
Applying Product Line Use Case Modeling in an
Industrial Automotive Embedded System: Lessons

Learned and a Refined Approach
Ines Hajri, Arda Goknil, Lionel C. Briand
SnT Centre for Security, Reliability and Trust

University of Luxembourg, Luxembourg
{ines.hajri, arda.goknil, lionel.briand}@uni.lu

Thierry Stephany
IEE

Contern, Luxembourg
thierry.stephany@iee.lu

Abstract—In this paper, we propose, apply, and assess Product
line Use case modeling Method (PUM), an approach that supports
modeling variability at different levels of granularity in use cases
and domain models. Our motivation is that, in many software
development environments, use case modeling drives interactions
among stakeholders and, therefore, use cases and domain models
are common practice for requirements elicitation and analysis.
In PUM, we integrate and adapt existing product line extensions
for use cases and introduce some template extensions for use
case specifications. Variability is captured in use case diagrams
while it is reflected at a greater level of detail in use case
specifications. Variability in domain concepts is captured in
domain models. PUM is supported by a tool relying on Natural
Language Processing (NLP). We successfully applied PUM to
an industrial automotive embedded system and report lessons
learned and results from structured interviews with experienced
engineers.

I. INTRODUCTION

The complexity of automotive embedded systems has been
escalating in recent years. An automotive system is comprised
of various interacting subsystems such as airbag controller,
trunk controller, adaptive cruise controller, and sensing sys-
tems. In most situations, development is distributed over
multiple suppliers. For example, while one supplier specializes
in a sensing solution for the seat occupant classification,
another supplier may develop an airbag controller using the
sensing solution output to disable the airbag for children
and unoccupied seats. These suppliers work with multiple
customers (manufacturers) requiring different versions of the
same product. Therefore, Product Line Engineering (PLE) is
an inherent component of their development process, from
requirements analysis to implementation.

IEE S.A. [1], is a representative supplier in the automotive
domain, producing sensing systems (e.g., BodySenseTM ,
Smart Trunk Opener, and Driver Presence Detection) for
multiple automotive manufacturers. Such systems sense the
environment through physical components (e.g., electrical field
sensors, pressure sensitive sensors, and force sensing resis-
tors), derive a conclusion from sensor measurements (e.g.,
seat occupant classification, gesture recognition, and driver
presence detection), and inform other external systems (e.g.,
airbag control unit, trunk controller, and engine controller).

In IEE’s business context, like in many others, use cases are
central development artifacts and beneficial for communicating
requirements among stakeholders, such as customers. In other
words, in the context of product lines, IEE’s software develop-
ment practices are strongly use case driven and analysts elicit
requirements and produce a new version of use cases for each
new customer and product. As a result, IEE needs to adopt
PLE concepts (e.g., variation points and variants) to identify
commonalities and variabilities early in requirements analysis.
These concepts are essential for communicating the variability
to customers, documenting it for software engineers, and
supporting decision making during the elicitation of customer
specific requirements [2]. Therefore, the need for integrating
PLE concepts in use case driven development, starting with
use case specifications, led us to assess the relevant state of
the art and develop a product line use case modeling method
supporting embedded system development, though it should be
easily adaptable to other contexts. Our motivation is to rely,
to the largest extent possible, on common practices, including
the ones at IEE, to achieve widespread applicability.

Considerable research has been devoted to documenting
variability in use cases. Many approaches [3] [4] [5] re-
quire that feature models be connected to use case spec-
ifications and diagrams. In such cases, feature modeling
needs to be introduced into practice, including establishing
and maintaining traces between feature models and use case
specifications and diagrams, as well as other artifacts. In
many development environments, such additional modeling
and traceability is often perceived as an unnecessary overhead.
Some other works [6] [7] [8] propose use case template
extensions for textual representation of variability. As Halmans
and Pohl [2] stated, textual representation has shortcomings:
variation points are not explicit, variability constraints (e.g.,
number of variants that can be selected for a variation point)
cannot be easily represented, and variants are hard to identify.
There are several approaches [2] [9] [10] proposing extensions
to use case diagrams to overcome these shortcomings. Never-
theless, these extensions are usually not sufficient to express
all variabilities at the required level of granularity. In addition,
variability in use case diagrams should be reflected in use

1

case specifications to provide consistency of diagrams and
specifications.

In this paper, we propose, apply, and assess a Product line
Use case modeling Method (PUM), which aims at enabling the
analysts to document variability at different levels of granu-
larity, both in use case diagrams and specifications. In PUM,
we adopt the product line extensions of use case diagrams
proposed by Halmans and Pohl [2] to overcome the short-
comings associated with textual representation of variability.
Further, we augment a more structured and analysable form
of use case specifications, i.e., Restricted Use Case Modeling
(RUCM) [11]. RUCM is based on a template and restriction
rules, reducing the imprecision and incompleteness in use
cases. We chose RUCM in PUM because it reduces ambiguity
and facilitates automated analysis of use cases. RUCM was
previously evaluated through controlled experiments and has
shown to be usable and beneficial with respect to making use
cases less ambigious and more amenable to precise analysis
and design. Since RUCM was not originally designed for
modeling variability in embedded systems, we introduce some
extensions to represent the types of variability that cannot be
captured in a use case diagram.

In addition to use case modeling, common practice in many
environments also includes domain modeling, which aims at
capturing domain concepts shared among stakeholders, with
associated variability where needed. Such domain modeling is
also part of PUM as it enables the use of consistent terminol-
ogy and concepts, as well as precise definitions of conditions
in use case specifications and, therefore, of related variation
points. PUM expects these conditions, referring to the domain
model, to be defined with the Object Constraint Language
(OCL) [12] since OCL is the natural choice when defining
high-level constraints on class diagrams. To summarize, the
contributions of this paper are:
• PUM, a use case modeling method, which integrates

and builds on existing work and captures variability in
product lines at a level of granularity enabling both
precise communication and guided product configuration;

• a practical, industry-strength tool, relying on Natural
Language Processing (NLP) to report inconsistencies
between use case diagrams and use case specifications
complying with the RUCM template;

• an industrial case study demonstrating the applicability of
PUM, including structured interviews with experienced
engineers, from which we also draw lessons learned and
guidelines. This is the first time such industrial case study,
on capturing variability in use case models, is reported.

This paper is structured as follows. Section II introduces the
industrial context of our case study to provide the motivations
behind PUM. Section III discusses the related work. In Sec-
tion IV, we provide an overview of PUM. Section V focuses
on use case diagrams and RUCM with their extensions while
Section VI presents the tool support for PUM. In Section VII,
we present our case study, involving an embedded system
called Smart Trunk Opener (STO), along with interview results
and lessons learned. We conclude the paper in Section VIII.

II. MOTIVATION AND CONTEXT

The context for which we developed PUM is that of auto-
motive embedded systems, interacting with multiple external
systems, and developed by a supplier for multiple automotive
manufacturers. These systems are representative examples in
which variability in requirements needs to be communicated
among stakeholders, including customers. For instance, IEE
negotiates, with each customer, how to resolve variation points,
that is, the configuration of the product line.

In this paper, we use the embedded system Smart Trunk
Opener (STO) as a case study, to motivate, illustrate, and assess
our modeling method. STO is a real-time automotive embed-
ded system developed by IEE. It provides automatic, hands-
free access to a vehicle’s trunk, in combination with a keyless
entry system. In possession of the vehicle’s electronic remote
control, the user moves her leg in a forward and backward
direction at the vehicle’s rear bumper. STO recognizes the
movement and transmits a signal to the keyless entry system,
which confirms the user has the remote. This allows the trunk
controller to open the trunk automatically.

STO System

Sensors

STO Controller

Recognize
Gesture

Identify System
Operating Status

Tester Provide System
User Data

<<include>>
Store Error

Status

<<include>>

Clear Error
Status

<<extend>>

Provide System
User Data via

Diagnostic Mode

Provide System User
Data via Standard

Mode

Provide System
User Data via IEE

QC Mode

<<extend>>

Clear Error Status
via Diagnostic

Mode

Clear Error
Status via IEE

QC Mode

<<extend>>

<<extend>>

<<extend>>

Provide System
Operating Status

<<include>>

Fig. 1. Part of the UML Use Case Diagram for STO

The current use case driven development practice in IEE
involves UML use case diagrams and use case specifications.
Fig. 1 depicts part of the UML use case diagram for STO.
Sensors, STO Controller and Tester are the actors of the
system. The use cases describe four main functions: recognize
gesture, provide system operating status, provide system user
data, and clear errors stored in the system.

UML provides the extend and include relations in use case
diagrams to extend the behaviour of use cases and to factor
out common parts of the behaviors of two or more use cases,
respectively. However, it is not possible to explicitly document
variability, e.g., which use cases are mandatory and which use
cases are variant. There is no way to represent variation points,
i.e., location at which a variation occurs. We know from our
discussions with domain experts in IEE that, in Fig. 1, there are
three variation points: Store Error Status, Clear Error Status
and Provide System User Data. Store Error Status and Clear

2

Error Status are optional while Provide System User Data is
mandatory. Cardinality in a variation point, i.e., number of
variants to be chosen, cannot be represented in a UML use
case diagram [2]. For instance, there must be at least two
ways to realize Provide System User Data (i.e., at least two
use cases that extend the ‘Provide System User Data’ use case)
in any STO product. Variant dependencies play a key role
in the selection of variants. For example, if an STO product
provides Store Error Status, then it must also provide Clear
Error Status.

A use case specification contains detailed description of a
use case given in a use case diagram and usually conforms to
a use case template [13]. A use case template is a structure
guiding the textual documentation of use cases [14]. IEE has
so far been following the Cockburn’s template [13] (see Table I
for some simplified STO use cases).

TABLE I
SOME USE CASES FOR STO

1 USE CASE Recognize Gesture
2 1. The system ‘identifies system operating status’.
3 2. The system receives the move capacitance from the sensors.
4 3. The system confirms the movement is a valid kick.
5 4. The system informs the trunk controller about the valid kick.
6 Extensions
7 3a. The movement is not a valid kick.
8 3a1. The system sets the overuse counter.
9
10 USE CASE Identify System Operating Status
11 Main Success Scenario
12 1. The system checks Watchdog reset and RAM.
13 2. The system checks the upper and lower sensors.
14 3. The system checks if there is any error detected.
15 Extensions
16 2a. Sensors are not working properly.
17 2a1. The system identifies a sensor error.
18 3a. There is an error in the system.
19 3a1. The system stores error status.
20
21 USE CASE Provide System User Data
22 1. The tester requests receiving system user data via standard mode.
23 2. The system ‘provides system user data via Standard Mode’.
24 Extensions
25 1a. The tester requests receiving user data via diagnostic mode.
26 1a1. The system ‘provides system user data via Diagnostic Mode’.
27 1b. The tester requests receiving system user data via IEE QC mode.
28 1b1. The system ‘provides system user data via IEE QC Mode’.
29
30 USE CASE Provide System User Data via Standard Mode
31 Main Success Scenario
32 1. The system sends the calibration data to the tester.
33 2. The system sends the trace data to the tester.
34 3. The system sends the error data to the tester.
35 4. The system sends the sensor data to the tester.

Standard use case templates, such as Cockburn’s, are insuf-
ficient to document variability in use case specifications. For
example, variation points and variants are not visible in the
STO use case specifications. Variant use cases, e.g., Provide
System User Data via Standard Mode in lines 21-28, are not
distinguishable from any other use case. In lines 18-19 and
25-28 there are two variation points modelled as extensions
of the basic flow, i.e., executing the variant use cases Store
Error Status, Provide System User Data via Standard Mode,
IEE QC Mode, and Diagnostic Mode. However, these steps are
no different from any other step describing the execution of a

mandatory use case, e.g., the execution of the Identify System
Operating Status use case in line 2. Some use case steps might
be optional or their order may vary in the product line. For
instance, all steps given in lines 32-35 are optional with a
variant order. The analyst first needs to properly document
the optional steps. Then, she can negotiate with the customer
to decide which steps to select, according to which order, in
the product.

Within the context of developing industrial automotive
embedded systems for multiple manufacturers, we identify
three challenges that need to be considered in capturing
requirements’ variability in use cases:

Challenge 1: Modeling Variability with Constraints and
Dependencies. It is crucial to have variability information
explicitly documented (i.e., variants, variation points, their
constraints and dependencies) in order to decide with the
customers which variants to include for the product and guide
product configuration. Textual representation of use cases has
shortcomings in explicitly representing variability information.
Furthermore, it is not easy for analysts and customers to
comprehend and visualize all variability information encoded
in a textual representation. For instance, in STO, we identified
11 mandatory and 13 variant use cases which contain 7
variation points, 12 constraints associated with these variation
points, and 7 variant dependencies. The STO use cases include
211 use case flows (24 basic flows and 188 alternative flows).
The variability information scattered across all these use case
flows in the textual description needs to be communicated with
customers and used to configure a product.

Challenge 2: Reflecting Variability in Use Case Spec-
ifications. There are approaches that extend only use case
diagrams with the notion of variation point and variant to
express variability and associated constraints. IEE, as well as
many similar companies, rely on detailed use case specifica-
tions to communicate with their customers. Variability should
therefore be reflected in use case specifications to provide
diagram-specification consistency. In addition, there are types
of variability (e.g., optional steps) which cannot be expressed
in use case diagrams, at the required level of granularity, to
precisely guide product configuration. However, it is neverthe-
less crucial to also model some variability information in use
case diagrams, for example to improve visualization of key
variability information and provide a roadmap to look up the
details in use case specifications.

Challenge 3: Capturing Variability with Precise Con-
ditions. Use cases are not meant to clarify terminology and
domain concepts shared among all stakeholders. In order to
document domain concepts and their variability, any prod-
uct line requirements modeling method would need models
where the analyst can specify mandatory and optional domain
entities. In addition, ‘flows of events’ in use cases feature
associated conditions determining their occurrence, which
need to be precisely specified to help communication among
stakeholders. For instance, the precise definition of a valid kick
(see lines 4 and 7 in Table I) is crucial for the IEE engineers
to identify the correct execution of the product in terms of

3

‘flows of events’ in the STO use cases.
In the remainder of this paper, we focus on how to best

address these three challenges in a practical manner, in the
context of use case driven development, while minimising
the modeling overhead. Automated configuration and change
impact analysis are two potential applications of product line
use case modeling, which we leave out for future work. In col-
laboration with customers, analysts need to discuss variability
documented in use cases to configure the required parts of
the system design, implementation, and test cases. Customers
may change their decisions during or after configuration as
the product evolves. Therefore, in addition to configuration,
analysts need to perform change impact analysis to identify
what other decisions may be impacted and thus what artifacts
must be updated.

III. RELATED WORK

In this section, we cover related work across four categories.
Relating Feature Models and Use Cases. Some approaches

propose using feature models for modeling variability infor-
mation within the context of use case driven development
(Challenges 1 and 2). Griss et al. [15] describe a manual
process for constructing a feature model from a use case
diagram. The main idea is to extract the structure of feature
models from use case dependencies (i.e., include and extend)
in use case diagrams. Braganca et al. [16] investigate the
use of model transformation to automate the same idea but
their approach requires that each feature be mapped to only
one use case. Eriksson et al. [3] [17] [18] propose another
approach relating use cases and features at a lower level of
granularity, i.e., sequences of use case steps. Buhne et al. [19]
use Orthogonal Variability Models (OVMs) traced to use case
diagrams and specifications. An OVM documents the variable
aspects of a product line by using variation points, variants
and their dependencies. Following traces, analysts can identify
how a given variant in the OVM is implemented in use case
diagrams and specifications. Alferez et al. [5] provide a trace
metamodel to capture traces between feature models and use
cases. XTraQue [20] is a tool which supports semi-automatic
trace generation for use cases and feature models. Despite
advances in traceability research, all approaches given above
bring additional modeling and traceability effort into practice.
Furthermore, their correctness highly depends on the correct-
ness and precision of traces. To use these approaches, in most
cases, traces between variability models and other modeling
artifacts, e.g., use cases, need to be manually established at a
very low level of granularity, e.g., conditions in use case steps.
Traces should be maintained for every single change in any
traced artifact. Our objective is to achieve the same result by
solely relying on use case and domain modeling, which are
common practice.

Extending Use Case Templates. Some works propose use
case templates with product line extensions to model variabil-
ity in use case specifications (Challenges 1 and 2). Gallina and
Guelfi [6] provide a product line use case template in which
variants and variation points can be expressed. The template

requires that variability information be encoded in use case
specifications containing the fields ‘selection category’ and
‘variation point’. These two fields do not follow any structured
format to precisely define variability, in order, for example, to
support product configuration. The representation of variation
point cardinalities is not addressed in the template. Biddle et
al. [21] provide support for customizing use cases through
parametrization. Nebut et al. [7] enhance a use case template
with parameters and contracts for product line system testing.
These two approaches using parameters do not allow analysts
to explicitly document variants and variation points. Fantechi
et al. [8] [22] propose Product Line Use Cases (PLUCs),
an extension of the Cockburn’s use case template with three
kinds of tags (i.e., alternative, parametric, and optional). It is
not possible with these tags to explicitly represent mandatory
and optional variants. Variants and variation points are hidden
in use case specifications conforming to PLUC. In most
of the approaches given above, either variants and variation
points cannot be documented or it is not possible to express
all required types of variability constraints. It is crucial to
explicitly document variability information containing variants
and variation points with all their constraints and dependencies
(Challenge 1) since analysts and customers need them to make
decisions during configuration.

Extending Use Case Diagrams. Variability modeling in
use cases are also addressed by approaches extending use
case diagrams with new relations and stereotypes (Challenge
1). Maßen and Lichter [23] propose two new relations to
represent alternative and optional use cases in UML use case
diagrams, without any support for expressing variation points.
Azevedo et al. [24] [10] explore the use of the UML ‘extend’
relation with the new stereotypes ‘alternative’, ‘specialization’
and ‘option’ to distinguish variability types. The ‘alternative’
and ‘specialization’ are applied to the ‘extend’ relation while
the ‘option’ is applied to use cases that represent options.
The use of the ‘extend’ with the stereotypes does not address
variation points and their cardinalities. John and Muthig [25]
introduce the stereotype ‘variant’ to use case diagrams. They
also use the tag ‘variant’ for variant text fragments in use case
specifications. They propose a new artifact, called decision
model, to represent variation points textually but such a deci-
sion model can quickly become too complex for the analyst
to comprehend. Halmans and Pohl [2] propose extensions to
use case diagrams to explicitly represent variants, variation
points, and associated constraints. Buhne et al. [9] enhance the
extensions with some common dependency types from feature
modeling. Based on our observations in practice, Halmans et
al.’s extensions support a subset of our needs (Challenge 1) and
we therefore include them in our methodology. The approaches
above do not reflect variability in use case specifications
(Challenge 2) since they do not use any template extensions.
Therefore, in PUM, we introduce extensions to RUCM to
reflect variability in use case specifications and also represent
the types of variability, e.g., optional use case steps, that cannot
be captured in use case diagrams (Challenge 2).

Capturing Variability in Domain Models. Variability in

4

domain models is mostly addressed by introducing new stereo-
types into UML class diagrams. Ziadi and Jezequel [26]
suggest three stereotypes (i.e., variant, variation, and optional)
to specify variability in domain models. These stereotypes
are very similar to the ‘kernel’ and ‘optional’ stereotypes
proposed by Gomaa [27]. In addition, Ziadi and Jezequel
suggest using OCL to specify dependencies between variants
in domain models, e.g., the presence of a variant requires the
presence of another variant. In contrast, in PUM, we specify
these dependencies in use case diagrams. We employ OCL
and domain models to precisely specify conditions associated
with flows of events in use case specifications (Challenge 3).

IV. OVERVIEW OF OUR MODELING METHOD

As depicted in Fig. 2, PUM is designed to address the
challenges stated above in the use case driven development
context we described, and builds upon and integrates existing
work. The PUM output is product line use case diagram,
product line use case specifications, domain model, and OCL
constraints. Variability, and its constraints and dependencies,
are captured in the use case diagram (Challenge 1) while it
is further detailed in the use case specifications (Challenge
2). Variability in domain concepts is captured in the domain
model (Challenge 3). Use case conditions are reformulated as
OCL constraints referring to the domain model (Challenge 3).

Elicit
Product Line
Use Cases

Product Line
Use Case Diagram

Product Line
Use Case Specifications

Check
Conformance for

Diagram and
Specifications

List of
Inconsistencies

Update the
Diagram and

Specifications

Model the
Domain

Identify
Constraints

Domain Model

List of
Constraints

Specify
Constraints

OCL Constraints

•• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• ••

1

23

4

5

6

Fig. 2. Overview of PUM

The analyst elicits product line use cases with the use
case diagram, the RUCM template, and their product line
extensions (Step 1). PUM-C (Product line Use case Modeling
- Checker), the tool we developed for PUM, automatically
checks for use case diagram and specification consistency
(RUCM template) and reports inconsistencies (Step 2). The
tool relies on Natural Language Processing (NLP). If there is
any inconsistency, the analyst updates the diagram and/or spec-
ifications (Step 3). Steps 2 and 3 are iterative: the specifications
and diagram are updated until the specifications conform to the
RUCM template and they are consistent with the diagram.

The domain model is manually created as a UML class
diagram by the analyst (Step 4). It is important for the analyst
to clarify domain concepts shared among all stakeholders.
Variability in these concepts is expressed in the domain
model by tagging domain entities as variation, variant, and

optional. After the model is completed, textual descriptions
of conditions in the use case specifications are automatically
extracted (Step 5) to be reformulated from English to OCL by
the analyst (Step 6).

The rest of the paper provides a detailed description of each
step in PUM, along with detailed illustrations from STO.

V. CAPTURING VARIABILITY IN REQUIREMENTS

In this section, we provide a detailed description of the
artifacts produced by PUM. We also highlight how they were
extended, compared to what was proposed in existing work,
to address our needs.

A. Use Case Diagram with Product Line Extensions

PUM uses the product line extensions of use case diagrams
proposed by Halmans and Pohl [2]. We do not introduce any
further additions into the extensions. We chose these exten-
sions for PUM because they support explicit representation
of variants, variation points, and their depedencies (Challenge
1). In this section, we briefly define the extensions and the
reader is referred to [2] [9] for further details. Fig. 3 depicts
the graphical notation of the extensions.

variation
point X

<<Variant>>
UC1

<<include>>

min..max

<<Variant>>
UCn

variation
point X

<<Variant>>
UC1

<<include>>

min..max

<<Variant>>
UCn… …

variation
point X

<<Variant>>
UCA1

<<include>>

min1..max1

<<Variant>>
UCAn

…
<<Variant>>

UCB1

min2..max2

<<Variant>>
UCBj

…

variation
point X

<<Variant>>
UCA1

<<include>>

min1..max1

<<Variant>>
UCAu

…

<<Variant>>
UCB1

min2..max2

<<Variant>>
UCBt

…

variation
point X

<<Variant>>
UC1

<<include>>

min..max

<<Variant>>
UCn…

UC1 <<Variant>>
UC2

(a) Variant Use Case and Variability Relation

(b) Mandatory and Optional Variability Relations

(c) Mandatory and Optional Variation Points with Mandatory and Optional Variability Relations

{max > = min }

{ min = max = n }

{ min > 0 or
(min = 0 and
max < n) }

Fig. 3. Graphical Notation of Product Line Extensions for Use Case Diagrams

Variant use cases are distinguished from essential use cases,
i.e., mandatory for all products in a product family, by using
the ‘Variant’ stereotype (Fig. 3(a)). A variation point given
as a triangle is associated to one, or more than one use case
using the ‘include’ relation. A ‘tree-like’ relation, containing
a cardinality constraint, is used to express relations between
variants and variation points, which are called variability
relations. The relation uses a [min..max] notation in which
min and max define the minimum and maximum numbers

5

of variants that can be selected for the variation point. A
variability relation is optional where (min = 0) or (min > 0
and max < n); n is the number of variants for a variation
point. A relation is mandatory where (min = max = n). The
customer has no choice when a mandatory relation relates
mandatory variants to a variation point [2]. Optional and
mandatory relations are depicted with light-grey and black
filled circles, respectively (Fig. 3(b)).

Multiple variability relations can be combined to specify the
desired cardinality in a variation point [2]. A variation point
is optional or mandatory based on its variability relations.
A variation point is mandatory if (min > 0) in at least
one variability relation for that variation point. It is optional
if (min = 0) in all its variability relations. Optional and
mandatory variation points are rendered as grey and black-
filled triangles, respectively (Fig. 3(c)). Besides the ‘include’
relation, two more variant relations for variants and variation
points (i.e., ‘require’ and ‘exclusive’ [9]) are used in PUM
since these two relations model the consequences of decisions
in product configuration. For instance, a variant might require
or exclude the choice of another variant. Halmans and Pohl do
not provide any metamodel or UML profile for the extensions
in their paper [2]. In Fig. 4, to facilitate the tailoring of use
case modeling tools, such a metamodel is depicted.

Classifier
«metaclass»

1..*actor

1 variationpoint
VariationPoint

«stereotype»

MandatoryVariationPoint
«stereotype»

OptionalVariationPoint
«stereotype»

Dependency
«metaclass»

- min: Integer [1..*]
- max: Integer [1..*]

VariabilityRelation
«stereotype»

Actor
«metaclass»

MandatoryRelation
«stereotype»

OptionalRelation
«stereotype»

UseCase
«metaclass»

Variant
«stereotype»

Essential
«stereotype»

DirectedRelationship
«metaclass»

Include
«stereotype»

Require
«stereotype»

Exclusive
«stereotype»

1..* relationship

1..* variant

1 relation

1 relation

Fig. 4. Extended UML Use Case Metamodel

A use case is extended as Essential and Variant. The
notation for variation points, in Fig. 3, can also be applied to
specify variation points for actors [2]. Therefore, a variability
relation relates a variation point either to a variant use case or
to an actor (see VariabilityRelation in Fig. 4).

Fig. 5 gives part of the product line use case diagram for
STO. We document two optional and two mandatory variation
points. The mandatory variation points indicate where the
customer has to make a selection for an STO product. For
instance, the ‘Provide System User Data’ essential use case
has to support multiple methods of providing data where the
methods of providing data via IEE QC mode and Standard
mode are mandatory (the mandatory variability relation in the
‘Method of Providing Data’ variation point with a cardinality
of ‘2 ..2’). In addition, the customer can select the method of
sending data via diagnostic mode, i.e., the ‘Provide System
User Data via Diagnostic Mode’ variant use case with an
optional variability relation. In STO, the customer may decide
that the system does not store the errors determined while
the system identifies its operating status (the ‘Identify System

Operating Status’ essential use case and the ‘Storing Error
Status’ optional variation point). The ‘require’ relation relates
the two optional variation points such that if the customer
selects the variant use case in the ‘Storing Error Status’
variation point, he has to select the variant use case in the
‘Clearing Error Status’ variation point.

STO System

Sensors

Recognize
Gesture

Identify System
Operating

Status

Storing Error
Status

Provide System
Operating

Status

Tester
Provide System

User Data

<<include>>

<<Variant>>
Store Error

Status

<<include>>

Clearing
Error Status

<<Variant>>
Clear Error

Status

Method of
Providing

Data

<<Variant>>
Provide System User
Data via Diagnostic

Mode

<<Variant>>
Provide System User

Data via Standard
Mode

<<Variant>>
Provide System User

Data via IEE QC
Mode

<<include>>

0..1

2..20..1

0..1

<<Variant>>
Clear Error Status

via Diagnostic
Mode

<<Variant>>
Clear Error Status
via IEE QC Mode

0..1

<<include>>

Method of
Clearing

Error Status

1..1

<<require>>

STO Controller

<<include>>

Fig. 5. Part of the Product Line Use Case Diagram for STO

In use case diagrams, we capture variants, variation points,
their cardinalities and dependencies. However, some detailed
information of variability cannot be captured in these di-
agrams. For instance, the diagram in Fig. 5 indicates that
the ‘Identify System Operating Status’ use case includes the
‘Storing Error Status’ optional variation point. To find out
in which flows of events the variation point is included, the
analyst has to check the corresponding use case specification.

B. Restricted Use Case Modeling (RUCM) and its Extensions

This section briefly introduces the RUCM template and
our extensions for variability modeling in embedded sys-
tems. RUCM provides restriction rules and specific keywords
constraining the use of natural language in use case spec-
ifications [11]. We chose RUCM for PUM since it was
designed to make use case specifications more precise and
analyzable, while preserving their readability. But since it was
not originally designed for product line modeling of embedded
systems, we had to introduce extensions (Challenge 2).

Table II provides some STO use cases written according to
the extended RUCM rules. In RUCM, use cases have basic
and alternative flows (Lines 2, 8, 13, 16, 22, 27, 33 and 38).
In Table II, we omit some alternative flows and some basic
information such as actors and pre/post conditions.

A basic flow describes a main successful path that satisfies
stakeholder interests. It contains use case steps and a postcon-
dition (Lines 3-7, 23-26 and 39-42). A step can be one of the
following interactions: an actor sends a request and/or data to
the system (Lines 34); the system validates a request and/or
data (Line 4); the system replies to an actor with a result (Line
7). A step can also capture the system altering its internal

6

state (Line 18). In addition, the inclusion of another use case
is specified as a step. This is the case of Line 3, as denoted
by the keyword ‘INCLUDE USE CASE’. All keywords are
written in capital letters for readability.

TABLE II
SOME STO USE CASES IN THE EXTENDED RUCM

1 USE CASE Recognize Gesture
2 1.1 Basic Flow
3 1. INCLUDE USE CASE Identify System Operating Status.
4 2. The system VALIDATES THAT the operating status is valid.
5 3. The system REQUESTS the move capacitance FROM the sensors.
6 4. The system VALIDATES THAT the movement is a valid kick.
7 5. The system SENDS the valid kick status TO the STO Controller.
8 1.2 <OPTIONAL>Bounded Alternative Flow
9 RFS 1-4
10 1. IF voltage fluctuation is detected THEN
11 2. RESUME STEP 1.
12 3. ENDIF
13 1.3 Specific Alternative Flow
14 RFS 2
15 1. ABORT.
16 1.4 Specific Alternative Flow
17 RFS 4
18 1. The system increments the OveruseCounter by the increment step.
19 2. ABORT.
20
21 USE CASE Identify System Operating Status
22 1.1 Basic Flow
23 1. The system VALIDATES THAT the watchdog reset is valid.
24 2. The system VALIDATES THAT the RAM is valid.
25 3. The system VALIDATES THAT the sensors are valid.
26 4. The system VALIDATES THAT there is no error detected.
27 1.4 Specific Alternative Flow
28 RFS 4
29 1. INCLUDE <VARIATION POINT: Storing Error Status>.
30 2. ABORT.
31
32 USE CASE Provide System User Data
33 1.1 Basic Flow
34 1. The tester SENDS the system user data request TO the system.
35 2. INCLUDE <VARIATION POINT : Method of Providing Data>.
36
37 <VARIANT>USE CASE Provide System User Data via Std. Mode
38 1.1 Basic Flow
39 V1. <OPTIONAL>The system SENDS calibration TO the tester.
40 V2. <OPTIONAL>The system SENDS trace data TO the tester.
41 V3. <OPTIONAL>The system SENDS error data TO the tester.
42 V4. <OPTIONAL>The system SENDS sensor data TO the tester.

The keyword ‘VALIDATES THAT’ (Line 4) indicates a
condition that must be true to take the next step, otherwise
an alternative flow is taken. In Table II, the system proceeds
to Step 3 (Line 5) if the operating status is valid (Line 4).

Alternative flows describe other scenarios, both success and
failure. An alternative flow always depends on a condition in a
specific step of the basic flow. In RUCM, there are three types
of alternative flows: specific, bounded and global. A specific
alternative flow refers to a step in the basic flow (Lines 13, 16
and 27). A bounded alternative flow refers to more than one
step in the basic flow (Line 8) while a global alternative flow
refers to any step in the basic flow. For specific and bounded
alternative flows, the keyword ‘RFS’ is used to refer to one or
more reference flow steps (Lines 9, 14, 17, and 28).

Bounded and global alternative flows begin with the key-
word ‘IF .. THEN’ for the condition under which the alterna-
tive flow is taken (Line 10). Specific alternative flows do not
necessarily begin with ‘IF .. THEN’ since a guard condition

is already indicated in its reference flow step (Line 4).
Our RUCM extensions are twofold: (i) new keywords and

restriction rules for modeling interactions in embedded sys-
tems and restricting the use of existing keywords; (ii) new
keywords for modeling variability in use case specifications.

PUM introduces extensions into RUCM regarding the usage
of ‘IF’ conditions and the way input/output messages are
expressed. PUM follows the guidelines that suggest not to use
multiple branches within the same use case path [28], thus
enforcing the usage of ‘IF’ conditions only as a means to
specify guard conditions for alternative flows. PUM introduces
the keywords ‘SENDS .. TO’ and ‘REQUESTS .. FROM’
to distinguish system-actor interactions. According to our
experience, in embedded systems, system-actor interactions
are always specified in terms of messages. For instance, Step
3 in Table II (Line 5) indicates an input message from the
sensors to the system while Step 5 (Line 7) contains an output
message from the system to the STO Controller. Additional
keywords can be defined for other types of systems.

To reflect variability in use case specifications in a restricted
form, we introduce the notion of variation point and variant,
complementary to the diagram extensions in Section V-A, into
the RUCM template. Variation points can be included in basic
or alternative flows of use cases. We employ the ‘INCLUDE
<VARIATION POINT : ... >’ keyword to specify the inclusion
of variation points in use case specifications (Lines 29 and 35).
Variant use cases are given with the ‘<VARIANT >’ keyword
(Line 37). The same keyword is also used for variant actors
related to a variation point given in the use case diagram.

There are types of variability (e.g, optional steps and op-
tional alternative flows) which cannot be captured in use case
diagrams due to the required level of granularity for product
configuration. To model such variability, as part of the RUCM
template extensions, we introduce optional steps, optional
alternative flows and variant order of steps. Optional steps
and optional alternative flows begin with the ‘<OPTIONAL>’
keyword (Lines 8 and 39-42). In addition, the order of use
case steps may also vary. We use the ‘V’ keyword before the
step number to express the variant step order (Lines 39-42).
Variant order occurs with optional and/or mandatory steps.
It is important because variability in the system behavior
can be introduced by multiple execution orders of the same
steps. For instance, the steps of the basic flow of the ‘Provide
System User Data via Std. Mode’ use case are optional. Based
on the testing procedure followed in the STO product, the
order of sending data to the tester also varies. In the product
configuration, the customer has to decide which optional step
to include in which order in the use case specification.

C. Domain Model and OCL Constraints

PUM uses the stereotypes (i.e., variation, variant, and
optional) provided by Ziadi and Jezequel [26] to model vari-
ability with domain models (Challenge 3) since they support
two common mechanisms to specify variability in UML class
diagrams, i.e., optionality and variation (see Fig. 6).

7

<<Variation>>
Request

- code: integer
- name: Boolean
- response: ResponseType

Sensor

Tester
1

<<Variant>>
ClearError

StatusRequest

Error
- errorStatus:Boolean
- isStored: Boolean
- isDetected: Boolean

itserrors*

SmartTrunkOpener
- operatingStatus: Boolean
- overuseCounter: integer

1

<<Variation>>
ProvideSystem

UserDataRequest

Kick
- isValid : Boolean
- moveAmplitude: integer
- moveDuration: integer
- moveVelocity: integer

1

input

connect

itsKick

12

1 1

1
*

ask

SensorError

RAMError

StandardMode
ProvideDataReq

QCMode
ProvideDataReq

<<Variant>>
DiagnosticMode
ProvideDataReq

<<Optional>>
VoltageDiagnostic
- guardACVoltage : integer
- guardCurrent: integer

Fig. 6. Simplified Portion of the Domain Model for STO

The stereotypes ‘Variant’ and ‘Variation’ are used to explic-
itly specify variability associated with inheritance hierarchies
in domain models. The idea is to define a variation point
as an abstract class and variants as concrete subclasses [26].
Since the subclasses ClearErrorStatusRequest and Diagnos-
ticModeProvideDataReq in Fig. 6 are not mandatory, they are
stereotyped ‘Variant’. The subclasses StandardModelProvide-
DataReq and QCModeProvideDateReq are not stereotyped,
thus implying these classes are mandatory for all STO prod-
ucts. We do not use the stereotypes for Error and its subclasses
since all error types are mandatory in STO. The stereotype
‘Optional’ is for optional entities which are not part of any
inheritance hierarchy (VoltageDiagnostic in Fig. 6).

Table III presents some of the use case conditions in
Table II with their corresponding OCL constraints referring
to the domain model. Having precise definition of use case
conditions is crucial to determine the correct execution of the
product in terms of flows of events.

VI. TOOL SUPPORT

We implemented a tool, PUM-C (Product line Use case
Modeling - Checker), for checking diagram-specification and
specification-template consistency in PUM. PUM-C automat-
ically does the consistency checking and reports inconsisten-
cies such as the diagram missing an include statement in
the specification. In addition, it automatically identifies use
case conditions (i.e., pre/post conditions and conditions with
the keyword ‘VALIDATES THAT’) and asks the analyst to
reformulate them as OCL constraints. To minimize the manual
effort, PUM-C first locates conditions in use cases and then
identifies repeating and negated ones. If use cases both feature
a condition and its negation, the analyst is asked to reformulate
only the condition as an OCL constraint. The OCL constraint
for the negated condition is automatically derived.

PUM-C relies on NLP and is composed of three lay-
ers: User Interface (UI) Layer, Application Layer, and Data
Layer (Fig. 7). The UI Layer supports creating and updat-
ing the PUM artifacts. We employ IBM Doors (www.ibm.

com/software/products/ca/en/ratidoor/) for use case specifications,
Papyrus (https://www.eclipse.org/papyrus/) for use case diagrams,
IBM Rhapsody (www.ibm.com/software/products/en/ratirhapfami)
for domain models, and Eclipse OCL (http://www.eclipse.org/
modeling/mdt/ocl/) for writing OCL constraints. To access the
Application Layer components through the UI Layer, we
implemented an IBM DOORS plugin.

Doors PapyrusU
I

La
ye

r

Rhapsody Eclipse
OCL

A
pp

lic
at

io
n

La
ye

r
D

at
a

La
ye

r

Product Line
Use Case

Specifications

Consistency
Checker

OCL
Constraints

Product Line
Use Case
Diagram

Domain
Model

GATE NLP
Workbench

JAPEJAPEJAPEJAPE

uses

uses

Condition
Extractor

Fig. 7. Layered Architecture of PUM-C

The Application Layer contains the components (i.e., Con-
dition Extractor and Consistency Checker) which we imple-
mented as Java applications for consistency checking and con-
dition extraction. To perform NLP in use case specifications,
these two components use a regular expression engine, called
JAPE [29], in the GATE workbench (http://gate.ac.uk/), an open-
source Natural Language Processing (NLP) framework. JAPE
enables to recognise regular expressions in annotations on
documents. We implemented the extended RUCM restriction
rules in JAPE. In NLP, use cases are first split into tokens.
Second, Part-Of-Speech (POS) tags (i.e., verb, noun, and
pronoun) are assigned to each token. By using the RUCM
restriction rules implemented in JAPE, blocks of tokens are
tagged to distinguish RUCM steps (i.e., output, input, include,
and internal operations) and types of alternative flows (i.e.,
specific, alternative, and global). The output of the NLP is
the annotated use case steps. The Condition Extractor and
Consistency Checker process the annotations and the use case
diagram to generate the list of inconsistencies and conditions.

VII. INDUSTRIAL CASE STUDY AND LESSONS LEARNED

We applied PUM to the functional requirements of STO.
Our goal was to assess, in an industrial context, how PUM
can improve variability modeling practice and how well PUM
addresses the challenges that we identified in capturing re-
quirements variability in use cases. STO was proposed for the
assessment by the fourth author of the paper since it was a
relatively new project at IEE with multiple potential customers
requiring different features. IEE provided their initial STO
documentation, which contained a use case diagram, use case
specifications, and supplementary requirements specifications
describing non-functional requirements. To model the STO
requirements according to PUM, we first examined the initial
STO documentation and then worked with IEE engineers to
build and iteratively refine our models. Tables IV and V
present the size of the resulting use cases and domain model.

To evaluate the output of PUM in light of the challenges we
identified earlier, we had a semi-structured interview with five

8

TABLE III
SOME OCL CONSTRAINTS FOR THE STO USE CASES

Condition in the Use Case Corresponding OCL Constraint
1 The operating status is valid SmartTrunkOpener.allInstances()

→ forAll(sto | sto.configurationDataStatus = true AND sto.itsECU.isValid = true)
AND sto.itsSTOSensors → forAll(snsr | snsr.isValid = true))

2 Movement is a valid kick Kick.allInstances()
→ forAll(k | k.moveAmplitude > k.minKickAmplitude AND k.moveAmplitude < k.maxKickAmplitude
AND k.moveDuration < 2 AND (k.backwardMovement - k.forwardMovement).abs() < = 0.2 AND
k.stopMovement = false AND (k.timeDisplacementUpperAntenna > k.timeDisplacementLowerAntenna)
AND (k.timeDisplacementUpperAntenna - k.timeDisplacementLowerAntenna) < = 50)

3 There is no error detected Error.allInstances() → forAll(e | e.isDetected = false)
4 Watchdog reset is valid SmartTrunkOpener.allInstances()

→ forAll(sto | sto.resetCounter < 3 AND sto.itsWatchdog.isEnabled = true)

TABLE IV
PRODUCT LINE USE CASES IN THE CASE STUDY

! #!of!use!
cases!

#!of!
variation!
points!

#!of!
basic!
flows!

#!of!
alternative!

flows!

#!of!
steps!

#!of!
condition!
steps!!

Essential!
Use!Cases!

11" 6" 11" 57" 192" 57"

Variant!
Use!Cases!

13" 1" 13" 131" 417" 130"

"
participants holding various roles at IEE (i.e., process manager,
software development manager, software lead engineer, system
engineer, and software engineer). They all had substantial
software development experience, ranging from 8 to 17 years.
All participants had experience with use case driven devel-
opment and modeling. The interview included a presentation
illustrating the PUM steps, a tool demo, and detailed examples
from STO. The presentation was interactive and included
questions posed to the participants about the models for them
to take a more active role and give us feedback.

TABLE V
SIZE OF THE DOMAIN MODEL

! Essential!
Part!

Variant!
Part!

#!of!!
Entities!

42# 12#

#!of!!
Attributes!

64# 11#

#!of!
Associations!

28# 6#

#!of!
Inheritance!
Relations!

22# 20#

#

To capture the perception of
engineers participating in the
interviews, regarding the po-
tential benefits of PUM, and
assess how it addresses the tar-
geted challenges, we handed
out a questionnaire including
questions to be answered ac-
cording to a Likert scale [30]
(i.e., strongly agree, agree, disagree, and strongly disagree).
The questionnaire was structured for the participants to assess
PUM in terms of adoption effort, expressiveness, comparison
with current practice, and tool support. The participants were
also encouraged to provide open, written comments.

Results from the interviews showed that all participants
agreed on the following positive aspects of PUM:
• The participants considered the extensions to be simple

enough to enable communication between analysts and
customers. They also stated that the extensions can also
be used for internal communication, e.g., for test engi-
neers to perform regression test selection.

• The participants considered the extensions to provide
enough expressiveness to conveniently capture variability
in their projects. In STO, we were able to capture 7
variation points, 13 variants use cases, and 7 variant
dependencies.

• The participants considered the effort required, to learn
how to apply PUM and its tool, to be reasonable. They

also stated they expect most of the effort to relate to OCL.
• The participants considered PUM to provide better assis-

tance for capturing and analyzing variability information
compared to the current, more informal practice in their
projects. With PUM, we could unveil variability infor-
mation not covered in the initial STO documentation.
For instance, the use case diagram extensions helped us
identify and model that the method of Clear Error Status
via IEE QC Mode is mandatory while the method of
Clear Error Status via Diagnostic Mode is optional (see
Fig. 5), which was not previously documented.

• The participants considered PUM-C to provide useful
assistance for minimising inconsistencies in artifacts.

The participants also expressed a number of challenges
regarding the application of PUM:
• Modeling variability in non-functional requirements.

There are numerous types of non-functional requirements
(e.g., security, timing, and reliability) which may play a
key role in variability associated with functional require-
ments. It is crucial to capture such aspects as well.

• Training customers for PUM. Though the participants
considered the effort required to learn PUM to be rea-
sonable, training customers may be more of a challenge.
The company may need customers’ consent to initiate
the modeling effort. Thus, the costs and benefits of PUM
should be made clear to customers.

• Imperfect variability information. When a new project
starts, requirements and their variations might be very
difficult to identify. As a result, in the beginning, analysts
are expected to redefine variation points and variants in
requirements specifications through frequent iterations.
Such changes on variability need to be managed and sup-
ported to enable analysts to converge towards consistent
and complete requirements and variability information.

• Adaptations in the tool chain. PUM-C is currently imple-
mented as a plugin in IBM DOORS in combination with
a leading commercial modeling tool used at IEE, i.e.,
IBM Rhapsody, and Papyrus. PUM-C highly depends on
the outputs of these tools. In time, these tools might be
replaced with other tools or the newer versions of the
same tools. PUM-C needs to be easily adapted for such
changes in the tool chain.

Our discussion with participants resulted in the following
extensions being required for PUM and PUM-C:
• Checking consistency between use cases and domain

9

model. Domain entities identified in a use case may be
missing in the domain model. PUM-C can be extended
to automatically evaluate the domain model complete-
ness and correctness by checking the mapping between
domain entities identified by our NLP application and
entities in the domain model.

• Automatic configuration. A configurator can guide ana-
lysts and customers to make decisions regarding variation
points, and generate product specific use cases.

• Integrating non-functional requirements with use cases.
Additional extensions can be introduced into PUM to
model non-functional requirements, e.g., response time
and synchronization requirements.

Threats to validity. The main threat to the validity of our
case study regards the generalizability of the conclusions and
lessons learned. To mitigate the threat, we applied PUM to
an industrial case study that includes nontrivial use cases in
an application domain with multiple potential customers and
numerous sources of variability. We selected the respondents
to our questionnaire and interviews to hold various, represen-
tative roles and with substantial industry experience. To limit
threats to the internal validity of the case study, we had many
interviews with the IEE engineers in the STO project to verify
the correctness and completeness of our models.

VIII. CONCLUSION

This paper presents a product line methodology centred
around use case modeling, called PUM, for documenting
variability in use case diagrams and specifications, and as-
sociated domain models. Our main motivation is to enable
variability modeling by relying exclusively on commonly
used artifacts in use-case driven development, thus avoiding
unnecessary modeling overhead. PUM builds on and integrates
existing work and is supported by a tool employing NLP for
checking artifact consistency. The key characteristic of our
method is that it captures variability in product lines at a
level of granularity enabling both precise communication with
various stakeholders, at different levels of details, and guided
product configuration. Initial results from structured interviews
with experienced engineers suggest that PUM is accurate and
practical to capture variability in industrial settings.

As future work, we are considering to integrate in a single
tool all aspects of our approach, which are currently supported
by multiple modeling tools, i.e., Papyrus, Rhapsody, Eclipse
OCL, in the current tool chain. PUM is a first step to achieve
our long term objective, i.e., automated configuration and
change impact analysis in use case driven development. Our
plan for the next stages is to provide automated configuration
that guides customers in making configuration decisions and
automatically generate use case specifications and diagram for
the configured product. To address contexts where products
are constantly evolving, we will also support change impact
analysis to help analysts properly manage change.
Acknowledgment. Financial support was provided by IEE and
FNR under grants FNR/P10/03.

REFERENCES

[1] “IEE (International Electronics & Engineering) s.a., http://www.iee.lu/.”
[2] G. Halmans and K. Pohl, “Communicating the variability of a software-

product family to customers,” SoSyM, vol. 2, pp. 15–36, 2003.
[3] M. Eriksson, J. Borstler, and K. Borg, “The pluss approach - domain

modeling with features, use cases and use case realizations,” in SPLC’05,
2005, pp. 33–44.

[4] M. Eriksson, J. Borstler, and A. Asa, “Marrying features and use
cases for product line requirements modeling of embedded systems,”
in SERPS’04, 2004.

[5] M. Alferez, U. Kulesza, A. Moreira, J. Araujo, and V. Amaral, “Tracing
between features and use cases: A model-driven approach,” in VA-
MOS’08, 2008.

[6] B. Gallina and N. Guelfi, “A template for requirement elicitation of
dependable product lines,” in REFSQ’07, 2007, pp. 63–77.

[7] C. Nebut, Y. L. Traon, and J.-M. Jezequel, “System testing of product
families: from requirements to test cases,” in Software Product Lines.
Springer, 2006.

[8] A. Fantechi, S. Gnesi, G. Lami, and E. Nesti, “A methodology for the
derivation and verification of use cases for product lines,” in SPLC’04,
2004, pp. 255–265.

[9] S. Buhne, G. Halmans, and K. Pohl, “Modeling dependencies between
variation points in use case diagrams,” in REFSQ’03, 2003, pp. 59–69.

[10] S. Azevedo, R. J. Machado, A. Braganca, and H. Ribeiro, “The UML
”extend” relationship as support for software variability,” in SPLC’10,
2010, pp. 471–475.

[11] T. Yue, L. C. Briand, and Y. Labiche, “Facilitating the transition from
use case models to analysis models: Approach and experiments,” ACM
TOSEM, vol. 22, no. 1, 2013.

[12] “Object Constraint Language (OCL),” http://www.omg.org/spec/OCL/.
[13] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001.
[14] K. Pohl, G. Bockle, and F. van der Linden, Software Product Line

Engineering: Foundations, Principles, and Techniques. Springer, 2005.
[15] M. L. Griss, J. Favaro, and M. d’Alessandro, “Integrating feature

modeling with the rseb,” in ICSR’98, 1998, pp. 76–85.
[16] A. Braganca and R. J. Machado, “Automating mappings between

use case diagrams and feature models for software product lines,” in
SPLC’07, 2007, pp. 3–12.

[17] M. Eriksson, H. Morast, J. Borstler, and K. Borg, “The pluss toolkit -
extending telelogic doors and ibm-rational rose to support product line
use case modeling,” in ASE 2005, 2005, pp. 300–304.

[18] M. Eriksson, J. Borstler, and K. Borg, “Managing requirements specifi-
cations for product lines - an approach and industry case study,” Journal
of Systems and Software, vol. 82, pp. 435–447, 2009.

[19] S. Buhne, G. Halmans, K. Lauenroth, and K. Pohl, “Scenario-based
application requirements engineering,” in Software Product Lines.
Springer, 2006.

[20] W. Jirapanthong and A. Zisman, “Xtraque: traceability for product line
systems.” SoSyM, vol. 8, no. 1, pp. 117–144, 2009.

[21] R. Biddle, J. Noble, and E. Tempero, “Supporting reusable use cases,”
in ICSR’02, 2002, pp. 210–226.

[22] A. Fantechi, S. Gnesi, I. John, G. Lami, and J. Dorr, “Elicitation of use
cases for product lines,” in PFE’03, 2004, pp. 152–167.

[23] T. von der Maßen and H. Lichter, “Modeling variability by uml use case
diagrams,” in REPL’02, 2002, pp. 19–25.

[24] S. Azevedo, R. J. Machado, A. Braganca, and H. Ribeiro, “On the
refinement of use case models with variability support,” Innovations
Syst Softw Eng, vol. 8, pp. 51–64, 2012.

[25] I. John and D. Muthig, “Product line modeling with generic use cases,”
in EMPRESS 04, 2004.

[26] T. Ziadi and J.-M. Jezequel, “Product line engineering with the uml:
Deriving products,” in Software Product Lines. Springer, 2006.

[27] H. Gomaa, “Object oriented analysis and modeling families of systems
with uml,” in ICSR-6, 2000, pp. 89–99.

[28] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Prentice Hall,
2002.

[29] H. Cunningham et al, “Developing language processing components
with gate version 8 (a user guide), http://gate.ac.uk/sale/tao/tao.pdf.”

[30] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude
Measurement. Continuum, 2005.

10

