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Abstract— The Industrial Internet promises to radically 

change and improve many industry's daily business activities, 

from simple data collection and processing to context-driven, 

intelligent and pro-active support of workers’ everyday tasks and 

life. The present paper first provides insight into a typical 

industrial internet application architecture, then it highlights one 

fundamental arising contradiction: “Who owns the data is often 

not capable of analyzing it”. This statement is explained by 

imaging a visionary data supply chain that would realize some of 

the Industrial Internet promises. To concretely implement such a 

system, recent standards published by The Open Group are 

presented, where we highlight the characteristics that make them 

suitable for Industrial Internet applications. Finally, we discuss 

comparable solutions and concludes with new business use cases. 

Keywords—Industrial Internet; Data analysis; Web Protocol; 

IoT;  Open Messaging Interface. 

I.  INTRODUCTION  

The term “Industrial Internet” has been coined by General 

Electric [1]. The term is relatively recent (November 2012), but 

it has already catalyzed the attention of many leading 

organizations. In March 2014, the Industrial Internet 

Consortium1 was formed to bring together Industry, 

Government and Academia in a global non-profit partnership to 

accelerate and promote the growth of the underlying 

technologies, use cases and best practices. 

The Industrial Internet is not a new technology, it is simply a 

“catch-all” term for existing technologies and disciplines 

applied in industrial contexts; such as: 

 Machine-to-machine (M2M) communication; 

 Internet of things (IoT) and Cyber-Physical Systems (CPS) 

 Machine Learning and Data Mining 

 Big Data 

These disciplines interact and cooperate together in the 

collection of machine and human generated data (in digital 

format) during business operation, which is then analyzed (in 

real-time or off-line) and used to adjust the behavior of given 

equipment. 

The expected innovation should come naturally from the 

application of the right set of existing technologies to right use 

cases. It is interesting to notice that the whole initiative is not 

                                                           
1 http://www.iiconsortium.org 

waiting or hoping for new technologies, instead there is some 

sort of realization about “how much more can be achieved with 

current one”.  

Another important point to highlight is that advanced 

networking is not the main focus of the Industrial Internet (even 

though the name is a slightly misleading). The main focus is the 

systematic exploitation of machine generated data to optimize 

operations. The benefits from the marriage of machines and 

analytics are multiple and significant. General Electric 

estimates that the technical innovations of the Industrial 

Internet could find direct applications in sectors accounting for 

more than $32.3 trillion in economic activity. As the global 

economy grows, potential applications of the Industrial Internet 

will expand as well. By 2025 it could be applicable to $82 

trillion of output or approximately one half of the global 

economy, adding a sizable $10-15 trillion to the global GDP 

[1]. 

Currently the Industrial Internet consortium is essentially 

driven by United States enterprises, meanwhile in Europe 

similar initiatives have different names. Industry 4.0 is a project 

in the high-tech strategy of the German government that 

promotes the computerization of the manufacturing industry 

[2], while the upcoming European Union Framework 

Programme for Research and Innovation (Horizon 2020 - 

running from 2014 to 2020), has a dedicated track named 

Factories of the Future (FoF) [3]. As mentioned above, all these 

initiatives aim at combining well developed disciplines, taking 

the most suitable technology for the task at hand and promote 

them through real world industrial use cases.  

This paper first describes the common architecture adopted in 

typical Industrial Internet applications. The selected model 

comes from the authors’ direct experience and is essentially the 

same one found in the IoT and M2M literature. Then it 

highlights the shortcoming of current approaches to Industrial 

Internet applications, which have direct impacts on what kind 

of data analysis can be performed. At a more practical level, the 

present paper provides a scenario in which machine data must 

be shared among suppliers in order to provide advanced 

analytics to the final customer. To support this data supply 

chain, recent standards published in October 2014 by The Open 

Group2 are considered as foundation of the communication 

layer. These standards are the Open Messaging Interface O-MI 

[4] and Open Data Format (O-DF) [5]. Section 4 discusses how 

2 http://www.opengroup.org/ 
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such standards mitigate the identified shortcoming, the 

conclusions follow. 

 

 

Fig. 1. Typical Industrial Internet Architecture 

II. INDUSTRIAL INTERNET TYPICAL ARCHITECTURE AND 

SHORTCOMING OF THE CURRENT APPLICATIONS 

Figure 1 depicts a simplified architecture diagram of a typical 

Industrial Internet application, which consists of three main 

layers [6]: 

 

1. An internal high trust intranet. In this layer we found, 

machines, PLCs, drives, sensors and actuators connected 

together through a multitude of industrial automation 

networking protocols. This network is hierarchical, where 

every machine, machine subsystem, and subsystem 

component has its own local network and controller (see 

Figure 2). For example modern servo motor drives, are at 

the bottom of this hierarchy but they can still be considered 

as complex systems with their own set of sensors and smart 

adaptive controller. Just like classes in object-oriented 

programming, at every level all this complexity is 

encapsulated and hidden while few simple functions are 

exposed. 

2. On the edge of this intranet, there is a gateway to expose 

and transport data to the external world (the public 

internet). In general data from the internal network is 

aggregated in a relational or NoSQL databases. Even 

though it is possible to connect directly to these databases 

using HTTP or HTTPS or even plain TCP/IP, most 

implementation prefer to expose a single endpoint with few 

defined operation. This endpoint is usually implemented 

using SOAP [7], web services, or REST API [8]. This 

paper focuses on this category of protocols, specifically on 

O-MI that has some significant advantages compared to 

these custom defined endpoints. 

3. The receivers of this data are usually some corporate 

servers running either on the cloud or on-premises. The 

architecture described in [6] referred this layer as 

“application domain”. In these servers data is analyzed and 

some KPIs (key performance indicators) are derived. The 

nature of the analysis depends on the application. In 

general Industrial Internet applications aim at optimizing 

the operational behavior of a given product/system or a 

fleet of products/systems. 

 

 
Fig. 2. Modern Machine is a system of systems, each sub-system is usually 

provided by external specialized supplier 

A. Shortcoming of the current applications 

The application and architecture described in the previous 

paragraph has few shortcomings, and in particular one major 

contradiction that must be addressed before realizing the full 

potential of the Industrial Internet paradigm: Who owns the data 

is often not capable of analyzing it; “not capable” does not 

mean that they do not know how to create SQL analytic reports 

or running data mining algorithms. What is often missing is the 

specific domain knowledge to understand the data. The next 

section provides a concrete example to better highlight this 

statement. 

B. Future Scenarios – The Industrial Internet Data Supply 

Chain 

Let us consider the following scenario: a small medium 

enterprise (SME) produces multiple sheet metal parts for a 

variety of customers. This enterprise is highly automated and 

owns a state-of-art sheet metal punching machine, which has a 



number of sub-system resembling as illustrated in Figure 2. 

Some of those sub-systems are supplied to the punching 

machine manufacturer by specialized companies; for example, 

once the subsystem is the punching head smart drive and 

integrated motor. This subsystem has its own set of sensors, 

controllers and embedded software. Finally the machine is 

integrated in the entire production system by an industrial 

automation consulting company directly hired by the owner of 

the factory.  

 

 
Fig. 3. Instantiated example of the architecture depicted in figure 1 

The scenario includes three main players: 

1. Factory owner (working together with the industrial 

automation consulting company); 

2. Sheet metal punching machine manufacturer;  

3. Smart-drive manufacturer; 

According to the Industrial Internet vision, all those actors can 

benefit from data generated during daily operations. For 

example: 

1. The factory owner can optimize scheduling and production 

to increase throughput and decrease costs; 

2. The sheet metal punching machine and smart-drive 

manufacturer can learn how their equipment operate in the 

field. For example, they can correlate alarms and errors 

with production condition and machine settings. This 

correlation can be used to adjust some setting or 

completely update the firmware of their equipment. 

 

However there are few obstacles in the realization of these 

benefits.  The owner (together with the industrial automation 

consulting company) ultimately decides which data will leave 

his company. Very often if there are no immediate gains, 

security policies dictate avoid opening any data to the external 

world. Interesting enough, if the factory owner decides to let the 

punching machine manufacturer access his equipment, the 

machine manufacturer has now the power to decide whenever 

the smart drive manufacturer can access the data regarding his 

equipment. Unfortunately this situation is only partially 

solvable by technology. What is also needed, is the realization 

that the cooperation for a more flexible data exchange can 

generate benefits for everybody. In particular, it is possible to 

leverage on specific knowledge necessary to analyze certain 

datasets. For example, let us consider the following use cases: 

  

Punching tool wearing: If the punching tool is not sharp 

enough, the sheet metal will get stuck in the punching head. In 

case of highly automated line without human supervision, this 

error might stop production for an entire work shift. Because a 

variety of sheet metal thickness and materials are punched 

(which wear the tool in different way), simply counting the 

number of punches cannot accurately predict whenever a tool 

needs sharpening. However, the machine producer has the 

intuition that when the tool is dull the smart drive will draw 

current in a different way than when the tool is sharp. At this 

point, he explains this possibility to factory owner who, in turn, 

will provide the access to the machine and detailed information 

about the tool he is using. A study is conducted by storing the 

current drawing time series evolution. The time series, together 

with contextual production condition information, is then 

forwarded to smart drive manufacturer who will analyze it and 

extract a model predicting the tool wearing situations. The 

newly discover knowledge is coded and shipped with the new 

release of the punching machine controller software. 

 

The data-supply chain described above has direct benefits for 

all players. The smart drive producer can directly bill his 

analysis to the punching machine manufacturer, strengthening 

their relationship. In turn the machine manufacturer has new 

features in his machine that will make it possible to strengthen 

the relationship with his customer and hopefully attract some 

new one. In order to realize this visionary scenario, many 

points, both technological and organizational must be 

addressed. The following section presents a step forward 

towards this vision by briefly introducing O-MI and O-DF 

standard specifications. 

III. O-MI AND O-DF STANDARDS OVERVIEW 

The Open Group IoT work group has a pretty clear and 
ambitious vision: Whereas the Web uses the HTTP protocol for 
transmitting HTML-formatted information which are rendered 
in the browser for human consumption, the IoT will use O-MI 
for transmitting O-DF payloads which will be mainly consumed 
by information systems. The initial ideas and requirements for 
these protocols emerged out of the PROMISE EU FP6 project, 
where real-life industrial applications required the collection and 
management of product instance-level information for many 
domains involving heavy and personal vehicles, household 
equipment, etc. Information such as sensor readings, alarms, 
manufacturing, disassembly, and supply chain-events, and other 
information related to the entire product lifecycle needed to be 
exchanged between products and systems of different 
organizations. The main goal was to find solutions that would 
enable the communication between intelligent production in 
their middle of life (MoL), and backend information systems. 
These functions are often referred as called Closed-Loop 



Product Lifecycle Management (CL2M) [9] [10] [11]. Based on 
the needs of those real-life applications, key functional 
requirements were identified and extended to provide a more 
general solution for large-scale scalable IoT systems (see Table 
1). As no existing standards could be identified that would fulfill 
those requirements without extensive modification or 
extensions, PROMISE partners started working on 
specifications that would fulfill the gap, which ultimately lead to 
the development [12][13] and standardization of O-MI and O-
DF. 

TABLE I.  KEY FUNCTIONAL REQUIREMENTS 

ID DESCRIPTION 

1 

Generic enough for use in any kind of IoT systems, 

independently of the application domain. 

2 
Support for “synchronous” messaging such as immediate read 
and write operations. 

3 

Handling mobility and intermittent network connectivity, i.e. 

support for asynchronous messaging capabilities that imply for 
instance message persistence, time-to-live, etc. 

4 
Ability to establish secure, two-way communication even in the 

presence of firewalls without requiring firewall re-configuration 

5 
Possibility to create ad hoc, loosely-coupled, time-limited 

information flows “on the fly”, i.e. without programming. 

6 

Peer-to-peer communication possibility for all devices, i.e. client 

and server functionality can be implemented for any device, 
depending on available processing power, network connectivity, 

etc. 

7 
Context-dependent discovery of instances, instance-related 
services and meta-data about them. 

8 Support for context- and domain-specific ontologies. 

9 
Queries by regular expressions for retrieving information about 

more than one instance and more than one kind of information. 

10 
Historical queries, i.e. retrieving values between two points in 
time. 

Open data format (O-DF)  

O-DF is specified as an extensible XML Schema. It is 

structured as a hierarchy with an “Objects” element as its top 

element. The “Objects” element can contain any number of 

“Object” sub-elements. It is intentionally defined in a similar 

way as data structures in object-oriented programming. Figure 

4 depicts an example of an O-DF message (schema location and 

other informative header has been removed to improve 

readability). The text in blue represents the actual O-DF 

message while the header in red describes the O-MI operation. 

The “Object” elements can have an arbitrary number of 

InfoItems as well “Object” sub-elements. In this example, the 

Object SmartFridge_SN5622334411 has only one InfoItem 

named Temperature. InfoItems can contain the following sub-

elements:  

 Metadata (optional): Sub-element that provides 

meta-data information about the InfoItem, such as 

value type, units and other similar information. 

 Value: Value for the InfoItem, possibly with an 

optional timestamps. 

Every Object has a compulsory sub-element called “id” that 

identifies the Object. The “id” should preferably be globally 

unique or at least unique for the specific application, domain, 

or network of the involved organizations (e.g. Serial Number of 

the appliance). 

 

 
Fig. 4. O-MI (in black) and O-DF (in gray) example message. 

The “id” plays a crucial role in Product Lifecycle Management 

applications. As information about a given equipment are often 

spread over several information systems and organizations, the 

“id” represents the “where” condition of a hypothetical SQL 

query, that can be used to obtain additional information about 

the specific object.  

In Logistics and Product Lifecycle Management, the univocal 

identification of objects is a well know problem that has been 

researched for quite a while [14] [15]. New research is 

addressing unsolved issues, however an extensive review of the 

subject is out of the scope of this paper. 

The standard also specifies how O-DF is used as a query 

language for specific parts of the Object tree (Value if an 

InfoItem, Metadata about it, a branch of the tree or even the 

entire tree), as well as for publishing the Object tree using URLs 

in as resources in a RESTful [13] manner. 

Open Messaging Interface (O-MI)  

O-MI standard is a web protocol designed to expose and 

transport physical products data (including sensor, actuators 

and any other machine information) from local intranets to any 

other destination connected to the Internet. As depicted in 

Figure 1, O-MI sits on top existing Application level protocol, 

which means that O-MI operations can be transported using any 

suitable “lower level” protocol. In this regard O-MI is similar 

to SOAP and different from REST that implies HTTP. 



 
Fig. 5. O-MI and O-DF in the ISO/OSI stack 

The standard supports 3 main operations: 

 

1. READ: There are two types of read i) for immediate 

retrieval of data; for placing subscription to an O-MI node 

including three additional parameters: 

TTL (time-to-live): For how long (in seconds) the 

subscription is valid. 

INTERVAL: Sets the rate at which the data will sample 

in seconds. Setting the interval to -1 is equal to sample a 

given value(s) whenever it changes.  

CALLBACK ADDRESS (optional): This parameter 

specifies the URL to which the node should respond to. 

Figure 6 and 7 illustrate the subscription sequence diagram 

without and with the callback address parameter; 

2. WRITE: It is a simple update operation of a given 

InfoItem. 

3. CANCEL: Cancelling subscriptions before they expire.  

 

 
Fig. 6. O-MI READ read(ttl,interval, callback address) sequence diagram. 

Callback Address NOT specified. 

 

Fig. 7. O-MI READ read(ttl,interval, callback address) sequence diagram. 
Callback Address specified. 

Other important characteristics that have been proven useful, 

especially in real-world implementations are: 

 Payload agnostic: Even though the preferred payload is O-

DF (XML or JSON formatted), in reality any payload could 

be transported (CSV, HTML, proprietary file formats); 

 Possibility to perform a machine/product initiated 

communication, while the receiving node can place a new 

O-MI request over the same connection. This possibility, 

also known as piggy-backing is described in [16], is very 

useful for addressing nodes that are located behind 

firewalls or NATs; 

 The standard [9] also specifies how O-DF is used as a query 

language for specific parts of the Object tree (Value if an 

InfoItem, MetaData about it, a branch of the tree or even 

the entire tree), as well as for publishing the Object tree 

using URLs in a RESTful manner. The fact that O-DF 

covers all steps of the publish-discover-query-reply cycle 

is an advantage for software implementation because the 

same O-DF structure can be re-used in all steps. 

 

IV. DISCUSSION 

The possibility to create ad hoc, time-limited information flows 

(requirement number 5 of Table 1) by specifying for how long 

(TTL) and at which sampling rate (INTERVAL) the data needs 

to be received, is the cornerstone of O-MI, which makes it 

particularly suitable for IoT and Industrial Internet applications. 

If we consider the “punching tool wearing” scenario described 

in Section 2, the entire production line and all its subsystems 

can generate a tremendous amount of data, enabling endless 

data analysis possibilities. However, the punching machine 

manufacturer and the industrial automation consulting 

company will use only a small subset of all available data. They 

cannot predict what kind of analysis one might want to perform 

in the future, and it impossible to log everything. There is no 

“big data” solution that can support the logging at the maximum 

sampling rate of every subsystem of a complex machine, and 

even if such solution would exist, it simply does not make any 

sense to do it, mainly because the value of data collection is 

realized only when the data is analyzed and new knowledge is 

derived.  

Therefore, once it is clear how certain data can be exploited, it 

is necessary to have a system capable of retrieving specific data, 

at a given interval and for a sufficient amount of time, which 

would allow to perform the planned analysis. This is exactly 

what O-MI has been designed for, and what differentiate it from 

existing protocols. 

Related Protocols Landscape 

A detailed comparison between O-MI and similar messaging 

protocols or libraries is out of the scope of this paper. However, 

it is important to mention comparable solutions, and position O-

MI in IoT landscape. The IoT landscape is large and 

heterogeneous, from cloud-based systems to embedded 

software and M2M communication. It is nearly impossible to 

give a single and unified picture of the overall landscape of IoT 

standards due to its heterogeneity and complexity [17]. 



Nonetheless, in order to illustrate the main layers and solutions 

that shape this landscape, we have used an illustration (Figure 

8) from [18] that shows many of the most relevant existing 

solutions/standards for the IoT. Xu et al. [19] summarize the 

current state-of-the-art of IoT applications and technologies 

used in industry, focusing on the link, transport and 

communication layers (as depicted in Fig. 8). 

 

 
Fig. 8. IoT standards’/protocols’ landscape: adapted from [18] 

In general O-MI can be associated with SOAP web-services or 

a RESTful API. However SOAP and REST are essentially an 

evolution of RPC-XML (Remote Procedure Call over XML), 

therefore there is no predefined behavior definition for a given 

operation/call, while O-MI support only a limited set 

operations. Clearly this can be seen as limitation, however a 

considerable amount of time has been spend by Open Group to 

define the smallest set of operations which would enable the 

vision described in Section 2 and 3. The standardization of these 

simple operations should increase interoperability and 

hopefully stop the proliferation of custom web APIs. 

O-MI can also be associated with some existing message-

oriented middleware, especially when it comes to READ with 

deferred retrieval (aka Subscriptions). Messaging solutions can 

be divided in two categories: 

 Messaging standards: Like AMQP (Advanced Message 

Queuing Protocol), which is mostly designed for enabling 

enterprise messaging, or MQTT (Message Queue 

Telemetry Transport) a light weight messaging protocol, 

designed to run on devices with constrained resources. 

 Messaging APIs: Like JMS (Java Message Service) or 

ZeroMQ. Which are not standardized protocol, therefore 

are implementation depended. In other words the same 

library must be used on both ends to enable 

communication. 

In addition JMS, AMQP and MQTT rely on high-availability 

brokers, while O-MI operates more in a peer-to-peer fashion as 

much as ZeroMQ. A fair comparison among all these solutions 

is not an easy task, and the results will most likely depends on 

the application requirements. 

V. CONCLUSIONS 

This paper presents a visionary data supply chain for future 

Industrial Internet, where main obstacles (organizational and 

technological) that need to be overcome to fully realize all the 

benefits of an Industrial Internet paradigm are set out. Recent 

IoT standards published by The Open Group that play a major 

role in enabling data supply chain are briefly introduced. The 

possibility to create ad hoc, time-limited information flows by 

specifying for how long and at which sampling rate we need to 

receive the data, is the cornerstone of O-MI and future 

Industrial Internet applications. Future work will continue to 

apply and investigate the protocol in industrial use cases. 

Trying to improve it, from cooperation and feedback of both the 

Open Group and the Industrial Internet Consortium members.  
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