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Abstract
This thesis is devoted to low-resource off-path deanonymisation techniques for

two popular systems, Tor and Bitcoin. Tor is a software and an anonymity network
which in order to confuse an observer encrypts and re-routes traffic over random
pathways through several relays before it reaches the destination. Bitcoin is a
distributed payment system in which payers and payees can hide their identities
behind pseudonyms (public keys) of their choice. The estimated number of daily
Tor users is 2,000,000 which makes it arguable the most used anonymity network.
Bitcoin is the most popular cryptocurrency with market capitalization about 3.5
billion USD.

In the first part of the thesis we study the Tor network. At the beginning
we show how to remotely find out which Tor relays are connected. This effectively
allows for an attacker to reduce Tor users’ anonymity by ruling out impossible paths
in the network. Later we analyze the security of Tor Hidden Services. We look at
them from different attack perspectives and provide a systematic picture of what
information can be obtained with very inexpensive means. We expose flaws both
in the design and implementation of Tor Hidden Services that allow an attacker to
measure the popularity of arbitrary hidden services, efficiently collect hidden service
descriptors (and thus get a global picture of all hidden services in Tor), take down
hidden services and deanonymize hidden services.

In the second part we study Bitcoin anonymity. We describe a generic method to
deanonymize a significant fraction of Bitcoin users and correlate their pseudonyms
with their public IP addresses. We discover that using Bitcoin through Tor not only
provides limited level of anonymity but also exposes the user to man-in-the middle
attacks in which an attacker controls which Bitcoin blocks and transactions the
user is aware of. We show how to fingerprint Bitcoin users by setting an “address
cookie” on their computers. This can be used to correlate the same user across
different sessions, even if he uses Tor, hidden-services or multiple proxies.

Finally, we describe a new anonymous decentralized micropayments scheme in
which clients do not pay services with electronic cash directly but submit proof
of work shares which the services can resubmit to a crypto-currency mining pool.
Services credit users with tickets that can later be used to purchases enhanced
services.
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Chapter 1

Introduction

In this chapter we introduce the reader to the topic of anonymity. We briefly
describe the history of anonymity networks and pseudonymous digital currencies
thus giving the historical context in which Tor and Bitcoin were conceived.

Contents
1.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Historical overview . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Anonymous communications . . . . . . . . . . . . . . . . 3
1.2.2 Cryptocurrencies: from blind signatures to Bitcoin . . . . 6
1.2.3 Examples of centralized anonymous digital currencies. . . 7
1.2.4 The synergy: Silkroad marketplace . . . . . . . . . . . . . 8

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Remarks on methodology . . . . . . . . . . . . . . . . . . 10
1.5 Ethical considerations . . . . . . . . . . . . . . . . . . . . . 10

1.1 Foreword

Privacy and anonymity are a subtle matter. Humans are social creatures and in
order to establish new social connections they need (and want) to share information
about themselves. On the other hand without a doubt the need for privacy is a
basic human need: we all need to stay alone sometimes. We feel discomfort when
somebody is prying into our affairs. It even changes our behaviour as we act differ-
ently when we know that somebody might be watching us. These two contradictory
human needs make research in privacy protection particularly difficult.

Privacy is the ability of individuals to control information about themselves
(i.e. whether it should be shared, who it should be shared with, and when it should
be shared). The personal information that an individual tries to keep control of
is called private information. Obvious examples are health conditions, age, salary,
social status, habits. Information that was previously private may become public if
it is leaked outside of the initial group and might uncontrollably spread among other
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individuals. Private information can have value as it can be used in a number of
different ways such as targeted advertising, identity theft, blackmailing, etc. Thus
there will always be parties interested in collecting it.

Private information can be learned either directly (by stealing, questioning or co-
ercing) or indirectly by observing person’s actions by means of surveillance. Surveil-
lance can be prevented through encryption and anonymity. Encryption provides a
way for better privacy by staving off reading the content of electronic communica-
tions. Nonetheless, even if data is encrypted, an observer is still able to analyze
routing meta-data such as IP-address, mail destination addresses and web-site do-
mains which can provide enough information about an individual. Often the mere
fact of communication can reveal enough information and put the user on the “list
of suspects”. In addition financial privacy can easily be violated by governments
by inquiring financial institutions which process the payments: conventional elec-
tronic payment systems (such as credit cards or PayPal) are normally tied to the
holder’s identity. This is why anonymity of communications plays an important
role in protecting privacy. In practice anonymity is achieved by that an individual
cannot be distinguished among a group (preferably large) of other individuals called
anonymity set.

This thesis gives a systematical security analysis of two widely used solutions to
protect one’s privacy of communications and financial privacy through anonymity:
Tor and Bitcoin1. Studying deployed widely used systems has a clear motivation.
First, these systems have a large number of users and losing anonymity for them
has physical consequences and not theoretical. Second, a deployed system needs to
take into account much more small details than a purely theoretical design2. The
vulnerabilities and design flaws found during the study should be avoided when
designing new better systems.

1.2 Historical overview

Computerization is robbing individuals of the ability to monitor and
control the ways information about them is used ... The foundation is
being laid for a dossier society, in which computers would be used to
infer individuals’ life-styles, habits, whereabouts, and associations from
data collected in ordinary consumer transactions. – ’Security without
Identification: Transaction Systems to Make Big Brother Obsolete’ by
David Chaum, 1985.

Privacy was a concern long before the advent of Internet, since ever communi-
cations were sent over public postal service or telephone/telegraph systems. How-
ever without automatic collection and processing of information, creating profound

1In fact Bitcoin is a pseudonymous payment system. Nonetheless after it was released and
deployed many relied on its properties to achieve anonymity and de-facto it became a system
for carrying out anonymous transactions (e.g. the infamous Silkroad market place actively used
Bitcoin, see Section 1.2.4).

2Compare it with a cipher. While the algorithm may be strong, implementations can make it
vulnerable to side-channel attacks.
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profiles of large number of people was too expensive. Proliferation of computer net-
works, increased capacity of storage devices along with the decrease in their prices
made this process significantly cheaper and easier in the late 1980s. And given the
ease with which the information can be copied and exchanged between collecting
parties, the danger of leaking private information moved to a different level.

The reason why electronic communications are so susceptible to privacy viola-
tion lies in the network design. When the first computer networks were created,
anonymity and privacy were not among the design goals and this legacy obviously
affects our present. It was the case for military networks such as Autodin (provided
email-like services in 1961) and Arpanet (created in 1969), networks born in aca-
demic institutions (Usenet in 1980, and Bitnet in 1981), and community created
networks as Fidonet (Tom Jennings sets up the first system in 1984). It was also
not a design goal for World Wide Web in 1991.

The danger of privacy violation was still understood among both academia and
non-academia researchers. One of the pioneers in this field was David Chaum.
In 1981, he published paper “Untraceable Electronic Mail, Return Addresses, and
Digital Pseudonyms” [5] where he described layered encryption and mixnets which
would become the basis of many anonymous tools. Two year later, in 1983, he
published “Blind signatures for untraceable payments” [6] introducing blind sig-
nature which can be used in anonymous digital currencies. In 1988, Chaum pre-
sented dining-crypotgraphers nets (or DC-nets), a different from mixnets approach
for anonymous communications with stronger anonymity guarantees.

These ideas were picked up by the Cypherpunk movement which started with
the corresponding mailing list in 1992. The Cypherpunk’s vision is reflected in the
Crypto Anarchist Manifesto [7] by Timothy C. May and Cypherpunk Manifesto [8]
by Eric Hughes, 1993. In particular,

...We the Cypherpunks are dedicated to building anonymous sys-
tems. We are defending our privacy with cryptography, with anonymous
mail forwarding systems, with digital signatures, and with electronic
money... – by Eric Hughes, 1993.

...Interactions over networks will be untraceable, via extensive re-
routing of encrypted packets... – by Timothy C. May, 1992.

The goal was to achieve better privacy through anonymous communications and
anonymous digital currencies (which still had to be created).

1.2.1 Anonymous communications

The research on anonymous communications3 went mainly in two directions: mixnet-
based anonymous remailers for delay-tolerant traffic and onion routing for real-time
traffic4. The work in these two directions was being done in parallel. Both mixnets

3We put aside anonymous publishing systems as Freehaven [52] or Freenet [53]
4 Overall, the literature on anonymous communication systems is vast. However the goal of

this section is to provide the historical context and not to give a complete survey of anonymity
protocols. An excellent bibliography can be found at [73].
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and onion routing systems use layered encryption to break the link between the
sender and the recipient of a message5.

Anonymous remailers. Anonymous remailers have their origins in the cypher-
punks mailing list. In 1993, Johan Helsingius launched a basic remailer system (also
Called Type 0 remailer). In order to send an anonymous mail a user would add an
extra header to e-mail indicating the final destination and send it to anon.penet.fi,
which then striped off identifying information and forwarded the mail to the final
destination. Such a system does not provide a strong anonymity: (1) there is just
one point of failure; (2) this point stores connecting client’s information; (3) mails
sent to the remailer are not encrypted.

In 1995, Lance Cottrell created Mixmaster [64] remailer system in which several
remailers could be chained using layered encryption. In addition traffic analysis
was made harder by delaying packets and by breaking them into chunks of constant
size.

Mixminion [13] is another remailer protocol published by Mathewson, Dingle-
dine, and Danezis in 2003. Mixminion added several important features such as
(1) integrated directory servers which maintain and distribute the list of available
remailer servers; (2) Exit policies, a mechanism which allows a remailer to specify
which addresses and by which methods a mix node is prepared to deliver messages.

Remailers were an elegant and simple solution for sending electronic mails
anonymously. They however were too specialized to become widespread outside
of the cypherpunk community.

Onion Routing. In contrast to remailers the work on onion routing began at
U.S. Naval Research Laboratory. In late 1995 (the same year Lance Cottrell created
Mixmaster), Goldschlag, Reed and Syverson began work on a project to separate
identification from routing in low-latency communication [10, 24]. Onion routing
employs layered encryption, but it is different from mix networks in a number of
ways6. First, onion routing does not use mixing. Second essential differences is
that “public keys are used to lay a cryptographic circuit of symmetric keys, which
is then used to pass data” [24]. In addition “...onion routing network designs are
for carrying bidirectional low-latency traffic over cryptographic circuits while public
mixnets are designed for carrying unidirectional high-latency traffic in connection-
less messages” [24].

The onion routing design paper [10] was published in 1996 and the research and
development of onion routing system proceeded until 1999 and resulted in two gen-
erations of the system. The work on Onion Routing development was temporarily
suspended after 1999.

5Ignoring some details, a three-hop layered encryption through R1, R2, R3 looks like this:

EP KR1
(N1, R2, EP KR2

(N2, R3, EP KR3
(N3, A,M)))

where EP KRi
(...) denotes encryption with Ri’s public key; Ni is either a random string in mixnets

or session-key metrial in onion routing; A is the receiver’s address and M is the message.
6See [24], section 3.1 for a detailed discussion on the difference between the two.
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The work resumes in 2002, and in 2004 the Tor design paper [14] is published
in which the original onion routing idea is enhanced by Diffie-Hellman based circuit
building, Directory authorities, and other improvements. In 2006, a non-for-profit
“The Tor Project” is founded. By 2015 Tor is the largest7 deployed anonymity net-
work comprising about 7,000 relays and estimated number of users daily 2,000,000.8.

The development of the main Tor client software [84] is coordinated by the
Tor Project [76], a non-profit organization. The funding sources of Tor are diverse
but the main contributor is the US government. The primary goal of Tor is to
provide the public with an easy to use low-latency tool to defend against network
surveillance and circumvent censorship.

Though initial purpose the Onion Routing project was to protect U.S. intel-
ligence online communications, the Tor software is now distributed under BSD
license9 and is used by ordinary people, businesses, political activists, whistleblow-
ers, and media. While Tor is not illegal anywhere in the world, the access to the
network is blocked in some countries (e.g. China, Republic of Belarus).
Hidden Services. Hidden services were a part of Onion routing project since very
beginning. They were designed to resist DoS and physical attacks against Web- and
other services. Specifically, hidden services allow running an Internet service (e.g.
a Web site, SSH server, etc.) in such a way that clients of the service do not know
its actual IP address. This is achieved by routing all communication between the
client and the hidden service through a rendezvous point which connects anonymous
circuits from the client and the server. Tor Hidden Services [83] are improved version
of hidden services which were introduced and deployed in 2004.

Since Tor added support for hidden services in 2004, many of them have emerged;
some enable freedom of speech (New Yorker’s Strongbox [75], Wikileaks [86]) while
others allow for the exchange of contraband (the Silk Road market place [25]) or
are used by botnets (Skynet [55]) for hiding the location of command and control
centers. More mundane services such as the DuckDuckGo search engine [49] also
exist as Tor hidden services.

DC-nets. Another Chaum’s idea, DC-nets, received considerably less research
attention. The basic idea of dc-nets can be introduced in several different ways,
here we adopt the description10 from [15]. Assume that Alice and Bob want to
publish their messages a and b in such a way that an external observer should not
be able to determine who published which message. Alice and Bob share two secret
keys k0 and k1, and a random bit x. Then they publish the following messages:

if x = 0 Alice: A0 = k0 ⊕ a, A1 = k1
Bob: B0 = k0 , B1 = k1 ⊕ b

if x = 1 Alice: A0 = k0 , A1 = k1 ⊕ a
Bob: B0 = k0 ⊕ b , B1 = k1

7The second largest anonymity network I2P [59] is relatively small compared to Tor.
8This estimation includes botnet-malware infected computers.
9A free software license.

10Though this description does not explain where the name "dining cryptographers" comes from,
but in our opinion it better explains how the system can be used in practice.
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Then one can compute messages a and b from A0⊕B0 and A1⊕B1, but which
expression results in whose message remains private. When extended to multiple
parties the protocol provides strong anonymity guarantees, however there are several
obstacles (e.g. jamming and collisions) which makes implementations impractical
for interactive communications. At the time of writing only highly experimental
software exits [46].

1.2.2 Cryptocurrencies: from blind signatures to Bitcoin

One can define digital currency is a medium of exchange which can be used to
buy goods and relies on a computer network to transmit and verify transactions.
Digital currencies based on public key cryptography, cryptocurrencies, differ from
other types of currencies as they are able to provide pseudonymity naturally. There
are several notable examples of pseudonymous cryptocurrencies.
Ecash. In 1983, David Chaum introduced blind signatures and ecash [45], an
anonymous payment system based on them. A bank could issue blindly signed
coins, which were not bound to a specific person. This made the coins anonymous.
Ecash was implemented by “DigiCash” company in 1989. Despite some initial
success the company went bankrupt in 1998 (one of the possible reasons is the wide
adoption of credit cards for online payments).

Ecash was a centralized digital currency as there is one problem which is not easy
to solve without introducing a trusted third party: double spending. In contrast to
physical cash, electronic coins are very easy to copy. Thus the common solution for
a merchant is to consult with the bank to make sure that a coin was not previously
spent.
B-money. In 1998 Wei Dai in the Cypherpunk mailing list described B-money [36],
a design for distributed digital currency. It included several important ideas: (1)
senders and receivers hide their identities behind public keys; (2) Anyone can cre-
ate money by broadcasting the solution to a previously unsolved computational
problem; (3) In order to transfer money, a user needs to create a transaction with
the receiver’s public key and the amount; the user then signs and broadcasts the
transaction; (4) the information about who has how much money is kept in a dis-
tributed fashion on a set of servers. B-money protocol was however never formally
published.
Bitcoin.

Governments are good at cutting off the heads of a centrally con-
trolled networks like Napster, but pure P2P networks like Gnutella and
Tor seem to be holding their own. – Satoshi Nakamoto (from cryptog-
raphy mailing list), 7th Nov 2008.

B-money protocol left out the details on how the servers should come into consensus
on the “correct” transaction history. Bitcoin the design paper [65] of which was
published in November 2008 under the pseudonym Satoshi Nakamoto proposed
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an elegant solution to this problem11. Bitcoin is a digital currency that relies on
cryptography and a broadcast peer-to-peer network for double-spending prevention
instead of a trusted third party. The heart of Bitcoin is blockchain, an electronically
stored ledger of all ever existed valid transitions. The transactions are stored in
timestamped blocks. In order to create a new valid block (and thus timestamp
the outstanding transactions) a peer produces a Proof-of-Work. Each new block
refers to the previous one thus comprising the chain of blocks. Double spending
is prevented by that each transaction is timestamped by the block it is contained
in. In order to double spend a coin, an attacker would need to redo the Proof-of-
Work for all blocks after the corresponding transaction. With each new block, the
corresponding peer also generates and earns bitcoins. Bitcoin’s pseudonimty comes
from the fact that users of the system are identified by Bitcoin addresses which are
essentially hashes of public keys. Each user can create as many public keys as she
wants locally.

Bitcoin is now accepted as a currency by many companies from online retailer
Overstock to exotic Virgin Galactic. At the time of writing, about 14,000,000
bitcoins were generated, and the exchange rate is 233 USD for one Bitcoin12. At
the time of writing Bitcoin comprised of about 6,000 servers, and the estimated
number of clients was 100,000.

The development of the main Bitcoin client13 is currently coordinated by a set
of 5 core developers. There also exists Bitcoin Foundation the purpose of which
is to fund14 the development of the Bitcoin Core client and to promote Bitcoin
technology. Though Bitcoin Foundation does not directly control the development
of Bitcoin Core client, one of the core developers Gavin Andersen is a member of
the board of directors. The legal status of Bitcoin varies from country to country
(e.g. it is banned in Russia), however in general the reception is positive.

1.2.3 Examples of centralized anonymous digital currencies.

It is worth to mention two notable examples of centralized anonymous digital cur-
rencies. Their centralized nature made them vulnerable to attacks from the U.S.
Government and allowed the police to arrest and bring indictments against the
owners, seize reserves and servers.
eGold. eGold was founded in 1996 by Douglas Jackson and Barry Downey. By
2009 it had 5 million registered accounts [50]. The units of payment were grams
of gold. It was a centralized system. Pseudonymity of eGold came from the fact
that creators of accounts could use any name or label they wished15. The system

11In January 2009, Satoshi Nakamoto announces the first code release of Bitcoin (at
sourceforge.net).

12The exchange rate remains very volatile however.
13Bitcoin Core.
14Mainly by donation made by companies the main business of which depends on the Bitcoin

technology.
15However since the history of all transactions was stored on company’s server, transaction flow

graph analysis was possible. This allowed one to deanonymize large amount of inattentive/unlucky
criminals (they just had to make a transaction with an unreliable party).

sourceforge.net
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was shut down after a highly controversial court trial (see [47]): it was accused of
counterfeiting and money laundering.
Liberty Reserve. Liberty Reserve was founded in 2006. It also allowed clients
to create anonymous accounts: only a (pseudo)name, date of birth and an email
address were required. The account could be charged using traditional means: a
credit card, bank wire, postal money order, etc. Liberty Reserve was seized by the
U.S. Government which claimed that it acted16 as a financial hub of the cyber-crime
world. [60].

1.2.4 The synergy: Silkroad marketplace

hahaha! great idea – user genjix at bittalk. org , March 1, 2011.

*hug* Hugs not drugs... no wait, hugs AND drugs! – Dread Pirate
Roberts, 20th April 2012 at Silkroad Hidden Service Forum.

Silkroad is a notable example of a successful symbioses of Tor Hidden Services
and Bitcoin. Silk Road was an anonymous online market available as a Tor Hidden
Service and launched in February 2011 (it was first announced at Bitcoin forum on
the 1st of March 2011 by user “silkroad”). Silkroad was operated by a person (or a
group of people) under the pseudonym “Dread Pirate Roberts”17. It was a market
place where buyers had to register an account and the operator of the market place
was charging a fee from each seller. There was a small detail which differentiated
Silkroad from other ebay.com-like shopping Web-site and which made using Tor
Hidden Service a prerequisite: it was a platform for selling illegal drugs. Given
the obvious dangers in running such a shopping Web-site, the Cypherpunks’ ideas
came in handy. The only way to access Silkroad was through a Tor Hidden Service
and buyers and sellers conducted all transactions with bitcoins. All operations
were done through the SilkRoad escrow service: buyers’ bitcoins were held by the
SilkRoad until the order had been received.

The major public attention was brought to Silkroad after the Gawker blog’s
article [41]. It brought more traffic to the Web-site but also attracted more attention
from FBI. At the beginning of 2013, there were several arrests and convictions
related to Silkroad (mainly due to the police intercepted drugs in mails). On the
2nd October 2013, 29 years old Ross Ulbricht, the alleged owner of Silkroad was
arrested in San Francisco [71]. At the time of this writing he faces 30 years to life
in prison. It seems though that the FBI investigators did not attack Tor or Bitcoin
but used rather traditional methods18.

16 It is not clear if fighting criminals was the real goal behind the seizure of both eGold and
Liberty Reserve (see [47] for more on this topic).

17A character from “The Princes Bride” Hollywood movie.
18According the article in Wired [88], the FBI investigators were working to build a relationship

with Dread Pirate Roberts with the help of an undercover agent. Ulbricht also made a number of
mistakes that allowed FBI to tie him to Silk Road, e.g.using the name “altoid” to post messages
advertising Silk Road to a forum and then using that same name to post to a Bitcoin forum seeking
workers for a Bitcoin startup. In the latter message, “altoid” told would-be job applicants to contact
him at rossulbricht@gmail.com.

bittalk.org
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1.3 Thesis structure

This thesis can logically be divided into three parts. Chapters 3 and 4 comprise
the first part and describe attacks on Tor and Tor Hidden Services. Part 2 consists
of Chapter 5 and describes deanonymisation techniques for Bitcoin and provides
analysis of Bitcoin-over-Tor bundle. Part 3 consists of Chapter 6 only and describes
an anonymous micropayment scheme.

• In Chapter 2, we provide the necessary information about Tor and Bitcoin
internals.

• In Chapter 3, we describe two ways to probe the connectivity of a Tor re-
lay. This gives an attacker access to the topological information about the
Tor network. We demonstrate how the resulting leakage of the Tor network
topology can be used and present attacks to trace back a user from an exit
relay to a small set of potential entry nodes.

• In Chapter 4, we expose flaws both in the design and implementation of Tor’s
hidden services that allow an attacker to measure the popularity of arbitrary
hidden services, take down hidden services, deanonymize hidden services, and
efficiently collect the addresses of existing hidden services. We also propose
a method for opportunistic deanonymisation of Tor Hidden Service clients.
Using the discovered techniques we study (1) two botnets which use Tor hid-
den services for command and control channels; (2) Silk Road market place,
a hidden service used to sell drugs and other contraband.
In addition we we analyse the landscape of Tor hidden services. We study
39824 hidden service descriptors collected on 4th of Feb 2013: we scanned
them for open ports; in the case of 3050 HTTP services, we analyzed and
classified their content.

• In Chapter 5, we present an efficient method to link users’ Bitcoin addresses to
their IP addresses. Further in this chapter we show that using Bitcoin over Tor
does not solve the anonymity problem. Even worse we show that combining
Tor and Bitcoin creates a new attack vector. A low-resource attacker can gain
full control of information flows between all users who chose to use Bitcoin
over Tor. Moreover, we show how an attacker can fingerprint users and then
recognize them and learn their IP addresses when they decide to connect to
the Bitcoin network directly.

• In Chapter 6, we propose a new decentralized anonymous micropayments
scheme which can be used to reward Tor relay operators. Tor clients do
not pay Tor relays with electronic cash directly but submit proof of work
shares which the relays can resubmit to a crypto-currency mining pool. Relays
credit users who submit shares with tickets that can later be used to purchase
improved service. Both shares and tickets when sent over Tor circuits are
anonymous.
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1.4 Remarks on methodology
Attacks described in this thesis are based on flaws discovered by a careful manual
analysis of Tor and Bitcoin specifications [81, 37] and the corresponding source code
(as in many cases the specifications left out many important details). Since in this
thesis we attack concrete systems it is important to answer the following questions:
how fundamental are the attacks? How hard is it to fix them? Do they have an
impact on similar systems?

The attacks based on topology information leakage from Chapter 3 are generic
and are likely to be applicable to other onion routing systems. They are based
on the ability of an attacker to find relays’ connections. For Tor, there are two
ways to achieve this: one is Tor-specific and another is a more general timing-based
method. We would expect other systems to have similar sidechannel vulnerabilities.
Topology-based attacks are also hard to prevent as it is hard to keep the network
fully connected due to scalability reasons.

Attacks on Tor Hidden Services described in Chapter 4 are a mixture of imple-
mentation specific attacks (efficient harvesting of onion addresses), attacks based
on deliberate design decision (tracking and DoSing hidden services), and more fun-
damental traffic confirmation attacks. The latter class of attacks is especially im-
portant for future hidden service designs and seems to be very hard to fix.

Attacks on Bitcoin are applicable to a large number of other cryptocurrencies:
there are hundreds of them at the time of writing and most are similar to and
derived from Bitcoin. Moreover Bitcoin-over-Tor attacks work not only for Tor
but for any other proxies and VPN’s. Most of the attacks on Bitcoin described in
Chapter 5 are due to design oversights and require moderate effort to be fixed.

1.5 Ethical considerations
The attacks described in this thesis sometimes required carrying out experiments
on live systems but in no case we actually deanonymized real users: we discarded
all identifying data after the experiments. Moreover our goal was at no time to
perform a full deanonymization of any target that was not under our control but
rather to show that this would be possible.

In case of Bitcoin and Tor, the experiments on the real networks were necessary
to collect statistics required to estimate the success rate of the attacks. For all
experiments we used our own Tor relays and Bitcoin peers; our relays/peers were
limited in bandwidth and were running only for a short time. We believe that no
users were harmed.

In case of Tor Hidden Services the described attacks could be simulated in
dedicated simulators such as Shadow [27]. However, at the time of experiments
deployed hidden services were not well studied and there was no statistics about the
number of hidden services or their usage. Henceforth, we believe experiments (that
did not intentionally cause degradation of the network and its services) on the live
Tor network were worthwhile and necessary to enhance the scientific understanding
of Hidden Services.



Chapter 2

Tor and Bitcoin

In this chapter we introduce the reader to the inner workings of the Tor and Bitcoin
protocols.

Contents
2.1 Tor anonymity network . . . . . . . . . . . . . . . . . . . . 11
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2.1 Tor anonymity network

For many people, the first approach to hiding their identity is a public proxy server.
This however has serious limitations: the owner of the proxy can be forced to
reveal any logs potentially stored – or even worse, the server may turn out to be a
honeypot. A better solution is to forward traffic through a chain of network nodes,
so-called relays. A set of such relays working according to some protocol is called
anonymity network.

2.1.1 Architecture

Tor is a volunteer-based low-latency anonymity network built on ideas of onion
routing. Fig. 2.1 shows its basic architecture. Tor anonymizes user traffic by for-
warding it through a circuit of Tor Relays in such a way that each relay in the
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Figure 2.1: Tor anonymity network

circuit knows only the immediate transmitter of the message and the immediate re-
ceiver of the message. Using Tor makes it more difficult for non-global adversaries1

to trace Internet activity for TCP applications. Tor tries hard to achieve low traf-
fic latency to provide a good user experience, thus sacrificing some anonymity for
performance. To keep latency low and network throughput high, Tor relays do not
delay incoming messages and do not use padding.

Tor is a semi-decentralized network comprising Tor relays which forward client
traffic and nine Tor authorities which maintain the list, Consensus, of other Tor
relays and distribute this list to clients2. Each Tor relay is uniquely identified by an
RSA public key. When Bob wants to connect to Alice through Tor, he downloads
the Consensus from the Tor authorities. Bob then randomly chooses three Tor
relays from the list.

After Bob chose a path consisting of three relays it agrees on a Diffie-Hellman
key with the first (Entry or Guard) node in the path. Then he completes a Diffie-
Hellman key exchange handshake with the second Middle node by using the first
node as a proxy. In this way the Middle node does not know the real initiator of
the handshake. The user repeats the same procedure with the third (Exit) node
but uses the chain of Entry and Middle nodes as proxies. When the client wants to
connect to a server on the Internet, he packs his messages in fixed 512-bytes sized
cells and encrypts each cells with the three keys. When the message travels along
the circuit, each relay strips off one layer of encryption. This process is shown in
Fig. 2.2. This scheme allows one to break linkability between the sender of the

1A global passive adversary is a type of adversary who can observe all the traffic in the network.
2The IP addresses of authorities and their public keys are hard-coded into the Tor code.
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message and its destination.

TLS

Guard Middle Exit

TLS TLS

Bob Alice

Figure 2.2: Layered encryption

2.1.2 Tor Circuits

Circuit construction. A Tor client builds a circuit one hop at a time. First, the
user sets up a TLS connection with the Entry node and negotiates a Diffie-Hellman
(DH) key using COMMAND_CREATE and COMMAND_CREATED cells3, see Fig. 2.3. This
creates a one-hop circuit.

Guard

Middle Exit

CREATE

CREATED

Bob

Alice

Figure 2.3: Circuit creation. First step

The client extends the circuit to the Middle node through the Guard node (see
Fig. 2.4): he sends a RELAY COMMAND_EXTEND cell to the guard in which he specifies
the IP address of the middle router, its digest, and the first part of DH key exchange
encrypted by the middle node’s public key. Once the guard node receives the cell, it
establishes a TLS connection with the middle node and sends it the encrypted part
of the DH handshake. The middle node decrypts it and replies with the second part
of DH exchange which is forwarded to the client within a RELAY COMMAND_EXTENDED
cell. In this way the second hop of the circuit is established.

If during the circuit construction process the middle node rejects the connection,
the guard node sends a COMMAND_DESTROY cell, specifying the error code, so that
the client is forced to choose another sequence of relay nodes and try to construct a
new circuit. If the circuit is extended successfully up to the middle node, the rest of
the circuit is established in the same way. After the circuit has been built, the client
can start transmitting and receiving data over this circuit. All TCP connections of

3Tor protocol messages are called “cells”.
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Figure 2.4: Circuit creation. Second step
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Figure 2.5: Circuits and streams multiplexing

the user’s application are translated into Tor streams which are multiplexed over
the circuit.

Using the initially chosen circuit for a long time makes profiling attacks easier:
the longer the duration of the circuit, the more time the attacker has to reveal
it. For this reason, circuits older than 10 minutes are not allowed to carry new
streams (for new streams a new circuit should be constructed). After 10 minutes a
circuit dies unless it carries a long-lived stream. In the latter case, the lifetime of
the circuit equals the lifetime of the long-lived stream. In other words, a circuit is
not destroyed until at least one stream is attached to it. In a similar way, a TLS
connection between two Tor relays is not closed if it carries at least one circuit. A
TLS connection without circuits between two Tor routers lives for three minutes.
There is one exception to the rule. A circuit which has never carried a stream (a
clean circuit4) lives for 1 hour.

When a pair of Tor routers or a Tor router and a client have several circuits
between them, they try to tunnel them over a single TLS connection. In Figure 2.5,
communication between two Tor routers is shown. The routers use a single TLS
connection (which is also called Onion Routing connection) which carries a number
of circuits, two in this picture (which may belong to different end users). Multiple
streams of one user may be multiplexed over a single circuit.

Consensus. The list of all Tor relays is distributed by the Tor authorities in
the consensus document. The consensus is updated once an hour by the directory

4Once a new stream is attached to the circuit, it is marked as “dirty”
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authorities and remains valid for three hours. Every consensus document has a
“valid-after” (VA) time, a “fresh-until” (FU) time and a “valid-until” (VU) time.
The “valid-after” timestamp denotes the time at which the Tor authorities pub-
lished the consensus document. The consensus is considered fresh for one hour
(until “fresh-until” has passed) and valid for two hours more (until “valid-until”
has passed). According to the implementation5 clients download the next consen-
sus document in (FU + 45 mins; VU - 10 mins) interval.

Tor Exit policy. In order to access a Web resource anonymously through a Tor
circuit, the Exit relay (the final relay in the circuit) should allow establishing connec-
tions outside the Tor network. This makes Exit relay operators open to numerous
abuses. In order to make their life easier, Tor allows them to specify an Exit Policy:
a list of IP addresses and ports to which the Exit node is willing to establish con-
nections and which destination are prohibited. When a client establishes a circuit,
he chooses only those Exit nodes which allow connections to the corresponding IP
addresses6 and port ranges.

Guard nodes. To keep latency low and network throughput high, Tor relays do
not delay incoming messages and do not use padding. This makes Tor susceptible
to traffic confirmation attacks: if an attacker is able to sniff both ends of a com-
munication, she is able to confirm that the user communicated with the server. If
the first hop of a circuit is chosen at random then the probability that a malicious
node is chosen as the first hop (and thus allow the attacker to learn the IP address
of the user) converges to one with the number of circuits. Due to this each Tor
client initially selects a fixed Guard node and whenever a new circuit is established
this node is used for the first hop7. A Guard node is used for a period from 30 to
60 days (the exact duration is chosen randomly), after which a new Guard node is
chosen.

Load balancing. In order to achieve better performance Tor implements a load
balancing mechanism. Each relay in the Consensus is assigned a bandwidth weight
and the probability for a relay to be chosen by a client is roughly proportional to
that weight [80]. In order to assign weights to relays, Tor authorities conduct active
measurements by building two-hop circuits to specific URL’s and measure download
times [69]. This way relays get clients depending on their current load.

Bandwidth management. In order to limit bandwidth usage, a Tor relay imple-
ments token bucket algorithm [70]. The relay’s operator can specify the token rate

5Version 0.2.3.25.
6Note that usually at the time the path is selected, only the domain name is known.
7 Before Tor client version 0.2.4.23 [82] released on 28 July 2014, the number of Guard nodes

was 3 and for a newly constructed circuit a client chose the first node in the circuit from this small
set. Stable release 0.2.4.23 introduced a new NumEntryGuards consensus parameter, which made
the number of entry guards configurable. This parameter was set to 1 on 19 Aug 2014 [77].
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(which specifies the average incoming/outgoing bandwidth usage) and the bucket
size (which specifies the burst).

Tor stream timeout policy. Tor provides SOCKS interface for applications
willing to connect to the Internet anonymously. Each connection to the SOCKS
port by an application is called a stream. For each new stream Tor tries to attach
it either to an existing circuit or to a newly built one. It then sends a BEGIN cell
down the circuit to the corresponding Exit node asking it to establish a connection
to the server requested by the application. In order to improve user’s quality of
service, if Tor does not receive a reply from the Exit node within 10 or 15 seconds8,
it drops the circuit and tries another one. If none of the circuits worked for the
stream during 2 minutes, Tor gives up on it and sends a SOCKS general failure
error message.

2.1.3 Hidden services

Tor Hidden Services (or simply Tor HS) allow users to hide their locations while
offering TCP services. Tor HS architecture is shown in Fig. 2.6 and is comprised of
the following components:

• Internet service which is available as Tor hidden service;

• Client, which wants to access the Internet service;

• Introduction points (IP): Tor relays chosen by the hidden service and which
are used for forwarding management cells necessary to connect the Client and
the hidden service at the Rendezvous point;

• Hidden service directories (HSDir): Tor relays at which the hidden service
publishes its descriptors and which are communicated by clients in order to
learn the addresses of the hidden service’s introduction points;

• Rendezvous point (RP): a Tor relay chosen by the Client which is used to
forward all the data between the client and the hidden service.

Hidden service side. In order to make an Internet service available as a Tor
hidden service, the operator (Bob) configures his Tor Onion Proxy (OP) which
automatically generates a new RSA key pair. The first 10 bytes of the SHA-1
digest9 of the RSA public key become the identifier of the hidden service. The OP
then chooses a small number of Tor relays as introduction points and establishes a
new introduction circuit to each one of them (step 1 in Fig. 2.6).

As the next step (step 2), Bob’s OP generates two service descriptors with
different IDs, determines which hidden service directories among the Tor relays
are responsible for his descriptors and uploads the descriptors to them. A hidden

8Tor waits for 10 seconds for the first two attempt and 15 seconds for the subsequent attempts.
9ASN.1 encoded.
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Figure 2.6: Tor hidden services architecture

services directory is a Tor relay which has an HSDir flag. A Tor relay needs to be
up for at least 96 hours and should have a “Stable” flag10 to become an HSDir11.
The hidden service descriptors contain the descriptor ID, the list of introduction
points and the hidden service’s public key.

Client side. Using traditional means (e.g. e-mail, blog/forum post, etc.) Bob
advertises the onion address of his hidden service. Onion address is a hostname
of the form “z.onion”, where z is the base-32 encoded hidden service identifier
described above. A client (Alice) then computes the descriptor IDs of the hidden
service (see below) and the list of responsible hidden service directories and fetches
the descriptors from them (step 3).

In order to establish a connection to the Bob’s hidden service Alice first builds
a circuit (step 4) to a randomly chosen Tor relay which becomes the rendevous
point (RP). This is done be sending a RELAY_COMMAND_ESTABLISH_RENDEZVOUS cell to
RP. The body of that cell contains a Rendezvous Cookie (RC). The rendezvous
cookie is an arbitrary 20-byte value, chosen randomly by Alice’s OP. Alice chooses
a new rendezvous cookie for each new connection attempt. Upon receiving a
RELAY_COMMAND_ESTABLISH_RENDEZVOUS cell, the RP associates the RC with the cir-
cuit that sent it. Alice builds a separate circuit to one of Bob’s chosen introduction
points, and sends it a RELAY_COMMAND_INTRODUCE1 cell containing the IP address and
the fingerprint of the rendezvous point, the hash of the public key of the hidden

10Ignoring some details, a router is “Stable” if either its mean time between failures (MTBF) is
at least the median for known routers or its MTBF corresponds to at least 7 days.

11Before Tor version 0.2.6.6 released on 24 March 2015, the time required to get the HSDir flag
was 25 hours and “Stable” flag was not needed.
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service (PK_ID), and the rendezvous cookie (step 5).
If the introduction point recognizes PK_ID as the public key of a hidden service

it serves, it sends the body of the cell in a new RELAY_COMMAND_INTRODUCE2 cell down
the corresponding circuit (step 6).

When Bob’s OP receives the RELAY_COMMAND_INTRODUCE2 cell, it decrypts it using
the private key of the corresponding hidden service and extracts the rendezvous
point’s nickname as well as the rendezvous cookie. Bob’s OP builds a new Tor
circuit to the rendezvous point, and sends a RELAY_COMMAND_RENDEZVOUS1 cell along
this circuit, containing RC (step 7). Subsequently, the rendezvous point passes
relay cells, unchanged, from each of the two circuits to the other.

In this way, the client knows only the rendezvous point. Neither does the hidden
service learns the actual IP address of the client nor does the client learn the IP
address of the hidden service.

Choosing responsible HSDirs. Bob determines if a hidden services directory is
responsible for storing his descriptor based on the descriptor’s ID and the directory’s
fingerprint12.

Descriptor identifiers change periodically every 24 hours and are computed as
follows:

descriptor-id = H(public-key-id || secret-id-part)
secret-id-part = H(descriptor-cookie || time-period ||
replica-index)

The field descriptor-cookie is an optional field. If present, it prevents non-
authorized clients from accessing the hidden service. The field time period denotes
the number of days since the epoch13. This is used to make the responsible direc-
tories change periodically. The replica index is used to create different descriptors
identifiers so that the descriptor is distributed to different parts of the fingerprint
range.

After computing the descriptor identifiers, Bob determines which directory nodes
are responsible for storing his descriptor replicas. To do this he sorts their finger-
prints alphabetically and arranges them in a closed fingerprint circle (Fig.2.7. He
chooses the three closest relays in positive direction (fingerprint value of them is
greater than the fingerprint value of the hidden service).

According to the Tor implementation14, a hidden service generates and publishes
two replicas of its descriptor which results in 2 sets of 3 hidden service directories
with consecutive fingerprints.

As an example, consider the circle of fingerprints depicted in Figure 2.7 and
assume that one of the hidden service descriptor IDs is between fingerprints of
relays HSDirk−1 and HSDirk. In this case the hidden service directories serving
the descriptor are relays with fingerprints HSDirk, HSDirk+1, and HSDirk+2. The

12Each Tor relay is identified by SHA-1 digest of its public key. We call this digest the relay’s
fingerprint.

13The number of days from 1 January 1970, 00:00 UTC (the Unix epoch).
14Version 0.2.6.10.
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Figure 2.7: Tor hidden services fingerprints circular list

fingerprint of HSDirk is the first following the descriptor ID. We call this HSDir
relay the first responsible hidden service directory for the descriptor ID.

Encrypted descriptors. The protocol as described above provides no client au-
thentication: everyone who knows the onion address is able to connect to the cor-
responding hidden service. But it is also possible to restrict access to the hidden
service to clients with a previously received secret key only. A hidden service oper-
ator would encrypt the introduction points in the HS descriptor using a symmetric
“descriptor cookie” and distribute it among clients outside of Tor. The contact
information for a hidden service in this case look like this [83]:

v2cbb2l4lsnpio4q.onion Ll3X7Xgz9eHGKCCnlFH0uz

Upon downloading a hidden service descriptor, only clients who know the “descrip-
tor cookies” are able to decrypt the introduction points and send a RELAY_COMMAND_INTRODUCE1
cell.

2.2 Bitcoin

2.2.1 Architecture

Bitcoin network consists of interconnected peers which re-broadcast valid transac-
tions received from clients (see Fig. 2.8). Payers and payees (Alice and Bob in
Fig. 2.8) of the Bitcoin system are identified by public keys15. Each peer stores the

15In practice one uses hashes of these public keys.



20 Tor and Bitcoin
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Figure 2.8: How Bitcoin works

received transactions in a (separate) database. When a client receives bitcoins he
can verify that they were not spent before by contacting a (small) subset of peers.
Clients also need not be always online as they can request transactions from peers
at any time.

2.2.2 Transactions and Blockchain

Coins and transactions. By convention, a new portion of 25 coins16 starts with
every newly generated block17 (see below). The first, coinbase, transaction Tcoinbase
in the block “transfers” these coins to the public key PA of the block’s creator
(Alice). Alice then can broadcast transactions to transfer the ownership of the
coins. In other words coins are created with a new block and transactions are
singed messages in which the owner of public key PX announces “I transfer the
ownership of these coins to public key PY ”.

In more details, when Alice decides to transfer some of her coins to Bob, she
needs to generate a transaction T1, sign it with her private key and broadcast it
to the network. This signed transaction18 would consist of the hash Hcoinbase of
the coinbase transaction and Bob’s public key PB. When Bob then decides to pay
Carol with these coins he would generate a signed by his private key transaction
which would contain hash H1 of transaction T1 and Carol’s public key. Since each
new transaction refers to the previous one Carol can follow the chain and verify
that it ends with the coinbase transactions.

16This amount halves every 4 years. When the Bitcoin was launched it was 50 bitcoins.
17 This is why Bitcoin participants constantly search for new valid blocks and keep the network

running. This also provides a way to initially distribute coins into circulation, since there is no
central authority to issue them.

18Bitcoin allows one to create very complicated transactions, but for the sake of clarity we
consider only very simple transaction with one input and one output.



2.2 Bitcoin 21

Blockchain and coin generation. As it is trivial for Alice to generate two dif-
ferent transactions which transfer the same coins to both Bob and Carol, Bitcoin
includes a subprotocol using which a client/peer can decide which out of two trans-
action histories is the “correct” one. Transactions in the transaction history of a
peer are stored in blocks. Each block contains some transactions, a timestamp19 (of
when this block was generated) and the hash of the previous block. Thus the trans-
action history is organized as a chain of blocks or a blockchain (see Fig 2.9). The
blockchain which requires more computational power to construct it, is considered
the “correct” one.

In more detail, each block contains a header and transaction data20. The 80-byte
header Head contains the 256-bit hash of the previous block Hi−1, the timestamp
(in seconds) Ti, the 32-bit nonce Ni (used to generate blocks), the hash TXi of the
transaction data, and the difficulty parameter di. To be valid, the double-hash of
the block header must be smaller (as an integer) than a certain value, which is a
linear function of the difficulty parameter:

Hi = SHA-256(SHA-256(Hi−1||Ti||TXi||di||Ni||))) < f(di).

Genesis Hash

Transactions

Nonce2

S     B (1BTC)
S     D (49 BTC)

 .     G (50BTC)

000000000

Transactions

Nonce1

 .     S (50BTC)

Block 1 hash

Transactions

Nonce3

G     S (50BTC)
B     J (1 BTC)

 .     M (50BTC)

Genesis Block
 (hard-coded)

Block 1 Block 2

...

Figure 2.9: Bitcoin blockchain

In order to create a new valid block a peer (which we call a miner, see Fig. 2.8)
needs to provide proofs of work (PoW). The Bitcoin miners first collect all trans-
actions not yet included into a block. Then they generate the header fields and
exhaustively try different nonces, timestamps, and other parameters in order to
obtain a valid block. Whenever a block is created, a miner broadcasts it to the
network, so that each node attaches it into its internal block chain. The difficulty
parameter is adjusted automatically by the network so that the network generates
one block every 10 minutes on the average.

When a payee receives a transaction it checks the blockchain if the same coins
were already spent previously. Once a transaction is buried under sufficient number
of blocks it becomes computationally impractical to revert it. Note that transactions
that transfer ownership of a coin can be in different blocks and it is the responsibility
of the Bitcoin client to scan all the blocks and extract the necessary transactions.

19In order to get a timestamp, a miner consults an NTP server.
20All these conditions are strictly enforced, and a block not conforming to them is discarded

immediately.
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2.2.3 Bitcoin P2P network

Peers of the Bitcoin network connect to each other over an unencrypted TCP chan-
nel. There is no authentication functionality in the network, so each node just keeps
a list of IP addresses associated with its connections.

...

...

...

...

...

Entry1
Entry2

Entry8

Client

Figure 2.10: Bitcoin P2P network

Though official Bitcoin software21 does not explicitly divide its functionality
between clients and servers, Bitcoin peers can be grouped into those which can
accept incoming connections (servers) and those which can’t (clients), i.e. peers
behind NAT or firewall, etc. At the time of writing there were about 6,000 reachable
servers while the estimated number of clients was about 100,000.

By default22 Bitcoin peers (both clients and servers) try to maintain 8 outgoing
connections. In addition, Bitcoin servers can accept up to 117 incoming connections
(thus having up to 125 connections in total). If any of the 8 outgoing connections
drop, a Bitcoin peer tries to replace them with new connections. If none of the 8
outgoing connections drop, the peer will stay connected to them until it is restarted.
In case of a client, we call the 8 nodes to which it establishes connections entry nodes
(see Fig. 2.10). A Bitcoin server accepts any number of connections from a single IP
address as long as the treshold for the total number of connections is not reached.

Bootstrapping. Bitcoin supports three mechanisms for bootstrapping. First,
each Bitcoin peer keeps a database of IP addresses of peers previously seen in the
network. This database survives between Bitcoin client restarts. This is done by
dumping the database to the hard drive every 15 minutes and on exit (as we will
see later this facilitates setting a cookie on the user’s computer). Second, when a
Bitcoin clients starts, it tries to populate its address database by resolving 6 hard-
coded hostnames23. Finally, as a fallback if no addresses can be found at all, after

21Bitcon core version 0.9.2 from 13 June 2014.
22Here and below in this section we consider Bitcoin reo version 0.9.2.
23If Tor is used, Bitcoin does not explicitly ask Tor to resolve them but rather asks it to establish

connections to these hostnames: when applications communicate with Tor they can either ask Tor
to establish a connection to a hostname by sending a CONNECT command or to resolve a hostname
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60 seconds of running the Bitcoin client uses a list of 600 hard-coded IP addresses.

Choosing outgoing connections For each address in the address database,
a Bitcoin peer maintains statistics which among other things includes when the
address was last seen in the network, if a connection to this address was ever
established before, and the timestamp of such connection. All addresses in the
database are distributed between so called buckets. There are 256 buckets for
“new” addresses (addresses to which the Bitcoin client has never established a
connection) and 64 for “tried” addresses (addresses to which there was at least one
successful connection). Each bucket can have at most 64 entries (which means that
there can be at most 20480 addresses in the database). When a peer establishes
outgoing connections, it chooses an address from “tried” buckets with probability
p = 0.9− 0.1n, where n is the number of already established outgoing connections.
If an address is advertised frequently enough it can be put into up to 4 different
“new” buckets. This obviously increases its chances to be selected by a user and to
be transferred to a “tried” bucket.

There are some peculiarities when using Bitcoin over Tor. If Tor is not used,
the addresses for outgoing connections are taken from the addresses database only.
In case Tor is used, every second connection is established to hard-coded DNS host-
names. These DNS hostnames are called “oneshots” and once the client establishes
a connection to such a hostname it requests a bunch of addresses from it and then
disconnects and never tries to connect to it again.

Self-discovery. After the startup a Bitcoin peer discovers its own IP addresses,
which includes not only its network interfaces addresses but also the IP address as
it is seen from the Internet (in the majority of cases for NAT users it resolves to
an IP address of the peer’s ISP). In order to discover the latter, the peer issues a
GET request to two hard-coded web-sites which reply with the address. For each ad-
dress obtained by the discover procedure, the peer assigns a score. Local interfaces
initially get score 1, the external IP address gets score of 4 (in case the external
IP address coincides with one of the local addresses the scores a summed). When
a client establishes an outgoing connection to a remote peer, they first exchange
VERSION messages and the client advertises its address with the highest score. The
remote peer then uses the addresses propagation algorithm described below. The
client repeats the same procedure for the remaining 7 outgoing connections.

Peer discovery. The Bitcoin protocol implements an address propagation mech-
anism to help peers to discover other peers in the P2P network. Each Bitcoin peer
maintains a list of addresses of other peers in the network and each address is given
a timestamp which determines its freshness. Bitcoin peers periodically broadcast
their addresses in the network. Peers can request addresses from this list from each
other using GETADDR messages and unsolicitely advertise addresses known to them

by sending a RESOLVE command.
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using ADDR messages24.
Bitcoin nodes recognize three types of addresses: IPv4, IPv6, and OnionCat [67].

For each type of addresses the peer maintains a state variable indicating if this ad-
dress family is reachable or not. An address family is considered reachable by a node
if the node has a network interface associated with same address family. Otherwise
the address family is marked as unreachable. These state variables become impor-
tant when Bitcoin is configured to connect to the network over a Tor proxy: the
only address type which is accepted from other peers is OnionCat type. Curiously,
this results in that all IPv4 and IPv6 addresses obtained from oneshots are dropped
and the client uses its original database. The opposite case also holds: if Tor is not
used, onion addresses are not stored in the address database25.

Whenever a Bitcoin node receives an ADDR message it decides individually for
each address in the message if to forward it to its neighbours. It first checks if (1)
the total number of addresses in the corresponding ADDR message does not exceed
10, and (2) the attached timestamp is no older than 10 minutes. If either of these
two checks fails, the address is not forwarded; otherwise the address is scheduled
for forwarding26 to two of the node’s neighbours in case the address is reachable
and to one neighbour only if it is non-reachable. Limiting the number of neighbours
to which an address is forwarded reduces the total amount of traffic in the Bitcoin
P2P network.

In order to choose neighbours to which to forward an address, a Bitcoin node
does the following. For each of its neighbours it computes a hash of a value composed
of the following items: address to be forwarded, a secret salt, current day, and
the memory address of the data structure describing the neighbour. The exact
expression for the hashed value is of little importance for our attacks. The only
thing which we need to emphasize is that the hash stays the same for 24 hours.
The peer then sorts the list of its neighbours based on the computed hashes and
chooses the first entry or two first entries (which depends on the reachability of the
address). In the following text we call such nodes responsible nodes for the address.

The actual transmission of the scheduled ADDR messages does not happen im-
mediately. Every 100 milliseconds one neighbour is randomly selected from the list
of all peer’s neighbours and the queue for outgoing ADDR messages is flushed for this
node only. We call the node chosen at the beginning of a 100 milliseconds round
trickle node and the procedure as a whole as trickling.

Consider an example on Fig. 2.11. Assume that node N0 gets an ADDR message
with one address A0 from node N3 and that node N0 schedules to forward it to
nodes N1 and N2 (i.e. these nodes are responsible nodes for address A0). In round
1, node N1 is chosen as a trickle node and the address is forwarded to this node
while the delivery to N2 is still pending. After 100 milliseconds in round 2, N3 is

24One ADDR message can contain any number of address, however messages containing more than
1000 addresses are rejected on the remote side.

25While peers drop newly arrived addresses, they can still use addresses which are already in
their database.

26By scheduling a transmission we mean that the node puts the corresponding message to the
outgoing queue but does not yet make the actual transmission.
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chosen as the trickle node thus no actual transmission happens at this stage. After
another 100 milliseconds in round 3, N2 is chosen as the trickle node and address
A0 is finally sent to it. Choosing a trickle node causes random delays at each hop
during an address propagation.

N1
(trickle)

N2

N3

N2N1

N3 (trickle)

Round 1 Round 2

N2
(trickle)

N1

N3

Round 3

N0 N0

N0

Figure 2.11: Trickling of ADDR messages

Finally for each connection, a Bitcoin peer remembers addresses that were for-
warded over this connection. Before a peer forwards an address, it first checks if
the same address was already sent over the connection. This history is cleared
every 24 hours. An important note is that the history of sent addresses is kept
per connection and not per IP, i.e. if a Bitcoin peer reconnects, its history will be
cleared. The total number of addresses a Bitcoin peer can store is limited by 20480.
Whenever new addresses arrive at a peer they replace old ones. In addition when
a peer receives a GETADDR messages it sends back 23% of the number of addresses
it stores but not more than 2500 addresses.

Anti-DoS protection. To avoid denial-of-service attacks, the Bitcoin protocol
minimizes the amount of information forwarded by peers. Valid blocks and trans-
actions are relayed whereas invalid blocks are discarded. Moreover, Bitcoin imple-
ments a reputation-based protocol with each node keeping a penalty score for every
connection. Whenever a malformed message is sent to the node, the latter increases
the penalty score of the connection and bans the “misbehaving” IP address for 24
hours when the penalty reaches the value of 100.

Bitcoin peers as Tor hidden services Tor hidden services are service-agnostic
in the sense that any TCP-based service can be made available as a Tor hidden
service. This is used by Bitcoin which uses Onioncat address format to represent
an onion address as an IPv6 address: the first 6 bytes of an OnionCat address are



26 Tor and Bitcoin

fixed and set to FD87:D87E:EB43 and the other 10 bytes are the hex version of the
onion address (i.e. base32 decoded onion address after removing the “.onion” part).

Transaction propagation. Forwarding a transaction from one peer to another
involves several steps. First the sender transmits an INVENTORY message with the
hash of the transactions. Second, the receiver checks if he already has a valid
transction with the same hash. If the checks passes, the receiver requests the
actual transaction by sending a GETDATA message. The sender then transmits the
transaction in a TRANSACTION message. When the receiver gets the transaction he
advertises it to its peers in another INVENTORY message.

When a client generates a transaction he schedules27 it for forwarding to all of
its neighbours. It then computes a hash of a value composed of the transaction
hash and a secret salt. If the computed hash has two last bits set to zero the
transaction is forwarded28 immediately to all the 8 entry nodes. Otherwise a queue
of a neighbour for outgoing transactions is flushed when the neighbour becomes the
trickle node (the same as with ADDR messages). Obviously 1

4 of all transaction are
forwarded immediately in average.

When a transaction is received it is scheduled for the delivery to all peer’s
neighbours as described above. As with ADDR messages, a Bitcoin peer maintains
history of forwarded transactions for each connection. If a transaction was already
sent over a connection it will not be resent again. A Bitcoin peer keeps all received
transaction in a memory pool. If the peer received a transaction with the same hash
as one in the pool or in a block in the main block chain, the received transaction is
rejected.

2.2.4 Mining-pools and altcoins

Initially Bitcoin mining was carried out by CPU. As Bitcoin was becoming more
popular and new miners were entering the game, the difficulty raised significantly
and mining has moved to GPU. Then with the rise of the Bitcoin price, dedicated
ASICs which provided orders of magnitude higher hash rates were developed. The
probability to mine a block with a consumer-level GPU became very low at this
stage. For miners without powerful dedicated hardware it takes prohibitively long
time (years) before they can make a return. Such miners solve this problem by
joining their resources in a mining pool. Participants of a mining pool all together
generate blocks much faster and receive a portion of the block reward on a consistent
basis.

Each miner in a mining pool tries to solve a block with a much lower than the
original difficulty. Such simpler block is called a share. With some probability the
share will also have a solution with the original difficulty in which case the pool
mines a block. The block reward is then divided among the participants based on

27By scheduling we mean that the node puts the transaction into the outgoing queue of the
corresponding connection.

28More precisely the peer sends an INVENTORY message with the hash of the transaction.
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the work they contributed. There exist pools which track crypto-currencies market
prices and automatically switch to mining the most profitable crypto-currency.

Since Bitcoin’s inception in 2009, a number of alternative currencies has ap-
peared (called Altcoins). They all share the same basic principles of Bitcoin, but
differ in PoW algorithms, difficulty adjustment rules, and amount of coins generated
per block. Bitcoin along with Altcoins form the crypto currency market where they
can be exchanged into the usual fiat currencies. Currencies based on ASIC-resistant
PoW functions from Password Hashing Competition (PHC) [68] have been recently
proposed.

2.2.5 Bitcoin Testnet

Bitcoin Testnet is an alternative Bitcoin network with separate block chain. It is
used for testing and testnet coins have no value. The main purpose of the testnet
is to allow application developers or bitcoin testers to experiment, without having
to use real bitcoins or worrying about breaking the main bitcoin chain.

For the time of experiments (May 2014) the number of running Bitcoin servers
in the testnet fluctuated between 230 and 250, while the estimated average degree
of the nodes was approximately 30.
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Chapter 3

Deanonymizing Tor
Connections Using Topology
Leaks

The goal of onion routing is to guarantee that each relay in the client’s circuit (in-
cluding the destination server) knows only the adjacent hops in the path. In case
of Tor, this effectively means that for the Exit node, the probability of correctly
guessing the Guard node is 1

n , where n is the number of Guards in the Tor network.
This only holds for a fully connected network however. While Tor is usually con-
sidered as such, in reality it is not and not all entry and exit nodes are connected
via three hop paths at a given point of time.

In this chapter we first present two ways to reveal the connectivity of nodes
in the Tor network: one using canonical connections which are a part of the Tor
specification; the other is a more generic technique, namely a timing attack on the
connection establishment between two relays.

Second, we present attacks which are based on the connectivity scanning ap-
proach. The first attack allows one to identify the guard node which was used in
a circuit carrying a long-lived connection – such as an SSH session or a large file
download. The second attack, which we have chosen to call differential scan attack,
uses recurrent connections to reveal all guard nodes of a user. Though revealing
a user’s Guard does not allow an attacker to immediately determine the actual
originator of the connection, it tells her where to attack next.
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3.1 Revealing Tor connectivity dynamics

3.1.1 Canonical Connectivity Scanning

We will now show the first technique to find out if there is a TLS connection between
two Tor relays. To explain how this works, we first have to delve into details of the
Tor specification. To save resources, when a relay R1 gets a circuit extend request to
R2 (identified by its fingerprint FPR2 and IP address IPR2), it should reuse already
existing TLS connection to R2 (if it exists). A naïve approach would be to use
the first created connection. But in this case an attacker can redirect unmodified
user’s traffic through her node and mount a byte counting attack. Instead the Tor
protocol implements connection reuse in the following way.

When R1 establishes its first connection to R2, it marks the connection as
canonical if IPR2 in the extend request coincides with R2’s1 IP address in the
Consensus. Once a canonical connection is established, R1 ignores the IP addresses
for all future extend requests to R2, and uses the IP address from the consensus
instead.

We noticed that Canonical connections give an attacker a convenient way to de-
termine how routers in the Tor network are connected to each other. When sending
a RELAY EXTEND cell, the circuit originator specifies both the identity fingerprint
and the IP address of the router he wants to extend the circuit to. Assume that
the attacker wants to figure out whether router R1 is connected to router R2. In
order to do this, the attacker constructs a Tor RELAY EXTEND cell with FPR1 as fin-
gerprint and an IP address from non-private range with an unreachable port (port
1 for example) and sends it to R2. When the cell is received, the reaction of router
R1 depends on whether it has a connection to router R2:

• If R1 has a canonical connection to R2 (it should be noted that if a connection
exists it is almost always canonical), router R1 ignores the IP address from the
forged RELAY_EXTEND cell and uses the already established TLS connection,
extends the circuit and sends back RELAY_EXTENDED cell.

• If R1 does not have a connection to R2 then it tries to make a new TLS
connection using the address from the received cell. Obviously, the connection
attempt is refused which causes router R1 to send a DESTROY cell to the
attacker.

By inspecting the cell the attacker receives back from router R1, she can de-
termine whether router R1 is connected to router R2. Evidently, the attacker can
probe router R1 for connection with any router contained in the consensus.

1Identified by its fingerprint.
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3.1.2 Connectivity probing via timing attacks

We now consider the second, somewhat less powerful approach for determining
whether two relays are already connected. When a client extends a circuit from
relay R1 to relay R2, the time until he received the RELAY EXTENDED reply from
R2 depends on whether a TLS connection between R1 and R2 is already set up
or whether it needs to be established first. In the later case, both the additional
network and the cryptographic latency are considerable.

R1 R2
TCP : SYN

R1 R2
TCP : SYN|ACK

R1 R2
TCP : ACK
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R1 R2
Tor : CREATE
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Figure 3.1: Tor circuit setup. The last two steps are performed always. Steps
marked with dashed lines are performed only when there is no TLS-connection
between R1 and R2.

A TLS connection setup between Tor relays can cause huge delays, especially
if version 2 or above of the handshake protocol is used. This delay is caused by
network latency and the large number of protocol steps until the CREATE cell can
be sent (see Figure 3.1 for details). If a TLS connection needs to be set up to
create a circuit, a delay on the order of 7.5 round-trip times is added to the circuit
creation until the CREATE cell is received by R1. Approximately 6.5 round trips
are required for the TLS connection setup alone, another round-trip for the v2
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handshake. By sending multiple RELAY EXTEND requests and comparing the time it
takes for the first one to arrive versus subsequent ones, we can determine whether
a relay is connected to another relay. This has been confirmed with experiments.
The disadvantage of this method is that network jitter as well as cell forwarding
delays by the relay scanned can add significant amounts of noise which makes the
method less reliable. Moreover, in contrast to the method described in the previous
subsection, this method will really establish TLS connections to all routers that
are scanned and not just prolong the lifetimes of the connections that are already
open.

3.2 Attacking Tor using connectivity dynamics

3.2.1 Tracing long-lived streams

Tor is used by many people to establish long-lived SSH sessions, download very
large files (sometimes using file-sharing applications, even though this is frowned
upon) and to communicate over instant messaging networks. The use-cases de-
scribed above imply long-lived TCP-streams which necessarily create long-lived
TLS-connections between Tor routers which are used to carry the stream. Thus,
we show how an attacker knowing the exit node of a long-lived TCP-stream can
link it with the guard node using our scanning techniques2.

One-Hop Attack

In this attack, we assume that the attacker controls one or more very fast exit routers
which see a significant fraction of the traffic exiting the Tor network, thus she gets
access to pseudonyms of the users (ex. cookies, logins). This is not an unrealistic
scenario; some organizations have control over sizable portions of the total exit
traffic: according to the consensus in February 2012, 7.2% of total exit capacity
were provided by the Chaos Computer Club, 5.9% by Torservers.net and 5.4% by
Formless Networking LLC. The attacker is curious to connect the pseudonyms with
guard nodes of users that pass through her Exit relays. Assume that one of the
attacker’s nodes E (see Figure 3.2) is selected as the exit node of a circuit. By
looking at the traffic pattern, the attacker will be able to infer that the connection
to the exit node is likely to be of long-lived type. The attacker then starts the
attack:

1. The attacker starts scanning the middle node M for connectivity using either
of the techniques described in the previous section. The set of connected
nodes necessarily includes the guard node G in question and makes up its
initial anonymity set.

2One important note is that in the current Tor protocol, the connections between two routers
which last more than 7 days are marked as ”bad” for new circuits and no new circuits can be added
to such connections. However persistent circuits inside these connections are not closed and will
continue running. At the same time we cannot see these persistent OR connections anymore using
our probing techniques after 7 days have elapsed.
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2. Next, the attacker continues with the connectivity scanning of the middle
node for several hours or even days in hope that the majority of the nodes of
the initial anonymity set will disconnect (nodes with dash lines on Figure 3.2.)

3. The attack stops when the anonymity set of the guard node is considerably
reduced or when the user closes the long-lived TCP-stream.

S E M G U

Figure 3.2: One-hop attack against
long-lived connections

S E M G U

Figure 3.3: Differential scanning at-
tack

When the attack is finished, the user’s guard node will be in the resulting
anonymity set (node G and another node with the solid line on Figure 3.2) along
with some number of other connections that can be considered as “noise”. The
attacker may also infer extra information from the speed of the connection, which
will indicate whether the middle or the guard node are the bottleneck for the traffic
of the long-lived circuit; this helps her to further shrink the set of candidates for the
guard node since it allows to discard very active routers from the list of candidate
guard nodes.

Two-Hop Attack

This attack does not required from the attacker to control any relays in the Tor
network and can be performed by a server (or an attacker close to the server) who
tries to reveal the guard nodes of pseudonymous users connecting to the server. The
attack starts from connectivity scanning of the exit node (similar to one-hop attack)
in order to reduce the anonymity set of the middle node. After having narrowed
down the set sufficiently, the candidate middle nodes are scanned resulting in the
anonymity set of the guard node. The attack might be successful if either middle
or guard nodes are low-bandwidth which might be inferred from the connection
latency by the attacker. We also assume that exit node is medium or low-bandwidth.
The difficulty in the two-hop attack comes from the fact that many middle nodes
reachable from the exit node would come from a set of active routers with many
connections. This will result in hundreds of candidate guard nodes even after several
days of scanning. This effect happens due to “immortal”connections formed between
active routers, which we will describe in Section 3.3. In spite of its simplicity, the
described attack is quite powerful since:
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(i) it does not require control over any relays in the Tor network. The attacker
merely probes relays (probing could be also done from a distributed set of
addresses);

(ii) it is cheap in terms of bandwidth: in order to scan one router the aggregated
amount of traffic that needs to be sent and received is less than 5 MBytes (for
the size of 3000 routers of the Tor network in February 2012);

(iii) it is fast: the average time of scanning one router is 20 seconds and scanning
of different routers can be easily parallelized (again for the size of the network
in 2012).

Experimental results

In order to estimate how efficient the attacks can be in the wild, we used Python to
implement a rudimentary Tor client which provides basic functionality. The client
can establish a TLS connection to an arbitrary Tor router, complete Diffie-Hellman
key establishment protocol and send and receive Tor relay cells. In other words,
the client is able to create and extend arbitrary chosen circuits. Using canonical
connectivity scanning, our client is able to check a Tor router for connectivity with
99% of other routers in the Tor network in less than 30 seconds.

In order to check the correctness of the proposed canonical connectivity scan-
ning, we scanned two routers under our control omicron and Layercake for five
days from February 11th until February 16th, 2012. During the experiment the
routers had bandwidth weights in the range [500 - 1500] for omicron and in the
range [15000-55000] for layercake which means that the later was in the top 10%
set of fastest and thus most frequently chosen routers. Both relays had Guard
flags and did not have Exit flags. Since the routers were operated by us, we could
gather the real time statistics directly from them using the Tor control port. We
then compared the results from the canonical connectivity scan and from the con-
trol port. Figure 3.4 shows the number of persistently connected Tor routers over
time, i.e. those routers which were connected to our routers at the start of the
experiment and never disconnected during the experiment. The close match of the
results as shown on Figure 3.4 demonstrates that canonical connections scanning
provides reliable results. The slight difference in the results is explained by the
difference of scanning frequency: for canonical connection scanning, each sample
cannot be taken faster than every three minutes (i.e. the lifetime of an idle Tor
TLS connection); the data from the routers’ control port however was fetched every
ten seconds. According to Figure 3.4, for the router with bandwidth weight 1500
(omicron), the number of persistently connected routers decayed from 303 to 20 in
just 12 hours. This matches with our prediction from Section 3.3.1. It then took 4
days for another 18 routers to disconnect. Among two remaining connections, there
was one which we established by ourselves and which we tried to identify. The
decay rate of persistent connections of the high-bandwidth router (layercake) looks
similar: the number of persistent connections drops sharply from 1116 to 300 in 12
hours and then decays slowly. We tested canonical connection scanning on several
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Tor routers not under our control. The results for one such router with bandwidth
weight in range [2040-2190] are shown on Figure 3.5. We observed a very similar
behaviour: a large number of connections dropped quickly, and the rest decayed
slowly. After two days of scanning, we found 12 persistent connections.
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3.2.2 Differential scan attack

Attack description

Consider a user which periodically checks some Web server or a web service that
instructs the user’s browser to periodically re-establish streams. Google Mail for
instance builds a series of short-lived (around 2 minutes) TCP sessions. Another
example are news web sites with auto-refresh contents. In this section, we describe
an attack on such kind of recurrent connections. The aim of the attacker is to find
at least one of the guard nodes3 of a pseudonymous user (identified by a cookie or
a login credential) that uses such a service for several days. Note that this attack
does not require a single long-lived circuit or session. It just requires that a Tor
client is connected to the Tor network for non-negligible amount of time within the
span of a month (as long as the guards are still valid).

Similar to Section 3.2.1, in this attack, the attacker has control over a significant
fraction of the exit capacity of the Tor network. Assume that a user visits a Web
server S (see Figure 3.3) that causes recurrent connections to occur. Ten minutes
after the first connection, his initial circuit should expire and the user’s Tor client
will try to build a new circuit. Given a sufficient number of exit nodes controlled
by the attacker, the circuit will include one of the attacker’s exit nodes E. Once
the exit node receives incoming traffic destined to the web server it executes the
following sequence of steps:

3In February - March 2012, when the attacks were implemented, each Tor client had a set of
three Guard nodes.



36 Deanonymizing Tor Connections Using Topology Leaks

1. The exit node E observing the stream to the web server determines the middle
node M of the circuit that caused the stream to be established and transmits
it to the attacker.

2. The attacker probes the connectivity of M and remembers the list of routers
connected to it (nodes connected to M both with dash and solid lines on
Figure 3.3).

3. E sends a DESTROY cell4 down the circuit which leads to the circuit termina-
tion. The circuit termination may lead to the connection termination between
the middle node and the user’s guard node with some probability which can
be estimated using expressions from Section 3.3.2.

4. The attacker waits for three minutes and starts the scan of M again.

5. The attacker computes the difference between the sets obtained via the first
and the second scans, i.e. he determines connections which were present in
the first list but absent in the second (node G and another node with dash
line.) We say that we have a differential with node G and M if G is in the
difference.

6. The attacker then repeats steps 1-3 each time one of her exit nodes is chosen
for the recurrent connection.

7. Once an attacker has performed the above steps often enough, and given that
the circuit closure event caused the connections closure frequently, she can
discover the user’s Guard nodes: the probability of having the guard node in
the difference should converge to 1/N (where N is the number of the user’s
Guard nodes).

This attack may be further enhanced by scanning the full network at regular
and frequent intervals. Then if the connection to the malicious Exit arrives shortly
after the full network scan, the attacker will have additional differential connectivity
information in order to filter the noise. Our experiments have shown that the full
network scan can be done in 3 minutes using 20 hosts (using Amazon EC2 service,
a day of full network scans with 3 minutes between scans costs around 80 USD).

A similar but less stealthy approach can be used to track any user’s connection.
Assume that a user connecting to a server chose one of the attacker’s exit node. This
allows the attacker to incorporate a small piece of code in each HTML document
requested by the user, which artificially creates recurrent connections. Specifically
the user can be redirected to an arbitrary address and port. Note that in the Tor
network, aggregated exit bandwidth for different port is different, thus by choosing
the appropriate port range, the attacker can increase the probability that her exit
node is chosen.

4If the attacker wants to be more stealthy she can just wait until the circuit expires by itself.
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Experimental results5

We have implemented a proof of concept version of our differential scanning tech-
nique and have tested it using sets of paths generated by a modified version of the
Tor client – this client does not create any circuits but simply outputs randomly
generated paths with user-specified constraints. These paths are then used to build
circuits through the control port of the Tor daemon. After a circuit has been built,
a scan is conducted, then the circuit is torn down, the program waits for 200 seconds
and scans again. To perform experiments more quickly we have implemented this
in a parallelized manner on Amazon’s EC2 platform so that many (non-interfering)
experiments can be conducted in parallel. As a first experiment, we used only one
guard node with capacity of 36500 and allowed for middle nodes with capacity of
1600 or lower in the consensus6. For 150 paths, 125 successful differential scans
were performed. In these, the guard node we had selected appeared at position 1
in the list of most frequently occurring guard relays in the difference sets, having
been counted 58 times.

1. C37B234FAD013453B90375EB55864FEBC876104A: 58 (PPrivCom052) bw=36500
2. CA1CF70F4E6AF9172E6E743AC5F1E918FFE2B476: 35 (spfTOR3) bw=29800
3. 0B7ED44C67DBE50313F0B32BD335D093D0474CE8: 33 (bauruine2) bw=117000
4. 847B1F850344D7876491A54892F904934E4EB85D: 31 (tor26) bw=20
5. DB8C6D8E0D51A42BDDA81A9B8A735B41B2CF95D1: 30 (rainbowwarrior) bw=81300
6. 173B220F9F32F39086D5661274A47485EDA26131: 29 (TorExitProgressbar9) bw=650
7. 1603DFE9FC373ECDA39046FADB5A76B87A4BA36B: 27 (StickItToTheMan) bw=46800
8. 1F52D692FA2C21B23FAD4D711A7BF17BAE2673DF: 26 (alice) bw=7170
9. 47916CAB5878C810E7EF71A316D37FC823CC7F52: 26 (CCN) bw=53100

10. 95A0D58710EA9B61DAD3A01CAD3BE77DACA76BEF: 25 (OccupyMyPants) bw=30300

This shows that differential probing works in practice: there’s a drastic reduction
in the anonymity set of the guard nodes, even for high capacity guard nodes. Below
is the concrete data of one of the experiments in which we had chosen guards of
capacity 300, 412, and 501, constrained the capacity of the middle nodes to 30,000
and scanned different middle nodes in 134 trials7:

1. A58E0F05C1939725D7247BA60BA3135DB88209BC: 43 (jefOlewkia), bw = 501
2. D3378ABA009078158DB59E8B36B8EBB88B309BA7: 40 (torn0t), bw = 412
3. 2629979FD21BF3B522E818B73F6F8D0B5D8A5CF0: 40 (tapir), bw = 300
4. A9C039A5FD02FCA06303DCFAABE25C5912C63B26: 29 (chaoscomputerclub5), bw = 173000
5. FA486415B86D28CD047D10F76768E4E88A182F71: 28 (ZhangPoland1), bw = 56400
6. 131B60B9AFE6AEA60042132D648798534ABEA07E: 28 (wagtail), bw = 24400
7. 4536ED68D9DB4B2FF532AD43A632AAF600B798CC: 27 (Unnamed), bw = 116
8. 1D8625690AB9729FB2040D8194EC0D6789A4D092: 25 (TOR1CINIPAC), bw = 43900

9. FC35DE87F6E4022693323275F6B8EE5F72FD21B5: 24 (Unzane), bw = 3160
10. CA1CF70F4E6AF9172E6E743AC5F1E918FFE2B476: 23 (spfTOR3), bw = 28700

5The experiments were carried out in February - March 2012. Each users had a set of N = 3
Guard nodes at this time and the total Exit capacity was approximately 5 · 106 Kbyte/s.

6See Section 3.3 for justification of the choice of the bandwidths. In brief: (1) the product of
bandwidths of the guard node and middle node should not exceed 300 million to avoid “immortal
connections” ; (2) the attack works best when either the guard or the middle node are not high-
bandwidth.

7jefOlewkia was involved in 43 circuits, torn0t in 45 and tapir in 46.
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Again, although we have some spurious low-bandwidth routers in the top ten,
these results show that the attack described above works well in practice. Note that
in real life, the attacker will perform scans for any circuit which has been detected
to be established by a unique pseudonym of a user and for which the middle node
is below a certain threshold bandwidth.

We now try to estimate how many measurements the attacker should make when
low capacity guards are being used. There are 1,440 minutes in a day; this means
that if the attacker is unlucky (i.e. his exit is not selected and then she needs to
wait for 10 minutes until the circuit expires in order to get another chance) there
are 144 measurement chances per day. The fact that attacker controlling a fraction
f of the exit bandwidth tears down circuits to which she gets access, increases the
number of measurement slots available to the attacker by a factor 1

1−f , which for
f = 1/3 results in 144 f

1−f = 72 slots. If the upper bound for the capacity of the
middle node is set to 30000 then (according to Figure 3.11) there is about 40%
chance for a circuit to go through such middle node. This reduces the amount of
measurements to 29 per day. The attacker will continue the attack until he obtains
about 40 measurements, which means the attack will run for about 1 day. Note
that the attack is very successful if the bandwidth of one of the user guard nodes is
below 500. There is about 3% chance that a user’s client has chosen a Guard node
with low capacity, i.e. Gmin < 500, into his triplet of guard nodes (in February -
March 2012). Thus this attack could affect more than 10,000 daily users of the Tor
network.

3.3 Analysis of the attacks

3.3.1 Long-lived connections

In section 3.2.1, one could notice that after a relatively short period of scanning
time, a substantial number of routers which were connected at the beginning of the
scan disconnected. The decay rate of the number of persistently connected routers
becomes very low after. In other words, when the number of connections drops to
some value, the reduction rate of the anonymity set of the guard node an attacker
is trying to identify becomes negligible. This value can be considered as a threshold
for this attack which we try to estimate in this section. There are two main reasons
of why a connection between a pair of routers may last very long and thus increase
the anonymity set:

1. This pair of routers is a part of a long-lived circuit similar to the one the
attacker tries to identify, i.e. a circuit which is used for an application which
requires a long-lived TCP-stream;

2. The circuit creation rate over this connection is high and there is always at
least one circuit inside this connection which prevents it from closing. Such
immortal connections form if the product of bandwidths of the two routers
exceeds a certain threshold as will be shown below.
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First, we estimate the number of connections of the first type. Figures 3.6
and 3.7 show circuit duration distributions over a connection between two high
bandwidth routers (layercake with bandwidth weight of 35300 and bouazizi with
bandwidth weight of 69700 for 13 of Feb 2012). Figures 3.8 and 3.9 show circuit
duration distributions over a connection between a high bandwidth router and a
non-high bandwidth router (omicron with bandwidth 491 for 13 of Feb 2012 and
layercake). Life-times of circuits have two clear peaks at around 10 and 60 minutes
due to properties of the Tor protocol: renewal time of “dirty” circuits and the
lifetime of “clean” circuits which have never been marked as “dirty”. According to
the measurement, circuits with life-time longer than 2 hours constitute less than
1.5% of the total number of circuits. From this we can assume that the majority of
long-lived connections in Tor are of the seconds type, i.e. formed by high circuits
creation rate over these connections. Another observation is that the anonymity
set of persistent streams is small compared to the anonymity set of non-persistent
streams.
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To estimate the number of long-lived connections of the second type, we ob-
served several active (i.e. high-bandwidth) guard Tor routers under our control and
measured client circuits arrival rate. Figure 3.10 shows the number of new circuit
per ten seconds gathered during two days on one of our active routers. We observed
that:

• Circuits arrive according to non-homogeneous Poisson process.

• Assuming that client circuit arrival rate is proportional to the guard router’s
bandwidth, we estimate an average circuit arrival rate R in the whole Tor
network to be about 900 circuits per second (in February 2012). In the ex-
pressions below one can also use the value of circuit arrival rate for the specific
time of the day instead of the average value.

• The average circuit duration time tavg is about 200 seconds which varies only
slightly for routers with different bandwidth weights.
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We now estimate how likely it is for a pair of routers A and B to be connected
with an “immortal” connection. Note that a TLS-connection between Tor relays is
closed only if no circuits were carried over this connection for tidle = 180 seconds.
We assume that (1) circuit duration follows exponential distribution with parameter
µ = 1

tavg+tidle
; (2) circuits between routers A and B arrive according to Poisson

distribution with rate λa,b = pA,B ·R. Here pA,B is the probability of routers A and
B to form an edge in a new circuit8.

pA,B = 2 · bwAbwB
bwtotal

(
1

bwguards
+ 1
bwexit

)
,

8This expression for pa,b is an approximation since it does not take into account all peculiarities
of the Tor path selection algorithm, in particular, the expression ignores weights which are assigned
to a relay based on its position in the circuit and its flags. We compared our approximation with
the precise calculation and found that simpler approximation is sufficient for our purposes and
makes the analysis easier to understand.
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where bwguards is the total bandwidth of guard nodes, bwexit is the total bandwidth
of exit nodes, bwtotal is the total bandwidth of the whole Tor network, bwA and bwB
are bandwidths of routers A and B respectively.

We model a connection between A and B as a Birth-and-Death process (or
more exactly as a simplest trunking problem, see e.g. [4], section XVII.7) with
λn = λa,b = λ and µn = nµ (the system is in state i if there are i circuits inside the
connection). We are interested in stationary probability p(A,B)

0 of state 0, i.e. to
have zero circuits between A and B. The well-known result for simplest trunking
problem: p(A,B)

n = e−λ\µ · (λ\µ)n

n! , and thus p(A,B)
0 = e−λ\µ A connection between

A and B almost never closes if p0 is close to 0. Using this expression we find that
immortal connections are formed between routers of bandwidth> 17, 500 (or routers
with product of bandwidths above 300 million, in February 2012). By bandwidth we
mean not the advertised bandwidth but actual figures from the Consensus computed
by Tor authorities’ bandwidth measurements and used in the Tor code to choose
routers for the circuits. Given the bandwidth of a router, an attacker can estimate
the number of immortal connections that it has and decide whether it is worthwhile
to perform the attack.

Figure 3.13 shows complementary cumulative bandwidth distribution of Tor
relays along with the share (i.e. the percentage of total number of Tor relays)
of persistent connections for each bandwidth9 during March and February 2012.
For example, if an attacker decides to scan a Tor relay with bandwidth weight
of 5000, she can expect that this relay has about 1% of “immortal” connections.
Given 3000 Tor relays, this yields the anonymity set of 30 relays. This kind of
prediction corresponds well with the experimental results obtained in section 3.2.1.
If bw < 1300, the attack should give the unique solution10. Note that although
only few routers have large percentage of immortal connections, these routers are
high-bandwidth and and are selected more frequently.

In order to give a first order approximation of how long we should wait un-
til a persistent connection is detectable among other “non-immortal” connections,
we collected connection duration statistics from Tor routers operated by us for 7
days11. Figure 3.12 shows the connection duration distribution for two pairs of
routers: medium-to-medium bandwidth (lower curve), medium-to-high bandwidth.
For medium-to-high only 5% of connections have duration of more than three hours.
In the case of medium-to-medium bandwidth routers (see Fig. 3.12), only 5% of
connections between them have duration of more than 1 hour. In ten hours, 99%
of all non-immortal connections should disconnect for both cases. Thus, we expect
that if a persistent connection under observation has a duration of more then 10
hours, the probability of its successful identification depends mostly on the number

9Note that bandwidth distribution can be approximated by the Pareto distribution with minimal
value xm = 350 and exponent α = 0.85.

10For 11th of February 17:00, 2012, there were 2388 nodes out of 2897 with bandwidth less than
1300. Their aggregated capacity was 371,159 out of 9,458,556 total capacity of the whole Tor
network.

11The logs we obtained were stored on computers with full-disk encryption behind the firewall
of our academic institution.
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of immortal connections.
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3.3.2 Differential scanning attack

In this section, we explore the limits of the differential scan attack. Assume that an
attacker tries to reveal a guard node g by establishing/dropping circuits {1, ..., k}
which leads to scanning of a set of middle nodes M = {m1,m2, ...,mk}. Let T
denote the set of all Tor relays and |T | = n. Then we define d : M × T −→ {0, 1}
in the following way:

d(mi, r) =
{

1 if we observed a differential between Tor relays mi and r for circuit i
0 otherwise.

Recall that we say that there is a differential between mi and r if there was a
connection betweenmi and r during the first scan and this connection closed during
the second scan. Probability to have a differential between mi and guard node g
equals the probability that there are no circuits between mi and g at the moment
of the second scan which is p(mi,g)

0 (see the previous section).
In regard to false positives, for some Tor relay r 6= g, d(mi, r) = 1 if: (a) at the

time of the first scan, there is a connection between mi and r; (b) there is no con-
nection at the time of the second scan. Assuming these two event are independent,
the probability of a differential between mi and r is: (1− p(mi,r)

0 ) · p(mi,r)
0 .

The overall success of the attack depends on: (1) Signal =
∑k
i=1 d(mi, g), i.e.

number of differentials with guard node g , and (2) Noiserj =
∑k
i=1 d(mi, rj),

number of differentials with some other Tor relay rj , j = 1, ..., n. We then use
signal-to-noise ratio SNR = Signal

maxj{Noiserj }
as a measure of the success of the attack.

To demonstrate how the above expressions work, we used the set of 125 middle
nodes from the experiment described in Section 3.2.2 with bandwidth weights equal
or less then 1600. Figure 3.14 shows: (a) the expected Signal of the guard node
against its bandwidth; (b) the expected Noise of a Tor relay against its bandwidth.
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Figure 3.14: Signal and Noise for differential scan

As can be seen from the figure, for low-bandwidth nodes the signal is close to
its maximum value. This happens since for this type of node, the probability that
the connection between it and a middle node carries just one circuit is very high.
Low circuit arrival rate of a low-bandwidth relay also implies the low value of noise
since the probability to have a connection between it and a middle node is low.

3.4 Potential countermeasures and conclusion
A potential countermeasure against the canonical connection scan is to abolish
canonical connections. Of course this must be done while preserving the circuit
multiplexing feature. An obvious approach is to not have a set of connections that
are identified by the fingerprint as a primary key but rather by both the fingerprint
and the IP address of the relay. This prevents the attack, but needs to be weighed
against the fact that incorporating this fix gives an attacker a new way to perform
denial-of-service by resource exhaustion against Tor relays.

The countermeasures for obtaining relay connectivity by using timing informa-
tions is not straightforward; experiences in side-channel cryptanalysis have shown
that simple countermeasures like adding randomized delays can often be defeated.
At the same time, a fully connected graph for the Tor network – i.e. having each
relay connected to all the other relays at all times – probably is too expensive from
a performance standpoint. The balance to strike here is to add sufficient noise to
make timing attacks unreliable to attackers.

Since our connectivity revealing techniques are orthogonal to the existing attacks
described in the literature, they can be used to improve many of them substantially.
Indeed, during the times when the number of Tor routers was small, several attacks
were available to adversaries. These attacks allowed to link the exit and entry
nodes of a user’s circuit. However, once the number of Tor routers grew, those
attacks became too expensive in terms of required bandwidth and time. This is
because for those attacks to be successful, exhaustive probing of each link in the
Tor network was required. Given a way to determine the real connectivity of Tor
network, these attacks can become practical again since the amount of links to be
probed is significantly reduced.
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Chapter 4

Anonymity Analysis of Tor
Hidden Services

Tor allows people not only to access information anonymously but also to provide
services anonymously. This kind functionality, responder privacy, can be achieved
with Tor by making TCP services available as hidden services.

In this chapter we analyze the security of Tor hidden services. We look at
them from different attack perspectives and provide a systematic picture of what
information can be obtained with very inexpensive means. We focus both on attacks
that allow to censor access to targeted hidden services as well as on deanonymization
of operators and clients of hidden services.

We also study deployed hidden services. First, we analyze and classify hid-
den services collected during our experiments. Second, we apply our findings to
a botnet which makes its command and control center available to bots as a Tor
hidden service (we extracted its onion address by analyzing a malware sample) and
extrapolate its size by counting the number of hidden service requests.
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4.1 Shadowing
According to Tor Directory specification [78], section 3.4.2, the maximum number
of Tor relays on a single IP address that Tor authorities include to the Consensus
document is 2. This restriction is enforced by the directory authorities when they
cast their votes for the consensus. If more than two relays are running on the same
IP address, only two relays with the highest-most measured bandwidth will appear
in the consensus document. This prevents an attacker from performing the Sybil
attack described by Bauer et al. [17], in which an attacker floods the network with
dummy Tor relays.

However, by inspecting the Tor source code1 we noticed that while only two
relays per IP appear in the Consensus, all running relays are monitored by the
authorities; more importantly, statistics on them is collected, including the uptime
which is used to decide which flags a relay will be assigned.

We call relays appearing in the consensus active relays and those which run at
the same IP address but do not appear in the consensus shadow relays. Whenever
one of the active relays becomes unreachable and disappears from the consensus,
one of the shadow relays becomes active, i.e. appears in the consensus. Interest-
ingly, this new active relay will have all the flags corresponding to its real run time
and not to the time for which it was in the consensus. We call this technique shad-
owing. From February 2013 Tor implements a countermeasure against
the shadowing technique.

4.2 Bandwidth inflation
The path selection algorithm [80] of Tor selects nodes at random, with a probability
proportional to the bandwidth advertised for the node in the consensus document.
Hence it is of interest to an attacker to artificially inflate the bandwidth of her
nodes, in order to increase the chance of of them being included in the path.

In the current design, Tor authorities actively measure the bandwidth. A subset
of directory authorities operate a set of bandwidth scanners [69], which periodically
choose two-hop exit circuits and download predefined files from a particular set of
IP addresses (according to the source code of bandwidth scanners from summer
2014, there are two such IP addresses). The bandwidth of a relay shown in the

1Tor version 0.2.2.37 from June 2012.
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consensus depends on the self-reported bandwidth Brep and the bandwidth mea-
surement reports Bmeasured by the Tor authorities. The weak point of this approach
is the fact that the scanning can be reliably detected by relays that want to cheat.
To inflate bandwidth and attacker would provide more bandwidth for authorities’
measurement streams while throttling bandwidth for all other streams. This results
in a high bandwidth value shown in the consensus while keeping the traffic expenses
at a low level.

When doing bandwidth measurements, authorities establish two-hop circuits.
Thus it is sufficient for cheating non-exit nodes to provide more bandwidth for
streams which originate at IP addresses of authorities and throttle all other streams.
As an improvement the attacker can take into account that for bandwidth mea-
surements authorities download files which are known. Taking this into account,
the attacker can drop circuits which carry a traffic pattern inconsistent with these
downloads.

During experiments we were able to inflate the bandwidth of our relays more
than ten fold; while the consensus showed bandwidth values of approximately 5000
kBytes/sec per relay, they only provided 400 kBytes/sec of real bandwidth to Tor
clients each.

4.3 Catching and tracking hidden service descriptors

In this section we study the security of descriptor distribution procedure for Tor
hidden services. We show how an attacker can gain complete control over the
distribution of the descriptors of a particular hidden service. This undermines
their security significantly: before being able to establish a connection to a hidden
service, a client needs to fetch the hidden service’s descriptor; unless it has it cached
from a prior connection attempt. Thus, should the attacker be able to control the
access to the descriptors, the hidden service’s activity can be monitored or it can
be made completely unavailable to the clients. We apply our finding to several
deployed hidden services and we start this section with the description of these
hidden services.

4.3.1 Examples of hidden services analyzed

A botnet using hidden services: In April 2012, an “ask me anything” thread
(AMA) on the social news website Reddit appeared in which an anonymous poster,
allegedly a malware coder and botnet operator, claimed to be operating a botnet
with its command and control center running as a Tor hidden service [33]. The
malware installed on the clients was described to be a modified version of ZeuS.

Subsequently, a thread on the tor-talk mailing list appeared [62] in which ap-
parently the same botnet was discussed. We obtained samples of this malware
and found the properties of the malware matched: just like described in the AMA
thread, it was using a modified UnrealIRC 3.2.8.1 server2 for one of the command

2Unfortunately, not the backdoored distribution by ac1db1tch3z
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and control channels and included a Bitcoin miner. This was the first publicly doc-
umented instance of a botnet in the wild using Tor hidden services. While there
had been a talk given at DEFCON in 2011 [21] about how hidden services could be
used to protect botnets from takedowns of their command and control structure,
previously no such malware had been observed.

Interestingly, not one but two hidden services were operated for command and
control: the standard HTTP based channel3 that ZeuS uses for command as well
as an IRC based one4. Furthermore, the malware creates a hidden service (on
port 55080) on each install, which allows the botnet operator to use the infected
machine as a SOCKS proxy for TCP connections through the hidden service. While
the hidden service is constantly running, the command to enable SOCKS proxy
functionality needs to be given through the IRC command and control channel. In
the version of the malware we analyzed, a Tor v0.2.2.35 binary was executed by
injecting it into a svchost process.

In September 2012, G Data Security described a sample of apparently the same
malware in a blog post [54]; a more thorough analysis of the botnet was published
by Claudio Guarnieri of Rapid7 in December 2012 [55].

Black Markets on Hidden Services: A number of black markets exist on
Tor hidden services. Silk Road is by far the most widely known, even triggering
requests from U.S. senators to the U.S. Attorney General and the Drug Enforcement
Agency (DEA) to request it to be shut down [72].

Silk Road is a market that operates mostly in contraband goods using Bitcoin
as currency. According to [25] primarily narcotics and other controlled substances
are sold on this platform. This study estimates the Silk Road revenue at over USD
1.9 million per month – aggregated over all sellers – with a 7.5% cut going to the
Silk Road operators.

4.3.2 Controlling hidden service directories

As mentioned in chapter 2, the list of responsible hidden service directories depends
on the current consensus document and the descriptor IDs of the hidden service. In
this subsection, we explain how to inject relays into the Tor network that become
responsible for the descriptors of the hidden service. This immediately translates
into the problem of finding the right public keys, i.e. the keys with fingerprints which
would be in-between the descriptor IDs of the hidden service and the fingerprint of
the first responsible hidden service directory.

Figure 4.1 shows the distances between consecutive hidden service directories
(in log10 scale) computed for a randomly picked consensus document in November
2012. The average value is 44.8 and the minimum value is 42.16. This means
that we need to find a key with a fingerprint which would fall into an interval of
size 1044.8 on the average. This takes just a few minutes on a modern multi-core
computer.

3mepogl2rljvj374e.onion:80
4eoqallfil766yox6.onion:16667
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Figure 4.1: Distances between HS directories fingerprints, log10 scale

Just like any Tor client, an attacker is able to compute the descriptor IDs of the
hidden service for any moment in the future and find the fingerprints of expected
responsible HS directories. After that she can compute the private/public key pairs
so that SHA-1 hash of the public keys would be in-between the descriptor ID and
the fingerprint of the first responsible hidden service directory. The attacker then
runs Tor relays with the computed public/private keys pairs and waits until they
obtain HSDir flags (25 hours for Tor versions before 0.2.6.6, and 96 hours for later
versions, i.e. after March 2015). When the attacker’s relays appear in the consensus
as hidden service directories, they will be used by the hidden service to upload the
descriptors and by the clients to download the descriptors. In this way the attacker
can gain control over all the responsible HS directories for a particular service by
injecting 6 Tor relays with precomputed public keys. This allows her to censor a
hidden service of her choice or gather its usage statistics.

As a proof of concept we used this approach to control one of the six hidden
service directories of the discovered Tor botnet, the Silk Road hidden service, and
the DuckDuckGo hidden service. We tracked these for several days and obtained
the following measurements: (1) The number of requests for the hidden service
descriptor per day (see Tables 4.1 and 4.2) and (2) the rate of requests over the
course of a day, which is shown in Figure 4.2 (each point corresponds to the number
of hidden service descriptor requests per one hour).

Column 1 of Table 4.1 and columns 2 and 4 of Table 4.2 show the number of
requests for a particular hidden service descriptor per day. Columns “Total” show
the total number of descriptors requests (for any hidden services descriptor) served
by the hidden service directory per day. The hidden service tracked in Table 4.1 is
the IRC C&C service.

Descriptors are cached by the Tor process in RAM for 24 hours. Hence, as long
as a computer is not restarted, we will see at most one descriptor request every
24 hours, even if the long-lived circuit to the IRC server is repeatedly dropped;
moreover suspending the computer will not cause the descriptor to be requested
again. On the other hand, multiple power cycles per day lead to overcounting the
size of the botnet. Hence, from Table 4.1 one can estimate that the size of the
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Table 4.1: Popularity of the discovered botnet
Date Botnet descriptor Total

13 Jul 2012 1408 6581
14 Jul 2012 1609 2392
15 Jul 2012 1651 4715
16 Jul 2012 1448 6852
25 Jul 2012 4004 6591
26 Jul 2012 4243 4357
27 Jul 2012 4750 4985
28 Jul 2012 4880 7714
29 Jul 2012 4977 9085

Table 4.2: Popularity of Silk Road and DuckDuckGo
Date Silk Road Total DuckDuckGo Total

09 Nov 2012 19284 27363 502 2491
10 Nov 2012 15427 16103 549 5621
11 Nov 2012 15185 15785 543 3899
12 Nov 2012 15877 16723 549 10910

botnet was in the range 12,000 – 30,000 infected machines.
This is a very rough approximation since bots can request the descriptor several

times per day, each time when the infected computer is turned on. By looking at
the descriptor request rate against time we can infer that the bulk of the botnet
resides in the European time-zone.

4.3.3 Efficient harvesting of Tor HS descriptors

It is of a particular interest to collect the descriptors of all hidden services deployed
in Tor. We will show later how an attacker can use this collection to opportunis-
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tically deanonymize any hidden service which chose one of the attacker’s nodes as
one of its entry guards. The IP addresses of these hidden services can be revealed
in a matter of seconds using a traffic correlation attack, as we will show later. The
technique for collecting descriptors is based on the shadowing technique from sec-
tion 4.1. Note that shadowing is not possible in the current versions of
Tor (after version 0.2.4.10-alpha).

It is clear that an attacker can operate several hidden service directories and
collect hidden service descriptors over a long period of time. However, since there
were more than 1200 hidden service directories on summer 2012 it can take the
attacker significant amount of time to collect enough hidden service descriptors.

To collect the descriptors of all hidden services in a short period of time, a
naïve attack requires to run many Tor relays from a non-negligible number of IP
addresses. Assume that a hidden service descriptor’s ID falls into some gap5 on
the fingerprint circle. The hidden service uploads its descriptor to the three hidden
service directories with the next greater fingerprints. This means that each hidden
services directory receives descriptors with identifiers falling into two gaps preceding
the hidden service directory’s fingerprint. This in turn means that the attacker
needs to inject a hidden service directory into every second gap in the fingerprint
circle to collect all hidden service descriptors. Thus she would need to run more
than 600 Tor relays for 27 hours. This requires more than 300 IP addresses, given
that the attacker is allowed to run only 2 Tor relays on a single IP address.

However, using the shadowing technique from section 4.1, we can collect the
hidden service descriptors much more efficiently. In this subsection, we show how
to reduce the number of IP addresses to approximately 50 (depending on the exact
number of hidden service directories in the consensus). An attacker can rent 50 IP
addresses and run 24 relays on each of them for 25 hours (for authorities running
Tor version before 0.2.6.6) thus running 1200 Tor instances in total; 100 of them
should appear in the consensus. The fingerprints of the public keys of the relays
should fall into every second gap in the fingerprint circle. At the end of 25 hour
time period all of the relays will have HSDir flags but only 100 of them will appear
in the consensus and the rest will be shadow relays. The idea is to gradually make
active relays unreachable to the Tor authorities so that shadow relays become active
and thus gradually cover all gaps in the circular list during 24 hours.

It should be noted that the descriptor IDs of hidden services (and hence the
responsible hidden service directories) change once per 24 hours and the time of
the day when they change can be different for different hidden services. Since each
hour the attacker covers only a fraction of the gaps on the fingerprint circle, the
location of the descriptor can change from a gap not yet covered by the attacker to a
gap already covered. Thus, if the attacker makes only one pass over the fingerprint
circle during the day, she may not catch some descriptors. It will not happen if
the attacker makes two passes during the day. Those descriptors location of which
changed during the first pass to already covered gaps will be collected during the
second pass (since they can change the location once per 24 hours only).

5A gap is defined to be an interval in the circular list of fingerprints between two consecutive
HS directories
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Another important point is that consensus document remains valid for a client
for 3 hours, starting from its publication. According to the Tor implementation
in summer 2012 clients can download the new consensus in (FU + 45 mins;VA -
10 mins) interval. Hence a hidden service can skip the consensus document which
immediately follows its current consensus. This means the hidden service directories
of the attacker should be in at least two consecutive consensus documents in order
for the hidden service to learn about them.

Taken into account the aforementioned the attacker would need to control
R = N

12∗2 IP addresses, where N is the number of hidden service directories in
the Tor network. Note that all the relays run by the attacker can be cheap since
they do not have to provide high performance. Thus the attacker will have to pay
only for the additional IP addresses and very little for the traffic. The IP addresses
can be acquired from Amazon EC2 accounts. This results in a low-resource attack.

4.3.4 Experimental results

We performed the attack using 50 EC2 virtual instances on November 15th, 2012.
During the experiment we received 59130 publication requests for different descrip-
tor IDs. We also fetched the descriptors from the memory of running Tor instances
and obtained 58389 descriptors in total6. Out of them there were 24703 descriptors
with unique public keys. The fraction of encrypted descriptors among them was
approximately 1.5%.

When computing onion addresses from the descriptors, we found the botnet
C&C addresses, DuckDuckGo’s hidden service and the Silk Road onion address in
that set – as expected. However, we also found what looked like backup or phishing
onion addresses for Silk Road, namely onion addresses with the same 8 letter prefix:

silkroadrlzm5thj.onion
silkroadvb5piz3r.onion
silkroadvlsu5apk.onion
silkroad5hq52m36.onion

Both silkroadvlsu5apk.onion and silkroad5hq52m36.onion redirected us to
silkroadvb5piz3r.onion which is an onion-address for Silk Road that is publicly
known. We were not able to connect to silkroadrlzm5thj.onion.

In order to verify the completeness of the harvested data we collected a sample
of 120 running hidden services from public sources. Our data set missed 4 relays
from this sample set. By extrapolating this result we conclude that we could have
lost about 3% of hidden descriptors.

We launched a second experiment on February 4th, 2013 in order to reduce the
costs of the attack. Because of the increased number of hidden services directories
on that date, we used 58 EC2 instances. We also used an improved harvesting
script: in addition to storing descriptors posted by hidden services we also initiated
descriptors fetches from other responsible hidden services directories if a client’s

6Note that we fetched the descriptors from memory 3 hours after the end of the experiment.
This means that by that time some of our Tor relays removed a small portion of the descriptors
from their memory.
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request was received for an unknown descriptor. At the end of the experiment we
collected 39824 unique onion addresses.

In order to reduce the experiments’ costs we used the following. First both
shadow and active relays had reported bandwidth of 0 Bytes/sec or 1 Bytes/sec.
Since the granularity of the bandwidth values in the consensus is 1 kBytes/sec, all
relays used in our attack were assigned bandwidth 0 kBytes/sec in the consensus.
This means that the relays used in the attack should never be chosen by clients for
purposes other than hidden services descriptors fetches. This has cut the traffic costs
expenses. Secondly, we launched Tor relays participating in the harvesting from
cheaper EC2 instances. In the second experiment, we used EC2 micro instances
which is the cheapest option. In combination with reductions in traffic costs, this
allowed us to reduce the overall price down to 57 USD.

Falling back to micro instances created performance problems however. Due
to limited amount of RAM, at the end of the experiment, we could not establish
SSH connections to some of EC2 instances and we had to reboot them to retrieve
the data. The log files indicated that system clock jumped for several times which
means that we could loose some hidden services descriptors.

This experiment had inadvertent but important side-effect on the flag calcula-
tion of Tor, of which we were notified by the Tor developers.

4.3.5 The Influence of Shadow Relays on the Flag Assignment

During the second harvesting experiment we accidentally revealed an important ar-
tifact of the flag assignment in Tor which is not obvious from the Tor specifications.
Near the end of the experiment we were notified by the Tor developers that the
Sybil attack had caused a spike in the number of relays assigned Fast flags and
Guard flags (see Fig. 4.3)
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Figure 4.3: Increase in the number of Guard nodes

This happened because the shadow relays were taken into account for calculating
medians of the bandwidth and the uptime. From these values, thresholds are derived
that determine the flag assignment of all relays. According to the Tor specification
(Fubruary 2013):
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... A router is a possible Guard if its Weighted Fractional Uptime is
at least the median for familiar active routers, and if its bandwidth is
at least median or at least 250KB/s.

To calculate weighted fractional uptime, compute the fraction of time
that the router is up in any given day, weighting so that downtime and
uptime in the past counts less.

A node is familiar if 1/8 of all active nodes have appeared more
recently than it...

In our second experiment, we caused the authorities to take into account 1392
shadow relays of bandwidth 0 Bytes/sec and 1 Bytes/sec. This significantly changed
the medians for both bandwidth and uptime, which allowed many already running
relays to get the Guard flag. During the harvesting experiment, this caused the
number of Guard nodes to suddenly increase by 500.

The artifact has been patched in tor v0.2.4.10-alpha by ignoring Sybil relays
when assigning flags. However, it is important to note that a more expensive
version of the same Sybil attack is still possible. For example, an attacker could
rent a large number of EC2 instances, running 2 Tor relays on each. This would
enable attackers’ Tor relays to decrease the value of the median for the Weighted
Fractional Uptime as well as the bandwidth median, allowing to obtain the Guard
flag for her relays much faster. For example, in order to inject 1200 Tor relays,
an attacker would need to run 600 EC2 instances, spending only 288 USD per 24
hours.

4.4 Content and popularity analysis

In this section we analyze 39824 hidden service descriptors which we obtained dur-
ing the harvesting experiments. We tested them for reachability, open ports and
popularity. We classify the content of 1813 hidden services which were reachable at
the time we crawled them and which contained more than 20 words of text.

4.4.1 Port scanning hidden services

We scanned the full collection of 39824 onion addresses for open ports at different
times between 14 and 21 Feb 2013. At the time of the scans hidden service descrip-
tors were available for 24511 addresses. In total, 22007 ports were found open on
these. For hidden services for which descriptors were available, we obtained a cov-
erage of 87% of all ports. The full coverage could not be achieved since we scanned
different port ranges on different days and in a number of cases hidden services
which we partially scanned on one day went off-line the day of the next scan; when
scanning some hidden services we were persistently getting timeout errors.

During the scan we noticed that a large amount of hidden services did not
have any open ports, however when scanned for port 55080 they returned an error
message different from the usual error message. According to the Rapid7 blog post
[55] port 55080 corresponds to hidden services created on computers infected by a



4.4 Content and popularity analysis 55

0 5,000 10,000 15,000

other
6667-irc

4050
11009-TorChat

22-ssh
443-https

80-http
55080-Skynet

886
113
138
385

1,238
1,366

4,027
13,854

Figure 4.4: Open ports distribution

botnet malware called “Skynet”. The observation is explained by the fact that the
malware immediately closes any connection to this port unless it has been set up
as a connection forwarder. We received such an “abnormal” error message for port
number 55080 only and counted such events as open ports.

The open ports distribution is shown in Fig. 4.4. Port number 55080 is the
most frequent one, found open on more than 50% of all onion addresses. This can
be used to estimate the number of computers infected by “Skynet”. HTTP and
HTTPS services constitute 22% and SSH services are run by 5% of hidden services.
Ports not shown on Fig. 4.4 have counts of less than 50 and are grouped together
under “Other” label. In total we found 495 unique port numbers.

During our port scan we discovered that a number of hidden services provided
HTTPS access. We discovered that in 1,225 cases the certificates were self signed
and the certificates’ common names did not match the requested host names. In
1,168 cases the certificate common name was esjqyk2khizsy43i.onion which is
hosted at free onion hosting service “TorHost”. We found 34 hidden services using
certificates containing common names corresponding to their public DNS names,
allowing for deanonymization of the service.

4.4.2 Content analysis

We analyzed the content of hidden services which provide HTTP(S) access: we
classify them both according to topics and languages. We excluded port 55080 and
tried to connect to the remaining 8,153 destinations (onion address:port pairs) using
HTTP and HTTPS. We performed the crawl 2 months after the port scan7. At the
time of the crawl, 7,114 ports were open – of these, we were able to connect to 6,579
using either HTTP or HTTPS. Table 4.3 shows the number of hidden services that
offered HTTP or HTTPS services.

About half of the destinations were inappropriate for classification so we ex-
cluded them and ended up with 3050 destinations. In more detail we excluded:
2348 destinations which contained less then 20 words of text (this included 1092
messages from port 22 which were SSH banners); 1108 destinations at port 443

7We excluded all binary data such as images, executables, etc.
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Port Num # of onion addresses
80 3741
443 1289
22 1094

8080 4
Other 451

Table 4.3: HTTP and HTTPS access

which had corresponding copies at port 80; 73 destinations which returned an error
message embedded in an HTML page.

For language detection we used “Langdetect” [66] software. The vast major-
ity of the hidden services (84%) were in English. This is an expected result and
corresponds to the statistics for the public Internet [19]. Overall we found hidden
services in 17 different languages. Content was offered in the following languages
besides English (each constituting less than 3%): German, Russian, Portuguese,
Spanish, French, Polish, Japanese, Italian, Czech, Arabic, Dutch, Basque, Chinese,
Hungarian, Bantu, Swedish.

We used the software “Mallet” [12] and the web service “uClassify” [85] for
automatic topic classification. We considered only hidden services which offered
pages in English (2,618 hidden services in total). Among them, 805 hidden services
showed the default page of the Torhost.onion8 free anonymous hosting service. We
classified the remaining 1,813 onion addresses into 18 different categories.

Resources devoted to drugs, adult content, counterfeit (selling counterfeit prod-
ucts, stolen credit card numbers, hacked accounts, etc.), and weapons constitute
44%. The remaining 56% are devoted to a number of different topics: “Politics” and
“Anonymity” are among the most popular (9% and 8% correspondingly). In the
“Politics” category, one can find resources for reporting and discussing corruption,
repressions, violations of human rights and freedom of speech, as well as leaked
cables, and Wikileaks-like pages; the category “Anonymity” includes resources de-
voted to discussion of anonymity from both technical and political points of views
as well as services which provide different anonymous services like anonymous mail
or anonymous hosting.

The category “Services” includes pages which offer money laundering, escrow
services, hiring a killer or a thief, etc. In “Games” one can find a chess server,
lotteries, and poker servers which accept bitcoins. While making a preliminary
analysis of the collected onion address names we noticed that 15 of them had prefix
“silkroa” (two “official” addresses of the silkroad marketplace and the silkroad forum
were among them). At least one of these addresses is a a phishing site imitating
the real Silk Road login interface.

8torhostg5s7pa2sn.onion
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Figure 4.5: Tor Hidden services topics distribution, February 2013

4.4.3 Popularity measurement

In the previous sections we have analyzed the Tor hidden services landscape from
the supply side. The analysis however will not be complete without estimating
the popularity of different hidden services among clients. This becomes possible
since the method we used to collect onion addresses also allows us to get the num-
ber of client requests for each of them in a 2 hour period. This can serve as an
approximation of the popularity of hidden services.

During our experiments, we received a total of 1,031,176 requests for 29,123
unique descriptor IDs9. We used our database of onion addressees to resolve the
descriptor ID requests. For each address in the list we computed corresponding
descriptor IDs for each day between 28 January 2013 and 8 February in order to
deal with possible wrong time settings of Tor clients. We compared this list of
derived descriptor IDs with the list of client requests. In this way we resolved 6,113
descriptor IDs to 3,140 different onion addresses.

In order to explain the small fraction of resolved descriptor IDs, we ran several
hidden service directories for a number of days. From the log files we could derive
that 80% of the clients’ requests were for non-existent descriptors (i.e. which were
never published). Also only 10% of published descriptors were ever requested by
clients. Given that the number of collected onion addresses is 39824, we believe
that the small number of resolved descriptor IDs was caused by clients request-
ing descriptors which did not exist. We do not have a good explanation for this
phenomenon (one explanation could be that specialized Hidden Service search en-
gines were trying to connect to services from their databases which did not exist
anymore), but this was a consistent behavior over several months.

9Remember that the descriptor ID is not equivalent to the onion address. While the onion
address remains fixed, the descriptor ID changes every 24 hours and is derived from the onion
address. Specifically, it is used to fetch hidden service’s public key.
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Table 4.4 shows the number of requests for the most popular hidden services. We
explored the five most popular addresses in more detail. Searching for them using
the major search engines did not give any result – this already seemed quite strange
for very popular hidden services. They only exposed port 80; connecting to them
at this port returned 503 Server errors. As a next step, we tried to retrieve server-
status pages, which succeeded. By analysing these pages we noticed that traffic to
these servers remained constant at about 330 KBytes/sec and had about 10 client
requests per second, almost exclusively POST requests. Looking at other hidden
services we discovered another 4 onion addresses with the very same characteristics:
they had port 80 open, they were returning 503 server errors, and had server-status
page available. They also had similar traffic and client request rates. By looking
at the uptime of the Apache server on the server-status pages we noticed that they
could be divided into two groups with exactly same uptime within each group.
From this we assumed that different hidden services lead to two physical servers.
Given a huge number of requests, we made a conclusion that these hidden services
belong to a very large botnet infrastructure (probably different from Skynet, we call
it “Goldnet”10). It is also worthwhile to notice that 10 onion addresses of “Skynet”
were also among the most popular hidden services (residing between 10th and 28th
places).

The Skynet bitcoin pooling servers are the second most popular, just after the
probable botnet. However their request rate is 4 time lower. Bitcoin mining servers
are followed by resources offering adult content (there were 8 such resources among
the 30 most popular hidden services). According to our results, the Silk Road
market place is at 18th place with 1175 requests per 2 hours. Black Market Reloaded
(another market for illegal goods) is at 62th place with 172 requests. With regard to
the popularity of other hidden services, Freedom hosting is at 27th place with 694
requests, and the DuckDuckGo search engine is at 157th place with 55 requests. The
public bitcoin mining pools Slush and Eligius had two and zero requests respectively.

4.5 Opportunistic deanonymisation of hidden services
The next step after getting a large collection of hidden service addresses, is to try
to find their locations. The fact that an attacker always controls one side of the
communication with a hidden service means that it is sufficient to sniff/control a
guard of the hidden service in order to implement a traffic correlation attack and
reveal the actual location of the hidden service. In particular, an attacker can:

• Given the onion address of a hidden service with unencrypted list of intro-
duction points determine if her guard nodes are used by this hidden service.

• Determine the IP addresses of those hidden services that use the attacker’s
guard nodes.

10Since August 19, 2013 the Tor network experienced a huge increase in the number of new users.
There was much speculation about the reason. On the 5th September 2013, Fox-IT published an
analysis of a botnet malware which allegedly caused the spike. The onion addresses extracted from
this malware coincided with “Goldnet”.
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• Determine if the attacker’s guard nodes are used by any of the hidden services,
even if the list of introduction points is encrypted.

4.5.1 Unencrypted descriptors

In order to confirm that an attacker controls a guard node of a hidden service she
needs to control at least one Tor non-Exit relay. In the attack, the hidden service is
forced to establishes rendezvous circuits to the rendezvous point (RP) controlled by
the attacker. Upon receiving a RELAY_COMMAND_RENDEZVOUS1 cell with the attacker’s
cookie, the RP generates traffic with a special signature. This signature can be
identified by the attacker’s middle node. We note that a special PADDING cell mech-
anism in Tor simplifies generation of a signature traffic which is discarded at the
recipient side, and is thus unnoticeable to the hidden service. The steps of the
attack are shown in Figure 4.6 and are as follows:

(1) INTRODUCE1

(2) INTRODUCE2
(3)REND1

REND1

REND1

REND1

(4
) 5

0xP
ADDIN

G
RP

E

M

G IP

Hidden service

Attacker

Figure 4.6: Revealing the guards

• The attacker sends a RELAY_COMMAND_INTRODUCE1 cell to one of the hidden ser-
vice’s introduction points (IP) indicating the address of the rendezvous point.

• The introduction point forwards the content in a RELAY_COMMAND_INTRODUCE2
cell to the hidden service.

• Upon receiving the RELAY_COMMAND_INTRODUCE2 cell, the hidden service estab-
lishes a three-hop circuit to the indicated rendezvous point and sends it a
RELAY_COMMAND_RENDEZVOUS1 cell.

• When the rendezvous point controlled by the attacker receives the
RELAY_COMMAND_RENDEZVOUS1 cell, it sends 50 PADDING cells back along the ren-
dezvous circuit which are then silently dropped by the hidden service.

• The rendezvous point sends a DESTROY cell down the rendezvous circuit leading
to the closure of the circuit.
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Whenever the rendezvous point receives a RELAY_COMMAND_RENDEZVOUS1 with the
same cookie as the attacker sent in the RELAY_COMMAND_INTRODUCTION1 cell it logs
the reception. At the same time, the attacker’s guard node monitors the circuits
passing through it. Whenever it receives a DESTROY cell over a circuit it checks:

1. whether the cell was received just after the rendezvous point received the
RELAY_COMMAND_RENDEZVOUS1 cell;

2. the number of the forwarded cells: 3 cells up the circuit and 53 cells down
the circuit. Three cells more come from the fact that the hidden service es-
tablished a circuit to the rendezvous point thus the attacker’s guard node
had to forward (2×RELAY_COMMAND_EXTEND + 1×RENDEZVOUS1) cells up and
(2×RELAY_COMMAND_EXTENDED + 1×DESTROY) cells down. This is very impor-
tant for our traffic signature since it allows us to distinguish the case when
the attacker’s node was chosen as the guard from the case when it was chosen
as the middle.

If all the conditions are satisfied, the attacker decides that her guard node was
chosen for the hidden service’s rendezvous circuit and marks the previous node in
the circuit as the origin of the hidden service.

In order to estimate the reliability of the traffic signature, we collected a statis-
tics on the number of forwarded cells per circuit. We examined 748,846 circuits on
our guard node. None of the circuits exhibited the traffic pattern of 3 cells up the
circuit and 53 cells down the circuit. This means that the proposed traffic signature
is highly reliable.

We implemented the approach to attack our own hidden service. We used a
relay with a bandwidth of 500 Kbytes/s according to the consensus as the guard
node and were scanning for the aforementioned traffic signature. For each received
RELAY_COMMAND_RENDEZVOUS1 cell we collected the corresponding traffic pattern and
got no false positives.

4.5.2 Encrypted descriptors

If the list of introduction points is encrypted, an attacker will not be able to establish
a connection to the hidden service. Hence the attack described in the previous
section does not apply. However, we can use a different method to determine if
some of those encrypted hidden services use a guard node controlled by us. We will
not be able distinguish between hidden services with encrypted introduction points
though. To achieve this goal we do the following:

• On our guard node we look for a traffic pattern characteristic for introduction
circuits (we describe this traffic pattern and how unique it is later in this
section).

• We discard introduction circuits which originate at the same IP address as
any of the hidden services with unencrypted descriptors.
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• For all remaining introduction circuits, we mark their origins as possible lo-
cations of an encrypted hidden services.

Let us describe the characteristics exhibited by introduction circuits: the main
difference between general-purpose circuits and introduction circuits is their dura-
tion. A general Tor circuit stays alive either for ten minutes (if they were used by
any stream), for one hour (if they did not carry any data traffic) or as long as any
traffic is carried over them (this implies an open stream). In contrast, introduction
circuits stay alive much longer, namely until some hop in the circuit fails or the
hidden service closes the connection.

The second important difference is that after an introduction circuit is estab-
lished, it does not transmit cells from the origin. On the other hand, general-purpose
circuits usually transmit traffic back and forth.

Thirdly, we can use the fact that introduction circuits are always multi-hop
while some general-purpose circuits are one-hop.

In order to check how good these filters are, we launched a hidden service which
established two introduction circuits through a non-Guard relay controlled by us.
By collecting the circuit statistics on this node for 24 hours we were able to identify
our introduction circuits while having no false positives. We also did measurements
on our Guard node during 24 hours and identified 14 potential introduction circuits.
However, we did not check if they belonged to hidden services with unencrypted
introduction points.

4.5.3 Success rate and pricing for targeted deanonymizations

In early 2012 we operated a Guard node that we rented from a large European
hosting company (Server4You, product EcoServer Large X5) for EUR 45 (approx.
USD 60) per month. Averaging over a month and taking the bandwidth weights
into account we calculated that the probability for this node to be chosen as a
Guard node was approximately 0.6% on average for each try a Tor client made that
month. As each hidden service at the time of experiments chose three Guard nodes
initially, we expect over 450 hidden services to have chosen this node as a Guard
node11. Running these numbers for a targeted (non-opportunistic) version of the
attack described in Section 4.5.1 shows us that by renting 23 servers of this same
type would give us a chance of 13.8% for any of these servers to be chosen. This
means that within 8 months, the probability to deanonymize a long-running hidden
service by one of these servers becoming its Guard node is more than 90%, for a
cost of EUR 8280 (approximately USD 11,000).

Take into account that this scales well: attacking multiple hidden services can
be achieved for the same cost once the infrastructure is running.

4.5.4 Tracking clients

The technique for opportunistic deanonymisation of hidden service operators can
be easily modified to opportunistically deanonymize HS clients.

11Assuming the number of hidden services at the time of experiments.



4.6 Revealing Guard nodes of hidden services 63

Assume that an attacker controls a responsible HS directory12 of a hidden ser-
vice. Whenever it receives a descriptor request for that hidden service, it sends it
back encapsulated in a specific traffic signature which will be then forwarded to the
client via its Guard node. With some probability, the client’s Guard node is in the
set of Guards controlled by the attacker. Whenever an attacker’s Guard receives
the traffic signature, it can immediately reveal the IP address of the client.

This attack has several important implications. Suppose that we can categorize
users on Silk Road into buyers and sellers. Buyers visit Silk Road occasionally while
sellers visit it periodically to update their product pages and check on orders. Thus,
a seller tends to have a specific pattern which allows his identification. Catching
even a small number of Silk Road sellers can seriously spoil Silk Road’s reputation
among other sellers.

As another application, one can collect IP addresses of clients of a popular
hidden service and compute a map representing their geographical location. We
have computed such a map for one of the “Goldnet” hidden services – in Figure 4.7.

Figure 4.7: Clients of a popular hidden service

4.6 Revealing Guard nodes of hidden services
In this section we present an attack to reveal the Guard nodes of a hidden service.
Revealing the Guards does not immediately allow an attacker to reveal the location
of the hidden service but gives her the next point of attack. This can be dangerous

12 Remember that responsible hidden service directories of a hidden service are used to store the
hidden service’s descriptor (which contains its public key) for a period 24 hours. The HS directories
are chosen among all Tor relays – different hidden services usually have different responsible HS
directories.
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for a long runing hidden service13 as it gives an attacker sufficient amount of time
either to take control over the Guard nodes or to start sniffing network traffic near
the Guards. Given that Guard nodes are valid for more than a month, this may
also be sufficient to mount a legal attack to recover traffic meta data for the Guard
node, depending on the jurisdiction the Guard node is located in.

4.6.1 Unencrypted descriptors

We first describe the method to reveal Guards when the list of the introduction
points in the HS descriptor is not encrypted. To do this, we use a technique similar
to that presented in section 4.5; control over at least two Tor non-Exit relays is
needed to carry it out. In the attack, the hidden service is forced to establishes many
rendezvous connections to the rendezvous point (RP) controlled by the attacker in
hope that some circuits pass through the second node (the middle node) controlled
by the attacker. The RP generates traffic with a special signature which can be
identified by the attacker’s middle node. The steps of the attack are the same as in
section 4.5.

Asymptotically, the probability that the attacker’s middle node is chosen for
the rendezvous circuit approaches 1. Whenever the rendezvous point receives
a RELAY_COMMAND_RENDEZVOUS1 with the same cookie as the attacker sent in the
RELAY_COMMAND_INTRODUCTION1 cell it logs the reception and the IP address of the
immediate transmitter of the cell. At the same time, the attacker’s middle node
monitors the circuits passing through it. Whenever it receives a DESTROY cell over a
circuit it checks:

1. whether the cell was received just after the rendezvous point received the
RELAY_COMMAND_RENDEZVOUS1 cell;

2. if the next node of the circuit at the middle node coincides with the previous
node of the circuit at the rendezvous point;

3. whether the number of forwarded cells is exactly 2 cells up the circuit and 52
cells down the circuit.

If all the conditions are satisfied, the attacker decides that her middle node was
chosen for the hidden service’s rendezvous circuit and marks the previous node in
the circuit as a potential Guard node of the hidden service.

We implemented the attack and ran it against two hidden services operated
by us. In both cases the Guard nodes were identified correctly, without any false
positives. In the first run with duration 1 hour 20 minutes, the rendezvous point
received about 36 000 RELAY_COMMAND_RENDEZVOUS1 cells in and the correct Guard
nodes were identified 8, 6, and 5 times correspondingly. In the seconds case, the
rendezvous point received 16 000 RELAY_COMMAND_RENDEZVOUS1 cells in 40 minutes
and the correct Guard nodes were identified 5, 2, and 1 times respectively.

13Silk Road’s hidden service was running for almost two years.
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We also used this approach to identify the Guard nodes of the botnet hidden
service. Note that in the attack described in this section an attacker can use just
one middle node and send the traffic signature as a client. However it requires
building rendezvous circuits which makes the attack longer. The same applies to
the attack presented in section 4.5.

4.6.2 Encrypted descriptors

If the list of introduction points of a hidden services is encrypted, it is not possible
to make the hidden service establish rendezvous circuits (as was described in Sec-
tion 4.6). In order to reveal the Guard nodes of a popular hidden service in this
case, an attacker can use another attack. The condition for this attack is that the
hidden service has many clients which establish long-lived (approx. 1-2 hours or
longer) connections. This is the case of the botnet described in previous sections;
connections to its IRC hidden service are long-lived.

Our measurements show that currently only a small fraction of all hidden ser-
vices use encrypted descriptors. However we believe that this is an important case
to study since encrypted descriptors offer significant additional protection and in
the original draft of the Tor hidden services protocol all descriptors were supposed
to be hidden.

Popularity of a hidden service, i.e. a large number of clients connecting to it,
creates additional load on its Guards nodes. This changes the topological properties
of the Guard nodes in terms of their degree14 and in terms of the decay rate of
persistent connections (in comparison to the case when the Guard nodes are not
used by a popular hidden service). In particular:

• the degree of the Guard nodes of such a service will depend on the number of
clients. The deviation of a node’s degree from the expected value can serve
as an indication of a popular hidden service;

• if clients make persistent connections to the hidden service (which is the case
with botnet where IRC channel is used) the decay rate of the persistent con-
nections of the HS’s Guard nodes will look substantially different from that of
other Guard nodes with similar bandwidth. We expect that the decay curve
is much steeper in the case of normal Guard nodes.

In order to identify the Guard nodes of a popular hidden service we implement
the following steps. We provide two analytical models for (1) the expected degree
and (2) the expected persistent connections decay rate of a “normal” Guard node.
We then use the scanning technique from Chapter 3 to determine the real degrees of
the Guard nodes and their persistent connections decay rates. Finally, we compare
the predicted values with those received from the measurements and single out
nodes with too high degrees and too slow decay rates. The nodes we get are the
candidates for the Guard nodes of the hidden service.

14The degree of a Tor relay denotes the number of TLS connections established between a given
relay and other relays.
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By persistent connections decay rate of a Tor relay we mean the following: as-
sume that at time t0 the relay has N TLS connections with other Tor relays. The
decay rate of these connections is a function of time which shows how many of them
remain connected at time t.

Expected degree of nodes in the Tor network graph

In order to derive the expected degree of a Tor relay we use results presented in
Chapter 3 , Section 3.3. The probability of a TLS connection between two Tor relays
A and B is computed as p(A,B)

0 = e−λAB\µ, where λAB = pA,B ·R and µ = 1
tavg+tidle

.
R = 900 is estimated circuit arrival rate in the whole Tor network and pA,B is the
probability of routers A and B to form an edge in a new circuit.

The expected number of open connections of a Tor relay at an arbitrary point
of time is thus:

Navg
A = d

∑
B∈T

p
(A,B)
0 e,

where T denotes the set of all Tor relays and |T | = n.
One can use either this model or compare a Tor relay’s degree with the average

(among relays of the same bandwidth) in order to find potential guard nodes of a
hidden service. We used the technique described in Section 3.3 in order determine
to which other relays a given Tor relay has established TLS connections. Figure
4.8 shows the degrees of Tor relays sorted by their bandwidth weight from the
consensus.
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Figure 4.8: Degrees of Tor relays, Fall 2012

From this figure, one can see that there are a number of nodes which deviate
significantly from the average – we call these peak nodes. The Guard nodes of
the botnet which we determined in the previous section are marked by arrows and
are among the peaks. This allows us to filter out quite many relays. However the
number of peaks is still considerable. In the next section we show how to reduce the
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set of candidates of Guard nodes of a popular hidden service based on the persistent
connection decay rate.

Decay rate of persistent connections

As mentioned in Section 3.3, for an average Tor relay the decay rate of persistent
connections is steep during the first hours. This is not the case if a relay is a Guard
node of a hidden service with persistently connected clients, such as the botnet’s
IRC command and control. In this case the decay rate will be determined by the
bots going offline rather than by the bandwidth of the node.

In order to predict the decay rate of a “normal” Tor relay we use the following
approach: we first find the expression for the duration of a connection between
relay A and B and use it to determine the connection decay rate. We assume the
following: 1) circuits arrive to the connections according to Poisson distribution (see
Section 3.3); 2) the circuit arrival rate is proportional to the bandwidth of the relay;
3) the circuit duration follows an exponential distribution. Given these assumptions,
we adopt a finite state Markov chain to model the connection duration. Each state
of the Markov chain represents the number of circuits carried over the connection.
The chain has one absorbing state 0. We are interested in the extinction time. The
number of states is finite.

We assume that at the time when we observe the connections, the system is
in quasistationary state, conditioned that the extinction has not occurred. Thus
the initial state distribution is a quasi-stationary distribution which always exists
for finite state case (see [1] ,[3]). Classical matrix theory can be used to show that
a matrix containing infinitesimal transition probabilities of transient states has a
dominant eigenvalue such that the corresponding left and right eigenvectors have
positive entries (see [1], and [3]); the left eigenvector is the quasistationary distri-
bution. We denote (q1, q2, ..., qN ) as the row vector of quasistationary probabilities.

Let λ be the circuit arrival rate to a connection between two Tor relays and µ the
circuit closing rate. In this case, the matrix of infinitesimal transition probabilities
is:

R =
[

0 0
a C

]
, (4.1)

where the matrix C corresponds to transient states T = {1, 2, ..N} and state 0 is
absorbing. The matrix C can be written as:

−λ− µ λ 0 0 · · · 0 0
µ −λ− µ λ 0 · · · 0 0
0 µ −λ− µ λ · · · 0 0
...

....
...

... . . . ...
...

0 0 0 0 · · · µ −µ

 (4.2)

The probability of extinction of a connection between relays A and B in this case
can then be derived as (we use Kolmogorov forward equations to get this result):
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pAB0 (t) = 1− e−µq1t

The circuit arrival rate λa,b is computed as in the previous subsection. We set
the circuit closing rate as µ = 1/(tavg + tidle), where tavg is the average duration
of a circuit as we saw in Section 3.3 and tidle = 180 seconds is the time before an
idle connection would close. As we also observed in Section 3.3, tavg depends only
slightly on the pair of relays and is close to 200 seconds.

One can use numerical methods (see [9] for example) to compute the eigenvalues
and eigenvectors. Note that for the cases when λa,b < µ, one can approximate the
values with an expression for infinite state Markov chain [2]. In the infinite case,
the quasistationary probability for the system to be in state j is:

qj = (1− β)2jβj−1,

where β =
√

λ
µ . Particularly,

q1 = (1− β)2.

We apply this model to the pair of medium-bandwidth Tor relays for which the
experimental data can be found in Section 3.3. The consensus bandwidths of the
relays were 1850 kBytes/sec and 4280 kBytes/sec. Both were Guard and non-Exit
nodes. The comparison between the model and the data obtained from the direct
measurements on one of the nodes is shown in Figure 4.9.
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Figure 4.9: Connection duration model validation

Given the initial connections of a relay, we use the model for connection duration
to compute the expected number of persistent connections at an arbitrary point of
time for Tor relay A:

Npers
A (t) =

∑
B∈I

(1− pAB0 (t)),

where I is the set of initial connections of A.
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Using the canonical scanning technique we obtained the persistent connections
decay rate of the Tor guard nodes. We compared them with the connection decay
rate predicted by the model and filtered those connections which differ from the
model. Particularly, we compared the number of persistent connections after 3
hours of scanning. Out of 856 nodes 200 had a degree that exceeded the value
predicted by the model. Choosing a threshold such that guard of the botnet’s
hidden service is included, we find that 37 nodes have a degree that is 1.4 time
higher than the value predicted by the model.

Figure 4.10 shows the real decay rate of the botnet’s guard nodes plotted against
the theoretically predicted one. As one can see, the discrepancy is quite detectable.
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Figure 4.10: Decay rate of the botnet’s guard 1

Figure 4.11 shows the observed decay rate and the predicted decay rate of an-
other node with a degree above the average (one of the peaks in Figure 4.8). The
majority of peaks from the previous section have this type of the decay rate, which
is close to the theoretical predictions. This allows us to reduce the number of
candidates to 29. Since we know the actual guard nodes of the botnet’s hidden
service from the unencrypted descriptor attack, we were able to check that indeed
the correct guards appeared in this list of candidates.
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Figure 4.11: Common shape of the decay rate
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4.7 Potential countermeasures
In this section we briefly describe several possible countermeasures. Harvesting
can be easily prevented by making the descriptor-cookie authentication [20]
mandatory for all hidden services and base32 encoding the value as part of the
URL together with the permanent-id. The downside of this change is a significantly
reduced usability: instead of 16 character onion addresses the user now has to deal
with onion-addresses that are 42 characters long.

In order to prevent adversaries from efficiently targeting hidden service directo-
ries, an unpredictable value can be derived by the directory authorities each hour
from a shared secret. Three of these values are included in the consensus – one
for each of the hours the consensus is valid. The unpredictable value valid for the
hour of the request is then included in the calculation of the descriptor ID and
henceforth determines the place on the ring where the descriptor is stored. This
makes it impossible for an attacker to precompute identity keys for time periods
further ahead than 3 hours in the future.

To prevent the guard nodes being revealed, one can use an additional layer of
guard nodes – guard middle nodes. This countermeasure has already been proposed
in [16] but is not implemented in Tor. Note that this measure will not protect against
an attacker exploiting degree anomalies of the guard nodes as described in Section
4.6.2.

A work by Tariq et al.[26] suggests that the guards compromise rate can be
decreased by (1) making the guard rotation interval longer and (2) by taking into
account how long nodes have been part of the network when assigning Guard flags
to them. Note that this approach if not carefully implemented has a number of
downsides like reduced end-user quality of experience and malicious nodes accumu-
lating Tor users. In regard to revealing the introduction circuits, if the attacker
will not be able to collect the full list of hidden service descriptors, she will not be
able to distinguish between introduction circuit of hidden services with encrypted
introduction points and non-encrypted.



Chapter 5

Anonymity Analysis of Bitcoin
P2P Network

Bitcoin protocol has two well known properties. First, the entire Bitcoin transac-
tion history is publicly available so anyone can see how Bitcoins travel from one
pseudonym to another and potentially link different pseudonyms of the same user
together [28]. This alone however does not allow mapping pseudonyms to real iden-
tities. Second, Bitcoin does not use encryption and studying the entire IP traffic
of the Bitcoin peers could potentially reveal the origins of many transaction. As
Bitcoin users come from different jurisdictions this type of attack is only available
to a very powerful adversary which is able to conduct global-scale surveillance.

By contrast in this chapter we study the level of anonymity provided by Bit-
coin against a non-global off-path adversary, i.e. an ordinary attacker with a few
machines and without ability connect to clients behind NAT. We first describe a
generic low-resource off-path method to deanonymize a significant fraction of Bit-
coin users and correlate their pseudonyms with public IP addresses. The method
explicitly targets clients (i.e. peers behind NAT or firewalls) and can differentiate
nodes with the same public IP.

Second, we study an important case of using Bitcoin over Tor. We show that
sending Bitcoin traffic through Tor not only provides limited level of anonymity but
also exposes the user to man-in-the middle attacks in which an attacker controls
which Bitcoin blocks and transactions the user is aware of.

Third, we show that Bitcoin peer discovery protocol allows an attacker to set an
“address cookie” on users’ computers. This can be used to correlate the same user
across different sessions, even if he uses Tor, hidden-services or multiple proxies. If
the user later decides to connect to the Bitcoin network directly the cookie would
be still present and would reveal his IP address. A small set of Sybil nodes (about a
100 attacker’s nodes) is sufficient to keep the cookies fresh on all the Bitcoin peers
(including clients behind NATs).
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5.1 Deanonymization of client in Bitcoin P2P network
A traditional approach for deanonymization would be to have a list of suspicious
Bitcoin pseudonyms first and then try to find IP addresses of their owners. By
contrast in the technique described in this section, we go other way round. We
first collect a list of IP addresses of Bitcoin clients1, and then for a large number of
transactions we determine at which client it was generated.

The crucial idea behind the deanonymization attack is that each client can be
uniquely identified by a set of nodes he connects to (entry nodes). We show that
this set can be learned at the time of connection and then used to identify the origin
of a transaction.

5.1.1 Learning entry nodes

We start by recalling terminology and protocol rules (see Chapter 2, section 2.2.3).
We call peers that accept incoming connections servers and peers behind NAT’s
or firewalls clients. In order to connect to the Bitcoin network a client c needs
to establish connections to Bitcoin servers. We call eight servers E = {e1, . . . , e8}
through which a client connects to the Bitcoin network entry nodes of this client.
Remember that each time c connects to ei, it sends it its IP address2 IPc. The
entry node then forwards the address to two randomly chosen neighbors (we call
them responsible nodes).

1Each client advertises its IP address to the network according to the Bitcoin peer discovery
protocol.

2As it is seen from the Internet.



5.1 Deanonymization of client in Bitcoin P2P network 73

Let us see how an attacker can learn entry nodes E of client c. The key observa-
tion is that if the attacker is connected to ei in advance, then with some probability3

ei will forward IPc to the attacker (once client c connects to ei). This suggests the
following strategy:

1. Connect toW Bitcoin servers, whereW is close to the total number of servers,
and listen to ADDR messages.

2. Each time address IPc is received, add the sender to set E′ of potential entry
nodes.

In general E′ 6= E, and this is due to the following reason. When an entry node
forwards IPc to two responsible nodes, with some probability these responsible
nodes will not belong to the attacker, in which case the address will bounce in the
network and will arrive at the attacker from some random (noise) node.

Noise reduction technique Our strategy of filtering noise assumes that either
the client’s IP was already used in the Bitcoin network, which is quite common for
the clients behind NAT or the client’s public IP is contained in a known list of IP
addresses (e.g. within an IP range of a major ISP) which an attacker can use. If
an attacker knows IPc, he restricts its propagation using the following fact (Bitcoin
core v0.9.2): if the address had already been sent from peer c1 to peer c2, it will not
be forwarded over this connection again.

This suggests broadcasting IPc (or all the addresses under investigation) to all
Bitcoin servers in advance. We suggest repeating this procedure every 10 minutes,
though there could be other options. This will block future propagation of IPc via
all existing connections. The attacker then needs to re-establish its connections to
the Bitcoin servers (so that her connections are “unblocked”).

Eventually the attacker learns a subset E′ ⊆ E of client’s entry nodes. The
exact value of paddr = |E′|

|E| depends on the number of attacker’s connections, and
it is computed for some parameters in Section 5.1.4. For instance, if an attacker
establishes 35 connections to each potential entry node, which all had 90 connections
beforehand, then he identifies 4 entry nodes out of 8 on average.

5.1.2 Deanonymizing clients

We have shown how to find entry nodes of a client. Now we describe the main phase
of the deanonymization attack which consists of four steps:

1. Getting the list S of (almost) all Bitcoin servers. This list is regularly re-
freshed.

2. Composing a list A of IP addresses of Bitcoin clients C.

3. Learning entry nodes of clients from A when they connect to the network.
3This probability depends on the number of the attacker’s connections to ei.
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4. Listening to servers from S and mapping transactions to entry nodes and then
to clients.

Eventually for each client c ∈ C we create a tuple (E′c, IPc,Πc), where IPc is
the IP address of the client or its ISP, entry nodes E′c distinguish clients sharing the
same IP, and Πc is the list of client’s transactions. Extracting Bitcoin pseudonyms
from transactions is straightforward. We now explain each step in detail.

Step 1. Getting the list of servers. This phase of the attack is rather straight-
forward. An attacker first collects the entire list of peers by querying all known peers
with a GETADDR message. Each address IP in the response ADDR message can be
checked if it is online by establishing a TCP connection and sending a VERSION mes-
sage. If it is, IP is designated as a server. An attacker can initiate the procedure
by querying a small set of seed nodes and continue by querying the newly received
IP addresses. The adversary establishes m connections to each server (we suggest
50 for the size of the current Bitcoin network).

Step 2. Composing the list of Bitcoin clients. The attacker builds set A of
IP addresses of clients whose Bitcoin pseudonyms she wants to reveal. The addresses
may come from various sources. The attacker might take IP ranges of major Internet
service providers, or collect addresses already advertised in the Bitcoin network.
Finally, she might take some entries from the list of peers she obtained at Step 1.

Step 3. Mapping clients to their entry nodes. Now the attacker identifies
entry nodes of clients that connect to the Bitcoin network. Equipped with the list
A of addresses, the attacker runs the procedure described in Section 5.1.1. Let us
estimate how many entry nodes are needed to uniquely identify a client.

For each c advertising its address in the network the attacker obtains a set
E′c ⊆ Ec. Since there are about 8 · 103 possible entry nodes out of 105 total peers
(servers and clients together), the collisions in E′c are unlikely if every tuple has at
least 3 entry nodes:

105 · 105

(8 · 103)3 � 1.

Therefore, 3 entry nodes uniquely identify a user, though two nodes also do this for
a large percent of users. We stress that it is likely that Ec1 6= Ec2 even if c1 and
c2 share the same IP address. An attacker adds Ec to its database and proceeds to
Step 4.

Step 4. Mapping transactions to entry nodes. This step runs in parallel to
steps 1-3. Now the attacker tries to correlate transactions appearing in the network
with sets E′c obtained in step 2. The attacker listens for INVENTORY messages with
transaction hashes received over all the connections that she established and for
each transaction T she collects RT — the first q addresses of Bitcoin servers that
forwarded the INVENTORY message. She then compares E′c with RT (see details
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below), and if they match the attacker decides that transaction T belongs to client
c. In our experiments we take q = 10.

There could be many variants for the matching procedure, and we suggest the
following version.

• The attacker composes all possible 3-tuples from all sets E′c and looks for their
appearances in RT . If there is a match, he gets a pair (c, T );

• If there is no match, the attacker consider 2-tuples and then 1-tuples. Several
pairs {(ci, T )} can be suggested at this stage, but we can filter them with
later transactions.

We made several experiments and collected some statistics to estimate the suc-
cess of the attack. In our experiments on the testnet (see Chapter 2, section 2.2.5)
we established 50 connections to each server, obtained 6 out of 8 entry nodes on
average, and the 3-tuples were detected and linked to the client in 60% of transac-
tions (Section 5.1.3). In the real network, where we can establish fewer connections
on average, our pessimistic estimate is 11% (Section 6.2), i.e. we identify 11% of
transactions.

Finally, let us consider the approach where we identify clients by 2-tuples in the
top-10. As detailed in Section 6.2, for 35% of transactions the right client would be
identified. However, each transaction might generate several false positives.

To estimate the false positive rate, we first calculate the average number of 2-
tuples among the entry nodes we catch. For paddr = 0.34 each 2-tuple is detected
with probability p2

addr = 0.115, so out of 28 possible 2-tuples we detect 3.2 on
average. Each top-10 suggests 45 2-tuples, and given 8000 servers at the time
of experiments (May 2014) there are

(8000
2
)
≈ 225 2-tuples at all (all tuples are

unordered). If we work with a database of N clients, each transaction suggests
N ·45·3.2

225 ≈ N · 27.3−25 = N/217.7 candidate clients. If we track all 100,000 clients, we
get the false positive rate around 0.28, which is slightly smaller than the probability
0.35 to detect the right client for a transaction. In other words, for each suggested
client the probability that he is the right one is about 55%.

Remark 1. Step 4 of the attack depends on that some entry nodes of a client are
among the first to forward the INVENTORY message with the transaction’s hash. The
intuition behind it is that it takes a number of steps for a transaction to propagate
to the next hop. Fig. 5.1 shows steps that are required for a transaction to be
propagated over two hops and received at peer A. When a transaction is received
by a node it first runs a number of checks and then schedules the transmission.
The actual transmission will happen either immediately (for 25% of transations)
or with a random delay due to trickling (see Section 2.2.3). The time needed
for an INVENTORY message to be forwarded to the attacker’s node through node
Entry is the sum of propagation delays of 4 messages (2xINVENTORY, 1xGETDATA,
1xTRANSACTION) plus the time node Entry needs to run 16 checks and possibly a
random trickling delay. On the other hand the time needed for the same INVENTORY
message to be forwarded to the attacker’s node through peer A consists of 7 messages
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(3xINVENTORY, 2xGETDATA, 2xTRANSACTION), 32 checks, and two random delays due
to trickling. Finally since the majority of connections to a peer are coming from
clients, one more hop should be passed before the transaction reaches an attacker’s
node through a wrong server. Measurements of transaction propagation delays are
given in Section 6.2.

16 Checks
[Trickling]

Inventory(tx_hash)

getdata(tx_hash)

Transaction

Client Entry Peer A

Inventory(tx_hash)

getdata(tx_hash)

Transaction

Figure 5.1: Steps necessary to forward a transaction

Based on this we expect that if a transaction generated by a client is forwarded
to the entry nodes immediately, the entry nodes will be the first nodes to forward
the transaction. In case when the transcation was sent sequentially with 100 ms
between transmissions we still expect a fraction of entry nodes to be among the
first 10 to forward corresponding INVENTORY message to one of the attacker’s nodes.
This fraction obviously depends on the propagation delay between Bitcoin peers.
The higher the propagation delay the less significant becomes delay of 100 ms in
trickling. For example if the propagation delay is 300 ms between the client and
each entry node it’s likely that 3 entry nodes will be among the first to forward
the INVENTORY message (given that the attacker has enough connections to Bitcoin
servers).

Remark 2. The attack presented in this section requires from an attacker only
to be able to keep a significant number of connections to Bitcoin servers without
sending large amount data. In order to make the attack less detectable an attacker
might decide to establish connection to a given Bitcoin server from different IP
addresses, so that all connection look like they came from different unrelated clients.
The same set of IP addresses can be used for different servers.

Remark 3. The technique considered in the section provides unique identifica-
tion of Bitcoin clients for the duration of a session, and thus if a client makes
multiple transactions during one session they can be linked together with very high
probability. Note that this is done even if the client uses totally unrelated public
keys/Bitcoin wallets, which have no relation in the Bitcoin transaction graph and
thus such linkage would be totally unachievable via transaction graph analysis [28,
29]. Moreover we can easily distinguish all the different clients even if they come
from the same ISPs, hidden behind the same NAT or firewall address.
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5.1.3 Experimental results

As a proof of concept we implemented and tested our attack on the Bitcoin testnet.
For our experiments we built our own Bitcoin client, which included functionality
specific for our attack – sending specific Bitcoin messages upon request or establish-
ing various numbers of parallel connections to the same Bitcoin server, etc. When
imitating clients we used the main Bitcoin client. In order to periodically get the
list of all running Bitcoin servers we used an open source crawler [39].

For the time of experiments (May 2014) the number of running Bitcoin servers
in the testnet fluctuated between 230 and 250, while the estimated average degree
of the nodes was approximately 30. In our experiments we were imitating several
different users connecting to the testnet from the same ISP’s IP address and from
different ISP’s at different times. As an attacker we added 50 additional connections
to each Bitcoin server. For each experiment in the first phase of the attack we
propagated clients’ addresses in the testnet 10 minutes before they started to send
their transactions. In total we (as clients) sent 424 transactions.

In the first experiment we confirm our expectations that transactions are first
forwarded by entry nodes and analyse the number of entry nodes that were among
the first 10 to forward the transactions (i.e. we assume that the attacker correctly
identified all entry nodes). We split all transactions into two sets: the first set
contains 104 transactions, which were forwarded to the entry nodes immediately;
the second set contains all other 320 transactions (i.e. for which trickling was
used). Fig. 5.2 shows the number of entry nodes that were among the first 10 to
forward the transaction to the attacker’s nodes for these two sets. As expected if
a transaction was immediately forwarded to all entry nodes the attacker was able
to “catch” three or more of them in 99% of cases. In case of transactions from
the second set, the attacker was able to “catch” 3 or more entry nodes in 70% of
cases. We also observed that for the majority of transactions the first two nodes to
forward the transaction to the attacker were the entry nodes.
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In the second experiment we executed all steps of the attack. In our experiment
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each client was successfully uniquely identified by his own set of entry nodes and
on average we identified 6 entry nodes for each client. Assuming that 3 entry
nodes is enough for unique identification of a client we correctly linked 59.9% of
all transactions to the corresponding IP address by matching entry nodes of clients
and first 10 Bitcoin servers which forwarded the transaction. We correctly glued
together all transactions of the same client which were made during one session. In
a bit more conservative setting we added only 20 additional nodes in which case we
successfully deanonymized 41% of our transactions.

5.1.4 Analysis

The success rate of the attack presented above depends on a number of parameters,
among which the most important is the fraction of attacker’s connections among
all the connections of client’s entry nodes. The fewer the number of connections
of entry nodes are, the more connections the attacker can establish and the higher
chance is to deanonymise the client. In this section we analyze each step of the
attack and compute success rates for some parameter sets.

Number of connections to servers

Both mapping client to entry nodes and mapping entry nodes to transactions de-
pends on the number of connections the attacker can establish to the Bitcoin servers.
Assuming the entry node had n connections and the attacker added m new con-
nections, thus the total number of connections is N = n + m, the probability to
receive the address at the first hop is paddr(n,N) = 1− n

N ·
n−1
N−1 . For a transaction

which was not forwarded immediately to the peer’s neighbours the probability that
one of attacker’s nodes is chosen as trickle node in the first round is ptx = m

N . For
n = 50, m = 50, paddr = 0.75 and ptx = 0.50. For n = 90, m = 35, paddr = 0.49
and ptx = 0.28. The number of connections that the adversary can establish to a
server is limited by the total number of 125 connections a Bitcoin peer can have by
default.

In order to see how many open connection slots Bitcoin peers have we conducted
the following experiment in April 2014. For each Bitcoin server that we found we
tried to establish 50 parallel connections and check the actual number of established
connections4. Fig. 5.3 shows the distribution of number of established connections.

The experiment shows that 60% of peers allow 50 connections or more, and 80%
of Bitcoin peers allowed up to 40 connections. Note that even if sufficient number
of connection cannot be established to a Bitcoin peer immediately they can be
established in longer term since many Bitcoin clients will eventually disconnect and
thus allow new connections (according to an example disconnection rate as shown
in Fig. 5.5 it might take several hours, but once an attacker got the required number
of connections she can keep them as long as needed). Also note that Bitcoin servers
allow any number of connections from a single IP address.

4We did not try establish more than 50 connections in order not to degrade the Bitcoin network
performance.
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Figure 5.3: Distribution of open slots

Finally the attacker does not send much traffic over the established connections
but rather listens for messages. Incoming traffic is normally free of charge if one
rents a server. Thus in spite of the large number of connections that an attacker
needs to establish the attack remains very cheap.

Estimating false positives

Assume that some of the steps of that attack fail. Then the first 10 peers to report
the transaction to the attacker will be some random Bitcoin peers. If there is no
3-subset of these 10 that match some entry node set, then such a transaction is
marked as unrecognized by an attacker. The chance that the intersection between
these 10 random nodes and 8 entry nodes of some client is 3:

pc =
(8

3
)
·
(Ns−8

10−3
)(Ns

10
)

Given that there are about Ns = 8000 Bitcoin servers and 100,000 Bitcoin clients,
the number of incorrectly assigned transactions is negligible.

We now estimate the probability that an attacker adds a wrong entry node
to the set of entry nodes of a particular client (we recall that according to the
address propagation mechanism after receiving an address a peer forwards it to
only two randomly chosen responsible nodes). For this to happen, one or more entry
nodes should forward the client’s address IPc over one of non-attacker’s connections,
whence (since the attacker periodically propagates the client’s address) at least one
of responsible nodes for address IPc should change on an entry node after the
attacker last propagated IPc.

In order to estimate this probability we collected statistics from our Bitcoin peer
for 60 days from March 10 till May 10 2014. We collected information about 61,395
connections in total. Assume that the attacker propagated IPc at time t0, the
probability that a responsible node will be different at time t1 = t0 +∆t depends on
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the number of new connections the entry node has at t1 and number of nodes that
disconnected since t0. Fig. 5.4 shows probability density function of the number of
new connections (i.e. the incoming connections rate) for different values of ∆t.
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Figure 5.4: Probability density of number new connections

Fig. 5.5 shows probability density function of the number of disconnection (i.e.
connection close rate) for different values of ∆t.
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Figure 5.5: Probability density of number lost connections

We use these distributions to simulate the address propagation and calculate
the probability that the client’s address is forwarded by an entry node over a non-
attacker’s link after time ∆t after the attacker sent this address over the network.
We obtained probabilities for different number of attacker’s and non-attacker’s con-
nections and for each connection setting and each ∆t we executed 10,000 runs of
the model. Fig. 5.6 shows the obtained probabilities. The number of attacker’s
connections is denoted by m and the number of non-attacker’s connections by n.

As expected, the more connection a node has the less probable that the respon-
sible nodes for an address will change after ∆t. Another observation is that the
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Figure 5.6: Percentage of addresses forwarded by entry node over non-attacker
connections

probability of a node to forward the client’s address over one of the non-attacker’s
connections depends on the total number of connections rather than on the fraction
of attacker’s connections. From Fig. 5.6 we conclude that resending client addresses
over the Bitcoin network every 10 minutes seems to be a reasonable choice. Also
note that even if a client’s address was forwarded over a non-attacker’s link, the
further propagation of the address will likely stop at the next hop.

Overall success rate

The success rate Psuccess of the attack depends on a number of characteristics of the
real network. We propose the following method to estimate it. First, we assume that
the attacker establishes all possible connections to Bitcoin servers. From the data
used in Figure 5.3, we estimate the average value pAvgaddr of the parameter paddr. We
did not establish more than 50 connections to avoid overloading servers, and we take
a pessimistic estimation that 50 is the maximal number of attacker’s connections.
This yields

pAvgaddr ≈ 0.34.

Then we assume that both the testnet and the mainnet exhibit similar local
topology so the probabilities P3(L) for the number L of entry nodes being in top-
10 are almost the same (Figure 5.2). We calculate the probabilities P1(R) for the
number R of entry nodes being detected out of 8 as a function of pAvgaddr. Then we
compute the total probability that the adversary detects at least M = 3 nodes
among those appeared in top-10, and we get the following estimation (see details
in the next section):

Psuccess(3) ≈ 0.13.

When we restrict to 2-tuples, the success rate increases to 0.37.
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In the testnet we managed to achieve pAvgaddr = 0.86 and the success rate for
M = 3 being close to 60%. An attacker may achieve such high rates if he first
saturates servers’ connections and then gradually replaces the expired connections
from other nodes with his own ones. However, this may cause degradation of QoS
as some clients will be unable to connect to all their entry nodes.

Thus a careful attacker that follows the 3-tuple rule only and establishes 50 con-
nections at maximum to each server can catch about 11% of transactions generated
by clients. Given 70,000 transactions per day, this results in 7,700 transactions per
day. This also means that a user needs to send 9 transactions in average in order
to reveal his public IP address.

Success rate: details

In this section we describe a mathematical model that allows us to estimate the
success rate of the deanonymization attack.

As inputs, we take the average probability paddr over the network, which is es-
timated in Section 5.1.4, and the distribution of the number of entry nodes among
the first 10 nodes reporting a transaction to attacker’s peers (Section 5.1.3). We
extrapolate the latter probability spectrum from the test net to the main net, which
assumes similar network performance and the stability of the spectrum when the
attacker has more or fewer connections to servers. The correctness of the extrapo-
lation can be tested only by mounting a full-scale attack on the network, which we
chose not to perform for ethical reasons.

First, we introduce two combinatorial formulas. Suppose that there are N balls.
If each ball is red with probability pa, and green with probability 1− pa, then the
probability that there are R red balls is

P1(R;N) =
(
N

R

)
pRa (1− pa)N−R (5.1)

Now assume that there are R red balls and N −R green balls. Suppose that we
select L balls at random out of N . The probability that there will be exactly q red
balls among L chosen is computed as follows:

P2(q ; L,R,N) =
(R
q

)(N−R
L−q

)(N
L

) .

Now we get back to Bitcoin. If each entry node is detected with probability
pAvgaddr = 0.34 (Section 5.1.4), then according to Eq. (5.1) we detect R entry nodes
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out of 8 with the following probability spectrum:

P1(R; 8) :

R Probability
0 0.0360
1 0.1484
2 0.2675
3 0.2756
4 0.1775
5 0.0732
6 0.0188
7 0.0028
8 0.0002

Based on our experiments on the Bitcoin test net (Section 5.1.3), we computed
the probability to have L entry nodes among the top-10 (Table 5.1).

P3(L) :

L Probability
1 0.0613
2 0.1675
3 0.2103
4 0.2323
5 0.1803
6 0.1003
7 0.0383
8 0.0096

Table 5.1: Probability that L entry nodes (out of 8) appear in the top-10 of those
that forward the transaction to adversary’s client.

We assume that both events are independent. Then the probability that at
least M out of these L nodes we have detected (i.e. it belongs to the set of R entry
nodes) is

Psuccess(M) =
∑
q≥M

∑
L≤8

∑
R≤8

P2(q ; L,R, 8) · P1(R; 8) · P3(L);
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We have made some calculations and got the following results:

∑
L≤8

∑
R≤8

P2(q ; L,R, 8) · P1(R; 8) · P3(L) :

q Probability
0 0.2513
1 0.3730
2 0.2448
3 0.0986
4 0.0267
5 0.0049
6 0.0006

Psuccess(M) :

M Probability
1 0.7487
2 0.3757
3 0.1308
4 0.0323
5 0.0056
6 0.0006

Therefore, we expect to catch 3-tuples in 13% of transactions, and 2-tuples in 37%
of transactions.

We applied this model to the testnet as well, and obtained that it fits our actual
deanonymization results well:

Estimated paddr Deanonymization rate with 3-tuples
Actual Predicted

0.64 41% 44.9%
0.86 59.9% 66.7%

Attack costs

The expenses for the attack include two main components: (1) renting machines for
connecting to Bitcoin servers and listening for INVENTORY messages; (2) periodically
advertising potential client addresses in the network. Note that if an attacker rents
servers, the incoming traffic for the servers is normally free of charge. Assuming
that an attacker would like to stay stealthy, she would want to have 50 different
IP addresses possibly from different subnetworks. Thus she might want to rent 50
different servers. Assuming monthly price per one server 25 EUR, this results in
1250 EUR per month.

When advertising potential client addresses, the attacker is interested in that
the addresses propagate in the network as fast as possible. In order to achieve
this the attacker might try to advertise the addresses to all servers simultaneously.
Given that there are 100,000 potential clients and the attacker needs to send 10
addresses per ADDR message, this results in 10,000 ADDR messages of 325 bytes each
per Bitcoin server or (given there are 8,000 Bitcoin servers) 24.2 GB in total.
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If an attacker advertises the addresses every 10 minutes and she is interested
in continuously deanonymising transaction during a month, it will require sending
104,544 GB of data from 50 servers. Given that 10,000 GB per server is included into
the servers price and the price per additional 1,000 GB is 2 EUR [56], the attacker
would need to pay 109 EUR per month. As a result the total cost of the attack is
estimated to be less than 1500 EUR per month of continuous deanonymisation.

Transaction propagation delay

In this section we measure transaction propagation delays between our high-speed
server (1 Gbit/s, Intel Core i7 3GHz) located in Germany and 6,163 other Bitcoin
servers. As was described in Section 5.1.2, Remark 1, it takes 3 steps to forward a
transaction between two Bitcoin peers. As we are not able to obtain times when a
remote peer sends an INVENTORY message, we skipped the first step (i.e. propagation
delays of INVENTORY messages) and measured time differences between receptions
of corresponding INVENTORY messages and receptions of the transactions. Note
however that the size of an INVENTORY message is 37 bytes, while the size of a
transaction which transfers coins from one pseudonym to two other pseudonyms is
258 bytes. Thus the obtained results can serve as a good approximation. For each
Bitcoin server we collected 70 transactions and combined them into a single dataset
(thus having 431,410 data points). Fig. 5.7 shows probability density function of
the transaction propagation delay between our node and other Bitcoin servers and
Fig. 5.8 shows the corresponding cumulative distribution.
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Figure 5.7: Transaction propagation delay, density

On stability of the entry nodes

In this section we estimate the stability of a client’s fingerprint (the set of eight
first-hop connections). According to the bitcoind source code (version v0.9.1), there
are three reasons why an entry node can be disconnected from a client:
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Figure 5.8: Transaction propagation delay, cumulative

• The client switched off the computer/closed Bitcoin application.

• No data was sent over a connection for 1.5 hours.

• An Entry node goes offline.

Given the number of transitions generated by the network[40], block generation
rate, and addresses propagation, some data is normally sent to and from the entry
nodes within 1.5 hours.

In order to estimate the probability of an entry node going off-line we we took
data from getaddr.bitnodes.io which produces a list of running Bitcoin servers
every five minutes. We analysed the data for two weeks. The probability for a node
to disconnect after specific amount of time with 95% confidence interval is shown
on Fig. 5.9.
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Figure 5.9: Bitcoin servers churn rate
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Fig. 5.9 shows that after 2.5 hours only one node would disconnect on average
and only two nodes will disconnect after 10 hours. So for the typical duration of
a client session the fingerprint is very stable. In our experiment, after running our
Bitcoin client for about 10 hours 3 nodes out of eight have disconnected.

The second point we address in this section is regarding the usage of VPN
which is a popular recommendation for preserving anonymity in Bitcoin [32]. While
protecting a user’s IP, the stability of the fingerprint still allows an attacker to glue
together different Bitcoin addresses of the same user. We checked the stability of
the fingerprint on the Bitcoin testnet while connecting to the network:

1. via public free VPNs (vpngate.net);

2. via a non-free one (AirVPN).

3. via our own VPN server.

For cases 2 and 3, the stability of the fingerprint was the same as if no VPN was
used. For case 1, connections to entry nodes were dropped from time to time (about
every 20 mins for the main net and about every few minutes for the testnet due too
absence of traffic) by the VPN servers. It’s likely that free VPN servers were set
with small inactivity timeouts and some limits for connection durations.

5.1.5 Countermeasures

As a possible countermeasure against client de-anonymization we propose add some
random delay after the transaction. This will remove likability of transactions and
will also prohibit distinguishing of different clients from the same ISP. This however
will not prevent the attacker from learning the ISP of the client. One can also
increase the percentage of trickled transactions from 75% to 90%, this of course
will increase transaction propagation delays. Another efficient counter measure is
to decrease the number of outgoing connections from 8 to 3; this however has an
implication that the network becomes less connected.

5.2 Bitcoin over Tor

In the previous sections we showed that the anonymity provided by the plain Bitcoin
protocol is rather low. This should encourage users to connect to the Bitcoin
network through anonymizers like Tor. In this section we will show that such
combination not only provides limited level of anonymity but also exposes users to
man-in-the-middle attacks.

5.2.1 Disconnecting from Tor

We first show how to prohibit the Bitcoin servers to accept connections via Tor and
other anonymity services. This results in clients using their actual IP addresses
when connecting to other peers and thus exposing their public IP addresses. In
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the further text we discuss Tor, but the same method applies to other anonymity
services with minor modifications.

To separate Tor from Bitcoin, we exploit the Bitcoin built-in DoS protection.
Whenever a peer receives a malformed message, it increases the penalty score of the
IP address from which the message came (if a client uses Tor, then the message will
obviously come from one of the Tor exit nodes). When this score exceeds 100, the
sender’s IP is banned for 24 hours. According to the Bitcoin core implementation
(version v0.9.2), there are many ways to generate a message which would cause
penalty of 100 and an immediate ban, e.g. one can send a malformed loose coinbase
transaction which is 60 bytes in size. It means that if a client proxied its connection
over a Tor relay and sent a malformed message, the IP address of this relay will be
banned.

This allows to separate any target server from the entire Tor network. For that
we connect to the target through as many Tor nodes as possible. For the time of
writing there were 1008 Tor exit nodes. Thus the attack requires establishing 1008
connections and sending a few MBytes in data. This can be repeated for all Bitcoin
servers, thus prohibiting all Tor connections for 24 hours at the cost of a million
connections and less than 1 GByte of traffic. In case an IP address of a specific
Bitcoin node can be spoofed, it can be banned as well.

5.2.2 Getting in the middle

Instead of just baning Bitcoin clients from using Tor an attacker might achieve
much smarter results. By exploiting Bitcoin’s anti-DoS protection a low-resource
attacker can force users which decide to connect to the Bitcoin network through Tor
to connect exclusively through her Tor Exit nodes or to her Bitcoin peers, totally
isolating the client from the rest of the Bitcoin P2P network. This means that
combining Tor with Bitcoin may have serious security implications for the users:
1) they are exposed to attacks in which an attacker controls which Bitcoin blocks
and transactions the users are aware of; 2) they do not get the expected level of
anonymity.

The attack consists of four steps:

• Inject a number of Bitcoin peers to the network. Note that though Bitcoin
allows only one peer per IP address, it does not require high bandwidth. IP
addresses can be obtained relatively cheaply and on per-hour basis.

• Periodically advertise the newly injected peers in the network so that they
are included into the maximum possible number of buckets at the client side.

• Inject some number of medium-bandwidth Tor Exit relays. Even a small
fraction of the Exit bandwidth would be enough for the attacker as will be
shown later.

• Make non-attacker’s Bitcoin peers ban non-attacker’s Tor Exit nodes.

We now explain each step of the attack in more detail. See section 5.2.4 for
attack parameter estimation.
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Injecting Bitcoin peers

This step is rather straightforward. In order to comply with Bitcoin’s limitation
“one peer per IP address”, the attacker should obtain a large number of IP addresses.
The easiest way would be to rent IP addresses on per hour basis. The market value
is 1 cents per hour per IP address [74]. The important note is that the obtained
IP addresses will not be involved in any abusive activity (like sending spam or DoS
attacks) which makes this part of the attack undetectable.

Advertising malicious peers

The attacker is interested in that her Bitcoin peers are chosen by Bitcoin clients as
frequently as possible. In order to increase by factor four the chances for her peers
to be included into “tried” buckets, the attacker should advertise the addresses of
her peers as frequently as possible. This mechanism would allow the attacker to
inject less malicious peers. Note also that address advertisement is not logged by
default and thus requires special monitoring to be noticed.

Injecting Tor Exit nodes

During this step the attacker runs a number of Exit Tor nodes. In order to get
Exit flag from the Tor authorities, an attacker’s Exit node should allow outgoing
connections to any two ports out of ports 80, 443, or 6667. Such an open Exit
policy might not be what a stealthy attacker wants. Fortunately for the attacker
she can provide incorrect information about her exit policy in her descriptor and
thus have Exit flag while in reality providing access to port 8333 only. The attacker
can do even better, and dynamically change the exit policy of her relays so that
only connections to specific Bitcoin peers are allowed. We implemented this part
of the attack: while the Tor consensus indicated that our relays allowed exiting on
ports 80, 443, and 8333 for any IP address, the real exit policy of our relays was
accepting port 8333 for a couple of IP addresses5.

Banning Tor Exit nodes

In this phase, the attacker exploits the built-in Bitcoin anti-DoS protection. The
attacker chooses a non-attacker’s Bitcoin peer and a non-attacker’s Tor Exit, builds
a circuit through this Exit node and sends a malformed message to the chosen
Bitcoin peer (e.g. a malformed coinbase transaction which is 60 bytes in size and
which causes the immediate ban for 24 hours). As soon as the Bitcoin peer receives
such message it analyses the sender’s IP address which obviously belongs to the
Tor Exit node chosen by the attacker. The Bitcoin peer then marks this IP address
as misbehaving for 24 hours. If a legitimate client then tries to connect to the
same Bitcoin peer over the banned Exit node, his connection will be rejected. The
attacker repeats this step for all non-attacker’s Bitcoin peers and each non-attacker’s
Tor Exit node. This results in that a legitimate Bitcoin user is only able to connect

5We also allowed exiting to IP addresses used by Tor bandwidth scanners.
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to Bitcoin over Tor if he chooses either one of the attacker’s peers or establishes
a circuit through an attacker’s Exit node. We validated this part of the attack
by forcing about 7500 running Bitcoin peers to ban our Exit node. To do this
we implemented a rudimentary Bitcoin client which is capable of sending different
custom-built Bitcoin messages.

Defeating onion peers

Bitcoin peers can be made reachable as Tor hidden services. Banning Tor Exit nodes
will obviously not prevent Bitcoin clients from connecting to such peers. Nonetheless
our observations show that this case can also be defeated by the attacker.

First, the current design of Tor Hidden Services allows a low-resource attacker to
DoS a hidden service of her choice (see Section 4.3). It can become a problem though
for a large number of hidden services: for each hidden service the attacker needs to
run at least 6 Tor relays for at least 96 hours6, 2 relays per IP address. Fortunately
for the attacker the fraction of Bitcoin peers available as Tor hidden services is
quite small. During August 2014 we queried address databases of reachable Bitcoin
peers [38] and among 1,153,586 unique addresses (port numbers were ignored),
only 228 were OnionCat addresses and only 39 of them were actually online; in
November 2014 we repeated the experiment and among 737,314 unique addresses
252 were OnionCat addresses and 46 were online. This results in (1) a very small
probability for a client to choose a peer available as a hidden service; (2) this makes
black-holing of existing Bitcoin hidden services practical.

Second, the attacker can at almost no cost inject a large number of Bitcoin peers
available as Tor hidden services. It requires running only one Bitcoin core instance
and binding it with as many onion addresses as needed. Thus users will more likely
connect to attacker controlled “onion” peers.

Third, as was described in Section 2.2.3, when running Bitcoin without Tor,
onion addresses received from peers are silently dropped. Thus one can only ob-
tain OnionCat addresses by either connecting to an IPv4- or IPv6-reachable peers
through a proxy7 or by specifying an onion address manually in the command line.

5.2.3 Attack vectors

The technique described in this section allows an attacker to direct all Bitcoin-over-
Tor traffic through servers under her control. This creates several attack vectors
which we will briefly describe in this subsection.
Traffic confirmation attack. First, it becomes much cheaper to mount a success-
ful traffic confirmation attack. In traffic confirmation attacks, the attacker controls
a fraction of Guard and Exit nodes. The attacker sees that one of her exit nodes
is requested to access a particular (e.g. censored) web-site and the attacker is
interested in finding out the user who made this request. The attacker sends a
traffic signature down the corresponding circuit. If the attacker was lucky and the

6Or 25 hours if Tor authorities run Tor version 0.2.6.6 or earlier.
7Not necessarily Tor.
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user chose one of her Guard nodes, the attacker will see the traffic signature going
through this Guard to the target user. This reveals the user’s IP address.
The success probability of the attack is computed as the product of two factors: the
probability for the user to choose an attacker’s Guard and the probability for the
user to choose an attacker’s Exit. Since now all exit Bitcoin-over-Tor traffic goes
through the attacker, the second factor becomes 1.
Revealing Guard nodes. In case the attacker does not control the user’s Guard
node, he may try to find this Guard. We assume that the attacker controls a
fraction of middle nodes. As before the attacker would send a traffic signature
down the circuit and if none of the attacker’s middle nodes detects this signature,
the attacker drops the circuit. This will force the user to build another circuit.
After some number of circuit tries, one of the attacker’s middle nodes will finally be
chosen. This middle node will know the user’s Guard node. The re-identification of
the user between different circuits is possible e.g. using the fingerprinting technique
from section 5.3.
Revealing the guards does not immediately allow an attacker to reveal the location
of the user but gives her the next point of attack. Given that guard nodes are valid
for more than a month, this may be sufficient to mount a legal attack to recover
traffic meta data for the guard node, depending on the jurisdiction the guard node
is located in.
Linking different bitcoin addresses. Even without knowing the user’s IP, the
attacker can link together user’s transactions regardless of pseudonyms used.
Possibility of double spending. Finally, after successfully mounting the at-
tack described in this section the attacker controls the connectivity to the Bitcoin
network for users which chose to use Tor. This increases the success rate of double-
spend attacks.
In addition the attacker can defer transactions and blocks and send dead forks. In
collusion with a powerful mining pool (for example 10-20% of total Bitcoin mining
capacity) the attacker can create fake blocks. This enables additional possibilities
for double spending, however to make this relevant the amount should exceed what
such miner would be able to mine in the real Bitcoin network. Also complete
alternative Bitcoin reality for all the users who access Bitcoin solely through Tor
is possible. This however would come at a cost of 5-10 times slower confirmations,
which after some time can be detected by the wallet software.

5.2.4 Analysis

Estimating client’s delays

The steps described in section 5.2.2 imply that once a client decides to use Bitcoin
network over Tor, he will only be able to do this by choosing either one of the
attacker’s Exit nodes or one of the attacker’s Bitcoin peers. However for the attack
to be practical a user should not experience significant increases in connection
delays. Otherwise the user will just give up connecting and decide that Tor-Bitcoin
bundle is malfunctioning. In this section, we estimate the number of Bitcoin peers
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and the amount of bandwidth of Tor Exit relays which the attacker needs to inject,
so that the attack does not degrade the user’s experience.

Once the attacker completes the steps described in section 5.2.2, for each user
connecting to the Bitcoin network through Tor there are several possibilities (see
Fig. 5.10).

1. The user chooses one of the attacker’s Bitcoin peers. The attacker does noth-
ing in this case: the attacker automatically gains control over the information
forwarded to the user.

2. The user chooses one of the attacker’s Exit nodes. The attacker can use the
fact that Bitcoin connections are not encrypted and not authenticated and
redirect the client’s request to Bitcoin peers under her control.

3. The user chooses a non-attacker’s Exit relay and a running non-attacker’s
Bitcoin peer. In this case, due to the ban the user’s connections will be
rejected. And the user will try to connect to a different Bitcoin peer.

4. The user chooses a non-attacker’s Exit relay and a non-attacker’s Bitcoin
peer which went offline8. In this case the Bitcoin client will wait until the
connection times-out which can be up to two minutes (see section 2.1.2).
This delay on the surface looks like taking prohibitively long time. However
since during these two minutes Tor rebuilds new circuits every 10-15 seconds,
trying new Exits at random, it actually makes the attacker’s life easier. It
increases the chances that malicious Exit relay will be chosen.

Handling unreachable Bitcoin peers. Before estimating the delays we consider
case 4 in more detail. Our experiments show that for a Bitcoin client which was
already used several times prior to the connection over Tor, the address database
contains 10,000 – 15,000 addresses and the fraction of unreachable Bitcoin peers
among them is between 2/3 and 3/4. Abundance of unreachable addresses means
that case 4 is the most frequent scenario for the client. Consider a client which
chose an unreachable Bitcoin server and a non-attacker’s Exit node.
The Exit relay can send either:9
1) An END cell with “timeout” error code. In case of a “timeout” message, Tor
sends a “TTL expired” SOCKS error message to the Bitcoin application which then
tries another Bitcoin peer.
2) An END cell with “resolve failed” error code10. In case of “resolve failed” message,
Tor drops the current circuit and tries to connect to the unreachable Bitcoin peer
through a different Exit node. After 3 failed resolves, Tor gives up and sends
a “Host unreachable” SOCKS error code, which also results in Bitcoin trying a
different peer.
3) The third and the most common option is that the exit relay will not send any
cell at all during 10-15 seconds. As was described in the Background section that

8Or never really existed: Bitcoin allows storing fake addresses in client addresses database.
9This is based on the Tor source code analysis (v0.2.5.10) and monitoring a running Tor instance.

10We observed this behaviour not only for hostnames but also for IP addresses.
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Figure 5.10: Client’s state after the main steps of the attack

in case the Exit node does not send any reply within 10 or 15 seconds (depending
on the number of failed tries) along the circuit attached to the stream, Tor drops
the current circuit and attaches the stream to another circuit (or to a newly built
one if no suitable circuits exist). In case Tor cannot establish connections during
125 seconds, it gives up and notifies Bitcoin client by sending a “General failure”
SOCKS error message. Bitcoin client then tries another peer.

Delays. The facts that a) Tor tries several different circuits while connecting to
unreachable peers and b) the fraction of unreachable peers in the client’s database is
very large, significantly increases the chances that a malicious Exit node is chosen.
The attacker only needs this to happen once, since afterwards all connections to
the other Bitcoin peers will be established through this Tor circuit; Bitcoin client
will work even with one connection. On the other hand, unreachable nodes increase
the delay before the user establishes its first connection. This delay depends on the
number of attacker’s Bitcoin peers and on how often the user chooses new circuits.

In order to estimate the latter, we carried out the following experiment. We
were running a Bitcoin client over Tor and for each connection to an unreachable
Bitcoin client we were measuring the duration of the attempt and the number of
new circuits (and hence different Exit nodes). The cumulative distribution function
of the amount of time a Bitcoin client spends trying to connect to an unreachable
node is shown in Fig. 5.11. On the average a Bitcoin peer spends 39.6 seconds trying
to connect to an unreachable peer and tries to establish a new circuit (and hence a
different Exit node) every 8.6 seconds. This results in 4.6 circuits per unreachable
peer on the average.

We now estimate how long it will take a user on the average to establish his first
connection to the Bitcoin network. This delay obviously depends on the number of
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Figure 5.11: Time spent connecting to an unreachable node

the attacker’s Bitcoin peers and the amount of bandwidth of her Tor Exit relays.
We adopt a simple discrete time absorbing Markov chain model with only three
states (see Fig. 5.12):

• State 1: the Bitcoin client tries to connect to an unreachable peer;

• State 2: the Bitcoin client tries to connect to a reachable Bitcoin peer banned
by the attacker;

• State 3: the Bitcoin client tries to connect to an attacker’s Bitcoin peer or
chooses an attacker’s Tor Exit node. State 3 is absorbing state, once it is
reached, the user thinks that he connected to the Bitcoin network (while he
is now controlled by the attacker).

1 2

3

0.482 0.336

0.248

0.651

0.270 0.013

Figure 5.12: Delay before the first connection. Markov chain with probabilities for
400K of Exit capacity and 100 malicious Bitcoin peers. The client spends about
0.5 seconds in State 2 and about 40 seconds in State 1

After composing the fundamental matrix for our Markov chain, we find the average
number of steps in two non-absorbing states. Taking into account the average
amount of time spent by the user in each of the states (we use our experimental
data here), we find the average time before the absorbing state. We compute this
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time for different number of Bitcoin peers and Tor Exit relay bandwidth. The
results are presented in Fig 5.13. We have taken a conservative estimate that the
fraction of unreachable Bitcoin peers in the client’s database is 2/3 = 66%, also the
client spends only about 0.5 seconds in State 2 and about 40 seconds in State 1.
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Figure 5.13: Average time before the first connection

Fig. 5.13 shows that an attacker having 100,000 of consensus Exit bandwidth and
1000 Bitcoin peers is able to carry out the attack while keeping the average delay
below 5 minutes. For example an attacker controlling a small botnet can afford
that many peers (she will need 1000 peers with public IPs or supporting UPnP
protocol). An attacker having consensus weight of 400,000 and very few peers can
decrease the average delay to about two minutes. Such a bandwidth is achievable
by an economy level attacker as will be shown later in this section.

The line corresponding to 4000 attacker’s Bitcoin peers in Fig. 5.13 is not as
unrealistic as it may seem. Recall (see Section 2.2.3) that each Bitcoin peer address
can go to up to 4 “new” buckets at client’s side. This can be used by a persistent
attacker to increase the choice probability for her peers by a factor 4 (in the best
case) which means an attacker can have significantly less than 4000 peers.

Clients with empty addresses cache. As was pointed in Section 2.2.3, all IPv4
and IPv6 addresses received from DNS-oneshots are dropped by a Bitcoin client if
Tor is used. If the addresses database of a client is empty and all the seed nodes
are banned, the client can connect to hidden services only.

Attack Costs

Tor Exit nodes. During July 2014 we were running a non-Exit Tor relay for 30 USD
per month. We set the bandwidth limit of the relay to 5 MB/s which resulted in
traffic of less than 15GB per hour. The consensus bandwidth of this relay fluctuated
between 5,000 and 10,000 units11. While the total weighted consensus bandwidth
of all exit nodes was about 7 million units, the weighted consensus bandwidth of

11A unit roughly corresponds to 1 KB/s of traffic.
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relays allowing exiting at port 8333 was about 5.7 million units. Assuming that
we could achieve 5,000 – 10,000 units in the consensus for an Exit node this gives
the probability of 0.08%-0.17% for our relay to be chosen for Exit position by a
user. Given that 10 TB of traffic is included into the server’s price and one has to
pay 2 EUR per additional 1 TB, it would cost an attacker 360 USD to have 180
TB of traffic per month. The corresponding speed is 69 MB/s (69,000 consensus
bandwidth units). By running 6 such relays the attacker can achieve 400K of
bandwidth weight in total for the price below 2500 USD (2160 USD for the traffic
and 240 for renting fast servers).

Thus having a consensus weight close to 400,000 is possible for an economy-
level attacker. The attacker can also decide to play unfair and mount a bandwidth
cheating attack which would allow her to have a high consensus weight while keeping
the budget of the attack even lower [31]. This is especially possible since Bitcoin
traffic by itself is rather lightweight and high bandwidth would be needed only in
order to drive Tor path selection algorithm towards attacker’s nodes.

Bitcoin peers. The attack described in this section suggests the attacker injects
a number Bitcoin peers; at the same time Bitcoin network allows only one peer
per IP address. Thus the attacker is interested in getting as many IP addresses
as possible. Currently there are several options. The cheapest option would be
to rent IP addresses on per hour basis. The market price for an IP address is
1 cent per hour [74]. This results in 7200 USD per 1000 IP’s per month. From
these computations it is clear that an attacker would do better by investing in Exit
bandwidth rather than running Bitcoin peers (unless she controls a small botnet),
and the only limitation for her would be not to become too noticeable.

5.2.5 Countermeasures

These attacks are very effective due to a feature of Bitcoin which allows an easy
ban of Tor Exit nodes from arbitrary Bitcoin peers. One possible countermeasure
against Tor-ban could be to relax the reputation-based DoS protection. For example
each Bitcoin peer could have a random variable, which would decide whether to turn
ON or OFF the DoS protection mechanism with probability 1/2. As a result the
attacker might be able to DoS at most half of the network, but on the other hand
he will not be able to ban any relays or VPNs from all the Bitcoin peers.

An obvious countermeasure would be to encrypt and authenticate Bitcoin traffic.
This would prevent even opportunistic man-in-the-middle attacks (i.e. even if the
user is unlucky to choose a malicious Exit relay). Another possible countermeasure
is to run a set of “Tor-aware” Bitcoin peers which would regularly download Tor
consensus and make sure that Bitcoin DoS countermeasures are not applied to
servers from the Tor consensus. K. Atlas [35] implemented a similar countermeasure
(which maintains historical record of Tor exit nodes used to connect to the Bitcoin
network.)

Finally, Bitcoin developers can maintain and distribute a safe and stable list of
onion addresses. Users which would like to stay anonymous should choose at least
one address from this list. There currently exists a short and not up-to-date list of
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Bitcoin fallback onion addresses [51]. Another advice for a user would be to run
two Bitcoin nodes, one over Tor and one without, and compare their blockchains
and unconfirmed transactions. This would prevent from creation of virtual reality
for Tor-only users.

5.3 User fingerprinting

In this section we describe a technique which can be used to fingerprint Bitcoin
users by setting an “address cookie” on their computers. A cookie can be set and
checked even when the user connects to the Bitcoin network through Tor or through
a chain of proxies. It can be used to correlate different transactions of the same
user even across different sessions (i.e. after his computer was rebooted). If the user
decides later to send a non-sensitive transaction without Tor, his fingerprint can be
correlated to his IP address, thus deanonymizing all his transactions sent previously
through Tor. From April 2015 Bitcoin implements a countermeasure which
prevents an attacker from requesting fingerprint from clients.

5.3.1 Setting cookie

The fingerprinting technique is based on the Bitcoin’s peer discovery mechanism.
More specifically on that a Bitcoin peer stores addresses received from other peers
and on that his database can be queried.

As was described in section 2.2.3 whenever a peer receives an unsolicited ADDR
message, it stores the addresses from this message in his local database. The at-
tacker can use this fact as follows. When a client connects to an attacker’s peer,
the peer sends him a unique combination of possibly fake addresses (address cookie
or fingerprint; we will use these two terms interchangeably below). Unique non-
existent peer addresses work best, however a more sophisticated and more stealthy
adversary may use existing Bitcoin peer addresses as well (exploiting the combi-
natorics of the coupon collector problem). The client stores these addresses and
the next time he connects to (another) malicious peer, the peer queries his address
database. If the fingerprint addresses are present in the set of retrieved addresses,
the attacker identifies the user.

Consider a user c and assume that one of the attacker’s servers is among the
user’s entry nodes. The attacker executes the following steps:

1. Send a number of GETADDR messages to the user. The user should reply with
ADDR messages.

2. Check the received from the client addresses if they already contain a finger-
print. If the user already has a fingerprint, stop. Otherwise go to the next
step.

3. Generate a unique combination of N fake addresses FP and send them in
an ADDR message to the client. The ADDR message should contain at least 11
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addresses so that it is not forwarded by the client. If N is less than 11, pad
the message with 11−N legitimate12 addresses.

4. If the user connects to the Bitcoin network directly (i.e. without Tor), store
the correspondence between the client’s IP address and his fingerprint as a
tuple (FP, IPc). If the user connects through Tor save him as (FP,NIL).

There is a detail of the Bitcoin protocol which an attacker should take into
account. When a client connects to the Bitcoin network over Tor, he will accept
and store in his database OnionCat addresses only (thus ignoring IPv4 addresses).
It means that in case of Tor, the fingerprint generated by the attacker should
consist of OnionCat addresses only. On the other hand when a client connects to
the network directly, he will ignore non-IPv4/IPv6 addresses. Hence an attacker
should generate a fingerprint consisting of IPv4 addresses only. This results in that
an attacker needs to store 2 different types of cookies: OnionCat and IPv4. At the
same time, a client does not limit the types of addresses he sends as a reply to a
GETADDR message. This means that once a cookie was set it can be queried both
over Tor and directly.

5.3.2 Extracting cookie

The remaining question is how many GETADDR messages an attacker needs to send
to the client to learn that the database of this client contains a cookie. According
to [30], section 9.2 it can be up to 80 messages to retrieve the full collection of
client’s addresses. However in practice we will not need to collect all the addresses
in a fingerprint, which significantly reduces the number of requests. About eight
GETADDR messages would be sufficient to retrieve about 90% of the cookie addresses.
This shows that the cookie can be checked without raising suspicion.

5.3.3 Low-resource Sybil attacks on Bitcoin

A client needs to connect directly to one of the attacker’s nodes in order for the
attacker to set/refrech the cookie or to reveal the client’s IP address and thus
deanonymize his previous transactions done over Tor. Bitcoin as a peer-to-peer
network is vulnerable to Sybil attacks and just operating many Bitcoin servers
means that a client will sooner or later choose an entry node controlled by the
attacker (i.e. in some number of sessions). However running too many servers can
be costly (see section 5.2.4 for attack cost estimation). Fortunately for the attacker
there are a couple of ways to prevent Bitcoin clients from using non-attacker’s
Bitcoin servers (and choose an attacker’s one instead).

Exhausting connections limit

As described in section 2.2.3, by default a Bitcoin server accepts up to 117 con-
nections. Once this limit is reached all new incoming connections are dropped. At

12By legitimate we mean that there are some Bitcoin servers running at these addresses.
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the same time a Bitcoin server neither checks if some of these connections come
from the same IP address13, nor forces clients to provide proof-of-work. As a re-
sult a low-resource attacker can establish many connections to all but his Bitcoin
servers14 and occupy all free connection slots. If a client connects directly to a Bit-
coin server connection slots of which are occupied, the connection will be dropped
immediately, thus the client will soon end up connecting to a malicious peer. This
straightforward attack has been known in the Bitcoin community.

Port poisoning attack

A less effective but much stealthier new attack exploits the following fact. Peer
addresses are of the following form (IP,PORT). However when a client decides if
to add a received address to the database, he does not take the port number into
account. For example assume a client receives an address (IP0, PORT1) and there
is already an entry in the client’s database (IP0, PORT0). In such case the client
will keep (IP0, PORT0) and will not store (IP0, PORT1).

The attacker can use this fact to flood with clients with addresses of legitimate
Bitcoin servers but wrong port numbers. If the attacker is the first to send such
addresses, the client will not be able to connect to legitimate nodes.

5.3.4 Attack vectors

Deanonymization of Bitcoin over Tor users. Consider the following case.
A client uses the same computer for sending both benign Bitcoin transactions and
sensitive transactions. For benign transactions the user connects to Bitcoin directly,
but for sensitive transactions he forwards his traffic through a chain of Tor relays or
VPNs. If an attacker implements the attack described in section 5.2.2, all client’s
sensitive transactions with high probability will go through attacker’s controlled
nodes which will allow her to fingerprint the user and record his transactions.
When the client later connects to the Bitcoin network directly to send benign trans-
actions, he will with some probability choose an entry node controlled by the at-
tacker (in section 5.3.3 we showed how to increase this probability). Once it hap-
pens, the attacker can query the client for the fingerprint and thus correlate his
sensitive transactions with his IP address. Note that even if the attacker is not
implementing the complete man-in-the-middle attack on Tor, but just injects Sybil
peers and Sybil hidden services she will be able to link many sensitive transactions
to the real IP addresses of users.
Linking different Tor sessions. In the case, when a client uses a separate com-
puter (or Bitcoin data folder15) to connect to Bitcoin through Tor, the attacker will
not be able to learn his IP address. However, the attacker will still be able to link
different transactions of the same user. This can be done even across different ses-

13One explanation is that if clients are behind the same NAT they will share the same IP address.
14The list of all running Bitcoin servers can be obtained from e.g. [38].
15A Bitcoin data folder is a directory where Bitcoin clients store their wallets and dump IP

address databases between restarts.
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sions (computer restarts). This will in turn allow the attacker to correlate different
Bitcoin addresses completely unrelated via transaction graph analysis.
Domino Effect. Tor multiplexes different streams of the same user over the same
circuits. This means that if the source of one stream in the circuit is revealed by
the fingerprinting attack, all other streams will also be deanonymized. Specifically,
it is likely that a user who sends a sensitive Bitcoin transaction through Tor, will
also browse a Darkweb site. Similar result was also noted in [23] but in relation
to Bittorrent over Tor privacy issues. To prevent this it is recommended to enable
option IsolateSOCKSAuth when running Tor (this will prevent sharing circuits with
streams for which different SOCKS authentication was provided).

5.3.5 Analysis. Stability of Cookie

According to the Bitcoin core [48] source code (v0.9.2), at the startup when a
client establishes outgoing connections he sends GETADDR messages, and gets back
a set of addresses (typically 2,500, the maximum possible number per GETADDR
request). Given 8 outgoing connection, the client will receive up to 20,000 non-
unique addresses. These addresses can potentially overwrite the address cookie
previously set by an attacker. Below we will try to estimate how this affects the
stability of the cookie. Assume that an attacker managed to set an address cookie
on a user’s computer and disconnected (e.g. the client ended the session). The
client then establishes a new session sometime later.

First note that if the user reconnects to Bitcoin over Tor and if the attacker has
mounted the attack from section 5.2.2, he controls all user’s traffic and the cookie
is preserved. Let us now describe what happens if the client decides to connect to
the Bitcoin network directly.

When a client receives an address IPin he first checks if it is already contained
in his database. If yes, he does nothing (thus the cookie is not damaged). In case
it is a new IP address the client executes the following procedure. He computes the
bucket number (see section 2.2.3) based on the peer which sent the address and the
address itself. If this bucket contains a “terrible”16 address IPterrible, it is replaced
by IPin. Otherwise 4 random addresses are chosen from the bucket and the one
with the oldest timestamp is replaced by IPin.

In other words, in order for the incoming address IPin to replace a cookie address
IPcookie

17 the following conditions should hold:

1. IPin should not be in the user’s database;

2. IPin should belong to the same bucket B as IPcookie and there should be no
“terrible” addresses in B;

3. IPcookie should be among the four randomly chosen addresses, and its times-
tamp should be the oldest.

16An address is called terrible if any of the following holds: 1) its timestamp is 1 month old or
more than 10 minutes in the future; 2) 3 consecutive connections to this address failed.

17A cookies consists of several IP address, but in order to make the explanation simpler, we use
just one address here.
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These conditions as we will see below make the attacker’s cookie quite stable for
many hours (this also depends on the number of user sessions since at each startup
the address database is refreshed).

In order to estimate the probability that a cookie address set by the attacker
is preserved we conducted the following experiment. In November 2014 we queried
running Bitcoin servers by sending them GETADDR messages. We received 4,941,815
address-timestamp pairs. Only 303,049 of the addresses were unique. This can be
interpreted as that only about 6% of the addresses received by a client will not be
already contained in his database (if the client re-connects immediately).

As the second step, we looked at the timestamp distribution of the non-unique
address set. This distribution can serve as approximation of the distribution of
address timestamps of a client’s database. The results are shown in Table 5.2: 89%
of addresses had a timestamp more than 3 hours in the past. Taking into account
conditions stated above, it almost guarantees that the attacker’s cookie will not be
damaged within the first 3 hours. For 45% of addresses the timestamp was older
than 10 hours (which is the duration of a working day); 9% of addresses were older
than 1 week.

Address age, hours 1-CDF
3 89%
5 77%
10 45%
15 28%
24 19%
36 15%
48 13%

72 (3 days) 12%
168 (1 week) 9%

Table 5.2: Complementary Cumulative distribution function for addresses times-
tamps, November 2014

The results above could be summarized as follows: (1) there is a high chance
that an address received by a client will already be contained in his database,
which keeps the cookie intact; (2) if a cookie IP address is among the 4 nominees
for erasing, it is likely that its timestamp will be fresher than that of at least one
of other nominees (and thus will not be erased).

Finally we conducted the following experiment. We set a cookie consisting of 100
IPv4 addresses and monitored how stable this cookie was across different sessions.
Table 5.3 shows the decay rate of the number of cookie addresses over time and
sessions. Note that by session we mean that the client switches off Bitcoin software
and switches it on again, which forces him to make 8 new outgoing connections and
retrieve up to 20,000 addresses.
The experiment shows that even after 10 sessions (i.e. after reception of about
200,000 non-unique IP addresses) and 8 hours, one third of the fingerprint remained
in the user’s database (thus it will be possible to identify the client). Note that
sessions 9 and 10 took 2 and 2.5 hours. On the average an attacker will need about
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Session number Time since start, hours Remaining addresses
1 0 100
2 0.5 100
3 1 100
4 1.5 100
5 2 100
6 2.5 100
7 3 98
8 3.5 92
9 5.5 50
10 8 36

Table 5.3: Address cookie decay rate (example)

90 peers (given that at the time of writing there are about 7,000 Bitcoin servers) to
become one of the client’s entry nodes during any of these 10 sessions and update
the fingerprint. Running this number of peers will cost the attacker less than 650
USD per month (see section 5.2.4).

In another experiment we checked that in the case of two sessions with 10 hours
between sessions, our client kept 76% of the initial fingerprint addresses, and in
the case of 24 hours between two sessions 55% of the initial fingerprint were kept
(which again allows the user identification). In order to carry out the experiments
from this section we built our own rudimentary Bitcoin server which is able to con-
nect/accept connections to/from Bitcoin peers and is capable of sending/receiving
different Bitcoin messages on demand. We used this server as a malicious Bitcoin
server which sets new address cookies and checks previously set cookies. In order
to simulate a user we used the official Bitcoin core software (v0.9.2). The attack
from this section was experimentally verified by tracking our own clients in the real
Bitcoin and Tor networks.

5.3.6 Countermeasures

With regards to the fingerprinting attack several countermeasures are possible.
First, Bitcoin peers can request performing proof-of-work computation for each
sent GETADDR message, so that it becomes computationally expensive for an at-
tacker to query each client. Second, according to the Bitcoin core source, the only
time when a client sends a GETADDR message is when he establishes an outbound
connection. Thus ignoring GETTADDR requests on outbound connections will not
change the usual operation of Bitcoin networking protocol and will prevent the
attacker from requesting the fingerprint18. Finally an immediate countermeasure
would be to remove the cached address database file before each session and to use
only trusted hidden-services.

18We implemented this countermeasure and submitted the corresponding patch.



Chapter 6

Proof-of-Work as Anonymous
Micropayment

In this chapter we describe a way to use the existing Tor and Bitcoin infrastructures
to make anonymous transactions. Clients of a service do not pay with electronic
cash directly but submit proof of work shares which the service can resubmit to
a crypto-currency mining pool. The service credits users who submit shares with
tickets that can later exchanged for goods. Both shares and tickets when sent
over Tor circuits are anonymous. The proposed scheme has the following desirable
properties: (1) it does not rely on a central bank; (2) it preserves user anonymity;
(3) it removes a psychological barrier since clients do not pay directly (and thus the
risk of their money being stolen is removed); (4) unlike Bitcoin transactions which
have to be stored in the public blockchain, there is no reason to store shares1.

The scheme was specifically designed to reward Tor relay operators for provid-
ing improved quality of service but the same approach can be adopted to accept
mircopayments for any other service.
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6.1 Proof-of-Work as payment for service

6.1.1 Design goals

The main objective of the proposed scheme is to compensate Tor relays for pro-
viding improved service and to encourage server operator’s participation in the Tor

1Unless a share also solves a block.
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network. In addition, we require the following properties. First, the scheme should
not degrade the anonymity provided by Tor, i.e. it should not introduce new attack
vectors. Second, it should not involve direct payments neither with fiat nor with
crypto-currencies. The reason for this is that direct payment even with a digital
currency like Bitcoin will reduce user privacy and may become a strong psycholog-
ical obstacle for adopting a scheme for ordinary users. Third, it should not rely
on secure bandwidth measurement mechanisms. Fourth, it should not involve a
central bank as in [22]. Sixth, the scheme should not require from users to run a
Tor relay in order to get improved service. We analyse these properties in more
detail in section 6.2.

6.1.2 System design

Tor users can get improved service from a Tor relay by producing proof-of-work
and sending it to the relay over an anonymous Tor circuit. The relay can then
forward this proof-of-work to a crypto-currency mining pool and earn coins. Users
are rewarded by relay-specific priority tickets which can later be exchanged at the
same relay for improved service (higher bandwidth or lower latencies). Tickets are
issued by relays using blind signatures [6] and exchanged between users and relays
over anonymous Tor circuits. Unlike [22] we do not use any bank entity and tickets
are blind-signed by relays themselves.
Setup. In the setup phase a Tor relay first chooses a mining pool, the corre-
sponding crypto-currencies and PoW algorithms (note that the relay can choose
a pool which automatically switches to the most profitable currencies). Second,
the relay generates a public/private key pair which will be used in generation of
priority tickets (this key pair should be different from the relay’s onion and identity
keys). The relay then includes this information into its descriptor. A client which
plans to obtain improved service chooses relays which announce compatible PoW
algorithms.

Protocol 1. Ticket Purchase: Client C obtains a priority ticket from relay R
1: C → R : SUBSCRIBE message.
2: R→ C : JOB message.
3: C : start mining a share.
4: C : If share w is found, generate random number x and its hash H(x).
5: C → R : w, H(x).
6: R : check w, if correct pass it to the mining pool.
7: R ↔ C : Generate partially blind signature S over {H(x), d}, where d is an

assigned by the relay timestamp, which specifies the current day.
8: C: Keeps the ticket TR = {S, d, x,H(x)}.

Purchasing priority tickets. A relay will provide improved service for clients in
exchange for priority tickets. Priority tickets are relay-specific which means that by
default they can only be used to purchase service from the relay which issued them
(see Protocol 2 if ticket exchange is required). The protocol for client C to obtain
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a ticket from relay R is described in Protocol 1. Prior to execution of the protocol,
the client establishes an anonymous Tor circuit to the relay. All communications
are carried over this circuit, including (optionally) the future client traffic. Client
C registers for a new mining job with relay R and the relay sends a reply in which
it specifies the PoW algorithm, difficulty per share, and data sufficient to construct
a share (steps 1–2). At step 3, the client starts solving a new share. At steps
4–5 (given that the client solved the share), the client generates a random value
x and its hash H(x) and sends the share to R. The relay verifies the share and
produces a partially blind signature S over H(x) with timestamp d as an added
factor according to [11]. The tuple T = {S, d, x,H(x)} is a priority ticket which
the client can later exchange for the improved service. By reducing the granularity
of the timestamp to just the current date makes all clients that got tickets on the
same day undistinguishable.
Buying improved service. Every ticket that a client gets can be used to transmit
cells with priority access during ∆t seconds through the Tor relay which issued the
ticket. In order to prevent double-spending, the relay should keep history of spent
tickets. To limit the size of this database tickets should expire after e.g. 48 hours.
Priority access. We suggest using Hierarchical Token Bucket Algorithm [61] to
provide improved quality of service for users with priority tickets, however other
options exist [18]. HTB is a simple algorithm and it is a logical step from the
currently employed by Tor Token Bucket algorithm. The priority access scheme
should allocate enough resources for “free” users so that people without funds to
buy high-speed computers can still have reasonable QoS with Tor.

In Hierarchical Token Bucket the bandwidth is allocated to one or more classes,
and when a class-allocated bandwidth is exceeded, it can temporarily “borrow”
unused bandwidth from another class. Classes form a tree structure in which only
leaves have corresponding packet queues. Each class C has associated guaranteed
rate RC and Ceil rate CRC . Class C is guaranteed to have at least rate RC . The
rate of a parent class should not exceed the sum of the rates of its children classes.
CRC specifies the maximum speed that class C can have by borrowing from its
parent class. Classes borrow unused bandwidth in proportion to their allocations.

Consider an example in Figure 6.1 in which a relay is willing to provide up to 10
Mpbs for Paid and Free services in total. The guaranteed rate for Free service is 2
Mpbs; the total rate for Paid service is 8 Mbps which is later divided between two
different users based on the number of tickets they pay. Consider two examples.
In the first example a relay does not have any paid clients in which case the relay
increases the bandwidth for Free service to 4 Mbps by borrowing from the Paid
class. In the second example the relay has very few free clients which consume only
1 Mbps while classes Group1 and Group2 require 6 Mbps and 4 Mpbs respectively.
In this case class Group1 will be given additional 0.625 Mpbs and class Group2 will
take 0.375 Mbps.
Ticket exchange. So far in the proposed scheme a client gets tickets from the
same relay R1 for which he is working, and the tickets are valid at this relay only.
Such scheme works best if the client provides proof-of-work simultaneously with
sending his data over Tor. Assume now that a client pre-mined priority tickets
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Link

Free Paid

Group1 Group2

rate: 10 Mbps

rate: 2 Mbps
ceil: 4 Mbps

rate: 8 Mbps
ceil: 10 Mbps

rate: 5 Mbps
ceil: 10 Mbps

rate: 3 Mbps
ceil: 10 Mbps

Figure 6.1: Hierarchical Token Bucket example: the link of 10 Mbps is divided
between paid and free services. Free circuits will share either 2 Mpbs or 4 Mbps
if there are no paid clients. Paid clients can get the whole capacity of 10 Mbps if
there are no free users.

with an intention to spend them later. He might become frustrated if at the time
when he decides to spend them relay R1 is off-line. In such a case relay R1 may
team with a backup relay R2 and ask it to accept its priority tickets. R2 can later
request payment from R1 in crypto-coins or by redirecting his clients to mine for
R2. Protocol 2 describes how priority tickets issued to client C by relay R1 can be
spent at relay R2. When relays R1 and R2 are both online they synchronise their
databases of spent tickets.

Protocol 2. Ticket Exchange: C gets improved service at R2 by providing a
ticket issued by R1
Client C obtained ticket TR1 = {S1, d, x,H(x)} from relay R1. R2 is a backup relay
for R1

1: C → R2 : TR1

2: R2 : verify signature S1 and timestamp d.
3: R2: If correct, register TR1 as spent (sync this with R1).
4: R2 : If TR1 is correct, provide priority access.
5: R2 → R1 : PAYMENT_REQUEST (Once every N served tickets).

Assume that client C has ticket TR1 = {S1, d, x,H(x)} issued by relay R1. The
objective of the Protocol 2 is for the client to be able to get improved service from
relay R2 while preserving the following properties: (1) A colluding client and relay
should not produce “free” tickets which can later be used at other relays; (2) Double
spending of the same ticket at two different relays should be prevented.

“Free” tickets created by colluding client C and relay R1 are avoided by that R2
requests payment for each batch of N served tickets (either in crypto-coins or by
delegating new mining work). We can envision that in practice relays R1 and R2
might be run by the same operator or by two operators, who trust each other. In
the second case the amount of trust can be regulated by the size of N . In case R1
stops paying, relay R2 will stop accepting its tickets. In order to prevent double-
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spending of the same ticket at relays R1 and R2 they should regularly synchronise
their databases of spent tickets.
Mining strategies. The operator of a Tor relay which accepts PoW shares has two
possibilities. First, he can decide to do solo-mining, by making his crypto-currency
address a part of JOB messages sent to clients in the hope that one of the submitted
shares will also solve a block. This strategy requires significant computational power
at a large number of Tor clients. Second, the Tor relay operator may decide to ask
for work from a large mining pool and then delegate this work to clients. The
operator then resubmits the shares found by the clients to the mining pool. Note
that the mining pool requests the relay to generate a share of difficulty lower than
the current block’s difficulty in the hope that one share will also solve the block. The
Tor relay may use the same strategy towards Tor clients: it may request to generate
PoW with difficulty lower than that indicated by the mining pool in the hope that
a client’s PoW will also solve the mining pool’s share. With this approach the Tor
relay may regulate how many tickets are issued to different clients, proportional to
their mining power.
Donations. Clients that just want to support Tor relays without requesting any
bandwidth can submit shares without requesting anything back.
Implementation considerations. The scheme proposed in this paper requires
several modifications to the Tor protocol and bundling Tor with crypto-currencies
mining software. It introduces the following new Tor cells:

• RELAY_MINING_REGISTER2– by sending this message a user asks a Tor relay
to send him mining jobs.

• RELAY_MINING_JOB – a Tor relay uses this message to send mining jobs to
clients.

• RELAY_TICKET – used by Tor relays to (1) send material (blind signed) to
clients for producing a priority ticket, (2) to notify backup relays about spent
tickets; used by Tor clients to send priority tickets and request improved
service from a relay.

In addition our scheme requires:

• Replacing currently used Token Bucket algorithm with Hierarchical Token
Bucket algorithm.

• Implementing a partially blind signature module.

• Keeping track of spent tickets.

• Synchronizing a relay’s spent tickets database with its backup relay.

At the client side, Tor should be bundled with a crypto-currency miner software
(e.g. [34] or [43]). At the relay side, Tor should be bundled with both miner and

2The described message sequence borrows from Stratum protocol http://mining.bitcoin.cz/
stratum-mining.

http://mining.bitcoin.cz/stratum-mining
http://mining.bitcoin.cz/stratum-mining
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mining pool software (e.g. [63]). Tor control port should also be extended to enable
communication between Tor and mining software. Note that it is not necessary to
develop new mining software, but rather bundle existing projects with Tor.

6.2 Analysis

6.2.1 Profitability

Motivation. According to the performance statistics maintained by the Tor project3

[79], it takes roughly between 10 and 15 seconds to download a 5MB file over the
Tor network on average (which results in 333 KB/s). While such speeds are likely to
be enough for general Web-surfing they might be frustrating for bulk file downloads,
watching videos, or having a video conference [58]. The later types of traffic could
be the reason why Tor clients may decide to get improved service from Tor relays.
This might be especially true for Bittorrent users. Bittorrent over Tor has been
problematic for both Bittorrent users and Tor relay operators: users did not get
enough speed, and Tor operators are concerned that bulk file downloads consume a
lot of bandwidth and thus decrease Quality of Service (QoS) for Web-surfing users.

Another reason why a Tor client would want to have higher capacity/lower
delays is to improve QoS for his hidden services. The current version of Tor Hidden
Services suffers from high delays and low speeds [57] which significantly reduces the
number of users.
Choosing crypto-currencies There are more than 400 different crypto-currencies
by September 2014 [44] (however only few of them achieved noticeable market cap-
italisation and are less susceptible to huge fluctuations in market value towards
fiat currencies). According to [42] and [87] the following PoW algorithms are used
in existing crypto-currencies: Blake-256, Groestl, HEFTY1, JHA, Keccak, Neo-
Scrypt, Quark, Scrypt, Scrypt-Adaptive-Nfactor, Scrypt-Jane, SHA-256, X11, X13
(see Table 6.1).

Profitability of mining a digital currency obviously depends on the miner’s hash-
rate, price of electricity, the currency’s difficulty, and its current market price. The
miner’s hash-rate can vary significantly depending on hardware. Table 6.2 shows
hash-rates achievable for different algorithms on Intel Core i7-2760QM (4 cores
at 2.40GHz). The table also includes maximum revenue4 for each algorithm for
the 1st of September 2014 according to [42] (averaged over multiple observations).
Electricity costs are estimated to be 11 cents per day given that max power of
the CPU is 45W. During the day we also observed short periods of time when
the revenue jumped to 11 cents per day. Also note that hash rates achievable on
GPU’s can be an order of magnitude higher. We assume that an average user of
our protocol does not use ASICs.
Profit estimation. In order to estimate5 how much a Tor relay can earn using

3For June – September 2014.
4Revenue can be smaller when trying to exchange due to small market size.
5These are of course very rough estimates: it’s not possible to learn the current hardware of

Tor users, estimate the fraction of non-botnet Tor users, the number of Tor users which would be
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Blake-256 BlakeBitcoin Blakecoin Dirac Electron Photon
Groestl Diamond Groestlcoin
HEFTY1 Heavycoin Mjollnircoin

JHA JackpotCoin
Keccak 365coin Maxcoin Slothcoin Cryptometh

NeoScrypt Phoenixcoin

Quark CNotes Quark Securecoin Animecoin BitQuark
Diamondcoin

Scrypt

42 Alphacoin Anoncoin Auroracoin BBQCoin Bitbar
Bottlecaps Casinocoin Catcoin CHNCoin

CryptogenicBullion DigiByte Digitalcoin DNotes
Dogecoin Earthcoin Einsteinium Emerald Fastcoin
Feathercoin Franko Globalcoin Goldcoin Grandcoin
HoboNickels Infinitecoin Klondikecoin Krugercoin
Litecoin Luckycoin Lycancoin Megacoin Mincoin
Myriadcoin-Scrypt Nautiluscoin Netcoin Noblecoin
Noirbits Novacoin Nyancoin Potcoin Quatloo Razor
Reddcoin RonPaulcoin Rubycoin Sexcoin Stablecoin
Starcoin Tagcoin Teslacoin USDe Viacoin Worldcoin

Scrypt-
Adaptive-
Nfactor

Entropycoin Execoin GPUcoin Murraycoin
ParallaxCoin SiliconValleyCoin Spaincoin Spots

Vertcoin VirtualMiningCoin VertCoin
Scrypt-Jane
(Scrypt-
Chacha)

YaCoin Ultracoin Velocitycoin

SHA-256

Battlecoin Betacoin BigBullion Bitcoin Bytecoin
Curecoin Devcoin eMark Fireflycoin Freicoin Ixcoin
Joulecoin Mazacoin Myriadcoin-SHA-256 Namecoin
OpenSourcecoin Peercoin SaveCoin Takcoin Teacoin
TEKcoin Terracoin Tigercoin Unobtanium Zetacoin

X11
ConspiracyCoin Cryptcoin Darkcoin Fractalcoin
GlobalDenomination Hirocoin Karma Logicoin

Smartcoin Vootcoin X11coin
X13 MaruCoin BoostCoin X13Coin

Table 6.1: Proof-of-work algorithms and corresponding crypto-currencies
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Hashing
algorithm

Rate on Intel
Core i7-2760QM Currency Revenue per day

Blake-256 9,6 Mh/s Blakecoin n/a
Groestl 1 Mh/s Diamond 2.1
HEFTY1 128 Kh/s Heavycoin n/a

JHA 308 Kh/s Jackpotcoin 2.2 cents
Keccak 5.2 Mh/s Maxcoin 0.7 cents
Quark 300 Kh/s CNotes 3.8 cents

Scrypt 40 Kh/s
42 0.8 cents

Litecoin 0.65 cents
Dogecoin 0.26 cents

Scrypt-N 20 Kh/s Vertcoin 2.3 cents
Scrypt-Jane 360 h/s Yacoin n/a

SHA-256d 9.6 Mh/s Peercoin 0.01 cents
Bitcoin 0.008 cents

X11 360 Kh/s Smartcoin 3.8 cents
Darkcoin 2.5 cents

X13 104 Kh/s Marucoin n/a

Table 6.2: Hash rates of the proof-of-work algorithms on Intel Core i7-2760QM

the proposed scheme we first make the following assumptions:

• Among 2,000,000 daily Tor clients (according to the Tor statistics), only
500,000 are real users and the rest belong to botnets [89]. I.e. only 500,000
users can mine.

• Moreover we assume that each user’s session takes about 1 hour and every
user is willing to mine with a hash-rate similar to that from Table 6.2. The
later implies that clients will spend 100% of CPU on mining during 1 hour
period. If clients decide to use less fraction of their CPU, the revenue of a
Tor relay will decrease proportionally.

Income of a Tor relay obviously depends on the number of users which establish
their circuits through this relay. This in turn depends on the relay’s consensus
bandwidth. We consider the case in which the scheme motivates running a Tor
Exit node (by September 2014 there are only about 1,000 Exits out of 6,000 Tor
relays). The green line in Figure 2 shows the income of an Exit relay under the
assumption that each client can mine an equivalent of 3.8 cents per 24 hours of
which a fraction of 1/24 is received by the relay during a 1 hour session. For such a
case top Tor relays (with consensus bandwidth 200,000 KB/s) can earn about 500
USD per month. A middle-tier relay with consensus bandwidth 10,000 KB/s can
earn about 25 USD. The green line in Figure 3 shows monthly incomes assuming 11
cents per client per day (in which case a top Tor relay can earn up to 1,600 USD).

willing to mine, and the number of new (Bittorrent over Tor) users.
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Running a high-bandwidth Tor relay obviously means high costs. In order to
estimate the incurred costs we assume that the rental price is: 25 EUR per month
for a relay with consensus weight less than 15,000; 40 EUR for weight between
15,000 and 50,000; 70 EUR for consensus weight larger than 50,000. In addition
we assume that 10 TB of traffic is included into the server’s price and one has to
pay 2 EUR per additional 1 TB [56]. It is important to note that we consider costs
which Tor relays already have regardless whether they use the proposed rewarding
scheme or not. Note also that in order to compute traffic costs of a relay we take
its consensus bandwidth (which represents the relay’s speed in KB/s), and assume
that the relay constantly transmits with such speed which results in upper bound
of traffic costs.

Costs to run an Exit relay of specific bandwidth and corresponding profitability
of running such a relay (given the income produced by mining clients) are shown
in Figures 2 and 3 with blue and red lines. A Tor relay partially compensates its
costs in case of 3.8 cents per day per client; when clients mine an equivalent of 11
cents per day, the relay’s costs are lower than its income. Additional income can
be used for the server upgrade or to provide better free services.
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Figure 6.2: Income, costs, and profit of an Exit relay in case of 3.8 cents per day
per miner
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Figure 6.3: Income, costs, and profit of an Exit relay in case of 11 cents per day
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6.2.2 Anonymity

In this section we discuss anonymity of the proposed scheme. In Protocol 1, after
client C mined a share he sends it to the corresponding Tor relay along with the
hash of a random number (to be blindly signed). All communications are done
over anonymous circuits, so that the Tor relay does not learn the originator of the
messages (unless it is a Guard node). In addition blind signatures prevent the Tor
relay from distinguishing client C from other clients. Finally shares generated by
client C contain a Bitcoin address of either the Tor relay or a mining pool (the client
is even not required to have a crypto-currency account), thus they don’t reveal the
identity of the client in spite of known attacks against Bitcoin (and hence Altcoins)
anonymity [29].

A curious relay can however learn the hash rate of a client, thus it may recognize
repeated connections from the same client. In order to mitigate such an attack a
client is advised to randomize its hash rate. The same holds if a client decides to
pre-mine bandwidth tickets from a relay. In addition, just paying at all identifies
the client as somebody who pays for good service, which is a smaller set than the
original set of users.

We also note that a powerful miner can try to DoS the paid traffic of a relay, by
taking all the paid traffic of a relay for itself. However such behavior is not rational,
since it is economically more reasonable for such miner to just earn shares in the
mining pool.
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