A CHARACTERIZATION OF BARYCENTRICALLY PREASSOCIATIVE
FUNCTIONS

JEAN-LUC MARICHAL AND BRUNO TEHEUX

ABSTRACT. We provide a characterization of the variadic functions which are barycentri-
cally preassociative as compositions of length-preserving associative string functions with
one-to-one unary maps. We also discuss some consequences of this characterization.

1. INTRODUCTION

Let X and Y be arbitrary nonempty sets. Throughout this paper we regard tuples x
in X™ as n-strings over X. We let X* = UJ,,50 X be the set of all strings over X, with
the convention that X° = {} (i.e., ¢ denotes the unique O-string on X). We denote the
elements of X* by bold roman letters x, y, z. If we want to stress that such an element is
a letter of X, we use non-bold italic letters x, y, 2, etc. The length of a string x is denoted
by |x|. For instance, |¢| = 0. We endow the set X * with the concatenation operation, for
which ¢ is the neutral element, i.e., ex = xe = x. For instance, if x € X™ and y € X, then
xy € X™*1. Moreover, for every string x and every integer n > 0, the power x™ stands for
the string obtained by concatenating n copies of x. In particular we have x° = ¢.

Asusual, amap F: X™ — Y is said to be an n-ary function (an n-ary operation on X if
Y = X). Also, amap F: X* - Y is said to be a variadic function (a string function on X
if Y = X*; see [5]). For every variadic function F: X* — Y and every integer n > 0, we
denote by F;, the n-ary part F|xn» of F.

Recall that a variadic function F: X* — Y is said to be preassociative [6,7] if, for any
x,y,y',z € X*, we have

F(y)=F(y') = F(xyz)=F(xy's).

Also, a variadic function F: X* — Y is said to be barycentrically preassociative (or B-
preassociative for short) [8] if, for any x,y,y’,z € X*, we have
lyl=lyl and F(y)=F(y') = F(xyz)=F(xy'z).

Contrary to preassociativity, B-preassociativity recalls the associativity-like property of
the barycenter (just regard F'(x) as the barycenter of a set x of identical homogeneous
balls in X = R"). In descriptive statistics and aggregation function theory, this condition
says that the aggregated value of a series of numerical values remains unchanged when
modifying a bundle of these values without changing their partial aggregation.

B-preassociativity has been recently utilized by the authors in the following charac-
terization of the quasi-arithmetic pre-mean functions, thus generalizing the well-known
Kolmogoroff-Nagumo’s characterization of the quasi-arithmetic mean functions.
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Theorem 1 ( [8]). Let I be a nontrivial real interval, possibly unbounded. A function
F:T* - R is B-preassociative and, for every n > 1, the function F,, is symmetric, con-
tinuous, and strictly increasing in each argument if and only if there are continuous and
strictly increasing functions f:1 - R and f,:R - R (n > 1) such that

Fu(x) = fn(iif(xi)), N>l

Remark 1. If we add the condition that every F,, is idempotent (i.e., F, (z™) = x for every
x € X) in Theorem 1, then we necessarily have f,, = f~* for every n > 1, thus reducing this
result to Kolmogoroff-Nagumo’s characterization of the quasi-arithmetic mean functions
[4,9]. However, there are also many non-idempotent quasi-arithmetic pre-mean functions.
Taking for instance f,,(z) = nz and f(x) = x over the reals I = R, we obtain the sum
function. Taking f,(x) = exp(nz) and f(x) = In(z) over I = ]0, co[, we obtain the
product function.

In this paper we show that B-preassociative functions can be factorized as composi-
tions of length-preserving associative string functions with one-to-one unary maps. We
also show how this factorization result generalizes a characterization of a noteworthy sub-
class of B-preassociative functions given by the authors in [8]. Finally, we mention some
interesting consequences of this new characterization.

The terminology used throughout this paper is the following. The domain, range, and
kernel of any function f are denoted by dom( f), ran(f), and ker(f), respectively. The
identity function on any nonempty set is denoted by id. For every n > 1, the diagonal
section dp: X — Y of a function F: X™ — Y is defined as dp(z) = F(z™).

Remark 2. Although B-preassociativity was recently defined by the authors [8], the basic
idea behind this definition goes back to 1931 when de Finetti [1] introduced an associativity-
like property for mean functions. Indeed, according to de Finetti, for a real function
F:U,>1 R" - R to be considered as a mean, it is natural that it be “associative” in the
following sense: for any u € X and any x,y,z € X* such that |xz| > 1 and |y| > 1, we
have F(xyz) = F(xu"!z) whenever F(y) = F(u).

2. MAIN RESULTS

As mentioned in the introduction, in this section we mainly show that B-preassociative
functions can be factorized as compositions of length-preserving associative string func-
tions with one-to-one unary maps. This result is stated in Theorem 8.

Recall that a string function F: X* — X * is said to be associative [5] if it satisfies the
equation F'(xyz) = F(xF(y)z) for any x,y,z € X*.

Definition 2. We say that a string function F: X* — X* is length-preserving if |F(x)| =

|x| for every x € X*, or equivalently, if ran(F,,) ¢ X" for every n > 0.

Clearly, the identity function on X * is associative and length-preserving. The following
example gives nontrivial instances of associative and length-preserving string functions.
Further examples of associative string functions can be found in [5].

Example 3. Let (h,,),>1 be a sequence of unary operations on X. One can easily see that
the length-preserving function F: X* — X* defined by Fy(¢) = € and

F,(z1-xy) = hi(z1)hn(zy), nxl,
is associative if and only if h,, o h,, = h, for all n,m > 1 such that m < n. Using an
elementary induction, one can also show that the latter condition is equivalent to h,, o h,, =
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hy, and hy41 0 hy, = by, for every n > 1. To give an example, take any constant sequence
hy, = h such that h o h = h (for instance, the positive part function h(x) = 2* over X = R).
As a second example, consider the sequence h,, of unary operations on X = {1,2,3,...}
defined by h,, (k) =1if k <n+1, and h,, (k) = k, otherwise.

Proposition 4. Let F: X* — X* be a length-preserving function. Then F is associative if
and only if it is B-preassociative and satisfies F,, = F}, o F}, for everyn > 0.

Proof. To see that the necessity holds, we recall from [5] that any associative string func-
tion is preassociative and hence B-preassociative. The second part of the statement is
immediate. For the sufficiency, we merely observe that we have F(F(y)) = F(y) for
every y € X* and therefore, by B-preassociativity, we also have F'(xF(y)z) = F(xyz)
for every xyz € X*, that is, F' is associative. O

The following proposition, established in [8], shows how we can construct new B-
preassociative functions from given B-preassociative functions.

Proposition 5 ( [8]). Let F:X* — Y be a B-preassociative function and let (gpn)n>1
be a sequence of functions from 'Y to a nonempty set Y'. If gy |ran(r, ) is one-to-one for
every n > 1, then any function H: X* — Y’ such that H,, = g,, o I, for everyn > 1 is
B-preassociative.

Recall that a function g is a quasi-inverse [10, Sect. 2.1] of a function f if

folancry = 1dlancp) and ran(gl ., sy) = ran(g).

We denote the set of quasi-inverses of a function f by Q(f). Under the assumption of the
Axiom of Choice (AC), the set Q(f) is nonempty for any function f. In fact, the Axiom
of Choice is just another form of the statement “every function has a quasi-inverse”. Note
also that the relation of being quasi-inverse is symmetric: if g € Q(f) then f € Q(g);
moreover, we have ran(g) ¢ dom(f) and ran(f) ¢ dom(g) and the functions f|,, )
and g|,,,,,( ) are one-to-one.

Lemma 6. Assume AC and let F: X" — Y be a function. For any g € Q(F), define the
Sunction H: X" - X" by H = go F. Then we have F' = F'o H and H = H o H. Moreover,
the map F|on () is one-to-one.

Proof. By definition of H we have FFo H = FogoF =Fand HoH =goFogoF =
go F=H. Also, the map F|,an(sr) = Flran(g) 1S One-to-one. O

Lemma 7. Assume AC and let F: X* — Y be a function. The following assertions are
equivalent.
(i) F is B-preassociative.
(ii) For every sequence (g, € Q(F,))ns1, the function H: X* — X* defined by
Hy(e) =eand H,, = g, o F,, for every n > 1 is associative and length-preserving.
(iii) There exists a sequence (g, € Q(F,))ns>1 such that the function H: X* — X*
defined by Hy(e) = € and H,, = gy, o F,, for every n > 1 is associative and length-
preserving.

Proof. (i) = (ii). Let H: X* — X * be defined as indicated in the statement. We know by
Lemma 6 that H o H = H and H is length-preserving. Since gn|ran( F,) is one-to-one, we
have that H is B-preassociative by Proposition 5. It follows from Proposition 4 that H is
associative.

(i) = (iii). Trivial.
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(iii) = (i). By Proposition 4, H is B-preassociative. For every n > 1, since gn |ran(r,) 18
a one-to-one map from ran(F, ) onto ran(g, ) = ran(H, ), we have F,, = (gn|ran(r,)) " ©
H,,. By Proposition 5 it follows that F' is B-preassociative. (]

We are now ready to present our main result, which gives a characterization of any B-
preassociative function as a composition of a length-preserving associative string function
with one-to-one unary maps.

Theorem 8. Assume AC and let F: X* — Y be a function. The following assertions are
equivalent.

(i) F is B-preassociative.

(ii) There exist an associative and length-preserving function H: X* — X* and a
sequence (frn)ns1 of one-to-one functions fp:ran(H,) - Y such that F,, = f, o
H,, for everyn > 1.

If condition (ii) holds, then for every n > 1 we have fn = Flian(a,) = Fnlran(,), fle
Q(F,), and we may choose Hy, = g, o F,, for any g, € Q(Fy).

Proof. (i) = (ii). Let H: X* - X* be defined by Hy(¢) = ¢ and H,, = g,, o F,, for every
n > 1, where g,, € Q(F,). By Lemma 6 we have F,, = f, o H,, for every n > 1, where
Jn = Fulran H,) is one-to-one. By Lemma 7, H is associative and length-preserving.

(i) = (i). H is B-preassociative by Proposition 4. By Proposition 5 it follows that also
F is B-preassociative.

If condition (ii) holds, then for every n > 1 we have F,, 0o H,, = f, o H,0o H, = f, o H,
and hence Fn|ran( H,) = [n. Moreover, since f, is one-to-one, we have H,, = f,;l o F,
and hence F, o f;' o F}, = Fj, 0 H,, = fn, 0 H, o H,, = f, 0o H, = F,, which shows that
fol € Q(Fy). 0

Remark 3. (a) It is clear that the trivial factorization F,, = F,, o H,,, where H,, = id,
holds for any function F': X* — Y. This observation could make us wrongly think
that Theorem 8 is of no use. However, in our factorization F;, = f, o H,, the outer
function f,, has the important feature that it is one-to-one.

(b) Similarly to Theorem 8, one can show [5] that any preassociative function F: X * —
Y can be factorized as a composition F' = foH, where H: X* — X* is associative
and f:ran(H) — Y is one-to-one.

In the rest of this section we show how Theorem 8 can be particularized to some nested
subclasses of B-preassociative functions, including the subclass of B-preassociative func-
tions F: X* — Y for which the equality ran(F,,) = ran(dp,) holds for every n > 1
(see [8]).

For any integers m, n > 1, define X2 = X and

X:rLL _ {yzn—min{n,m,}+1 yze Xmin{n,m}}.

For instance X3 = {23 : 2z € X}, X3 = {y2? 1 yz € X%}, and X2, = X for every m > 3.
Thus, we have X = X" if m > nand X" = {yz""™" 1 yz e X"} if m <n. It
follows that for every m > 1 we have X} ¢ X , ¢ X".

Definition 9. Let m > 1 and n > 0 be integers. We say that a function H: X" — X"
has an m-generated range if ran(H) ¢ X . We say that a function H: X* - X* has an

m*
m-generated range if H,, has an m-generated range for every n > 0.
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Fact 10. If a function H: X™ — X™ has an m-generated range, then it has an (m + 1)-
generated range. If a function H: X* — X* has an m-generated range, then it is length-
preserving.

Let m > 1 and n > 0 be integers. The m-diagonal section of a function F: X" — Y is
the map §72: X ™™™} ¥ defined by 67 = F,if n = 0, and 07 (y2) = F(yz"min{nm}i+l)
for every yz e X™n{nm} otherwise. We clearly have ran(d%) € ran(67+1).

Definition 11. Let m > 1 and n > 0 be integers. We say that a function F: X™ — Y is
m-quasi-range-idempotent if ran(F') = ran(d7).

By definition, any m-quasi-range-idempotent function F: X" — Y is (m + 1)-quasi-
range-idempotent. We also observe that the property of being m-quasi-range-idempotent
is preserved under left composition with unary maps: if F: X" — Y is m-quasi-range-
idempotent, then so is g o F' for any map ¢: Y — Y’, where Y is a nonempty set.

Proposition 12. If F: X* - X~ is associative and F}, has an m-generated range for some
k,m > 1, then for any integer p > 0 the function F., is (m + p)-quasi-range-idempotent.
In particular, Fy, is m-quasi-range-idempotent.

Proof. Letx € XP and x’ € X*. Then, there exists yz ¢ X™"{k™} guch that

Fk+p(XXI) _ Fk+p(XFk (X/)) _ Fk+p(Xka7min{k’m}+1)
_ F]ﬁ_p(Xyz(k+p)—min{k+p,m+p}+1) _ (S;:S (Xyz),
which shows that ran(Fy.p) € ran(é?};z ). The converse inclusion is obvious. O

Lemma 13. Let m,n > 1 be integers. Any map F: X" — 'Y satisfying ' = F o H, where
H: X" - X™ has an m-generated range, is m-quasi-range-idempotent.

Proof. Since ran(H) ¢ X, we have ran(F') = ran(F o H) ¢ ran(é}'). Since the
converse inclusion ran(F') 2 ran(d%) holds for any map F: X" — Y, we have that F' is
m-quasi-range-idempotent. (]

Lemma 14. Under the assumptions of Lemma 6, if F' is m-quasi-range-idempotent for
some m > 1, then g can always be chosen so that ran(g) € X" and therefore H has an
m-generated range. Conversely, if H has an m-generated range for some m > 1, then F'
is m-quasi-range-idempotent.

Proof. If F is m-quasi-range-idempotent for some m > 1, then there always exists g €
Q(F) such that ran(g) ¢ X,; indeed, if y € ran(F') = ran(dj ), then we can take
g(y) € (%) {y} c X. Therefore H = g o I has an m-generated range. Conversely,
if H has an m-generated range for some m > 1, then F' is m-quasi-range-idempotent by

Lemma 13. O

Corollary 15. For any m > 1, the equivalence in Lemma 7 holds if we add the condition
that every F,, (n > 1) is m-quasi-range-idempotent in assertion (i) and the conditions that
ran(g,) € X7, (n > 1) and H has an m-generated range in assertions (ii) and (iii).

Theorem 16. For any m > 1, the equivalence between (i) and (ii) in Theorem 8 still holds
if we add the condition that every F,, (n > 1) is m-quasi-range-idempotent in assertion
(i) and the condition that H has an m-generated range in assertion (ii). In this case the
condition ran(g, ) € X' (n > 1) must be added in the last part of the statement.

Proof. Follows from the results above. ([l
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Setting m = 1 in Theorem 16, we immediately derive a factorization of any B-preasso-
ciative function whose n-ary part F), is 1-quasi-range-idempotent for every n > 1. An
alternative factorization for such functions is given in the following theorem, established
in [8]. Recall that a function F: X* — X u {e} is barycentrically associative (or B-
associative for short) [8] if it satisfies the equation F(xyz) = F(xF(y)lz) for any
X,y,z € X*. (B-associativity is also known as decomposability, see [2, 3]).

Theorem 17 ( [8]). Assume AC and let F: X* — 'Y be a function. The following assertions
are equivalent.
(1) F'is B-preassociative and F,, is 1-quasi-range-idempotent for every n > 1.
(ii) There exists a B-associative function H: X* — X u {e} such that H(¢) = € and
a sequence (fn)ns1 of one-to-one functions fp:ran(H,) — Y such that F,, =
fno H, foreveryn > 1.
If condition (ii) holds, then for every n > 1 we have Fy, = 6F, o Hp, fn = OF, lran(H,)»
71 € Q(6F,), and we may choose H,, = g, o F,, for any g, € Q(0r, ).

We now show how Theorem 17 can be easily derived from Theorem 16.

For every m > 1 and every x € X*, denote by x[,,,] the m-prefix of x, that is the string
in U, X" defined as follows: if |x| < m, then X[m] = X; otherwise, if x = x'x", with
x| = m, then x[,,] = x".

If H: X* - X has an m-generated range, then by definition it can be assimilated with
the function H,,,): X* — UjZ, X" defined by H[,,,)(x) = H(X)[,,]- Indeed, H can be
reconstructed from Hy,,] by setting

H(X) _ H[m](x)a if |X| <m,
| Hpnp(x)2" ™, otherwise,

where 2 is the last letter of H,,1(x).
Thus we can prove Theorem 17 from Theorem 16 as follows.

Proof of Theorem 17 as a corollary of Theorem 16. By setting m = 1 in Theorem 16, we
see that H has a 1-generated range. By the observation above, H can then be assimilated
with Hpyj through the identity H(x) = H[l](x)|x| for every x € X ™. It is then clear that
H is associative if and only if H[;} is B-associative. The other parts of Theorem 17 follow
immediately. (]

Remark 4. The question of generalizing Theorem 17 by dropping the 1-quasi-range-idem-
potent condition on every F;, was raised in [8]. Clearly, Theorem 8 answers this question.

3. SOME CONSEQUENCES OF THE FACTORIZATION RESULT

Since any associative function F: X* — X* is preassociative and, in turn, B-preassocia-
tive, it can be factorized as indicated in Theorem 8. Therefore, up to one-to-one unary
maps, the associative string functions can be completely described in terms of length-
preserving associative string functions, and similarly for the preassociative and B-preasso-
ciative functions. This is an important observation which shows that in a sense any of
these nested classes can be described in terms of the smallest one, namely the subclass of
associative and length-preserving string functions (see Figure 1).

Example 18. Let a € X be fixed. Let the map F: X* — X* be defined inductively
by F(z) = zif z # a, F(a) = ¢, and F(xz) = F(x)F(z) for every xz € X*. Thus
defined, F'(x) is obtained from x by removing all the ‘a’ letters (if any). Since F' is
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B-preassociative functions

Preassociative functions

Associative functions

Associative and length-preserving
functions

FIGURE 1. Nested subclasses of B-preassociative functions

associative (see [5] for more details), it is B-preassociative and therefore it can be factorized
as indicated in Theorem 8. For every n > 1, define the function g,,;: UL (X ~ {a})? - X"
by gn(x) = xa™ ™I, Since F), o g, o F,, = F, for every n > 1, we see that g,, € Q(F},).
By Theorem 8, the function H: X* — X*, defined by Hy(¢) = € and H,, = g,, o F}, for
every n > 1, is associative and length-preserving. Moreover, we have F,, = f,, o H,, for
every n > 1, where fy, = Fp|san(s,)- Thus defined, H,,(x) is obtained from x by moving
all the ‘a’ letters (if any) to the rightmost positions. For instance, Hq1(mathematics) =
mthemticsaa.

As observed in the previous section, setting m = 1 in Theorem 16, we can derive
a factorization of any B-preassociative function whose n-ary part F;, is 1-quasi-range-
idempotent for every n > 1 (Theorem 17). In the following example, we derive a similar
factorization explicitly directly from Theorem 8 (without using Theorem 16).

Example 19. If we assume that F}, is 1-quasi-range-idempotent for every n > 1 in assertion
(1) of Theorem 8, then the factorization given in assertion (ii) can be obtained by defining
H, = g, o F,, where g, (z) = h,(«)" and h,, € Q(dr,). Indeed, since F,, is 1-quasi-
range-idempotent, we have

(FpognoF,)(x) = (6F, 0ohpoFy)(x) = Fu(x),
which shows that g,, € Q(F,).

It is clear that the B-associativity property, originally defined for functions F: X* —
X u{e} can be immediately extended to string functions F: X* — X*.

Definition 20. We say that a string function F: X* — X* is barycentrically associative
(or B-associative for short) if it satisfies the equation F'(xyz) = F(xF (y)¥z) for any
X,y,z€ X*.

It is easy to see that any B-associative string function F: X* — X* is B-preassociative
and hence can be factorized as indicated in Theorem 8. Moreover, any B-associative string
function satisfying ran(F,,) ¢ X for every n > 1 is also such that F,, is 1-quasi-range-
idempotent for every n > 1 (see [8]) and therefore it can be factorized as described in
Example 19. In this case we have 0, o F}, = F},, which shows that id|,.n(r,) € Q(dF, ) for
every n > 1. Therefore, from Example 19 we immediately derive the following corollary.
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Corollary 21. Let F: X* — X* be a B-associative function satisfying ran(F,) ¢ X for
everyn > 1. Then, for every n > 1, we have F,, = f, o H,, where H: X* — X" is the
length-preserving associative function defined by H,(x) = F,,(x)" for every n > 1 and
fniran(H,) — X is the one-to-one function defined by f,(x™) = x for every n > 1.

We end this section by an additional application of Theorem 8.

Definition 22. We say that a function F: X* — Y has a componentwise defined kernel if
there exists a family {E,, : n > 1} of equivalence relations on X such that for any n > 1
and any x,y € X", we have F'(x) = F(y) if and only if (x;,y;) € F; fori=1,...,n. In
this case, we say that the family { £, : n > 1} defines the kernel of F' componentwise.

This concept can be interpreted, e.g., in decision making, as follows. A function
F: X* - Y has a componentwise defined kernel if the equivalence between two n-profiles
X,y € X" can be defined attributewise.

The following proposition and corollary give characterizations of those B-preassociative
functions which have a componentwise defined kernel.

Proposition 23. Assume AC and let F: X* — Y have a kernel defined componentwise by
the family {E,, : n > 1} of equivalence relations on X. Then F is B-preassociative if and
onlyif B, € E, .1 for everyn > 1.

Proof. Let F: X* — Y be defined as indicated in the statement. For the necessity, suppose
that F' is B-preassociative and let (z,y) € F,, for some n > 1. Then we have F(z") =
F(2™'y) and hence F(2™*!) = F(2"y) by B-preassociativity. It follows that (z,y) €
E, 1. For the sufficiency, for any n > 1 and any x,y € X™ such that F'(x) = F(y), we
have F'(xz) = F(yz) for every z € X * by definition of F. Since E,, € E,,,1 for every n >
1, we also have F'(zx) = F(zy) for every z € X*. Therefore F is B-preassociative. =~ [

Corollary 24. Assume AC and let F: X* - Y be a function. The following assertions are
equivalent.

(i) Fis B-preassociative and has a componentwise defined kernel.

(ii) There exists a sequence (hy, )n>1 of unary operations on X and a sequence ( f1,)n>1
of one-to-one maps fn:{h1(x1)-h,(xy) : ©1--xy € X"} - Y such that hy, o
ha = hp, Bps1 © hy = by, and Fr(x) = fu(hi(21)--hp(25)) for every n > 1
and every x € X",

Proof. (i) = (ii). By Proposition 23, the kernel of F' is defined by some family of equiv-
alence relations {F,, : n > 1} on X satisfying F,, € E,, for every n > 1. For every
ce X/E,,let s,(c) € ¢ be arepresentative of ¢ and define the map h,,: X - X by h,(z) =
S$n(z/Ey). The map gp:ran(F,) — X" defined by g,(F(x)) = hi(xz1)-hp(x,) is
a quasi-inverse of F,,. Indeed, since (x;,h;(x;)) € E; for every x € X" and every
ie{l,...,n}, we have

(Fnognan)(xl"'xn) = Fn(hl(xl)"'hn(xn)) = Fn(xl"'xn)~

By Theorem 8, setting H,, = g, o F,, for every n > 1, there is a one-to-one function
fn:iran(H,) - Y such that F,, = f,, o H,, and such that the map H: X* — X* obtained
by setting Hy(g) = ¢ is associative and length-preserving. The conclusion follows from
Example 3.

(i) = (i) By Example 3 and Proposition 4 we obtain that F' is B-preassociative. More-
over, the kernel of F is defined by the family {ker(h;) : ¢ > 1} of equivalence relations on
X. (]



A CHARACTERIZATION OF BARYCENTRICALLY PREASSOCIATIVE FUNCTIONS 9

ACKNOWLEDGMENTS

This research is supported by the internal research project FIR-MTH-PUL-15MRO3 of
the University of Luxembourg.

REFERENCES

[1] B. de Finetti. Sul concetto di media. Giornale dell’ Instituto Italiano degli Attari 2(3):369-396, 1931.

[2] J. Fodor and M. Roubens. Fuzzy preference modelling and multicriteria decision support. Kluwer, Dor-
drecht, 1994.

[3] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation functions. Encyclopedia of Mathematics
and its Applications, vol. 127. Cambridge University Press, Cambridge, 2009.

[4] A.N. Kolmogoroff. Sur la notion de la moyenne. (French). Atti Accad. Naz. Lincei, 12(6):388-391, 1930.

[5] E. Lehtonen, J.-L. Marichal, B. Teheux. Associative string functions. Asian-European Journal of Mathe-
matics 7(4):1450059 (18 pages), 2014.

[6] J.-L. Marichal and B. Teheux. Associative and preassociative functions. Semigroup Forum 89(2):431-442,
2014. (Improved version available at arxiv.org/abs/1309.7303v3).

[7] J.-L. Marichal and B. Teheux. Preassociative aggregation functions. Fuzzy Sets and Systems 268:15-26,
2015.

[8] J.-L. Marichal and B. Teheux. Barycentrically associative and preassociative functions. Acta Mathematica
Hungarica 145(2):468-488, 2015.

[9] M. Nagumo. Uber eine Klasse der Mittelwerte. (German). Japanese Journ. of Math., 7:71-79, 1930.

[10] B. Schweizer and A. Sklar. Probabilistic metric spaces. North-Holland Series in Probability and Applied

Mathematics. North-Holland Publishing Co., New York, 1983. (New edition in: Dover Publications, New
York, 2005).

MATHEMATICS RESEARCH UNIT, FSTC, UNIVERSITY OF LUXEMBOURG, 6, RUE COUDENHOVE-KALERGI,
L-1359 LUXEMBOURG, LUXEMBOURG
E-mail address: jean-1uc.marichal [at]uni.lu

MATHEMATICS RESEARCH UNIT, FSTC, UNIVERSITY OF LUXEMBOURG, 6, RUE COUDENHOVE-KALERGI,
L-1359 LUXEMBOURG, LUXEMBOURG
E-mail address: bruno.teheux[at]uni.lu



