A global description of the fine Simpson moduli space of 1-dimensional sheaves supported on plane quartics

1. Introduction

Let $X \subseteq \mathbb{P}_N$ be a projective variety, let $\mathcal{O}_X(1)$ be the corresponding ample invertible sheaf. Let $X \subseteq \mathbb{P}_N$ be a projective variety, let $X \subseteq \mathbb$

$$m \mapsto \sum_{i} (-1)^{i} \cdot \dim H^{i}(X, \mathcal{F} \otimes \mathcal{O}_{X}(m))$$

is a numeric polynomial $P(\mathcal{F},m) \in \mathbb{Q}[m]$ called the *Hilbert polynomial* of \mathcal{F} . The degree d of $P(\mathcal{F},m)$ equals the dimension of the support of \mathcal{F} and

$$P(\mathcal{F}, m) = \sum_{i=0}^{d} \alpha_i(\mathcal{F}) \cdot \frac{m^i}{i!}, \quad \alpha_d(\mathcal{F}) \in \mathbb{Z}_{>0}.$$

The sheaf \mathcal{F} is called (semi-)stable if for every proper subsheaf $\mathcal{E}\subseteq\mathcal{F}$

$$\alpha_d(\mathcal{F}) \cdot P(\mathcal{E}, m) < (\leqslant) \alpha_d(\mathcal{E}) \cdot P(\mathcal{F}, m), \quad m \gg 0.$$

Theorem (C. Simpson). For a fixed $P(m) \in \mathbb{Q}[m]$ there exists a coarse projective moduli space $M := M_P(X)$ of semi-stable sheaves (their s-equivalence classes) on X with Hilbert polynomial P.

F X is a surface and P(m) is linear, then the sheaves from $M=M_P(X)$ are supported on curves and M may be seen as a compactification of a certain moduli space of vector bundles on curves in X by torsion-free sheaves (on support).

Let $X=\mathbb{P}V=\mathbb{P}_2, \dim V=3$, be a projective plane, let $P(m)=am+b, \ a\in\mathbb{Z}_{>0}, b\in\mathbb{Z}$. Denote $M_{am+b}=M_{am+b}(\mathbb{P}_2)$. Twisting with $\mathcal{O}_{\mathbb{P}_2}(1)$ gives an isomorphism

$$M_{am+b} \cong M_{am+b+a}. \tag{1}$$

 \mathbf{B}^{Y} [3] there is also an isomorphism

$$M_{am+b}(\mathbb{P}_2) \cong M_{am+(a-b)}.$$
 (2)

F gcd(a,b)=1, every semi-stable sheaf is stable and M_{am+b} is a fine moduli space.

2. First examples

FOR a=1, M_{m+1} consists of the isomorphism classes of the structure sheaves of lines $L\subseteq \mathbb{P}_2$, hence isomorphic to $\mathbb{P}_2^*=\mathbb{P}V^*$. By (1) $M_{m+1}\cong M_{m+b},$ $b\in \mathbb{Z}$.

FOR a=2, M_{2m+1} consists of the isomorphism classes of the structure sheaves of conics $C\subseteq \mathbb{P}_2$, hence isomorphic to \mathbb{P}_5 . By (1) $M_{2m+1}\cong M_{2m+b}$, $b\in\mathbb{Z}$, $\gcd(2,b)=1$.

 Γ OR a=3, M_{3m-1} consists of the isomorphism classes of the ideal sheaves of a point p on a cubic curve C

$$0 \to \mathcal{I} \to \mathcal{O}_C \to \mathcal{O}_{\{p\}} \to 0,$$

hence isomorphic to the universal cubic plane curve (cf. [2]). By (1) and (2) $M_{3m-1} \cong M_{3m+b}$, $b \in \mathbb{Z}$, $\gcd(3,b)=1$.

3. Sheaves on plane quartics

FOR a=4 and $\gcd(4,b)=1$, $M_{4m+b}\cong M_{4m-1}$. By [1] $M=M_{4m-1}$ is a disjoint union of two strata M_1 and M_0 .

Closed stratum.

THE closed stratum M_1 , which is isomorphic to the universal plane quartic, is a closed subvariety of M of codimension 2 given by the condition $h^0(\mathcal{E}) \neq 0$. It consists of the sheaves that are non-trivial extensions

$$0 \to \mathcal{O}_C \to \mathcal{E} \to \mathcal{O}_{\{p\}} \to 0, \tag{3}$$

where C is a plane quartic and $p \in C$ a point on it.

Open stratum.

THE open stratum M_0 is the complement of M_1 given by the condition $h^0(\mathcal{E})=0$, it consists of the isomorphism classes of the cokernels of the injective morphisms

$$\mathcal{O}_{\mathbb{P}_2}(-3) \oplus 2\mathcal{O}_{\mathbb{P}_2}(-2) \xrightarrow{A} 3\mathcal{O}_{\mathbb{P}_2}(-1)$$
 (4

such that the (2×2) -minors of the linear part $\begin{pmatrix} z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{pmatrix}$ of $A = \begin{pmatrix} q_0 & q_1 & q_2 \\ z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{pmatrix}$ are linear independent.

Twisted ideals of 3 **points on** C. If the maximal minors of the linear part of A are coprime, then the cokernel \mathcal{E}_A of (4) is the twisted ideal $\mathcal{I}_Z(1)$, where \mathcal{I}_Z is the ideal sheaf of the zero dimensional subscheme $Z \subseteq C$ of length 3 defined by the maximal minors of the linear submatrix of A.

$$0 \to \mathcal{E}_A \to \mathcal{O}_C(1) \to \mathcal{O}_Z \to 0.$$

THE subvariety M_{00} of such sheaves is open in M_0 .

Extensions. If the maximal minors of the linear part of A have a linear common factor, say l, then $\det(A) = l \cdot h$ and \mathcal{E}_A is in this case a non-split extension

$$0 \to \mathcal{O}_L(-2) \to \mathcal{E}_A \to \mathcal{O}_{C'} \to 0,$$
 (5)

where L = Z(l), C' = Z(h).

THE subvariety M_{01} of such sheaves is closed in M_0 and locally closed in M. Its boundary consists of the sheaves from M_1 as in (3) such that C has a linear component $L \subseteq C$ and $p \in L$.

FOR fixed L and C', the subscheme of the isomorphism classes of non-trivial extensions from M_{01} as in (5) can be identified with \mathbb{k}^2 , its closure in M can be seen as \mathbb{P}_2 with line at infinity being identified with L.

 M_0 as a geometric quotient. M_0 is an open subvariety in the geometric quotient B of the variety of stable matrices as in (4) by the group

$$\operatorname{Aut}(\mathcal{O}_{\mathbb{P}_2}(-3) \oplus 2\mathcal{O}_{\mathbb{P}_2}(-2)) \times \operatorname{Aut}(3\mathcal{O}_{\mathbb{P}_2}(-1)).$$

Ts complement in B is a closed subvariety B' corresponding to the matrices with zero determinant.

Description of B. B is a \mathbb{P}_{11} -vector bundle B over the moduli space N=N(3;2,3) of stable (2×3) Kronecker modules, i. e., over the quotient of stable (2×3) -matrices of linear forms on \mathbb{P}_2 by $\operatorname{Aut}(2\mathcal{O}_{\mathbb{P}_2}(-2))\times\operatorname{Aut}(3\mathcal{O}_{\mathbb{P}_2}(-1))$.

THE projection $B \to N$ is induced by $\begin{pmatrix} q_0 & q_1 & q_2 \\ z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{pmatrix} \mapsto \begin{pmatrix} z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{pmatrix}.$

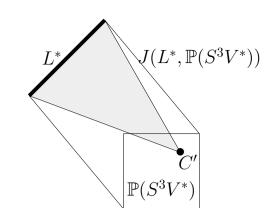
The base N. The subvariety $N' \subseteq N$ corresponding to the matrices whose minors have a common linear factor is isomorphic to $\mathbb{P}_2^* = \mathbb{P}V^*$, the space of lines in \mathbb{P}_2 , such that a line corresponds to the common linear factor of the minors of the corresponding Kronecker module $\begin{pmatrix} z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{pmatrix}$.

THE blow up of N along N' is isomorphic to the Hilbert scheme $H=\mathbb{P}_2^{[3]}$ of 3 points in \mathbb{P}_2 . The exceptional divisor $H'\subseteq H$ is a \mathbb{P}_3 -bundle over N', whose fibre over $L\in\mathbb{P}_2^*$ is the Hilbert scheme $L^{[3]}$ of 3 points on L. The class in N of a Kronecker module $\begin{pmatrix} z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{pmatrix}$ with coprime minors corresponds to the subscheme of 3 non-collinear points in \mathbb{P}_2 defined by the minors of the matrix.

The fibres of $B \to N$. A fibre over a point from $N \setminus N'$ can be seen as the space of plane quartics through the corresponding subscheme of 3 non-collinear points.

 $J(L^*, \mathbb{P}(S^3V^*)) \setminus L^*$ is a rank 2 vector bundle over $\mathbb{P}(S^3V^*)$, whose fibre over a cubic curve $C' \in \mathbb{P}S^3V^*$ corresponds to the projective plane joining C' with L^* inside the join $J(L^*, \mathbb{P}(S^3V^*))$.

The points of $J(L^*, \mathbb{P}(S^3V^*)) \setminus L^*$ parameterize the extensions (5) from M_{01} with fixed L.



Description of B'. B' is a union

B' B' is a union of lines L^* from each

fibre over N' (as explained above), it is isomorphic to the tautological \mathbb{P}_1 -bundle over $N'=\mathbb{P}_2^*$

$$\{(L, x) \in \mathbb{P}_2^* \times \mathbb{P}_2 \mid L \in \mathbb{P}_2^*, x \in L\}. \tag{6}$$

THE fibre \mathbb{P}_1 of B' over, say, line $L=Z(x_0)\subseteq \mathbb{P}_2$ can be identified with the space of classes of matrices (4) with zero determinant

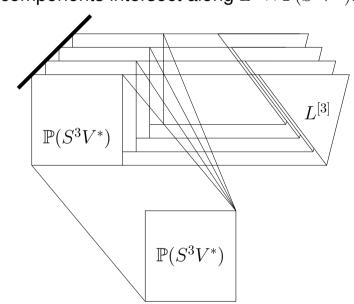
$$\begin{pmatrix} \xi \cdot x_2 & -\xi \cdot x_1 & 0 \\ x_0 & 0 & x_1 \\ 0 & x_0 & x_2 \end{pmatrix}, \quad \xi = \alpha x_1 + \beta x_2, \quad \langle \alpha, \beta \rangle \in \mathbb{P}_1.$$

4. Main result

Theorem. $Bl_{M_1} M = Bl_{B'} B$.

BLOWING up B along B' substitutes B' by the projective conormal bundle of B'. So, each point (L,x) of B' is substituted by \mathbb{P}_{13} , which can be seen as the join $\mathbb{P}_{13} = J(L^{[3]}, \mathbb{P}(S^3V^*))$ of $\mathbb{P}_3 = L^{[3]}$ (normal directions along N) and $\mathbb{P}_9 = \mathbb{P}(S^3V^*)$ (normal directions along the fibre $J(L^*, \mathbb{P}(S^3V^*))$).

THE fibre of $B \to N$ over $L \in N'$ is substituted by the fibre that consists of two components: the first component is the blow-up of $J(L^*, \mathbb{P}(S^3V^*))$ along L^* , the second one is $\mathbb{P}_{13} = J(L^{[3]}, \mathbb{P}(S^3V^*))$, the components intersect along $L^* \times \mathbb{P}(S^3V^*)$.



FOR a fixed point $x \in L$, $J(L^{[3]}, \mathbb{P}(S^3V^*))$ can be interpreted as the space of quartics through x. VERY point x in \mathbb{P}_2 defines a projective line $l_x = \{(x,L) \mid x \in L\}$ in B', every two points (L,x) and (L',x) of $l_x \subseteq B'$ are substituted by the projective spaces $J(L^{[3]}, \mathbb{P}(S^3V^*))$ and $J(L'^{[3]}, \mathbb{P}(S^3V^*))$ respectively, which are naturally identified with the space of quartics through x.

Contracting the exceptional divisor of $\mathrm{Bl}_{B'}B$ along all lines l_x , one gets the universal quartic M_1 .

THIS describes the blow up of M along M_1 , whose exceptional divisor is a \mathbb{P}_1 -bundle over M_1 with fibres being the lines l_x .

References

- [1] Jean-Marc Drézet and Mario Maican, On the geometry of the moduli spaces of semi-stable sheaves supported on plane quartics, Geom. Dedicata **152** (2011), 17–49. MR 2795234 (2012j:14015)
- [2] J. Le Potier, *Faisceaux semi-stables de dimen-sion* 1 *sur le plan projectif*, Rev. Roumaine Math. Pures Appl. **38** (1993), no. 7-8, 635–678. MR MR1263210 (95a:14014)
- [3] Mario Maican, A duality result for moduli spaces of semistable sheaves supported on projective curves., Rend. Semin. Mat. Univ. Padova 123 (2010), 55–68 (English).