
OFFPRINT

Percolation in suspensions of hard
nanoparticles: From spheres to needles

Tanja Schilling, Mark A. Miller and Paul van der Schoot

EPL, 111 (2015) 56004

Please visit the website
www.epljournal.org

Note that the author(s) has the following rights:
– immediately after publication, to use all or part of the article without revision or modification, including the EPLA-

formatted version, for personal compilations and use only;
– no sooner than 12 months from the date of first publication, to include the accepted manuscript (all or part), but

not the EPLA-formatted version, on institute repositories or third-party websites provided a link to the online EPL
abstract or EPL homepage is included.
For complete copyright details see: https://authors.epletters.net/documents/copyright.pdf.



A LETTERS  JOURNAL  EXPLORING  
THE  FRONTIERS  OF  PHYSICS

AN INVITATION TO 
SUBMIT YOUR WORK

www.epljournal.org

The Editorial Board invites you to submit your letters to EPL

EPL is a leading international journal publishing original, innovative Letters in all 

areas of physics, ranging from condensed matter topics and interdisciplinary 

research to astrophysics, geophysics, plasma and fusion sciences, including those 

with application potential. 

The high profile of the journal combined with the excellent scientific quality of the 

articles ensures that EPL is an essential resource for its worldwide audience.  

EPL offers authors global visibility and a great opportunity to share their work  

with others across the whole of the physics community.

Run by active scientists, for scientists 

EPL is reviewed by scientists for scientists, to serve and support the international 

scientific community. The Editorial Board is a team of active research scientists with 

an expert understanding of the needs of both authors and researchers.

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 105  Number 1 

January  2014

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 103  Number 1 

July 2013

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 104  Number 1 

October 2013

ISSN 0295-5075 www.epl journal.org

www.epljournal.org



 www.epljournal.orgA LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Quality – The 50+ Co-editors, who are experts in their field, oversee the 

entire peer-review process, from selection of the referees to making all 

final acceptance decisions.

Convenience – Easy to access compilations of recent articles in specific 

narrow fields available on the website.

Speed of processing – We aim to provide you with a quick and efficient 

service; the median time from submission to online publication is under  

100 days.

High visibility – Strong promotion and visibility through material available 

at over 300 events annually, distributed via e-mail, and targeted mailshot 

newsletters.

International reach – Over 2600 institutions have access to EPL,  

enabling your work to be read by your peers in 90 countries.

Open access – Articles are offered open access for a one-off author 

payment; green open access on all others with a 12-month embargo.

Details on preparing, submitting and tracking the progress of your manuscript  

from submission to acceptance are available on the EPL submission website 

www.epletters.net.

If you would like further information about our author service or EPL in general, 

please visit www.epljournal.org or e-mail us at info@epljournal.org.

Six good reasons to publish with EPL
We want to work with you to gain recognition for your research through worldwide 

visibility and high citations. As an EPL author, you will benefit from:560,000
full text downloads in 2013

OVER

24 DAYS

10,755

average accept to online 

publication in 2013

citations in 2013

1

2

3

4

5

6

www.epljournal.org

EPL is published in partnership with:

IOP PublishingEDP SciencesEuropean Physical Society Società Italiana di Fisica

“We greatly appreciate 

the efficient, professional 

and rapid processing of 

our paper by your team.”

Cong Lin

Shanghai University



September 2015

EPL, 111 (2015) 56004 www.epljournal.org

doi: 10.1209/0295-5075/111/56004

Percolation in suspensions of hard nanoparticles: From spheres

to needles

Tanja Schilling1, Mark A. Miller2 and Paul van der Schoot3

1 Research Unit for Physics and Materials Science, Université du Luxembourg - L-1511 Luxembourg, Luxembourg
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PACS 64.60.ah – Percolation
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Abstract – We investigate geometric percolation and scaling relations in suspensions of nanorods,
covering the entire range of aspect ratios from spheres to extremely slender needles. A new
version of connectedness percolation theory is introduced and tested against specialised Monte
Carlo simulations. The theory accurately predicts percolation thresholds for aspect ratios of rod
length to width as low as 10. The percolation threshold for rod-like particles of aspect ratios below
1000 deviates significantly from the inverse aspect ratio scaling prediction, thought to be valid in
the limit of infinitely slender rods and often used as a rule of thumb for nanofibres in composite
materials. Hence, most fibres that are currently used as fillers in composite materials cannot
be regarded as practically infinitely slender for the purposes of percolation theory. Comparing
percolation thresholds of hard rods and new benchmark results for ideal rods, we find that i) for
large aspect ratios, they differ by a factor that is inversely proportional to the connectivity distance
between the hard cores, and ii) they approach the slender rod limit differently.

Copyright c© EPLA, 2015

Connectivity percolation is the transition in which iso-
lated clusters of solid particles in a fluid (or of voids in a
solid) become connected in some sense to form a system-
spanning network. This network has a significant effect
on the mechanical and transport properties of the mate-
rial on a macroscopic scale [1]. If, for example, an electri-
cally insulating polymer is mixed with conductive fibres
such as carbon nanotubes, the conductivity of the com-
posite increases by ten or more orders of magnitude
near the percolation transition of the filler material [2].
Given the technological relevance to opto-electronics, pho-
tovoltaics and electromagnetic radiation shielding, it is no
surprise that a large research effort is currently being in-
vested to understand how the formulation and processing
of a composite influence the percolation threshold as well
as its physical properties beyond the threshold [3].

The topic of percolation originates from studies on fluid
flow in porous media, relevant, for example, to oil extract-
ion. It has since been extensively studied theoretically and
computationally, both on and off lattice, the latter partic-
ularly (but not exclusively) for ideal, non-interacting bod-
ies. An important scientific motivation for these studies

is the critical behaviour that the percolation transition
shares with phase transitions [4]. For spherical particles,
the impact of repulsive and attractive interactions on con-
tinuum percolation has received considerable attention [1],
while for non-spherical particles such as nanowires, current
understanding is much sketchier, despite their industrial
interest as fillers in composite materials.

Fibre-like fillers have been modelled as cylinders, sphe-
rocylinders and ellipsoids in theoretical studies [5–11], in
simulations where interactions are ignored [12–15], and
in simulations where the particles interact via a hard ex-
cluded volume [16–19]. However, there is no systematic
test of theory against simulation over a large range of as-
pect ratios for interacting particles. In particular, the in-
termediate regime, in which the length is tens or a few
hundred times the thickness, has not been addressed yet,
even though most fibres used in realistic materials fall into
this range. The reasons for this are that it is very time-
consuming to simulate interacting particles of high length-
to-width aspect ratios, and that analytical theories that
are thought to be accurate in the limit of infinite aspect
ratio are difficult to extend to finite values [20].
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Fig. 1: (Colour on-line) Schematic illustration of two sphero-
cylinders with overlapping contact shells. L is the length of the
line segment (white) of each spherocylinder, which is common
to the hard core and to the contact shell, D is the diameter of
the hard core (dark), and λ is the diameter of the contact shell
(light).

In this letter we present a combined theoretical and sim-
ulation study of percolation in suspensions of hard sphe-
rocylinders that spans an unprecedented range of aspect
ratios from spheres to slender rods of aspect ratio up to
1000. We show that hard-core interactions i) change the
approach to the theoretically expected scaling of the per-
colation threshold with the inverse aspect ratio, ii) shift
the percolation threshold to larger values than that for
ideal rods by a factor that converges only slowly with re-
spect to rod length and iii) cause the core packing fraction
at percolation to exhibit a maximum for small aspect
ratios. These results show that the ideal (penetrable)
particle model has limited predictive value for actual rod
systems and that even for very long rods, a finite-length
correction is necessary to get quantitative predictions. We
show that this correction can be obtained explicitly from
connectedness percolation theory, using a sensible ansatz
for the connectedness direct correlation function.

Before discussing the results, we briefly describe our
simulation method and theory. We have generated config-
urations of hard spherocylinders at fixed particle number
N and volume V , using cubic simulation cells of length
Lx = V 1/3. The spherocylinders consist of a cylinder of
length L and diameter D, capped with hemispheres of the
same diameter. Hence, the surface of the spherocylinder
consists of all points lying a distance D/2 from a line seg-
ment of length L. The full aspect ratio of a hard sphero-
cylinder, including the caps, is L/D+1. The core is strictly
impenetrable but is surrounded by a notional contact shell
that is used to define when two spherocylinders are con-
sidered to be connected. The surface of the contact shell is
a spherocylinder that shares the same line segment as the
core but has diameter λ instead of D. Hence, the surface
of the contact shell lies at a uniform distance (λ − D)/2
from the surface of the core (see fig. 1). The full aspect
ratio of the contact shell is therefore L/λ + 1. Two hard

Fig. 2: (Colour on-line) Simulation snapshots of percolating
clusters. The rods are colour-coded according to their orienta-
tion. Left panel: L/D = 200, right panel: L/D = 10.

spherocylinders are connected if their shells overlap, and
clusters are defined by contiguous pairwise connections.

We sample the fraction P (φ; Lx) of independent config-
urations that contain a percolating cluster as a function of
the packing fraction φ of the cores for a given cell length
Lx. The packing fraction is defined by φ = Nvcore/V ,
where vcore = πD2

(

L
4

+ D
6

)

is the volume of one sphero-
cylinder. To detect a percolating cluster in a cubic simu-
lation cell with periodic boundary conditions, we require
that a cluster must connect periodic images of its con-
stituent particles in at least one of the periodic directions.
This “wrapping” criterion is somewhat more costly to eval-
uate than the simpler “spanning” criterion, which only
requires that a cluster connects two opposite boundaries
of the simulation cell. However, wrapping clusters are a
more accurate representation of a percolating cluster in
the macroscopic limit because such clusters are infinite
when the simulation cell is replicated through its bound-
ary conditions. In contrast, spanning clusters merely form
an array of large but disconnected clusters when the cell
is replicated. Furthermore, wrapping probabilities follow
universal scaling functions [21] —a feature that we will
exploit in the simulations of ideal rods to mitigate the
small systematic errors arising from the inevitably finite
size of the simulation cell. At finite Lx, P (φ; Lx) is a
sigmoidal function of φ, becoming a sharp step function
as Lx → ∞. The curves for different Lx have a com-
mon crossing point [21], typically just below P = 0.5.
To make the simulations tractable, we identify the hard-
rod percolation threshold φp as the point P (φp; Lx) = 0.5
using a cell length up to Lx = 10L (never less than
Lx = 15D). Figure 2 shows examples of percolating clus-
ters for L/D = 200 and L/D = 10.

Properly equilibrated configurations of impenetrable
rods cannot be generated by sequential random inser-
tion [22]. Configurations must therefore be obtained by
Monte Carlo displacements and rotations of particles, re-
jecting any trial move that would generate an overlap of
cores and accepting all others. This procedure becomes
computationally costly for slender rods, where the simu-
lation cell and number of particles must be large to allow
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for an accurate computation of the percolation thresh-
old. To find overlaps quickly, we use a method in which
the spherocylinders are notionally divided into small seg-
ments so that the overlap detection need only be per-
formed for neighboring segments [23]. This method scales
linearly with particle number but requires a large amount
of memory.

We have also calculated the percolation threshold for
fully penetrable (ideal) spherocylinders, consisting of the
contact shell with no hard core. By definition, φ = 0
for ideal rods, but hard and ideal spherocylinders may
be compared using a packing fraction renormalised to
the volume of the contact shell, η = Nvshell/V , where
vshell = πλ2

(

L
4

+ λ
6

)

. η is the hypothetical volume frac-
tion of the shells in the absence of shell overlaps. Indepen-
dent equilibrium configurations of ideal spherocylinders
are easily generated by placing rods with random positions
and orientations within the simulation cell. For ideal rods
we used cells lengths up to Lx = 6L (never less than 16λ)
and identified the percolation threshold from the crossing
point of P (η; Lx) at two cell sizes Lx, sampling 20000 con-
figurations at each η and Lx. This procedure minimises
the systematic errors due to finite cell sizes and reduces
statistical uncertainty in the ideal-rod percolation thresh-
olds to 0.1%.

Our theoretical predictions are based on connected-
ness percolation theory. The percolation threshold is de-
fined as the filler fraction φ at which the mean cluster
size diverges and is equal to vcore/〈〈Ĉ+〉〉′ [20]. Here,
vcore is again the particle volume, Ĉ+ the spatial Fourier
transform of the connectedness direct correlation function,
C+(r,u,u′), at zero wave vector. The direct correlation
function is a function of the vector r connecting the cen-
tres of mass of the particles, and their main-body-axis
vectors u and u

′. The angular brackets denote an orien-
tational averaging over these two orientation vectors. In
the limit of long thin rods the second virial approximation
is accurate [20]. Within the second virial approximation,
C+(r,u,u′) = f+(r,u,u′), where f+ ≡ exp(−U+) is the
connectedness Mayer function with U+ = U+(r,u,u′) the
connectedness interaction potential scaled to the thermal
energy. U+ = ∞ for non-connected configurations and
U+ = 0 for connecting ones, i.e., configurations for which
the connectivity shells overlap but the hard cores do not.

To go beyond the second virial approximation, we in-
voke a Lee-Parsons type of approximation that has proven
remarkably accurate in predicting the phase behaviour of
hard rods and mixtures of hard rods and hard spheres [24].
It is based on an interpolation between the Percus-Yevick
equation of state for hard spheres and the second virial
equation of state for hard rods. In the context of con-
nectedness percolation, it can be written as C+ = f+ ×
(1−3φ/4)/(1−φ)2, given the known relations between the
direct correlation function and the connectedness variant
of it [20,25]. This then gives for the percolation thresh-
old an explicit expression in terms of the ratio γ = L/D
and the dimensionless measure of the connectivity range
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Fig. 3: (Colour on-line) Percolation threshold ηp as a function
of aspect ratio for ideal rods and hard rods. The approach
to the scaling regime, where (L/λ + 1)η would be constant in
each case, is highlighted in the inset. Statistical errors in the
ideal-rod results are smaller than the symbols. Tabulated data
for the main plot are available on a preprint arXiv [26].

α = λ/D − 1,

φp =
2 (1 + ξ) − 2

(

1 + 1
2
ξ
)

1

2

3
(

1 + 2
3
ξ
) , (1)

where

ξ(γ, α) =

(

1 + 2
3

1
γ

)

1
γ

8
3γ2

(

(1 + α)
3 − 1

)

+ 4
γ

(

(1 + α)
2 − 1

)

+ α
.

(2)
To obtain numerical results for the percolation thresh-

old, we must select a value for the connectivity criterion λ.
The separation λ−D of the core spherocylinder surfaces at
the connectivity cut-off (see fig. 1) should be characteris-
tic of the distance over which electron tunnelling between
nanorods decays [27]. This distance depends on the details
of both the nanorods and the medium in which they are
suspended [5] and a full quantum mechanical treatment is
a formidable task. However, if the energetic barrier ΔE
for tunnelling can be measured or calculated, then an esti-
mate for λ−D can be obtained from the tunnelling length
(h̄2/2meΔE)1/2 through a rectangular barrier, where me

is the electron mass. For suspensions of carbon nanotubes
(diameters on the order of a nanometre), the tunnelling
length typically lies at a fraction of a nanometre [5]. We
have therefore taken λ/D = 1.2 as a representative value
for most of our results, but will consider the effects of
altering this value later.

In fig. 3 we present our simulation results (circles) for
the percolation threshold of hard rods in terms of the
renormalised volume fraction η vs. the full aspect ratio
L/λ + 1, from spheres (aspect ratio 1, L/D = 0) to very
slender rods with core L/D = 1000. For comparison, we
also show i) our simulation results for ideal rods (pluses),
ii) the phenomenological expression for ideal cylinders of
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Fig. 4: (Colour on-line) Percolation threshold as a function of
the contact shell thickness, i.e., the surface-to-surface distance
criterion for connectivity.

the same aspect ratio, obtained by Mutiso et al. using a fit
to simulation data on somewhat shorter rods [15] (dashed
line), and iii) our theoretical prediction (solid line). Our
theory agrees quantitatively with the simulations of hard
rods for aspect ratios above 10, and semi-quantitatively
below that. The largest discrepancy between simulation
and theory occurs for aspect ratios approaching zero and
amounts to 25% for our choice of connectivity range.
This is to be expected given the level of accuracy of the
Percus-Yevick approximation for the percolation of hard
spheres [28]. The Mutiso fit for ideal cylinders [15] cap-
tures the qualitative deviations from the long-rod limit,
but only agrees with our simulations within statistical
error over a narrow middle range of aspect ratios.

A number of conclusions can be drawn from fig. 3.
First, we may compare the accurate results of the Monte
Carlo simulations with the asymptotic scalings for the
percolation thresholds of long rods. The long-rod scal-
ing predictions are ηp ∼ λ/2L for ideal rods [29] and
ηp ∼ λ2/2L(λ − D) for hard rods. Both these results can
be obtained from connectedness percolation theory within
the second virial approximation in the limit L ≫ D [5].
However, the same prediction for ideal rods was also made
in earlier work [29,30], using a conjecture based directly
on average excluded volume and the number of contacts
between objects at the percolation threshold. In both the
ideal- and hard-rod cases, the product (L/λ + 1)η should
approach a constant value with increasing rod length. In
the inset of fig. 3, however, we see that the asymptotic
scalings for the percolation threshold of long rods are
only reached for aspect ratios in excess of several hun-
dred [20]. For hard rods, a constant value of (L/λ + 1)η
is reached slowly from below, while for ideal rods the re-
spective plateau is approached from above after initially
overshooting.

Second, hard-core interactions seem to have a larger
impact on the percolation threshold for large aspect ra-
tios than for smaller ones. This observation agrees with
previous Monte Carlo simulations of hard spheres [22,31].
The smaller the connectivity range, the larger the
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Fig. 5: Percolation threshold for short hard rods with con-
nectivity criterion λ/D = 1.2 from simulation. If plotted as
a function of the physical volume fraction of the hard cores
(left-hand panel), the percolation threshold is non-monotonic
in the aspect ratio, while the notional volume fraction of the
connectivity shells (right-hand panel) shows no extremum.

difference between the percolation thresholds of hard and
ideal rods. Figure 4 illustrates this point, showing a signif-
icant impact of the connectivity range on the percolation
threshold even for relatively short rods of aspect ratio 10
and 20, itself quite accurately predicted by our theory. In
the slender rod limit, the ratio of percolation thresholds of
ideal to hard rods should be proportional to the thickness
of the connectivity shell around the core, as (λ − D)/λ.
The results in fig. 3 bear out this theoretical prediction
but, again, the limiting behaviour is reached for the very
longest of the rods included in our simulations.

In fig. 5 we focus on very short hard rods (1.3 ≤
L/D + 1 ≤ 3). The connectivity criterion was again
set to λ/D = 1.2. For short rods, if we define the per-
colation threshold in terms of the physical volume frac-
tion φp due to the cores of the particles, we find the
threshold to be a non-monotonic function of the aspect
ratio (left-hand panel of fig. 5), with a maximum close
to L/D = 0.7 (full core aspect ratio 1.7). Our theory
also predicts a maximum at short aspect ratios. Maximi-
sation of φp in eq. (1) with respect to γ = L/D gives
L/D = 2

3
(−1 +

√
7 + 12α + 6α2) for the aspect ratio at

maximum percolation threshold. Using the connectivity
range α = λ/D − 1 = 0.2 from the simulations, the the-
oretical expression evaluates to L/D ≈ 1.4, i.e., about a
factor of 2 larger than the simulation result. One might be
tempted to speculate that the maximum in φp is related to
the fact that slightly aspherical objects, such as ellipsoids,
pack more efficiently than spheres [32]. However, if the
data are plotted in terms of the renormalised volume
fraction ηp, the curve becomes monotonic (see fig. 5,
right-hand panel). Thus the maximum arises from the def-
inition of connectivity. Crucially, however, it is φ that cor-
responds to the experimental volume fraction of rod-like
filler. Hence, real composite materials should indeed show
a local maximum in loading at the percolation threshold
when short filler particles are used. The renormalised
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volume fraction η that includes the effective, penetrable
contact shell is generally not accurately known a priori.

In summary, we have introduced a new version of con-
nectedness percolation theory which accurately predicts
percolation thresholds for nanorods over a large range
of aspect ratios. We show that for aspect ratios below
1000 the percolation threshold deviates significantly from
the inverse aspect ratio scaling prediction. Hence, cau-
tion is required when making predictions about systems
in the intermediate regime of aspect ratios that is rel-
evant to typical materials applications. We have also
presented new simulation data for hard and ideal rods,
which are the first to cover aspect ratios from a sphere to
very slender rods, providing a new benchmark. Ideal rods
—a conveniently simple model— differ both quantitatively
and qualitatively from more physical models that include
an impenetrable core, and the model’s limitations should
therefore not be ignored in the context of real nanorod sys-
tems. Hard-core interactions change the approach to the
theoretically expected scaling of the percolation thresh-
old with the inverse aspect ratio and shift the percolation
threshold to larger values than that for ideal rods by a fac-
tor that converges only slowly with respect to rod length.
We have shown that the correction to the long-rod scaling
regime that is needed at all realistic aspect ratios of hard
nanorods can be obtained from connectedness percolation
theory, demonstrating the strength of this approach.
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