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Introduction: Time-varying Option Pricing Model with
Jumps

Time-varying volatility are commonly observed in the market.
Empirical studies on the statistical properties of realized and/or
implied volatilities have given rise to various stochastic volatility
models in the literature, such as Heston model, CEV models and also
stochastic volatility model with jumps etc.

Evidence are also found supporting the existence of jumps. e.g. Carr
and Wu (2003), Pan (2002). More recent literature has proved the
dynamic jump intensity, for example Christoffersen et al (2012).

In order to get theoretical results in a most general case, we assume a
time-varying Lévy process, which has its drift, volatility and jump
intensity as general time-varying parameters, to model the jump
diffusion economy.
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Objectives

We study an equilibrium asset and option pricing model in an
economy given a general form of time-varying Lévy process.

Then we use Hodrick-Prescott filter and particle filter to decompose
S&P500 index into time-varying processes of drift, volatility and
jump.

Based on the theoretical results of equity premium and option pricing
formulae, we will further calibrate the models using S&P 500 index
and its option data jointly.
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Model Build-up

The transformation of an investment of St in the stock market from
time t to t + dt in the economy is governed by a stochastic
differential equation of the form:

dSt
St−

= µ(t)dt + σ(t)dBt + (ex − 1)dNt − λ(t)E (ex − 1)dt, (1)

where St− stands for the value of St before a possible jump occurs,
µ(t), σ(t) are the rate of return and the volaility of the investment.

The jump part is assumed to be a Poisson process, with jump intensity of

λ(t) and jump size of x , which is an arbitrary distribution in our model.

Formula (1) describes the dynamics of the price of a single aggregate
stock that is understood as a stock index or a market portfolio.
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Applying Itô’s Lemma with jumps gives a process of the logarithm of
St ,

d lnSt =

[
µ(t)− 1

2
σ(t)2 − λ(t)E (ex − 1)

]
dt + σ(t)dBt + xdNt .

After an integration, we have the production process in an explicit
form,

ln
ST
St
≡ Y (t,T )

=

∫ T

t

σ(s)dBs +

∫ T

t

[µ(s)− 1

2
σ2(s)]ds − E (ex − 1)

∫ T

t

λ(s)ds +

Nt,T∑
i=1

xi

where Y (t,T ) denotes the continuously compounded return of the
investment over the period of (t,T )

Xuecan CUI, Jang SCHILTZ University of LuxembourgAsset Pricing Models with Lévy Processes July 9, 2015 6 / 24



Money Market Account

We further assume that there is a market for instantaneous borrowing
and lending at a risk-free rate r(t). The money market account, Mt ,
follows

dMt

Mt
= r(t)dt. (2)

The risk-free rate, r(t), will be derived from the general equilibrium
later, as a part of the solution.
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Representative Investor

A representative investor seeks to maximize the expected utility
function of his life time consumption

max
ct

Et

∫ T

t
p(t)U(ct)dt,

where ct is the rate of consumption at time t, U(c) is a utility
function with U ′ > 0, U ′′ < 0, and p(t) ≥ 0, 0 ≤ t ≤ T is a time
preference function.

We consider the class of constant relative risk aversion (CRRA) utility
function

U(c) =

{
c1−γ

1−γ γ > 0, γ 6= 1,

ln c, γ = 1,
(3)

where the constant γ is the relative risk aversion coefficient,
γ = −cU ′′/U ′.
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Total Wealth

The total wealth of the representative investor at time t is written as

Wt = W1t + W2t

where W1t = ωWt is the wealth invested in the stock market (ω being the
wealth ratio) and W2t = (1− ω)Wt is the wealth invested in the money
market.
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Representative Investor’s Optimal Control Problem

The representative investor’s optimal control problem becomes

max
ct ,ω

Et

∫ T

t

p(t)U(ct)dt (4)

subject to

dWt

Wt
= ω

dSt
St−

+(1−ω)
dMt

Mt
− ct

Wt
dt

= [r(t) + ωµ(t)− ωr(t)− ωλ(t)E (ex − 1)− ct
Wt

]dt + ωσ(t)dBt

+ ω(ex − 1)dNt

where φ(t) = µ(t)− r(t) is the equity premium. The consumption rate ct
and the wealth ratio ω are control variables.

Because there is only one investor in the economy, he has to put all
the wealth into the stock market. The general equilibrium occurs at
ω = 1, under which the market is cleared.
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Equity Premium

Proposition

In the production economy with jump diffusion and one representative
investor with CRRA utility function, the equilibrium equity premium is given
by

φ(t) = φσ(t) + φJ(t), (5)

φσ(t) = γσ(t)2, φJ(t) = λ(t)E [(1− e−γx)(ex − 1)], (6)

r(t) = µ(t)− φ(t) = µ(t)− φσ(t)− φJ(t), (7)

where φσ(t) is the diffusive risk premium and φJ(t) is the rare-event
premium.

The arbitrary deterministic time preference function p(t) affects the
investor’s optimal consumption rule, but it does not affect the result of the
diffusive and jump risk premia.
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General Pricing Kernel

Proposition

The pricing kernel in the production economy with jump diffusion is given in
differential form by

dπt
πt

= −r(t)dt − γσ(t)dBt + (ey − 1)dNt − λ(t)E (ey − 1)dt, (8)

where the variable y is a random number that models the jump size in the
dynamics of the logarithm of the pricing kernel.

Integration gives

πT

πt
= exp{−

∫ T

t
γσ(s)dBs −

∫ T

t
[r(s) +

1

2
γ

2
σ

2(s)]ds − E(ey − 1)

∫ T

t
λ(s)ds +

Nt,T∑
i=1

yi}.

The martingale condition, πtSt = Et(πTST ), requires that the jump size y
satisfies the following restriction E [(ey − e−γx)(ex − 1)] = 0.
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European Call

Proposition

The price of a European call, here denoted as c(St , t), in the jump
diffusion economy satisfies following integro-differential equation

∂c(St , t)

∂t
+

1

2
σ2(t)S2

t

∂2c(St , t)

∂S2
+ [r(t)− λQ(t)EQ(ex − 1)]St

∂c(St , t)

∂S

− r(t)c(St , t) + λQ(t){EQ [c(Ste
x , t)]− c(St , t)} = 0,

with a final condition
c(ST ,T ) = max(ST − K , 0),

where λQ(t) ≡ λ(t)E (ey ) is the jump intensity in the risk-neutral measure Q,

function f (x) is the expectation under risk-neutral measure Q that can be

evaluated by EQ [f (x)] = E [ey f (x)]
E(ey ) with expectations in the physical measure.
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Proposition

The call option price is given by the following formula

c(St , t) =
+∞∑
n=0

e−
∫ T
t
λQ (s)ds (

∫ T

t
λQ(s)ds)n

n!
EQ
n [cBS(SeX e−E

Q (ex−1)
∫ T
t
λQ (s)ds , t)],

where cBS(S , t) is the Black-Scholes formula for the European call. The
expectation EQ

n is taken under risk-neutral measure Q against the random
number X , which is defined as the sum of n i.i.d. random numbers x , i.e.,
X =

∑n
i=1 xi .
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Empirical Investigation

Decomposition of S&P500 Index into time-varying components.

Hodrick-Prescott Filter

Particle Filter (Sequential Monte Carlo Methods)
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Hodrick-Prescott Filter

Hodrick-Prescott filters was first proposed in Whittaker (1923), then
popularized in economics by Hodrick and Prescott (1997). The
method decomposes a time series into a trend component τt , which
reflects the long term progression of the time series, and ct , taken as
a cyclical component with white noise in economics.

The mathematical formulas are the following:

yt = τt + ct , for t = 1, . . . ,T

where yt = ln(St), St is the stock index.
For yt , given λ, there is a trend τt satisfying:

min
τ

(
T∑
t=1

(yt − τt)2 + λ

T−1∑
t=2

[(τt+1 − τt)− (τt − τt−1)]2)

where we take the common setting λ = 129600 for monthly data.
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Time-varying Drift
As a first step, we decompose the stock index into time-varying trend component
(drift) and a cyclical component (volatility and jump part):

Figure 1.

mean (×10−5) volatility skewness kurtosis
∆ ln(S) 31.9 0.0115 -1.3044 31.8

∆C 1.91 0.0117 -1.2229 30.1

Table 1.
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By taking the difference of the time-varying drift (∆T ), we can observe
that:

Before 2000, the economy was growing. However, after 1997 we cam
observe the growth rate fluctuates around zero.

In the negative return periods, there exists jumps and volatility
clustering. In contrast, the positive return period in between, has very
small volatlity/jump size.

Figure 2.
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Particle Filter

Particle Filters (Johannes, Polson and Stroud 2009, RFS) are
simulation-based estimation methods, which include a set of
algorithms that estimate the posterior density of the state space by
directly implementing the Bayesian recursion equations.

This method uses sampling approach with a set of particles to
represent the posterior density. The state space model can be
non-linear and the initial state and noise distributions can take any
form required.
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Additional Structure for Volatility

In the following empirical investigation, we assume that the dynamic of the
stock market is given by

dSt
St−

= µ(t)dt +
√
νtdB

s
t + (ex − 1)dNt − λ(t)E (ex − 1)dt,

with stochastic volatility satisfying

dνt = k(θ − νt)dt + σν
√
νtdB

ν
t

where µ(t) is the time-varying drift that we get from previous part. νt is a

mean-reverting stochastic volatility process. Bs
t and Bνt are Brownian motions

with correlation ρ. The other parameters are the same as general model.

Xuecan CUI, Jang SCHILTZ University of LuxembourgAsset Pricing Models with Lévy Processes July 9, 2015 20 / 24



Filtered Volatility Processes
Under this SVJ structure, we apply the particle filter over the period
from 1985 to 2014.
Figure 3 displays the filtered volatility estimates for the SVJ model.
Here jump intensity fixed λ = 0.006, around 1 to 2 jumps per year, and
jump size follows a normal distribution N(−2.562, 4.07202) (Eraker,
Johannes and Polson 2003). M is the number of points we interpolate in
between two consecutive days.

Figure 3.
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Summary and Future Research

In the theoretical part, we develop a general model with time
dependent parameter for drift, volatility, and jump intensity. We
derive the equity premium and pricing kernel. The formula of
European call option is given as well.

Empirical part, we use HP filter and particle filter methods to
decompose the time-varying components from S&P500 index.

We will further use the filtering methods to get time-varying
components from option data jointly with return data. This work is in
progress.
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Thank you!
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