative texts with a to-
tal of 1640 pages from Luxembourg’s legal corpus. We ran-
domly chose 10% of the pages in each selected text. If a
randomly-chosen page coincided with the preface, table of
contents, document history, or index, the page was discarded
and another random page was considered. In total, we con-
sidered 164 pages of text containing actual legal provisions.
We conducted a manual inspection of these pages and high-
lighted the CREs found. This inspection yielded 1852 CREs.

Following the inspection, we applied our tool for detect-
ing the CREs in these pages. The tool was applied exclu-
sively for detection, i.e., structural markup generation and
resolution were not performed. For detection, we used the
structural element markers (L. 4 of the patterns in Fig. 10)
prescribed for legislative texts by Luxembourg’s legal writ-
ing best practices that are in effect today [3]. For generic
terms, law names and auxiliary terms (respectively, L. 7, 13
and 15 of the patterns), we exploited the lists built from our
investigation of the Income Tax Law. Table 1 summarizes
the results for RQ1. In the table, we classify the identified
CREs across three different dimensions: Internal vs. Exter-
nal, Explicit vs. Implicit, and Simple vs. Complex.

The results indicate that our patterns miss only one CRE
among the ones investigated (less than one tenth of a per-
cent). This CRE was at (1) (in French, au (1)), which referred
to paragraph 1 of the article in question. The CRE can be
detected by adding “at” to the generic terms (L. 7 of the pat-
terns). However, we chose to not include this pattern because
in French it is common to use this preposition followed by
a number for reasons other than making a citation. Hence
including the pattern could result in several false positives.

38 CREs (≈ 2%) were only partially identified. The ma-
jority of these were either external or multilayered inter-
nal. The partial detection of external CREs was explained
primarily by incompleteness in the lists of law names and
auxiliary terms. These were names and terms that were not

Automated Detection and Resolution of Legal Cross References 17

present in the Income Tax Law, and thus not included in our
gazetteers. As for the multilayered internal CREs, partial de-
tection was explained mainly by incompleteness in the list of
structural element markers, arising from the use of markers
other than the ones stated in the best practice [3]. Detection
further yielded five false positives (not shown in the table).

Without addressing the incompleteness in the lists, de-
tection has a precision of 99.7%, recall of 97.9% and F-
measure of 98.8%. If the lists are completed, these measures
will respectively be: 99.7%, 100% and 99.8%. No new pat-
terns emerged from our investigation in RQ1.

10.2.2 RQ2: Is our approach effective at resolving CREs?

We answer RQ2 based on an analysis of seven legal texts.
Table 2 lists these selected texts, along with some of their
characteristics, including the number of articles, the total
number of CREs, and the number of internal CREs. The
number of unspecific CREs (within the internal ones) is also
shown.

In addition to the first five texts (T1–T5) which come
from Luxembourg’s legislation, we further selected PHIPA
in both English and French (T6 and T7). The shortest text
in our study of RQ2 is T3, which is seven pages long, with
sixteen articles and 79 CREs. 45 of these CREs are internal
with five being unspecific. The longest text is T5, which is
189 pages long, contains 236 articles, and has 1223 CREs of
which 928 are internal, with 45 of these being unspecific.

T5, T6, and T7 were previously used in the derivation of
our CRE patterns (Section 6). Despite this, we believe that
using these three texts towards answering RQ2 is justified
because of the following: First, from our analysis of RQ1,
one can be reasonably confident that our patterns achieve
high coverage in detection. Second, our resolution algorithm
is instantiated based on a schema and the CREs patterns, ir-
respectively of the actual legal text. We thus anticipate little
bias resulting from using these three texts in RQ2.

Although our patterns address both internal and external
CREs, our evaluation of RQ2 is exclusively concerned with
internal CREs, after excluding unspecific ones. As noted
earlier, a detailed resolution of external CREs requires the
text schema for the cited external texts. With regards to un-
specific CREs, and again as noted before, meaningful auto-
mated resolution would be hard because of these CREs be-
ing vague. Manual interpretation would thus be necessary.

Overall, the seven analyzed texts contain 4474 CREs,
of which 2595 are internal. Among the internal CREs, 71
are unspecific thus leaving 2524 CREs to resolve. We eval-
uate the accuracy of resolution over these 2524 CREs using
precision and recall. Table 3 summarizes the results. When
combined, the automatically-generated cross reference links
and the warnings fully covered the internal CREs over which
resolution was attempted. Column 3 of Table 3 gives the

number of individual cross reference links generated for the
CREs resolved (column 2) in each text (column 1). The al-
gorithm returns several warnings about CREs that have not
been resolved (column 4). Our inspection of the unresolved
CREs indicated that they were either anomalous or misin-
terpreted.

Anomalous CREs are related to well-formedness issues
and non-existing targets, i.e., cases (2) and (3) outlined in
Section 8.1. Misinterpreted CREs, as the name suggests, re-
sult from our algorithm interpreting the CREs incorrectly.
The consequence of a misinterpretation could be either of
the following: (1) resolution fails, i.e., case (1) in Section 8.1,
or (2) the resolution links the CRE to the wrong provision(s).
We did not encounter the latter situation in our evaluation;
nevertheless, such a situation is possible. For example, if a
reference to “article 1” of some external text is incorrectly
classified as being internal, the reference will most likely be
resolved but incorrectly.

With regards to the accuracy of resolution, metrics are
provided in columns 4 to 8 of Table 3. In our evaluation, we
consider anomalous CREs as being true positives. Misin-
terpreted CREs are rare. We observed a maximum of three
misinterpreted CREs per text, as indicated by column 4 of
Table 3. Internal CREs correctly classified as being such but
nevertheless misinterpreted give rise to both false positives
and false negatives. Internal CREs classified as being exter-
nal give rise only to false negatives. External CREs classi-
fied as being internal give rise only to false positives. Exter-
nal CREs classified as external are out of the scope of RQ2
as resolution was not attempted over external CREs.

Below, we elaborate the misinterpreted CREs in the stud-
ied texts. T1–T3 did not contain any misinterpreted CREs.
For T4 and T5, the misinterpreted CREs are external refer-
ences being interpreted as internal ones, thus affecting only
precision. The example we gave earlier for case (1) in Sec-
tion 8.1 (“paragraph 11bis”) is the misinterpretation seen in
T5. T6 and T7 contain one misinterpreted CRE that is com-
mon between the two texts. This CRE relates to the title of
subsection 26. (7): “Conflict between persons in same para-
graph”. Upon a manual examination of the content of the
subsection, we determined that “same paragraph” may refer
to any paragraph in subsection 26 (1). The CRE must thus
be resolved to paragraph 26. (1) 1, paragraph 26. (1) 2, . . . ,
paragraph 26. (1) 8. Our algorithm nevertheless fails to re-
solve this CRE. In our our calculation of recall, this situation
counts as eight false negatives rather than just one.

As for unspecific CREs, while their numbers vary across
the texts, they do not generally make up for a sizable frac-
tion of the CREs (average of 3.4%). The highest observed
percentages are for T3 (12.5%) and T5 (5.1%). T3 is a small
text and hard to draw conclusions from; T5 (the Income Tax
Law) is rather special in that it, on multiple occasions, cites
(unspecified) regulations both to reduce complexity and fur-

18 Sannier et al.

Table 2 Selected Texts for RQ2

Text id Law Name 1st Date of Publication # of pages # of Articles # of CREs # of internal CREs (unspecific)
T1 Law of August 2, 2002 August 2, 2002 23 45 312 187 (4)
T2 Law of June 30, 2003 June 30, 2003 18 102 175 118 (0)
T3 Law of May 30, 2005 July 14, 1845 7 16 79 45 (5)
T4 Law of June 25, 2009 June 25, 2009 23 92 296 208 (3)
T5 Law of January 1st, 2013 December 4th, 1967 189 236 1223 928 (45)
T6 PHIPA En 2004 49 75 1197 557 (7)
T7 PHIPA Fr 2004 49 75 1192 552 (7)

Total: 358 641 4474 2595 (71)

Table 3 Results for RQ2

Law Name # of CREs Resolved # of Individual
Cross Reference Links

of Unresolved CREs
(Anomalous, Misinterpreted)

Precision Recall F-measure # of unspecific CREs (%
of these CREs)

T1 183 226 (0, 0) 100% 100% 100% 4 (2.19%)
T2 118 145 (1, 0) 100% 100% 100% 0 (0%)
T3 40 65 (1, 0) 100% 100% 100% 5 (12.5%)
T4 205 288 (2, 3) 98.98% 100% 99.49% 3 (1.46%)
T5 883 1736 (8, 1) 99.94% 100% 99.97% 45 (5.1%)
T6 550 749 (3, 1) 99.87% 98.95% 99.41% 7 (1.27%)
T7 545 744 (3, 1) 99.87% 98.94% 99.40% 7 (1.28%)

ther to minimize changes to the text of law as the detailed
taxation procedures (specified in the regulations) evolve.

Overall, when excluding unspecific CREs, the lowest
level of accuracy observed is over T7 with an F-measure of
99.40%. The results thus indicate that our approach is highly
accurate for cross reference resolution.

10.2.3 RQ3: How scalable is our approach?

We report on the execution time of our approach as mea-
sured on a laptop with a 2.3 GHz Intel CPU and 8GB of
memory.

Cross reference detection took approximately 34 sec-
onds over the 164 randomly-selected pages of RQ1 (1852
CREs) and approximately 15 seconds over T5 – the largest
individual legal text in our study (1223 CREs).

The overall execution time of our approach is dominated
by the resolution phase. For T5, it took approximately 151
seconds to interpret the CREs and a further 139 seconds to
generate the cross reference links. The interpretation step
has embedded into it the transformation of plain text to XML.

In Table 4, we present the execution times for the seven
texts previously discussed in Tables 2 and 3. Since the res-
olution phase is the primary contributing factor to execution
time, we further present in Fig. 21 a chart that shows the
number of generated cross reference links (Y axis) in rela-
tion to execution time (X axis). As suggested by the chart,
an almost-linear relationship is observed between the num-
ber of generated links and execution time. Given the short
overall running time of our approach and the above linear
relationship, we expect the approach to be scalable to large
legal corpora.

Table 4 Results for RQ3

Text Execution Time (in seconds)
T1 25
T2 25
T3 3
T4 79
T5 305
T6 90
T7 90

!"#

!$# !%# !&#

!'#

!(#

!)#

*#

$**#

&**#

(**#

+**#

%***#

%$**#

%&**#

%(**#

%+**#

$# &*# (*# +*# %**# %$*# %&*# %(*# %+*# $**# $$*# $&*# $(*# $+*# "**# "$*#

,
-
.#
/
0#
1
2
3
2
45
62
7
#8
9
#:
;3
<
=#

!;>2#?=2@/37=A#

!"#

!$#

!%#

!&#

!'#

!(#

!)#

Fig. 21 Number of Generated Cross Reference Links in Relation to
Execution Time

10.3 Limitations and Threats to Validity

In this section, we first discuss the limitations of our tech-
nical approach as well as those of our empirical evaluation.
We then analyze the pertinent threats to validity.

Technical limitations. An issue with any rule-based approach,
including ours, for cross reference detection and resolution
is that one can never be entirely sure about the completeness
of the rules. Furthermore, there will always be exceptional
cases. For example, a text may deviate from its originally-
intended schema in certain parts. Such deviations can make
cross references to the structurally-inconsistent parts unre-
solvable. Another exceptional case are Amendment CREs.
These CREs refer to provisions that have not been incorpo-

Automated Detection and Resolution of Legal Cross References 19

rated into the amended texts at the time the amendments are
being proposed. The CREs will thus be unresolvable for as
long as the amendments have not been applied into the target
texts. Despite these technical limitations, we believe that our
approach is worthwhile as we did not observe in our evalua-
tion instances of incompleteness and exceptions that would
significantly hamper the accuracy of our approach.

Evaluation limitations. The most conclusive evaluation of
our approach would be to investigate whether requirements
analysts dealing with legal requirements in realistic settings
find our approach beneficial. Such an evaluation particularly
has to tackle the following two questions: (1) Does our ap-
proach make it easier for analysts to extract requirements
from legal texts? and (2) Does our approach improve the
quality of requirements extraction from such texts? We do
not address these questions in this current article, leaving
them to future user studies.

External Validity. We discuss external validity separately
for cross reference detection and cross references resolution.

With respect to cross reference detection, external va-
lidity has to do with how confident we are about the com-
pleteness of our patterns (extracted using grounded theory).
While some degree of incompleteness in the patterns is to be
expected due to the rule-based nature of our approach (dis-
cussed above), we did not observe new patterns when apply-
ing our approach to several texts from Luxembourg’s legis-
lation, nor when moving from the the Luxembourgish cor-
pus to PHIPA. Although our results are encouraging, wider
studies are necessary for building confidence about our pat-
terns being reasonably complete.

The second dimension of external validity concerns the
accuracy of cross reference resolution and whether the ob-
served accuracy levels would carry over to other contexts.
As we discussed and illustrated over the course of the article,
cross reference resolution requires knowledge of the schema
for the text being analyzed. Taking our approach from one
legal jurisdiction or country to another will thus necessarily
involve the development of new and customized schemas.
In terms of customization, what we observed in the Lux-
embourgish context is that with more texts analyzed, a state
of saturation was reached, where the analysis of a new text
would simply imply the selection of an already-developed
schema with very slight adjustments. While further evalua-
tion is necessary, we believe this observation should hold in
other countries and jurisdictions, thus making our approach
worthwhile once the structure of a small but representative
set of legal texts has been analyzed and modeled.

Internal Validity. We measured the accuracy of our approach
using precision and recall, which require a gold standard. As
the texts we analyzed were never provided with an adequate
level of detail concerning their cross references, the first two
authors built the gold standard by manually inspecting the

texts to identify the CREs and later to verify which cross
reference links were correct, incorrect, or missing. To ensure
the quality of the gold standard and minimize errors, the first
two authors did the manual inspections independently and
then cross-checked the results.

Construct Validity. Our analysis is based on classification
accuracy metrics (precision and recall) and scalability in terms
of execution time. A more comprehensive evaluation of our
approach will further have to consider cost-effectiveness,
particularly in terms of the effort spent on tailoring our ap-
proach against the effort that is saved by the automatic de-
tection and resolution of cross references. A rigorous analy-
sis of cost-effectiveness is a topic that we plan to address in
future work.

11 Related Work

Identifying and resolving cross references in legal texts is
part of the more general problem of requirements traceabil-
ity. Requirements traceability is commonly defined as “the
ability to describe and follow the life of a requirement, in
both a forwards and backwards direction” [16]. Our work
is a step towards more automated management of traceabil-
ity between (legal) requirements and legal texts. Below, we
compare our approach with several strands of related work.

Siena et al. [30] and Ingolfo et al. [20] study variability
in the law in terms of derogations and exceptions. As part of
their work, they propose a formal language for the analysis
of CREs and identifying the conditional structure of the law.
The above work nevertheless does not address automatic de-
tection and resolution of cross references – the topic that our
article concentrates on.

Zeni et al. [34] consider the full problem of automated
discovery and annotation of legal concepts in legal texts,
including, among several other concepts, cross references.
With regards to cross references, their approach uses struc-
tural markup based on a generic schema, along with patterns
and rules for cross reference detection and interpretation.
However, since the scope of the above-cited work is broader
than ours, the work does not precisely detail how the detec-
tion and interpretation of cross references is performed, nor
does it show empirical results dedicated to cross references.

Breaux et al. [5,6] identify natural language patterns for
cross references based on a study of 118 expressions across
three US regulations. They propose the use of an explicit
schema for modeling the structure of legal texts. Similar to
this earlier work, we study several legal texts for identify-
ing the patterns in cross references. We nevertheless study
a much larger set of cross reference expressions. We ob-
serve new patterns that were not seen in the US regulations
considered. Our study also covers patterns for external cross
references, which were not considered by Breaux et al. Ad-
ditionally we propose automation for text structure markup.

20 Sannier et al.

In the context of compliance, many threads of work pro-
pose to formalize the structure of legal texts. Among oth-
ers, Sannier and Baudry [29] propose a generic metamodel
to structure the requirements derived from safety regula-
tions and standards along with the relationships between
these requirements. Emmerich et al. [13] propose a high-
level schema to describe software quality standards in terms
of requirements properties, rationale, and development poli-
cies as step towards managing compliance with standards
during the software development lifecycle. These threads
consider traceability from a general perspective. However,
they do not specifically address cross references.

The closest study to ours in terms of cross reference pat-
terns is by de Maat et al.’s [11] who study the patterns used
in the cross references that appear in the Dutch laws. The
differences in language aside, the patterns we observe in our
investigation of Luxembourgish and Canadian legal texts are
closely aligned with those in the Dutch laws. In this sense,
our study serves as a confirmatory measure for the generaliz-
ability of previously-observed patterns. In addition, we iden-
tify important variations of these patterns. The main contri-
butions of our work over De Maat et al.’s are: They assume
that legal texts are already in a markup format with adequate
structure to be transformed into the markup format required
by their approach (MetaLex [19]). Our approach, in contrast,
does not require pre-existing markup. Second, and more im-
portantly, de Maat et al. do not clearly distinguish the ac-
tivities of cross reference detection and resolution. They do
not elaborate the resolution process, nor do they address the
effectiveness of resolution in their evaluation. We instead
provide a detailed treatment of resolution and measure its
effectiveness in our evaluation.

Palmirani et al. [26] define cross reference patterns based
on guidelines for the Italian legal corpus and apply their
approach to several legal texts. However, they tackle only
cross reference detection and not resolution. Their approach
does not address the generation of markup documents and
their patterns are insufficient for recognizing many of the
rich patterns seen both in our study and that of the Dutch
laws ([11]).

Hamdaqa et al. [18] propose an approach for resolving
external cross references and report on a case study of three
US regulations involving 122 (external) cross reference ex-
pressions. They use finite state machines for defining pat-
terns, based on the recommendations of the US Bluebook
[2] and the ALWD Citation Manual [12]. Their patterns are
limited, first in that they apply only to external cross ref-
erences, and second in that they are exclusively based on
best practices and thus insufficient for the richer citation
styles used in actual legal texts. Hamdaqa et al. consider au-
tomated markup generation through manually-written reg-
ular expressions. Our approach provides a more thorough
and flexible framework than Hamdaqa et al’s. Our patterns

encompass both internal and external cross references, and
further are based on studying actual legal text. Our approach
is parameterized by a schema, which enables us to auto-
matically derive the necessary regular expressions for text
markup generation.

Tran et al. [33] apply machine learning for cross refer-
ence detection and resolution in Japanese legislative texts.
Similar to them, we distinguish detection and resolution ac-
tivities. However, our approach differs in that both our de-
tection and resolution strategies are algorithmic and based
on rules. Using machine learning can be advantageous in
that it does not require an a-priori specification of the pat-
terns in cross references. However, Tran et al. do not con-
sider advanced patterns with recursive structures or multi-
ple layers similar to those identified and addressed in our
study (Section 6). It is unknown how such patterns can be
effectively handled through learning. For the patterns they
consider in their study, an accuracy (F-measure) of approxi-
mately 80% is reported for cross references detection and an
accuracy of 67% for detection and resolution of cross refer-
ences. This, compared to rule-based techniques, is low (see
Section 10.2).

Several commercial services such as LexHub6, Jureeka7,
QuickLaw8 exist for legal citations. LexHub is a legal cita-
tion index manager that inserts cross reference links between
provided citations in input documents and legislative texts or
court decisions from the CanLII (Canadian Legal Informa-
tion Institute) database. The input document must be pro-
vided in HTML format. Quicklaw is a legal search engine
and a citation checker. It creates links from citations in an
input document to the cited provisions in Canadian cases.
Jureeka is a free plug-in for Mozilla and Chrome browsers,
enabling the creation of cross reference links in web pages
for citing US legal texts. The plugin uses regular expressions
for linking explicit CREs to subsections in the US Code or
to sections in the Code of Federal Regulations. The above
tools are meant primarily at dealing with simple external
cross references, with limited support for the detection and
resolution of complex internal cross references.

Our work on cross reference analysis (Section 8) is close
to that of Nentwich et al.’s [25] on consistency checking of
XML documents using the xlinkit tool. xlinkit offers a rule-
based language based on first-order logic and XPath (a query
language for XML) for defining invariants over structured,
hyperlinked documents and generation of various diagnos-
tics. The xlinkit rule language is highly expressive and capa-
ble of capturing all the logical rules that underlie our analy-
sis of legal CREs. xlinkit can thus be used as an alternative
to the logical interpreter we use in our work.

6 https://lexum.com/en/resources/lexhub
7 https://addons.mozilla.org/En-uS/firefox/addon/

jureeka-6636/
8 http://www.lexisnexis.ca/

Automated Detection and Resolution of Legal Cross References 21

12 Conclusion and Future Work

In this article, we presented an approach for automatic de-
tection and resolution of cross references in legal texts. Our
approach complements existing work in a number of ways.
In particular, the approach is parameterized by a text schema,
making it possible to tailor the approach to different legal
texts and jurisdictions. The use of schemas has further al-
lowed us to automatically construct the structural markup
that is necessary for resolving cross references. Through a
study of selected Luxembourgish and Canadian legal texts,
we derived natural language patterns for cross references,
and provided a systematic way to interpret them. We out-
lined the implementation of our approach in a Natural Lan-
guage Processing environment. Finally, we evaluated our ap-
proach in terms of effectiveness and scalability. Our evalua-
tion suggests that the accuracy of our approach is high and
that the running time for our automated tool chain scales to
realistic settings.

For future work, we plan to evaluate our approach in
terms of cost-effectiveness and also outside the legal con-
texts considered so far. Another interesting topic is the abil-
ity to annotate cross references with semantic information.
In particular, interesting work, e.g., by Maxwell et al. [24]
and Hamdaqa et al. [18], already exists on semantic tax-
onomies for cross references. These taxonomies provide a
classification of the intent behind cross references, including
providing definitions, imposing additional constraints and
making exceptions. Not all cross references have the same
level of impact on software requirements. Subsequently, au-
tomated classification of cross references based on their se-
mantic intent would be a valuable next step for supporting
legal compliance analysis.

Acknowledgments

Financial support for this work was provided by Luxem-
bourg’s National Centre of Information Technologies (CTIE)
and Luxembourg’s National Research Fund (FNR) under
grant number FNR/P10/03. We are grateful to members of
Luxembourg Inland Revenue Office (ACD) and CTIE, par-
ticularly, Thierry Prommenschenkel, Ludwig Balmer, Marc
Blau, and Michael Masseroni for sharing their valuable knowl-
edge and insights with us. We thank the anonymous review-
ers of the RE Journal and the RE’14 conference for their
insightful comments which helped us improve this article.

References

1. Morayo Adedjouma, Mehrdad Sabetzadeh, and Lionel C. Briand.
Automated detection and resolution of legal cross references: Ap-
proach and a study of Luxembourg’s legislation. In Proceedings of

the IEEE 22nd International on Requirements Engineering Con-
ference, RE’14, pages 63–72, 2014.

2. Linda J Barris. Understanding and Mastering the Bluebook: a
Guide for Students and Practitioners. Carolina Academic Press,
Durham, N.C., 2010.

3. Marc Besch. Traité de légistique formelle, 2005.
4. Dirk Beyer, Andreas Noack, and Claus Lewerentz. Efficient re-

lational calculation for software analysis. IEEE Transactions on
Software Engineering, 31(2):137–149, 2005.

5. Travis Breaux and Annie Antón. Analyzing regulatory rules for
privacy and security requirements. IEEE Transactions on Software
Engineering, 34(1):5–20, January 2008.

6. Travis Durand Breaux. Legal Requirements Acquisition for the
Specification of Legally Compliant Information Systems. PhD
thesis, North Carolina State University, Raleigh, North Carolina,
USA, April 2009.

7. Randal Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, 8:677–691, 1986.

8. Juliet Corbin and Anselm Strauss. Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory.
SAGE Publications, 3rd edition, 2008.

9. Thomas H Cormen. Introduction to Algorithms. The MIT Press,
Cambridge, Masachusetts; London, 2009.

10. Cunningham et al. Developing Language Processing Components
with GATE Version 7 (a User Guide).

11. Emile de Maat, Radboud Winkels, and Tom van Engers. Auto-
mated detection of reference structures in law. In Proceedings of
the 2006 Conference on Legal Knowledge and Information Sys-
tems, pages 41–50, Amsterdam, The Netherlands, The Nether-
lands, 2006. IOS Press.

12. Darby Dickerson and Association of Legal Writing Directors.
ALWD citation manual: a professional system of citation. Aspen
Publishers, New York, NY, 2006.

13. Wolfgang Emmerich, Anthony Finkelstein, Carlo Montangero,
Stefano Antonelli, Steve Armitage, and Richard Stevens. Man-
aging standards compliance. IEEE Transactions on Software En-
gineering, 25(6):826–851, 1999.

14. Sepideh Ghanavati, Daniel Amyot, and André Rifaut. Legal goal-
oriented requirement language (legal GRL) for modeling regula-
tions. In 6th International Workshop on Modeling in Software
Engineering, MiSE’14, pages 1–6, 2014.

15. Sepideh Ghanavati, Daniel Amyot, André Rifaut, and Eric Dubois.
Goal-oriented compliance with multiple regulations. In Proceed-
ings of the 22nd IEEE International on Requirements Engineering
Conference, RE’14, pages 73–82, 2014.

16. Orlena C. Z. Gotel and Anthony Finkelstein. An analysis of the re-
quirements traceability problem. In Proceedings of the First IEEE
International Conference on Requirements Engineering, RE’94,
pages 94–101, 1994.

17. Government of Luxembourg. Modified Law of December 4th,
1967 (Income Tax) (In French: Loi modifiée du 4 décembre 1967
concernant l’impôt sur le revenu), 2013.

18. Mohammad Hamdaqa and Abdelwahab Hamou-Lhadj. An ap-
proach based on citation analysis to support effective handling
of regulatory compliance. Future Generation Computer Systems,
27(4):395 – 410, 2011.

19. Rinke Hoekstra. The metalex document server legal documents as
versioned linked data. In Proceedings of the 10th International
Conference on The Semantic Web - Volume Part II, ISWC’11,
pages 128–143, Berlin, Heidelberg, 2011. Springer-Verlag.

20. Silvia Ingolfo, Ivan Jureta, Alberto Siena, Anna Perini, and An-
gelo Susi. Nòmos 3: Legal compliance of roles and requirements.
In Proceedings of the 33rd International Conference on Concep-
tual Modeling,ER’14, pages 275–288, 2014.

21. John Levine, Tony Mason, and Doug Brown. Lex & Yacc.
O’Reilly, 1992.

22 Sannier et al.

22. Aaron K. Massey, Paul N. Otto, and Annie I. Antón. Priori-
tizing legal requirements. In Proceedings of the 2009 Second
International Workshop on Requirements Engineering and Law,
RELAW’09, pages 27–32, Washington, DC, USA, 2009. IEEE
Computer Society.

23. Jeremy C. Maxwell, Annie I. Antón, and Julia B. Earp. An em-
pirical investigation of software engineers’ ability to classify legal
cross-references. In Proceedings of the 21st IEEE International
on Requirements Engineering Conference, RE’13, pages 24–31,
2013.

24. Jeremy C. Maxwell, Annie I. Antón, Peter Swire, Maria Riaz, and
Christopher M. McCraw. A legal cross-references taxonomy for
reasoning about compliance requirements. Requirements Engi-
neering, 17(2):99–115, June 2012.

25. Christian Nentwich, Licia Capra, Wolfgang Emmerich, and An-
thony Finkelstein. xlinkit: a consistency checking and smart link
generation service. ACM TOIT, 2(2):151–185, 2002.

26. Monica Palmirani, Raffaella Brighi, and Matteo Massini. Auto-
mated extraction of normative references in legal texts. In Pro-
ceedings of the 9th International Conference on Artificial Intelli-
gence and Law, ICAIL’03, pages 105–106, New York, NY, USA,
2003. ACM.

27. Grzegorz Rozenberg, editor. Handbook of graph grammars and
computing by graph transformation (Vol. 1): Foundations. World
Scientific, 1997.

28. Mehrdad Sabetzadeh, Shiva Nejati, Sotirios Liaskos, Steve M.
Easterbrook, and Marsha Chechik. Consistency checking of con-
ceptual models via model merging. In 15th IEEE International
Requirements Engineering Conference, RE, pages 221–230, 2007.

29. Nicolas Sannier and Benoit Baudry. INCREMENT: A mixed
MDE-IR approach for regulatory requirements modeling and anal-
ysis. In Proceedings of the 20th International Working Conference
on Requirements Engineering: Foundation for Software Quality,
REFSQ’14, pages 135–151, 2014.

30. Alberto Siena, Ivan Jureta, Silvia Ingolfo, Angelo Susi, Anna
Perini, and John Mylopoulos. Capturing variability of law with
nómos 2. In Proceedings of the 31st International Conference on
Conceptual Modeling, ER’12, pages 383–396, 2012.

31. the EU Reflection Group on Legislative Drafting. Joint Practical
Guide for persons involved in the drafting of European Union leg-
islation. Technical report, the European Parliament, the Euporean
Council and the European Commission, 2013.

32. the Ontario Ministry of Consumer and Business Services and the
Ontario Ministry of Health and Long Term Care. Personal Health
Information Protection Act, 2004, 2004.

33. Oanh Thi Tran, Ngo Xuan Bach, Minh Le Nguyen, and Akira Shi-
mazu. Automated reference resolution in legal texts. Artif. Intell.
Law, 22(1):29–60, 2014.

34. Nicola Zeni, Nadzeya Kiyavitskaya, Luisa Mich, James R. Cordy,
and John Mylopoulos. GaiusT: Supporting the extraction of rights
and obligations for regulatory compliance. Requirements Engi-
neering, 20(1):1–22, 2015.

