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Chapter 1

Introduction

This chapter introduces the problem of information engineering in autonomous robot

software. Support of information engineering is motivated in the context of current ef-

forts to integrate the fields of AI and Robotics. In particular, information engineering

is recognized as a main requirement to make the robotic systems more responsive to

situations of the environment and to apply Artificial Intelligence techniques and tech-

nologies in robotics. After the introduction, we continue with presenting the background

knowledge and related work of this thesis. Then, information engineering requirements

are discussed and a summary of the state-of-the-art in robotic information engineer-

ing is given. Afterwards, we lay down the research questions of this thesis and discuss

the methodology followed to answer the questions. Finally, the layout of the thesis is

presented.

1.1 Artificial Intelligence and Robotics: The Reintegration

Building autonomous robots is a central goal of Artificial Intelligence and Robotics. A

prominent example of early attempts to build autonomous robots is the Shakey the robot

project developed in early days of AI [Nilsson, 1984]. On the one hand, Shakey succeeded

in using logical reasoning to plan and execute its physical actions. On the other hand, it

high-lighted many challenges to be overcome for deploying robots in dynamic unstruc-

tured environments. Shakey had a limited perception and action execution capabilities

tailored to operate in a simplified environment. It had also its planning process embed-

ded at the heart of its control loop limiting its reactivity to changes of the environment.

AI and Robotics have since diverged focusing on different aspects of such challenges.

Recent advances in robotic perception, navigation, and manipulation, as well as the

improvement of robotic software engineering techniques have enabled robots to perform

1
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complex tasks such as baking a cake [Bollini et al., 2011]. These advances have opened

up the application of service robots in domestic, military, agriculture, health-care and

entertainment domains. These applications demand ever increasing levels of intelligence

and autonomy to achieve complex goals in dynamic environments. Consequently, there is

a push toward the use of AI techniques such as knowledge representation and reasoning,

planning, learning and human-robot interaction to address these demands.

AI researchers also are showing an increasing interest to embed and test their techniques

in robots which interact in the real world. While robotics has been always a very

interesting application domain for AI, the availability of affordable robots such NAO,1

Turtle-Bot2 and AR.Drone3 with advanced hardware capabilities and the availability of

open-source software such as ROS for basic operations of these robots have been the

recent facilitating factors for using robots by AI researchers. This thesis work is an

example of the existing opportunities for AI research groups to be involved in robotic

research. This work has been performed within two AI research groups with no prior

robotic experience using NAO robots and ROS.

With significant advancements in both AI and Robotics, there is now an ever increasing

interest to bring the two fields together toward developing autonomous robots. There

have been a large number of calls for special tracks and workshops on related topics

from both major AI and robotics conferences and journals. There have been also a

number of winter schools,4 a wiki page5 and a mailing list6 to form and develop the

“AI and Robotics” community. The technology moves forward quickly and there is a

growing consensus that the next step in autonomous robotics is to empower robots with

AI capabilities.

Robotic information engineering is the timely processing, management and querying

of the robot’s sensory data to create and use knowledge of the robot’s environment.

The timely extraction and dissemination of knowledge of the robot’s environment plays

a central role in autonomy and in making robotic systems more responsive to real-

world situations. It is necessary in order to react to situations of the environment,

and to make plans and execute and monitor the plan execution for achieving goals in

dynamic environments. We consider the representation of knowledge in symbolic form

which is the dominant knowledge representation approach in robotics [Lemaignan, 2012]

and is essential for robots with AI capabilities such as situation awareness, task-level

planning, knowledge-intensive task execution and human-robot interaction [Sabri et al.,

1https://www.aldebaran.com/en/humanoid-robot/nao-robot
2http://turtlebot.com/
3http://ardrone2.parrot.com/
4http://aass.oru.se/Agora/Lucia2013/description.html
5http://ai-robotics.wikispaces.com/
6https://groups.google.com/forum/#!forum/ai-robotics
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2011, Beetz et al., 2010, Ziafati et al., 2013a, Tenorth and Beetz, 2012, Lemaignan et al.,

2011].

Robotic information engineering is challenging due to the distributed, heterogeneous and

parallel nature of robot software. Robot’s software components continuously and asyn-

chronously generates sensory information such as events of recognized faces7 [Cruz et al.,

2008], objects8 [Astua et al., 2014], gestures [Song et al., 2012] and behaviors [Peters

et al., 2012]. Events are discrete observations of the robot’s continuous environment

which need to be correlated and aggregated in time and further processed and rea-

soned about. Information processing includes applying logical, temporal, spatial and

probabilistic reasoning techniques with inherent heterogeneity in data representation,

functionality and communication model [Tenorth and Beetz, 2009, Heintz et al., 2009,

Blodow et al., 2010, Lemaignan et al., 2011, Jain et al., 2009, Elfring et al., 2012, S.

Wrede, M. Hanheide et al., 2004].

The aim of this thesis is to support knowledge-based information engineering in au-

tonomous robot software. By using the keyword “knowledge-based”, we refer to the

ability of representing, integrating and reasoning about knowledge in processing and

querying of information. A key concern to develop affordable, maintainable and reliable

robot software is the support of re-usability in development of components and their

composition [Brugali and Scandurra, 2009, Brugali and Shakhimardanov, 2010, Hawes,

2011]. Re-usablity is improved through identifying requirements of robot software devel-

opment and providing models, tools and technologies to support the requirements. Re-

usability advances robotic software engineering by reducing development, maintenance

and benchmarking costs [Hawes, 2011, Lütkebohle, 2009, Lütkebohle et al., Heintz et al.,

2010b, Bauckhage et al., 2008, Hawes and Wyatt, 2010].

We explore the requirements on timely processing, management and querying of infor-

mation in AI-based robotics and develop the Retalis (Etalis for Robotics) language to

support knowledge-based engineering of information in autonomous robot software. Re-

talis builds on top of recent advancements in logic programming on developing efficient

and data-driven knowledge processing systems such as the complex event-processing

system Etalis [Anicic et al., 2012, 2010, Anicic, 2011] and Tabled Logic Programs [Swift

and Warren, 2010, Saha and Ramakrishnan, 2006a, 2003]. It supports a high-level and

declarative implementation of information engineering functionalities and provides an

execution system that efficiently implements these functionalities taking the asynchronic-

ity of data into account. The language supports logical reasoning to reason about the

domain and common-sense knowledge and can be interfaced with other components,

7http://wiki.ROS.org/face recognition
8http://wiki.ROS.org/object recognition
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for instance, to support spatial reasoning. By a thorough comparison of Retalis and

existing systems, we show that it unifies and advances the state-of-the-art research on

robotic information engineering. We provide empirical performance results, including

the implementation of a demo application for NAO robot, showing the efficiency and

scalability of the language for processing and management of a large amount of sensory

information in real-time.

Agent programming languages [Bordini et al., 2006, Vikhorev et al., 2010] are examples of

AI-based tools that information engineering plays an important role for their applications

in robotics. We discuss the planning and plan execution control requirements of these

languages in robotics and present a proposal to accordingly advance the plan execution

control capabilities of these languages. This proposal is the design specification of a

plan execution control language called RobAPL, including its syntax, semantics and

its integration in the deliberation cycle of a typical agent programming language. We

discuss how the information engineering techniques developed in this thesis can be used

for efficient planning and plan execution control to implement the RobAPL language.

1.2 Background

Information engineering is a main concern in various robotic research tasks. Robotic

frameworks [Quigley et al., 2009, Heintz et al., 2010b, Wrede, 2009] support the flow

of information between components by various communication models such as service-

based and publish-subscribe mechanisms focusing on the decoupling of interacting com-

ponents [Eugster et al., 2003]. Active memories [Bauckhage et al., 2008, S. Wrede, M.

Hanheide et al., 2004, Hawes and Wyatt, 2010, Hawes et al., 2008] support recording of

information from various sources as shared resources upon which distributed processes

operate. Robotic knowledge representation and reasoning research [Tenorth and Beetz,

2009, Tenorth et al., 2012, Tenorth and Beetz, 2012, Lemaignan et al., 2011, Lemaig-

nan, 2012] supports modeling and integration of various sources of knowledge and is

applying, for instance, logical and spatial reasoning. Other research [Lütkebohle, 2009,

Heintz et al., 2010b, 2013, Heintz and Leng, 2013, de Leng and Heintz, 2014, Heintz,

2013, Ranathunga et al., 2012, Pecora et al., 2012, Sabri et al., 2011, Buford et al.,

2006] is concerned with the processing of information flows for example to filter and

adapt a flow of information to the needs of its consumers or to correlate and aggregate

information for anchoring [Coradeschi and Saffiotti, 2003], plan execution monitoring or

recognizing high-level situations of the environment in real-time.

Various existing systems and information engineering requirements have been exten-

sively studied in recent research on robotic frameworks [Wrede, 2009, Heintz, 2009] and



Chapter 1. Introduction 5

knowledge management systems [Lemaignan, 2012, Tenorth, 2011]. We therefore opt to

present an overview of the recent advancements and research directions. To this end, we

first present representatives of the state-of-the art robotic frameworks and knowledge

management systems. These systems are most relevant to information engineering as

they provide general and re-usable models, tools and technologies for processing, man-

aging and querying of information in the robot’s software. We do not aim to give a full

description of these systems. We rather pay attention to the aspects relevant to how

information is modeled, processed, managed, reasoned about and queried. In addition to

the related work, this section also presents the agent programming languages for which

the importance of information engineering to support their applications in robotics is

discussed in Chapter 7.

After presenting the background knowledge and related work, we provide a taxonomy

to categorize the existing systems according to their processing models and present a

list of general information engineering requirements. Finally, we give a summary of the

state of the art in robotic information engineering.

1.2.1 Robotic Frameworks and Active Memories

Robot’s software is composed of a large number of components. These components

provide different perceptual and actuation capabilities such as image processing, path

planning and motion control. In order to cope with ever growing scale and scope of the

robot’s software, a wide variety of robotic frameworks has been developed to facilitate its

development, re-use and maintainability. These frameworks facilitate robotic software

development and reuse by component-based software development techniques. They pro-

vide standard interfaces for accessing heterogeneous robotic hardware and open-source

repositories of robotic software packages. They also provide software development and

monitoring tools such as programming environments.

Extensive studies of existing robotic frameworks and the requirements of information-

driven and knowledge-processing frameworks for developing Cognitive and AI-based

robots have been presented in Ph.D theses of S. Wrede [Wrede, 2009] and F. Heintz [Heintz,

2009]. IDA [Wrede, 2009, S. Wrede, M. Hanheide et al., 2004] and DyKnow [Heintz et al.,

2010b, Heintz, 2009] are robotic frameworks developed in these research projects. In the

following, we discuss ROS (Robot Operating System) [Quigley et al., 2009], that has

become the current de-facto standard robotic framework and discuss IDA and DyKnow

as representatives of state-of-the-art research on AI-based and cognitive robotic frame-

works.
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ROS is the most widely used robotic framework. The ROS repository has an ever

increasing number of state-of-the-art software packages for interfacing various robotic

hardware, and for performing different robotic tasks such as Simultaneous Localization

and Mapping (SLAM) and image processing. The availability of advanced robotic soft-

ware packages in ROS significantly eases the rapid prototyping and development of

complex robotic applications. In ROS, software packages (i.e. nodes) can be developed

in different languages such as C++, Python and Java. These nodes can be started,

killed, and restarted at runtime and communicate with each other in a peer-to-peer

fashion. ROS supports three models of communication among the components: syn-

chronous service-based (i.e. request-reply) interaction, asynchronous publish-subscribe

streaming of data, and key-value based storage/retrieval of data on/from a central server.

In both service-based and publish-subscribe models of interaction, the interacting com-

ponents are decoupled in the sense that they do not refer to each other directly. For

example, publish-subscribe in ROS is topic-based. Components publish data on topics

without knowing the receivers. Data published on a topic is received by the compo-

nents subscribed to that topic. Despite this decoupling, actual transition of data among

components is peer-to-peer which is important for scalability. There is a ROS server

that observes the topics and connects the publishers and subscribers accordingly. ROS

components communicate by exchanging messages. The format of messages is based on

a simple standard language similar to C language data structures. ROS supports robotic

simulators such as Stage [Gerkey et al., 2003], Gazebo [Koenig and Howard, 2004] and

MORSE [Echeverria et al., 2011]. Moreover, ROS has been integrated with many other

robotic frameworks such as OpenRAVE [Diankov and Kuffner, 2008], Orocos [Bruyn-

inckx, 2001], and Player [Gerkey et al., 2003].

Information Driven Architecture (IDA) uses the XML data type for the format of mes-

sages exchanged among components. A message is a tree-structured hierarchy of el-

ements and attributes that is self-descriptive and therefore is easy to understand for

humans and to interpret by the components processing it. In IDA, Xpath queries [Bir-

beck, 2001] are used for path-based access to data contained in messages, enabling

a high-degree of loose-coupling and a content-based communication model. Built on

top of the XML representation and corresponding technologies, IDA provides a rich

communication platform that goes beyond the flexibility of the ROS fixed topic-based
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publish-subscribe platform, as described below.

1 <?xml version=” 1 .0 ” encoding=”ISO−8859−1”?>

2 <OBJECT>

3 <HYPOTHESIS>

4 <GENERATOR>Object Recognizer BU(N)</GENERATOR>

5 <RATING>

6 <RELIABILITY value=” 0 .6 ”/>

7 <RELEVANCE value=” 0 .5 ”/>

8 </RATING>

9 </HYPOTHESIS>

10 <CLASS>Cup</CLASS>

11 <REGION image=” img o f f i c e 210703 122 ”>

12 <RECTANGLE x=”335” y=”245” w=”65” h=”80”/>

13 </REGION>

14 <CENTER x=”32” y=”44”/>

15 </OBJECT>

Listing 1.1: Example of a message in IDA [Wrede, 2009]

Listing 1.1 presents an example of a message in IDA informing about the recognition

of an object of the type cup. In this message, “CENTER” is a data item containing

information about the location of the recognized cup. Using XPATH, the item can

be accessed by specifying the partial path expression “/*/CENTER”, regardless of the

actual location of the item in the message. Accessing information items without the need

of specifying a direct reference increases the loose-coupling as follows. A component

does not need to be able to interpret the whole message and it can handle different

types of messages, as far as they contain the necessary information for its operation.

For example, a control component used to track people and objects can handle messages

of the recognition of people and objects which could be of different types. As long as

messages contain the “CENTER” elements, the control component can read the location

of the people and objects and adjust the base and camera of the robot to follow them.

IDA supports an advanced filter-based publish-subscribe communication model. In this

model, a sequence of filters are defined for a subscription to limit the number of messages

received by the subscriber. From messages that are published by other components, a

subscriber is notified of all messages that satisfy the constraints described by the filters.

In event-based frameworks such as IDA and ROS, a call-back function is registered

for each subscription. For each event that matches a subscription, its corresponding

callback function is called with the event being input data of the function. In addition

to specifying constraints on the content of messages using XPATH expressions, filters

can also transform their input messages into new ones.
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Listing 1.2 presents an example of defining a subscription having three filters. The

incoming messages are filtered for highly reliable and frequent detection of faces. When

messages match this subscription, they are dispatched to the registered callback handler,

which in this case appends them to a queue.

1 SynchronizedQueue<FaceEvent> f a c e s = new FaceQueue ( ) ;

2 Subsc r ip t i on s = new Subsc r ip t i on ( ) ;

3 s . append (new TypeFi l te r ( FaceEvent . c l a s s ) ) ;

4 s . append (new XPathFi lter (new XPath( ”//HYPOTHESIS/RATING/RELIABILITY [

@value>=0.95]” ) ) ) ;

5 s . append (new FrequencyFi l t e r (10 ,1 , TimeUnit .SECONDS) ) ;

6 // add s u b s c r i p t i o n to route r ob j e c t

7 r . s ub s c r i b e ( s , new QueueAdapter<FaceEvent>( f a c e s ) ) ;

Listing 1.2: Example of a filter-based subscription in IDA [Wrede, 2009]

On top of its filter-based publish-subscribe platform, IDA introduces an active memory

system for information fusion and to decouple the communicating components in time.

An active memory stores IDA messages as memory elements. Memory elements can be

added, deleted, updated and queried. XPATH queries can be used to query or delete

memory elements based on their contents. The memory is called active due to intrinsic

and extrinsic processes that operate on it. These processes are automatically invoked

due to changes of the content of memory. After each addition, deletion or update of

a memory element, an event is generated containing information about the operation.

Internal and external processes can subscribe to these events using the IDA subscription

mechanism. For instance, it is possible to specify and register a subscription that states

“a notification shall be issued if a memory element of type FaceEvent with a recognition

probability of larger than 95% has been inserted or updated at least 10 times within a

second.”

An example of an intrinsic process could be a forgetting process that observes the addi-

tion and update of memory elements and removes any memory elements whose reliability

is less than a threshold or has not been updated for a certain amount of time. Inter-

nal processes can be developed using a scripting language and are invoked upon the

occurrence of a relevant memory event. External processes are typical components that

register to memory events. An example could be a component used to perform consis-

tency validation. For instance, if a user is perceived to be performing the typing action,

but no computer keyboard is detected, the perception could be doubted. In IDA, a com-

ponent is developed that observes the memory and adjust the reliability of perceptions

by taking into account the context accumulated in the memory.
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DyKnow introduces a formal and declarative language called KPL to specify the existing

components and their connections. From such a specification, the actual system is

instantiated. Streams are flows of data items, each item containing information about

objects, their attributes and temporal context. Streams are generated by processes

and are adapted to certain policies by stream generators. A policy is a declarative

specification of some requirements. For instance, a policy may specify that updates

should be send in a certain frequency, or for every change of more than a threshold. In

the former case, the policy can specify how to synchronize, or extrapolate the input data

to generate a stream that produces new data at a given frequency.

In parallel to our work, DyKnow has been extended with multiple tools to automate

the generation of required streams using other streams and available processes [Heintz

and Leng, 2013, Heintz, 2013]. The work is motivated to evaluate logical formulas over

streams. To this end, each symbol in a given formula should be mapped to a relevant

feature of a stream. The approach taken is as follows. An ontology of the domain is

provided. In addition, streams and the processes that can generate or operate on the

streams are annotated with their semantic descriptions. Given a formula, a semantic

matching operation is performed to find whether the required streams are available or

how they can be generated using the available processes and streams. Required processes

are instantiated and applied to relevant streams and streams are fused and synchronized

to generate the required streams.

DyKnow has been recently extended with a tool for processing of streams for event

recognition [de Leng and Heintz, 2014]. To recognize events, DyKnow integrates the C-

SPARQL [Barbieri et al., 2010] language. Events are annotated with their definitions in

the C-SPARQL language including the streams required to detect them. When detecting

an event is required in a context, the system generates the required input streams of

data using the semantic matching functionality, described above. The results are then

converted to RDF triples over which the C-SPARQL query that defines the event can be
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evaluated. An event here may refer to a class of events, of which instances are detected.

1 REGISTER STREAM HighSpeedEvent COMPUTE EVERY 1 s AS

2 CONSTRUCT {?uav dyknow: a l t i t u d e ? avgSpeed}
3 FROM <h t t p : //www. ida . l i u . se /dyknow/ onto logy . rd f>

4 FROM STREAM <h t t p : //www. ida . l i u . se /dyknow/ s59 . t r d f>

5 [RANGE 5 s STEP 1 s ]

6 WHERE {
7 ?uav a dyknow:UAV .

8 ?uav dyknow:speed ? spd .

9 }
10 AGGREGATE {(? avgSpeed , AVG, {? spd} )

11 FILTER (? avgSpeed > 100) }

Listing 1.3: Example of a C-SPARQL query in DyKnow [de Leng and Heintz, 2014]

Listing 1.3 presents an example of C-SPARQL query that averages the speed of objects

of type UAV in the last five seconds. The average is computed every one second. A new

stream is generated that contains the name and the average speed of the objects whose

average speed is greater hundred. To increase re-usability, a query can be parametrized

and regarded as a template. At runtime, the query parameters, including the streams

over which the query should be evaluated, can be instantiated based on the specific

event to be detected. The required input streams can then be generated by a semantic

matching technique and fed to the C-SPARQL engine to evaluate the query.

1.2.2 Robotic Knowledge Bases

Autonomous robots require a large amount of domain and common-sense knowledge

in order to flexibly operate in unstructured environments and interact with humans.

Such knowledge cannot be hard coded in the robot’s control loop. Acquiring, managing,

sharing and reusing knowledge require formal ontologies to provide a shared vocabulary

and reasoning capabilities to reason on the pieces of knowledge to derive new facts. There

has been significant work in the last few years on developing knowledge representation

and reasoning systems for robotics and such systems are actively being developed, for

instance, in European projects such as RoboHow.9 and RoboEarth10

Extensive studies of existing robotic knowledge management systems and the require-

ments for knowledge representation and reasoning have been presented in Ph.D theses

9http://robohow.eu/project
10http://roboearth.org/
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of S. Lemaignan [Lemaignan, 2012] and M. Tenorth [Tenorth, 2011]. Logic-based ap-

proaches for knowledge management in robotics are dominant. Examples of such sys-

tems are ORO [Lemaignan et al., 2011, Lemaignan, 2012], KnowRob [Tenorth and Beetz,

2012, 2009] and OUR-K [Lim et al., 2011]. These systems provide extensive ontologies

to model domain and common-sense knowledge for service robots in order to acquire

and integrate various sources of knowledge, share it among robots and reason about

it for flexible action execution and human-robot interaction. These systems have been

interfaced with various components to, for instance, perform spatial and probabilistic

reasoning and acquire knowledge from Internet and observing human behavior. The

following briefly presents KnowRob and ORO as representatives of the state-of-the-art

robotic knowledge management systems.

KnowRob provides an extensive ontology of concepts for robotics. The choice of lan-

guage to represent knowledge is the Web Ontology Language (OWL)11 [Mike Dean and

Stein, 2004] which is based on Description logics (DL) [Baader et al., 2008]. OWL has

been developed by the Semantic Web community and is widely used for knowledge rep-

resentation in various domains as it provides a good level of expressiveness and supports

efficient inferencing. OWL can represent classes, properties and relations in hierarchies.

Instances of classes, their properties and their relations can be represented too. New

classes can be defined as, for instance, intersection or union of other classes, or by

specifying restrictions on their properties and relations. Properties can be defined as

symmetric, transitive and so forth. The KnowRob ontology includes a large taxonomy

to describe events, temporal information, objects, actions, tasks, processes, robots’ ca-

pabilities, etc. For example, an event is a temporal thing which, for instance, can be

used to describe the perception of an object. An event may have properties such as

location, start time and end time.

KnowRob uses Prolog, described in Section 4, as its inference engine by giving the fol-

lowing reasons [Tenorth and Beetz, 2012]. Classical description logics reasoners always

keep a classified version of the knowledge base and everything needs to be re-classified

whenever the knowledge base is updated. Robots continuously sense to update their

knowledge of the environment. Consequently, the re-classification of knowledge after

every update can cause performance issues. Another reason is to enjoy the benefits

of the closed-world assumption in Prolog. The assumption is that, in contrast to the

open-world assumption in DL reasoners, everything which is not known to be true is

false. While this conflicts with the usual DL semantics, it leads to a more compact

knowledge representation as absence of things does not need to be described and the

lack of knowledge about things can be used, for instance, to trigger action execution to

acquire the relevant knowledge.

11http://www.w3.org/TR/2004/REC-owl-ref-20040210/
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The third reason that KnowRob uses Prolog is to attach procedures to predicates which

are called computable predicates. Computable predicates are used to extend the rea-

soning capabilities beyond description logics, to integrate external inference capabilities

such as probabilistic reasoning or to acquire and integrate additional knowledge from

external sources such as a perception component while executing a reasoning task. A

simple example of a computable predicate is the after relation between two points in

time. In OWL, after can be defined as a property relating two time points.

Listing 1.4 shows the implementation of the after predicate in Knowrob. The predicate

checks whether the arguments have correct types, transforms the time points into nu-

merical values using the term to atom predicate and finally checks whether the second

argument is after the first one. When a system is queried whether a given observation is

after the other one, corresponding time points are extracted and the relation is checked

using the after predicate.

1 comp after ( ? Pre , ? After ) : −
2 owl has ( ? Pre , type , ‘ TimePoint ’ ) ,

3 owl has ( ? After , type , ‘ TimePoint ’ ) ,

4 term to atom ( ?P , ? Pre ) ,

5 term to atom ( ?A, ? After ) ,

6 ?P < ?A.

Listing 1.4: Example of a computable predicate in KnowRob [Tenorth, 2011]

The presented implementation is only correct when both arguments are bound. As also

noted by its author [Tenorth and Beetz, 2012], the correct implementation should be

able to handle the different combinations of bound/unbound variables to be declaratively

correct. For example, a query might ask for all observations which have occurred after a

given observation. In general, the predicate should also implement the cases where the

first argument is unbound, the second argument is unbound and both arguments are

unbound. As mentioned above, computable predicates can go beyond simple numerical

analysis as presented in this example. For instance, using the C++ interface of SWI-

Prolog, the Prolog system used in KnowRob, a computable predicate can implement an

arbitrary C++ function or acquire information from an external source. However, they

should be used with care as their implementations in general are not declarative.

ORO uses OWL to represent knowledge and Pellet12 [Sirin et al., 2007], a DL reasoner,

for inference tasks. The ORO and KnowRob ontologies are similar, but KnowRob is

more intensive in describing, for instance, objects, tasks and processes. In particular,

time is not represented in ORO and therefore no temporal reasoning is possible. For

12http://clarkparsia.com/pellet/
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instance, ORO relies on an external module to update the location of objects and history

of the location of objects in the past is not available. In general, due to open-world

assumption in description logic, the representation and reasoning on changes such as

events and actions are not supported and should be handled externally [Ziafati et al.,

2011, Lemaignan, 2012].

The focus of ORO is on human-robot interaction. In this regard, a key feature of ORO

is storing independent cognitive models for every agent it interacts with. Each agent is

assigned a separate OWL model to store its beliefs. Having a separate model for each

agent allows to store and reason on different, possibly inconsistent, models of the world.

For example, the perspective of agents can be taken into account. An object might be

visible to one agent and not to another. Taking the perspective into account can be used,

for instance, to dissolve ambiguities in dialogue. A module has been integrated in ORO

that computes some symbolic properties such as isVisible according to perspectives of

agents.

Another feature of ORO is allowing to attach a memory profile to each statement to

govern their lifetimes. There are three types of memory profiles predefined: short term,

episodic and long term. These memory profiles correspond to lifetimes of 10 seconds,

five minutes and no time limit, respectively. When the lifetime of a statement is ended,

it is automatically removed from the knowledge base. This mechanism implements a

simple form of forgetting, the advanced version of which is implemented by the IDA

active memory, as described above.

With regard to active memory functionalities, another distinguishing feature of ORO

comparing to other logic-based knowledge bases is supporting an event notification mech-

anism. In addition to typical querying of the knowledge base, ORO allows components

to subscribe to events. For example, a component can subscribe to events of the type

“?agent isVisible true, ?agent type Human”. As soon as the perception layer detects a

human in front of the robot and updates the knowledge base with the corresponding

facts, an event is triggered and dispatched to the subscriber. Events do not need to

match the explicit facts asserted to the knowledge base and can be generated if their

triggering conditions are inferred to be true using ORO inference capabilities.

1.2.3 Agent Programming Languages

In order to achieve complex goals in dynamic environments, a robot needs to reason

on its objectives and the state of its environment to select appropriate course of ac-

tions. Various agent programming languages [Bordini et al., 2006, Vikhorev et al., 2010]

such as 2APL [Dastani, 2008], GOAL [Hindriks, 2009] and Jason [Bordini and Hübner,
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2005, Ṕıbil et al., 2012] have been developed to facilitate the implementation of such

deliberative behaviour based on the BDI (Belief-Desire-Intention) architecture [Rao and

Georgeff, 1995, 1991] inspired by the BDI model of human practical reasoning [Bratman,

1999].

An agent operation in the BDI architecture is the cyclic execution of a deliberation

process in which the agent processes its input data, updates its goals and beliefs, applies

a set of plan generating rules to plan upon its goals and beliefs and executes some

of its planned actions. To achieve its goals, a BDI agent usually does not plan from

scratch, but selects from a set of plan templates and instantiates them based on its

context (i.e. goals and beliefs). Such reactive planning capability makes BDI-based

agent programming languages particularly useful for programming agents such as robots

operating in dynamic environments.

While agent programming languages provide a suitable level of abstraction and program-

ming support for implementing deliberative behaviour, they reveal various shortcomings

when applied in robotics [Ziafati et al., 2013a]. Consequently, the application domains

of such languages so far have been mainly limited to cognitive software agents in sim-

ulated toy examples. The recent availability of affordable autonomous robots such as

NAO humanoid robot and open-source robotic frameworks such as ROS facilitates re-

search on applying APLs in autonomous robotics. Robotics provides an important and

challenging domain to research on design and development of APLs. Moreover, APLs

might facilitate the development of autonomous robots beyond the support provided by

current robot programming languages.

Two main requirements to facilitate the application of agent programming languages in

robotics are to better support the information engineering of the robot’s sensory data

and the control and coordination of the execution of its plans. A detailed discussion

of these requirements is left for Chapter 7. However, after presenting the robotic infor-

mation engineering requirements in the next section, we briefly discuss the information

engineering support of the current agent programming languages and its implications

on the usability of these languages in robotics.

1.2.4 Requirements

There are four general dimensions to explore functional requirements of information-

engineering:

• Data: concerns the choice of data structure and ontologies to model and manip-

ulate heterogeneous data. The choice of data representation directly affects the
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performance, querying and reasoning capabilities of a system. For instance, while

simple data structures such as ROS messages13 [Quigley et al., 2009] are suit-

able for efficient data serialization and transportation, supporting ontological and

logical reasoning requires a logic-based representation.

• Memory : concerns maintaining the history of sensory information in memory for

timely access to it. Various memory management mechanisms are required to deal

with continuous reception of information from perception components, including

selective recording of information, pruning outdated information and synchronizing

access to information. Some records of data should be stored permanently to be

queried in the future. Other records of data should be processed in real-time to

extract the required information and notify the relevant component, the consumers

of the information.

• Process concerns the processing, reasoning and querying functionalities such as

logical, temporal and spatial reasoning tasks performed on data to extract relevant

information for its consumers. In particular, language support is needed to deal

with the discrete nature of the robot’s observations. Information from various

sources should be correlated and aggregated in time to reason on the state of the

environment or to detect high-level events.

• Access concerns models of communication among providers of information, Infor-

mation Engineering Components (IECs) maintaining and processing information,

and consumers. Providers often continuously process sensory information and

asynchronously send their results to IECs. The synchronous access is when a

consumer queries the information maintained by an IEC and waits to receive the

results. To answer the query, the IEC can also synchronously access information

or processing services from providers. The asynchronous access is when the IEC

sends information to consumers without having them halted their usual operations

to receive such information. Consumers typically subscribe to IECs for some in-

formation that interest them and receive notifications when such information is

available.

According to the different types of access that consumers access the information pro-

cessed and maintained by IECs, we distinguish between three general models of infor-

mation processing: on-flow processing, on-demand processing and incremental query

processing. Each of these processing models impose distinct requirements on data, pro-

cess and memory dimensions, as follows.

13http://wiki.ROS.org/Messages
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On-flow processing is the processing of sensory data on the fly in order to extract infor-

mation about the environment. An example is the monitoring of smoke and temperature

sensor readings in order to detect fire. A fire alarm should be generated if there is smoke

and the temperature is high, observed by sensors in close proximity within a given time

interval. A notification about fire detection is sent, for instance, to a plan execution

component to react on it. We refer to receivers of the notifications as consumers. This

example highlights the following on-flow processing requirements.

1. Event-driven and incremental processing: on-flow processing requires a real-time

event-driven processing model. Relevant information should be derived as soon

as it can be inferred from the sensory data received so far. Therefore, sensory

data should be processed and reasoned about as soon as they are received by

the system. Moreover, real-time processing of sensory data requires incremental

processing techniques.

2. Temporal pattern detection and transformation: on-flow processing requires repre-

senting and detecting temporal patterns in flow of data and transforming data into

suitable representations. The detection and transformation of data patterns are

required to integrate sensory data in time and to detect high-level events occurring

in the robot’s environment.

3. Subscription: information derived from on-flow processing of data should be dis-

seminated selectively. This is needed, for instance, not to overload a plan execution

component with irrelevant events.

4. Garbage collection: records of data should be kept as far as they can contribute

to derive relevant information and pruned afterwards. In the fire alarm example,

a detection of smoke needs to be kept for a specified time period. If a relevant

sensor detects a high temperature during this period, a fire alarm is generated.

The record of the detected smoke is disregarded afterwards.

On-demand processing is the modeling and management of data in different memory

profiles such as short, episodic and semantic memories [Wood et al., 2011, Wrede, 2009,

S. Wrede, M. Hanheide et al., 2004, Stachowicz and Kruijff, 2012]. Memory profiles are

accessed and processed when required. An example is to calculate the position of an

object in the world coordination frame from its relative position to the camera. This task

requires querying the state of robot’s coordination frames at the time of the observation.

Due to the object recognition processing time, the state of robot’s coordination frame

in the past is to be queried. This requires keeping the information about the state of

robot’s coordination frames for some period of time. In addition, a query about the
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robot’s state at a time should be answered by interpolating from discrete observations

of the state. This example high-lights the following on-demand processing requirements.

1. Memorizing: data should be recorded selectively to avoid overloading the memory.

2. Forgetting: outdated data should be pruned to bound the amount of recorded data

in memory.

3. Active memory: memory should notify consumers when it is updated with relevant

information. In this way, consumers can access the information at their time of

convenience.

4. State-based representation: knowledge about the state of the robot’s environment

should be derived from discrete observations.

Incremental query evaluation is a processing model that mixes the on-demand and on-

flow processing models as follows. Data is maintained in memory as in on-demand

processing and is queried on-demand. The differences is that a query can be registered

to remain active to incrementally update its results as the knowledge base changes. The

updates are then sent asynchronously to the asker.

From the perspective of on-flow processing, an active query can be seen as a hypothetical

on-flow processing query which has been evaluated from the earliest beginning over all

histories of data. An active query can be also seen as a generalization of the notification

functionality of active memories in the following two dimensions. First, a subscription

in active memories only receives the matching events which occur after it has been

registered. An active query, in contrast, is first evaluated over the history of data

recorded in the knowledge base and is then updated as new data arrives. Second,

an active memory notifies events of single changes of memory elements. In the IDA

framework for example, one can subscribe to a pattern of such events. In a knowledge

base in contrast, an active query considers all pieces of information, facts and rules,

available in the knowledge base as a whole and reasons about it. Incremental query

evaluation extends the notification functionality of active memories from raw data to

query results.

Incremental query evaluation is necessary for reactivity of the robot. Often in planning

and plan execution, the same queries are repeatedly performed on the robot’s knowledge

base. Such queries can include time consuming reasoning procedures on domain and

perceived knowledge. Repeating the evaluation of these queries from scratch causes

performance issues, negatively affecting the reactivity. To cope with this situation, a

mechanism for an incremental evaluation of queries is required. Such a mechanism
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should provide an efficient way of updating the results of queries according to changes

of the knowledge base.

In addition to the functional requirements discussed for the above three models of pro-

cessing, information engineering includes other requirements to support re-usability in

implementation of its functionalities. The following presents a list of general require-

ments for supporting information engineering used as guidelines to develop this work.

1. Supporting on-flow and on-demand information processing and incremental query

evaluation.

2. Logic-based knowledge representation and reasoning.

3. General processing: supporting external function calls, for instance, to support

spatial reasoning.

4. Run-time reconfigurability: reconfigurability of functionalities at run-time.

5. Handling asynchronicity: dealing with delayed and out-of-order reception of sen-

sory data.

6. High-level syntax: high-level syntax to support the implementation of functional-

ities.

7. Efficient implementation: efficient implementation of functionalities.

8. Interoperability: being framework-independent.

9. Distributed processing: distributing functionalities for modularity and efficiency.

10. Formal Semantics: clear semantics of functionalities.

1.2.5 Summary of State-of-the-Art

The on-flow processing support of the widely used and open-source robotic frameworks

such as ROS and YARP [Metta et al., 2006] are limited to topic-based publish-subscribe

communication. Topics are forms of communication channels directing messages from

the publishers to subscribers. Publishers and subscribers can be added and removed at

runtime. While publish-subscribe provides a basic infrastructure to facilitate the flows

of data among components, the processing of data is entirely left to the components.

What is missing is the support of processing, reasoning about and communication of

data based on its content. Recent research on AI-based and cognitive robotic frame-

works acknowledges the need for the framework-level support of on-flow processing. In
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particular, the IDA and DyKnow frameworks provide some support for on-flow process-

ing. These frameworks are however not available to the community as open-source.

The on-flow support of IDA is limited to content-based filtering of data. XPATH queries

are flexible to select and transform messages based on the information they contain and

the mechanism has been used in the Filtering, Transformation and Selection architec-

tural pattern to increase re-usability of robot software at framework-level [Lütkebohle,

2009]. The filtering mechanism is however mostly limited to single messages. The defi-

nition of filters does not allow to correlate, aggregate and reason about various messages

to extract new information.

The recent developments of DyKnow and, in particular, its support for C-SPARQL [Bar-

bieri et al., 2010] queries enable the execution of expressive queries on flows of sensory

data. Flows of data can be correlated and aggregated and ontological reasoning on

background knowledge is supported. This clearly provides an advantage over existing

systems. C-SPARQL however does not support the expression of qualitative temporal

relations among data or the filtering of data patterns based on their durations. Such ca-

pabilities are desirable, if not necessary, to capture complex data patterns [Anicic et al.,

2011]. In addition, on-flow processing in DyKnow requires semantic annotation of flows

of data. Such semantic annotation is not provided, for instance, in ROS software widely

used by the community, inducing programming overhead.

Robotic Knowledge management systems are capable of representing and reasoning on

knowledge. However, they fall short in real-time processing of flows of sensory data

for extraction of knowledge in dynamic environments. They process the knowledge on-

demand based on the query-response model of interaction. Upon receiving a query,

they perform the requested reasoning task and respond with the results. Consequently,

these systems are not suitable for processing the flows of sensory data to timely detect

and respond to situations of the environment. To detect a situation, an on-demand

processing system needs to be frequently queried for that situation after each update of

the knowledge. This approach does not scale up in practice and timely processing of

data flows requires on-flow processing.

Existing knowledge management systems also lack support for efficient management and

querying of histories of data and implementing event-based notifications about changes

of the knowledge base. Active memories support pruning of outdated data by implemen-

tation of forgetting mechanisms. They also notify interested components when memory

is updated. However, a subscription is typically limited to a single data item, filtered

by its type and content and does not include information that can be derived from the

whole data in memory. In summary, existing on-demand processing systems support

either logical reasoning or active memories, but not both. Moreover, no system takes
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into account the asynchronicity in availability of data to synchronize queries on state of

the environment.

ORO is a logic-based knowledge management system that supports active memory func-

tionalities such as forgetting and notification, but its support for the following on-demand

processing requirements are limited. First, ORO does not support selective memoriz-

ing of data. All input data is recorded. Second, forgetting is limited to fixed memory

profiles. It is not possible to specify time and count-based forgetting policies based on

types of data. Third, due to the open world assumption, representing and reasoning

about dynamics of the robot’s environment is difficult in ORO.

ORO allows subscribing to events to receive notifications when triggering conditions of

events become true. Triggering conditions are queries evaluated against the knowledge

base. Every time the ORO knowledge base is altered, the Pellet reasoning engine of

ORO re-classifies the whole knowledge base. Once the re-classification is completed,

ORO tests the query of each active event. Pellet supports two limited forms of in-

cremental reasoning: incremental classification and incremental consistency checking.14

Incremental classification is used to incrementally update classification results when the

class hierarchy changes. Using incremental classification, queries should be limited about

classes and cannot be about instances. Incremental consistency checking supports only

the addition or removal of instances, but not changes of the class and property axioms.

In summary, ORO does not support incremental query evaluation in general and, for

instance, when ontologies contain rules. For example, ORO uses semantic web rule lan-

guage (SWRL15) [Horrocks et al., 2004] for rule-based reasoning. Such rules have to be

evaluated from scratch when the knowledge base is altered.

Both on-flow and on-demand processing of sensory data are necessary for a timely

extraction and dissemination of information in robot software, but current systems often

support one or the other. The following situations illustrate the need to combine on-flow

and on-demand processing. First, on-flow processing is needed for transforming data to

a compact and suitable representation before recording it in memory. Second, a simpler

and more efficient implementation of some on-flow processing tasks can be achieved

by mixing on-flow pattern recognition with on-demand querying of data in memory.

Third, active memories generate events when the contents of their memories change. It

is desirable that a consumer is able to subscribe to notification when a pattern of such

changes occurs [Wrede, 2009]. This requires an on-flow processing mechanism to process

the memory events to detect relevant patterns of memory updates. Fourth, a mix of

14Pellet FAQ, accessed on April 10th, 2015 (https://github.com/Complexible/pellet/wiki/FAQ#incremental-
reasoning)

15http://www.w3.org/Submission/SWRL/



Chapter 1. Introduction 21

on-demand and on-flow processing is necessary to support incremental query evaluation

which is a generalization of the event-based notification mechanism of active memories.

Agent programming languages do not support event-driven and incremental reasoning

on their input data. Therefore, the sensory input processing support of these languages

is not suitable for on-flow processing of data [Ziafati et al., 2013b]. The lack of on-flow

processing support reduces the reactivity and limits the application of these languages

in robotics [Ziafati et al., 2013b,a]. In addition, these languages provide preliminary

support for knowledge management and querying and do not provide high-level language

operators for an efficient implementation of on-demand processing functionalities such

as memorizing, forgetting and state-base knowledge representation.

Another concern about the application of these languages in robotics is performance

issues caused by the repetition of queries on knowledge base. An approach to increase

performance is to cache query results [Alechina et al., 2013]. By caching, a query is re-

evaluated only if the knowledge base has been updated with relevant facts. To implement

such a caching mechanism when the agent and the knowledge base components are

separated, active memory notification is required to inform the agent program about

the changes of the knowledge base, but such mechanism is not provided. In addition,

while such a caching mechanism improves performance, cached results are invalidated

when the knowledge base is updated with relevant facts. Consequently, an incremental

query evaluation mechanism can improve the performance over existing approaches by

propagating the changes of the knowledge base to results of queries instead of removing

the cached results and re-evaluating the queries from scratch.

1.3 Research Questions

The overall question of this thesis is how to provide a language support for robotic infor-

mation engineering that is timely processing, management and querying of asynchronous

and discrete flows of sensory information to extract knowledge of the environment. In

the following, this question is divided into four questions. In addition, we consider

the application of agent programming languages in robotics and, in particular, their

information engineering requirements as our fifth question.

The first question is how to support on-flow processing of data. A language for on-flow

processing should be able to represent complex patterns of data, including temporal and

logical relations and transform them into new data. General processing of data should

be supported as well as interfacing with other languages to import external process-

ing functionalities such as spatial reasoning. The syntax of language should be elegant
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to support an easy and compact implementation at a suitable level of abstraction. It

should also support specifying complex patterns in terms of simpler ones built on top

of each other which could be re-used and easy to understand. The language should

have a declarative syntax and clear semantics to support the correct implementation of

functionalities and its execution engine should take the asynchronicity of data into ac-

count. Finally, event-driven and (semi) real-time processing of data requires an efficient

incremental processing strategy and suitable memory management mechanisms.

The second question is how to support on-demand processing of data. An extensive

study of robotics knowledge management requirements high-lights the dominant advan-

tages of logic-based systems [Lemaignan, 2012]. The question is how to address the

limitation of existing systems with regard to selecting, managing, querying and synchro-

nizing the relevant parts of flows of sensory data in the knowledge base and support

active memory notification. Language support is required to enable the definition of

high-level policies for selective recording of data and pruning outdated data. It is also

required to facilitate the state-based representation of data built upon discrete obser-

vations of the environment (i.e. events). An efficient management and querying of

histories of data requires their underlying management in suitable data structures and

using indexing mechanisms. Active memory notification requires support for generation

and management of events. Finally, language support is needed to synchronize queries

on the state of the environment, built upon events, asynchronously received from the

perception components.

The third question is how to support incremental evaluation of queries on the knowledge

base. Language support is needed to be able to register queries as active queries that are

evaluated on the current knowledge in the knowledge base and their results are updated

in real-time according to changes of the knowledge base. The question is how to provide

an efficient mix of top-down (i.e. query-driven) and bottom-up (i.e. data-driven) query

evaluation strategies deployed in on-demand and on-flow processing models. Given

a query, a top-down evaluation strategy examines the relevant rules and facts in the

knowledge base to find answers of the query. The advantage is that the search strategy

is guided by the type of the query and its bound variables. In bottom-up approaches,

queries of interest are usually known in advance and are part of the knowledge base.

The knowledge base then explicitly stores all relevant results that can be derived from

the given facts and rules in the knowledge base. The advantages of these approaches

is their use of data-driven evaluation mechanisms to efficiently update knowledge base,

including the results of queries of interests, as facts are added or removed. The question

is how to efficiently evaluate queries in a top-down manner and efficiently update their

results in a bottom-up manner only taking into account the queries which are active at

the time.
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The fourth question is how to uniformly support the on-flow, on-demand and incremental

query evaluation functionalities in a language. In particular, logic-based approaches are

of interest for modeling, representing and reasoning on knowledge. The question is how

to develop a logic-based language that can process, manage and query the flows of data

in real-time to provide a more comprehensive support of information engineering with

respect to the current robotic knowledge bases.

The fifth question of this thesis is about the application of agent programming lan-

guages in robotics. We investigate what the plan execution control requirements of

these language in robotics are and how to support the requirements. In particular, we

are interested in the relation between such requirements and the information engineering

requirements of these languages. We ask the question of whether and to what extent

the information engineering techniques developed in this thesis address the information

engineering requirements of these languages and support the real-time and event-driven

execution of plans to apply these languages in robotics.

1.4 Methodology

Identifying general robotic information engineering requirements is challenging due to

the wide range of robotic systems and applications. The main approach followed in this

thesis is to generalize from the requirements in various research related to robotic sensory

data processing and management. This includes knowledge processing and event-based

frameworks [Heintz et al., 2010b, Wrede, 2009, Hawes and Hanheide, 2010], active mem-

ories for sensory data fusion [Bauckhage et al., 2008, S. Wrede, M. Hanheide et al., 2004,

Hawes and Wyatt, 2010, Hawes et al., 2008], knowledge management systems [Tenorth

and Beetz, 2009, 2012, Lemaignan et al., 2011, Lemaignan, 2012] and on-flow processing

systems [Lütkebohle, 2009, Heintz et al., 2010b, 2013, Heintz and Leng, 2013, de Leng

and Heintz, 2014, Heintz, 2013, Ranathunga et al., 2012, Pecora et al., 2012, Sabri et al.,

2011, Buford et al., 2006].

We take the same approach to identify the plan representation and execution require-

ments of agent programming languages in robotics. We generalize from the functional

capabilities of existing robotic plan representation and execution control languages in-

cluding TDL [Simmons and Apfelbaum, 1998], PLEXIL [Tara and Vandi, 2006], APEX

Freed [1998], SMARTTCL [Steck and Schlegel, 2010], PRS [Georgeff and Lansky, 1987]

and PRS-lite [Myers, 1996].
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Software development is inherently of high importance for this thesis work due to the

following reasons. First, the aim of this work is the support of timely processing, man-

agement and querying of information. This includes developing a language that provides

a high-level syntax and clear semantics to specify information engineering functionali-

ties. The main key to usefulness of such a language is its efficiency in execution of the

processing, management and querying functionalities. For example, while it is clear that

on-flow processing requires an event-driven processing model, the efficiency of a specific

approach and its implementation needs to be evaluated in practice.

Second, there has been already a large effort in the development of robotic frameworks.

In particular, ROS has emerged as the de-facto standard robotic framework and it is

being widely used and further developed by the community. ROS and other frameworks

provide a basic support for synchronous and asynchronous communications among com-

ponents. We assume the support of such communication mechanisms as given in existing

systems and choose to build our software on top of it. Integration with existing software

such as ROS is important not to re-invent the wheel and, more importantly, to make

the developed software accessible and promote its use by the community. In this regard,

the developed software should be easy to integrate with existing robotic frameworks and

the efficiency of the integration, and in particular, the data format conversion necessary

for the integration requires an experimental evaluation.

Due to these reasons, we put a great emphasis on software development and prototyping

in this thesis. The implementation of algorithms and demo applications serves us to

develop, test and enhance the usability of our approach. In addition, it serves as an

important goal of this thesis to enhance the robotic software engineering experience by

providing corresponding tools as open-source for the community. In the rest of this

section, we describe the particular approaches taken to answer the research questions of

this thesis.

1.4.1 On-Flow Processing

We consider the component interactions, plan execution and monitoring, anchoring and

situation recognition as four main situations where on-flow processing of data is useful

in robotics. From an analysis and discussion of these situations, we derive the main

on-flow processing requirements.

To address the requirements, we look into information-flow processing systems. These

systems provide efficient languages for processing large volume of flow of information.

There are two classes of such systems: Data Stream Management Systems (DSMSs) and

Complex Event Processing Systems (CEPSs) Cugola and Margara [2012]. CEPSs are
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of more interest due to their expressiveness in presenting complex temporal relations

between events to detect complex events. Among the existing CEPSs, we propose to

integrate and extend the ETALIS language for event-processing (ELE)16 [Anicic et al.,

2012, 2010, Anicic, 2011] for on-flow processing of sensory information in robotics.

1.4.1.1 ETALIS Language for Event-Processing (ELE)

ELE is a language for detecting and processing complex events in flows of events. An

event is a time-stamped piece of information. An ELE program consists of a set of event

rules. The body of an event rule specifies a pattern of events to be detected. The head

of the rule specifies a new event to be generated for each set of events which match the

pattern specified by the body. The head and body of a rule share variables. In this way,

information is passed from the events matching the body to the corresponding event

generated by the head. For example, the rule “a(X) ← b(X) SEQ c(X)” is informally

read as follows. For each pair of events of type b and c, where the event of type b occurs

in advance and they have the same arguments, an event of type a is generated with the

same argument. In ELE, events generated by the rules can themselves match the body

of other rules contributing to generation of other events. This allows to specify complex

events in terms of simpler ones.

ELE is an expressive language allowing the representation of all possible thirteen tempo-

ral relations among time interval occurrence times of two events (e.g. an event occurring

before the other, they occur at the same time, etc). It can also represent non-occurrence

of an event between the occurrence of two other events. In addition, ELE allows to set

a time limit within which a set of events matching a body of an event rule should occur.

For instance, the rule “a(X) ← (b(X) SEQ c(X)).5sec” specifies that a pair of events

of type b and c generates a corresponding event of type a, if these events occur in the

specified sequence order and they occur within a time period of five seconds.

In addition to specify temporal relations among events, ELE allows also reasoning over

background knowledge as follows. Background knowledge is encoded as a set of logical

rules and can be reasoned about when testing whether a set of patterns match the body

of an event rule. To this end, an event rule includes a logical query in its body. When a

set of events match the body, this query is instantiated according to the contents of those

events (i.e. some of its variables are bound to some values). The query is then evaluated

over the background knowledge and those events are considered as being matched to the

body only if the query has an answer. The ability to reason on background knowledge

is a distinguishing feature of ELE comparing to other CEPSs. ELE bridges the gap

16Etalis (Event TrAnsaction Logic Inference System) provides also the Event Processing SPARQL
language (EP-SPARQL) for event processing in Semantic Web applications.
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between logical query-response approaches for event representation and recognition and

incremental but non-logical approaches for real-time processing of information flows.

ELE offers a logic-based CEPS with an event-driven, incremental and efficient execution

model. The execution model of ELE enables the effective detection of complex events at

run-time following the semantics of the language. Every time an event occurs, the system

updates its knowledge base, encoding which events have already happened and which

ones are missing for the completion of complex events. A complex event is detected as

soon as the last event required for its completion occurs. ELE uses Prolog as its execution

system. A typical Prolog program usually follows the query-response execution model

where queries are asked and answers are computed. To provide an incremental and

event-driven execution model, ELE programs are transformed into a set of rules called

goal-driven backward chaining rules. The transformation is such that, first, the final

program implements the semantics of ELE, informally described above, second, the

computations are driven by new events received by the ELE execution systems, and

third, complex events are efficiently detected in an incremental manner. Using such a

model and particular data structures, ELE achieves a performance of comparable to

state-of-the-art non logic-based CEPSs.

ELE comes with a Java wrapper providing Java class templates to implement the nec-

essary communications with other software components using network sockets. Using

this wrapper, the system is connected to a fixed set of provider components, receiving

events they generate. It is connected also to set of consumer components, sending cer-

tain types of events to those components. We extend ELE and its execution system

in three ways. First, the Java wrapper is replaced with a much lighter C++ wrapper,

considerably improving the performance. Second, we provide a tool for an automatic

conversion of ROS messages to ELE events and vice versa. Third, we provide a run-time

subscription mechanism. Using this mechanism and corresponding interfaces, ELE can

be (un)subscribed to new ROS topics at runtime. In addition, ROS components can

(un)subscribe to ELE at runtime for events of their interests, filtered by their contents.

1.4.2 On-Demand Processing

Logic-based approaches for on-demand information processing in robotics are domi-

nant [Lemaignan, 2012]. We use Prolog as the underlying knowledge representation

and reasoning system due to its closed-world assumption and supporting a form of non-

monotonicity by the negation as failure inference rule. These characteristics bring Prolog

some practical advantages for a more compact knowledge representation and facilitating

reasoning about changes comparing to, for instance, existing description logic reasoners
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such as the Pellet17 reasoner [Sirin et al., 2007]. In addition, the query-response execu-

tion model of Prolog is naturally more suitable for on-demand processing, comparing to

DL reasoners that re-classify the whole knowledge base on every update. Moreover, the

availability of software libraries to interface Prolog, for instance, with the C++ language

makes it easy to integrate additional reasoning capabilities or information from external

sources in on-demand processing. Finally, the ELE language is parsed and executed

by Prolog. Having Prolog-based languages for both on-demand and on-flow processing

enables developing an integrated system on top for robotic information engineering.

In Prolog syntax, a term is an expression of the form p(t1, . . . , tn), where p is a functor

symbol and t1, . . . , tn are constants, variables or terms. A term is ground if it contains

no variables. A Horn clause is of the form a1 ∧ . . . ∧ an → a, where a is a term

called the Head of the clause, and a1, . . . , an is called the Body where ai are terms. In

Prolog syntax, the body can also include negation of terms. a← true is called a fact and

usually written as a. A Prolog program P is a finite set of Horn clauses. One executes

a logic program by asking it a query of the form b1 ∧ . . . ∧ bn where bi is a term.

Prolog employs the SLDNF resolution method [Apt and van Emden, 1982], a depth-first

search strategy, to determine whether or not a query follows from the program. Given

a goal, SLDNF tries to prove the goal using the rules and facts of the program. A goal

is proved if there is a variable substitution by applying which the goal matches a fact,

or matches the head of a rule and the goals in body of the rule can be proved from left

to right. A variable substitution is a mapping from a set of variables to a set of terms.

Goals are resolved by trying the facts and rules in the order they appear in the program.

A query may result in a substitution of free variables.

We extend the Prolog language with domain-specific language operators and constructs

to support on-demand processing functionalities such as memorizing, forgetting and

state-based knowledge representation. To this end, we aim for simple and minimal

language extensions to enable high-level and expressive specifications of a general set

of such functionalities. In addition, we take the efficiency requirement into design of

such operators and constructs such that indexing mechanisms can be used for their

efficient underlying implementations. To deal with asynchronous reception of events

by the knowledge base, the semantics of the proposed functionalities take into account

the occurrence times of events, as opposed to the time the events are received by the

knowledge base. Using such semantics, we investigate mechanisms to synchronize the

queries about the state of the environment, built upon the asynchronous events.

The result is a Prolog-based language called Synchronized Logical Reasoning language

(i.e. SLR). It supports selective recording of data in memory items that are assigned

17http://clarkparsia.com/pellet/
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memory profiles, efficiently implementing forgetting mechanisms. In addition, it sup-

ports active memory notification where events are generated whenever a new event is

recorded or removed from the knowledge base. Furthermore, SLR provides two simple

operators to efficiently interpolate or extrapolate the state of a domain, observed by

discrete events and supports automatic synchronization of queries.

1.4.3 Incremental Query Evaluation

Choosing Prolog as our underlying knowledge management system, we investigate an

approach to support an incremental evaluation of logic programming queries in Prolog.

To this end, we build on the idea of goal-directed backward chaining rules used in the

execution model of ELE for an incremental and event-driven detection of complex events.

The syntax of ELE is easily mapped to Prolog syntax. For example, the event rule “a(X)

← b(X) SEQ c(X)” is mapped to the “a(X) :- b(X) ∧ c(X)” Prolog rule.18 However,

the operational semantics of ELE and Prolog are different. In an ELE program, the

head of each rule specifies an event to be detected based on the events specified in the

rule’s body. In a Prolog program, a rule specifies that a goal matching its head can be

proven, if all sub-goals in its body can be proven. In other words, Prolog is goal-driven

and find answers for a given query, but ELE is event-driven and find all answers that

can be derived by the rules in its program. Moreover, new facts are stored in Prolog to

be used in future to derive answers for the queries, but ELE uses new events to derive

complex events and disregards them afterwards. Consequently, while ELE provides an

event-driven and incremental execution model, it has the following limitations which

need to be addressed for incremental query evaluation.

ELE derives all facts (i.e. events) that can be derived by every rule in its program,

but incremental query evaluation requires to only derive the facts that match the given

active queries, queries whose results are of interest at the time. ELE rules can be

added or removed at runtime, but this ability is not enough for implementation of active

queries due to the following reasons. Given a set of active queries, there needs to be an

automatic way of choosing the necessary set of rules to be used for deriving answers to

these queries which is not supported. More importantly, when an ELE rule is added, it

only considers the facts which are added to the knowledge base afterwards and the facts

already in the knowledge base are disregarded. In addition, ELE rules are amenable to

easily fall into infinite loops. For instance, if we have the two rules, “ a(X) ← b(X)”

and “b(X)← a(X)”, and we provide a(1) as input event, the ELE execution system falls

into an infinite loop and never stops.

18There should be an additional clause in the rule to compare the time stamps of the events to check
for their occurrence in the specified sequence order, omitted for brevity.



Chapter 1. Introduction 29

We extend the ELE approach in order to have only those rules activated that are nec-

essary. A rule should be activated, if the system is currently evaluating a query and the

answers generated by the rule are relevant to finding answers for the query. In addition,

we adapt the approach such that when a query is registered, all intermediate goals are

efficiently generated as if the query was registered before the addition of any fact to the

knowledge base. Furthermore, we borrow the idea of caching sub-goals resulted from

research on tabled logic programs [Swift and Warren, 2010, Saha and Ramakrishnan,

2006a, 2003]. In tabling, results generated for a sub-goal are cached and next time the

sub-goal is encountered, the cached results are used instead of re-evaluating the sub-

goal. By tabling, the performance is improved. Moreover, the problem of falling into an

infinite loop for rules with left recursion is prevented.

1.4.4 Mix of Approaches

Our approaches to support on-flow, on-demand and incremental query evaluation func-

tionalities are all based on logic programming and are implemented and executed by the

SWI-Prolog system. Consequently, they can all be combined to provide an integrated

system to provide a comprehensive support for necessary processing models required in

information engineering.

The ELE language provides a built-in support to execute Prolog queries. This facilitates

to perform SLR queries in ELE as SLR queries are in the Prolog query format and

are executed by the same Prolog execution system that executes ELE. Therefore the

basic interface from ELE to SLR is already in place. The interface from SLR to ELE is

event-driven. We feed the SLR events, generated due to changes of the SLR knowledge

base, to the ELE execution system, considered as ELE typical input events which can

be captured to derive complex events. In addition, events generated by ELE are fed as

input events to SLR, the history of which can be maintained.

By integration of SLR and the extension of ELE with runtime subscription, we develop

the Retalis language (ETALIS for Robotics) to support the implementation of both

on-flow and on-demand information engineering functionalities in one program. Retalis

is open-source software, released as a ROS package.19 Our approach for incremental

evaluation of queries has not yet been included in the current release of Retalis. The

integration requires the development of necessary interfaces in ROS allowing components

to register queries to asynchronously receive updates on query results which have been

left for future work.

19http://wiki.ros.org/retalis
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1.4.5 Plan Representation and Execution in Agent Programming

To address the plan representation and execution requirements of agent programming

languages, we opt to build upon the PLEXIL[Verma et al., 2005, Gilles Dowek, César

Muñoz and Pasareanu, 2010] plan execution language developed at NASA due to the

following reasons. PLEXIL offers a simple structure for plan representation, a hierarchy

of nodes with few syntactic constructs, but it is one of the most expressive plan execution

languages unifying many of the existing ones. Moreover, PLEXIL has formal semantics

which allows for the formal study of various types of determinism of plan execution.

In addition, the operational semantics of PLEXIL is presented in a modular way at

various levels of plan execution easing the formal study and modification of the language.

Finally, the languages has been successfully used in various robotic applications.

To address the requirements, we develop the RobAPL language. RobAPL adapts the

PLEXIL syntax and semantics to be integrated in BDI-based agent programming lan-

guages for representing and executing plans. We introduce new execution nodes for

querying and manipulating the agent’s beliefs and goals and present an operational se-

mantics for PLEXIL-like plan execution in the BDI architecture. Moreover, PLEXIL

is extended to support pausing, resuming and pre-empting plans, performing clean-up

and wind-down activities when pausing, resuming, pre-empting or aborting plans, and

coordinating the parallel execution of plans over shared resources.

1.5 Thesis Layout

This document is organized as follows. Chapter 2 presents a running example and gives

an architectural overview of Retalis. Chapter 3 discusses on-flow processing require-

ments and introduces information flow processing systems and, in particular, the ELE

language as suitable technologies for on-flow processing of robotic sensory data. The

ELE language is presented and extended with a dynamic subscription mechanism to

support run-time content-based flow of information in robot software. Chapter 4 dis-

cusses on-demand processing requirements and extends Prolog into the SLR language

for robotic on-demand processing. Chapter 5 provides an empirical evaluation of the

on-flow and on-demand functionalities of Retalis by implementing a demo application for

the NAO robot. Chapter 6 develops an approach for incremental evaluation of definite

logic program queries and evaluates its performance. Chapter 7 presents the RobAPL

language and discusses the role of information engineering and the approach taken in this

thesis in autonomous robot programming using agent programming languages. Finally,

Chapter 8 presents a summary and future work.



Chapter 2

Retalis Language for Robotic

Information Engineering

This chapter answers the question of how to uniformly support various models of infor-

mation processing in a robotic information engineering language. In the Introduction

chapter, we discussed that logic-based approaches are of interest for modeling, repre-

senting and reasoning about knowledge, but existing systems fall short in efficiently

processing, managing and querying flows of sensory information. This chapter presents

an architectural overview of the Retalis language developed in this thesis to address such

shortcomings. Retalis is open source software which has been integrated in ROS.1

The remainder of this chapter is organized as follows. We first present a running example

used throughout out this thesis to illustrate the on-flow and on-demand information en-

gineering supports of Retalis. We then discuss how sensory information is represented in

Retalis and is processed and managed by ELE and SLR languages used in Retalis to de-

velop the Information Engineering Components (IECs) of autonomous robots. The API

of Retalis to develop synchronous and asynchronous interactions among IECs and other

robot’s software components are presented and the integration with ROS is discussed.

2.1 Running Example

This section presents an example to illustrate the concepts and functionalities of Retalis.

A robot is situated in a dynamic environment informing a person about the objects

around it. The environment is described by a set of entities e1, e2, .... These include the

moving base of the robot, the pan-tilt 3D camera cam of the robot mounted on the base,

1http://wiki.ros.org/retalis
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a set of tables table1, table2, ..., a set of objects o1, o2, ..., a set of people f1, f2, ..., a set

of attributes and a reference coordination frame rcf.

Figure 2.1 presents the robot’s software components and their interactions. This figure

should be read as follows. Directed arrows visualize asynchronous flow of data and

two-way arrows represents request-response service calls.

Figure 2.1: Robot’s software components

The robot software includes the following components. Asynchronous communications

among these components are in the form of events. An event is a time-stamped piece of

data formally defined in Section 3.3.

faceRec component: processes images from the camera, outputting face(fi, pj)
t events.

A face(fi, pj)
t event represents the recognition of the face of fi with confidence

value pj in a picture taken at time t.

segRec component: uses a real-time algorithm to process images from the camera

into 3D point cloud data segments corresponding to individual objects. Such an

algorithm is presented by Uckermann et al. [Ückermann et al., 2012]. The segRec

component outputs seg(oi, cj , pk, lg,pclh)t events. Such an event represents the

recognition of object oi, with color cj , with probability pk, with relative position lg

to the cam, with the 3D point cloud data segment pclh recognized from a picture

taken at time t. For events of the recognition of the same object segment over

time, a unique identifier oi is assigned using an anchoring and data association

algorithm. Such an algorithm is presented by Elfring et al. [Elfring et al., 2012].

objRec component: processes 3D point cloud data segments, outputting obj (oi,ot j , pk)
t

events. Such an event represents the recognition of object type ot j with probability

pk for object oi recognized from a picture taken at time t.
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stateRec component: localizes the robot. It outputs two types of events. A tf(rcf,base, lk)
t

event represents the relative position between the reference coordination frame and

the robot base at time t. A tf(base,cam, lk)
t event represents the relative position

between the robot base and its camera at time t.

camCtrl and baseCtrl components: receive events of type pos goal(l), each containing

a position l to point the camera toward l or move the robot base to l, respectively.

IEC component: processes and manages events from faceRec, segRec, stateRec compo-

nents. It detects reliable recognition of faces and objects and their movement to

inform the mainCtrl component. Moreover, it positions objects in the reference

coordination frame. In addition, it sends point cloud data of some objects to the

objRec components to have their types recognized. The IEC component receives

recognized types of objects from objRec as events and maintains the history of

recognized faces and objects. It also controls the camera’s position to follow a

specific entity by sending perceived positions of the entity to camCtrl.

mainCtrl component: is responsible for interacting with the user. It moves the robot

base by sending commands to the baseCtrl component. It receives events from

IEC about the movement of objects to inform the user. The mainCtrl component

queries IEC to answer the questions of the user.

2.2 Architectural Overview

Retalis is used to develop Information-Engineering Components (IECs) of autonomous

robotic systems. IECs are software components implementing a variety of information

processing and management functionalities. IEC s are distributed independent compo-

nents operating with other software components in parallel. Retalis does not impose

any restriction on how components are structured in robotic software.

Retalis represents and manipulates data as events. Events are time-stamped discrete

pieces of data whose syntax is the same as Prolog ground terms [Clocksin and Mellish,

2003, Lloyd, 1984a]. Events contain perceptual information such as a robot’s position

at a time or recognized objects in a picture. The meaning of events is domain-specific.

The time-stamp of an event is a time point or a time interval referring to the occurrence

time of the event. Events are time-stamped by the components generating them. 2 For

example, the event face(‘Neda’,70)28 could mean a recognition of Neda’s face with 70%

2We assume all components share a central clock which is usually the clock of the computer running
the components. If there is a network of computers running the components, time should be synchronized
among them.
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Figure 2.2: IEC architecture

confidence in a picture taken at time 28 and the event observed(‘Neda’)〈28,49〉 could mean

a frequent recognition of Neda’s face in pictures taken during time interval [28,49]. An

event containing information from processing of sensory data is usually time-stamped

with the time at which the sensory data is acquired. This is usually different from the

time point when the processing of the data is finished. A composite event generated

from an occurrence of a pattern of other events is time-stamped based on the occurrence

times of its composing events.

Retalis comprises two logic-based languages. The ELE language [Anicic et al., 2012,

2010, Anicic, 2011] supports on-flow processing and the SLR language [Ziafati et al.,

2014] supports on-demand processing of data. In the Retalis program of an IEC, ELE

generates composite events by detecting event patterns of interest in the input flow of

events to the IEC. SLR is used to implement a knowledge base maintaining the history

of some events. The knowledge base contains domain knowledge, including rules to

reason about the recorded history. The flow of events processed by the IEC includes its

input events and the composite events it generates. This means that composite events

can in turn be used to detect other events. The robot software presented in Section 2.1

includes one IEC component. Robot software can include a number of IEC components

in order to modularize different information engineering tasks and to use distributed

and parallel computing resources.

Figure 2.2 depicts the architecture of an IEC, including its logical components imple-

mented in Retalis. This figure must be read as follows. Directed arrows visualize asyn-

chronous flow of events. Two-way arrows represent queries to SLR by ELE and external
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components.

Retalis supports the implementation of both synchronous and asynchronous interfaces

among IEC s and other components. Asynchronous interaction is realized as follows. The

IEC subscribes to events provided by provider 1, .., provider n. Moreover, consumer 1,

.., consumer n subscribe to the IEC for types of events. The Retalis execution is

event-driven. Input events are processed as they are received by the IEC to derive new

events. When an event is processed, the event and resulting composite events are sent

to interested consumers. The history of the input and derived events is also recorded in

memory according to the SLR specification. Retalis specifications can be reconfigured

at runtime. This includes the composite events to be detected, the producers the IEC

is subscribed to, the subscriptions of consumers to the IEC, and the history of events

maintained in memory.

Synchronous interactions between the IEC and other components are as follows. Com-

ponents can query the domain knowledge and history of events in the SLR knowledge

base. Retalis provides a request-response service to query SLR. SLR is a Prolog-based

language, presented in Section 4.2 . The evaluation of a SLR query determines whether

the query can be inferred from the knowledge base. The query evaluation may result

in a variable substitution. The IEC can also access the functionalities of other software

libraries or components. Function calls are supported both when answering queries and

detecting composite events. To integrate external functionalities in Retalis, the corre-

sponding software libraries should be interfaced with Prolog.

The interactions between ELE and SLR are as follows. On the one hand, ELE gener-

ates composite events. These events constitute the input flow of events to SLR. SLR

selectively records these events in its knowledge base. On the other hand, changes in

the SLR knowledge base trigger corresponding input events for ELE. ELE can be used,

for instance, to detect a pattern of such changes to inform the interested components.

In addition, the specification of event patterns of interest in ELE can include queries to

SLR. Queries are used to reason about the domain knowledge and history of events in

SLR.

An ELE program, described in Section 3.3, contains two types of rules. The rules that

include the← symbol are event rules, specifying patterns of events to derive new events.

The rules that include the :- symbol are static rules, constituting a Prolog program. The

specification of the pattern of events in an event rule can include a query to the Prolog

program defined by the static rules. Retalis programs are similar to ELE programs.

The main difference is that the static rules in Retalis are SLR rules, constituting a SLR

program which can be queries from the event rules.
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Listing 2.1 presents an example of how ELE and SLR are used together in a Retalis

program. This program records the position of the object segment o1 whenever the

position is changed by more than a meter. This program is read as follows. Capital

letters represent variables. The body of the first and third rules are executed when the

program is initialized. c mem(m1,loc(o1,L),∞,∞) is a SLR clause creating memory m1

recording the history of loc(o1,L)T events. The second rule is an ELE clause querying

SLR, as written in its WHERE clause. For each seg(o1,C,P,L,PCL)T input event, the

prev clause queries memory container m1 for the last position of o1 before time T . If

the position has changed by more than a meter, the corresponding loc(o1,L) event is

generated and recorded in memory m1. In addition, consumer moving objects is notified

by the corresponding event obj(o1)T . This is specified by the third rule, which is read

as follows. The subscription s1 subscribes consumer moving objects to loc(O,L) events

with the output template obj(O) from time 0. Details of the ELE and SLR languages

are given in Sections 3.3 and 4.2.

1 on program start :− c mem(m1 , l o c ( o1 ,L)T ,∞ ,∞) .

2

3 l o c ( o1 ,L)T <− seg ( o1 ,C,P, L ,PCL)T

4 WHERE(

5 prev (m1 , l o c ( o1 ,Lprev )Tprev ,T)

6 d i s t (L , Lprev ,D) ,

7 D > 1

8 ) .

9

10 on program start :− sub ( s1 , moving objects , l o c (O, L) , obj (O) ,0 ) .

Listing 2.1: Retalis Program Example

A Retalis program is parsed and executed by a Prolog execution system and is provided

a C++ interface for communication with external components. This makes the Retalis

language framework-independent, because its core depends only on a Prolog execution

system. We use SWI-Prolog3 [Wielemaker et al., 2012] as the Retalis execution sys-

tem and use the SWI-Prolog C++ interface4 to interface the SWI-Prolog with C++.

Retalis can be interfaced with existing robotic frameworks mapping its synchronous

and asynchronous interfaces to their service-based and publish-subscribe communica-

tion mechanisms.

3http://www.swi-prolog.org
4http://www.swi-prolog.org/pldoc/package/pl2cpp.html
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Figure 2.3: An IEC in ROS architecture

We have developed an interface to integration Retalis with the ROS framework [Quigley

et al., 2009], the current de-facto standard in open-source robotics. In the ROS ar-

chitecture, each IEC is a ROS component5 [Quigley et al., 2009]. Asynchronous and

synchronous communications in ROS are realized using topics and services, respectively.

By subscribing to a topic, a component receives the messages other components publish

on that topic. A component invokes a service by sending a request message and receiving

a response message.

Figure 2.3 presents an IEC in a ROS architecture. IEC is subscribed to Topics I1 and

I2 receiving messages published by the components C2 and C3. IEC publishes events

on topics O1 and O2 to which other components are subscribed.

To subscribe an IEC to a topic, the Retalis-ROS interface requires the name and message

type of the topic. This is set in an XML configuration file, as in line 4-6 of Listing 2.2.

The Retalis-ROS interface offers a number of services to reconfigure the IEC at runtime.

These include services to subscribe the IEC to a topic, to un-subscribe from a topic and

to subscribe a topic to events from the IEC. To publish an event on a ROS topic, the

Retalis-ROS interface needs to know the message type of that topic. This can be set by

the program, as in lines 7-9 and 10-12 of Listing 2.2, or at runtime.

The Retalis-ROS interface provides also services to query the SLR knowledge base of

IEC. There are two types of queries, one asking for an answer to a query and another

asking for all answers to a query. A request message of query services is a SLR query,

5http://wiki.ROS.org/Nodes
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represented as a String value. An answer message of the single-answer query is a substi-

tution. A substitution is a list of variable and value tuples. An answer message of the

multi-answer query is a list of substitutions.

1 <?XML version=” 1 .0 ”?>

2 <p u b l i s h s u b s c r i b e>

3

4 <s u b s c r i b e t o name=”/ ar pose marker ”

5 msg type=” ar pose /ARMarkers”

6 />

7 <p u b l i s h t o name=” robot marker pos ”

8 msg type=” geometry msgs /Transform”

9 />

10 <p u b l i s h t o name=” gazeContro l ”

11 msg type=”headTurn/ GazeControl ”

12 />

13

14 </ p u b l i s h s u b s c r i b e>

Listing 2.2: Retalis-ROS XML configuration file

The conversion among ROS messages and Retalis events is performed automatically by

the Retalis-ROS interface. This may be described by an example. Table 2.1, consisting

of five columns, depicts five standard ROS message types. The first row in each column

is the name of a unique message type. The other rows presents the fields of data that

the message type contains. Each field of a message contains a single datum or a list of

data, whose type is a basic type such as Integer, Float, String, or it is a ROS message

type. For example, a geometry msgs/Point message contains three float values and a

geometry msgs/Pose message has a geometry msgs/Point message as its first field of

data.

Listing 2.3 presents the conversion of the geometry msgs/PoseStamped ROS message

type to its corresponding Retalis event. The conversion maps each ROS message to a

Prolog compound term where the functor symbol of the term is the name of the message

type and its arguments are the data fields of the message. Data of basic types such as

Integer and Floats are represented by their values. Strings are wrapped by single quotes

represented as Prolog Strings. Lists of data are represented as Prolog lists. Time in

ROS is a basic data type expressed by two Integer values represented in a Retalis event

as a list of two numbers.

When converting a ROS message to a Retalis event, the event is time-stamped with the

time-stamp of the header of the message. If the message does not have a header, the

event is time-stamped with the system current time. When converting a Retalis event to
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geometry msgs/PoseStamped std msgs/Header

std msgs/Header header uint32 seq
geometry msgs/Pose pose time stamp

string frame id

geometry msgs/Pose

geometry msgs/Point p
geometry msgs/Quaternion o

geometry msgs/Point geometry msgs/Quaternion

float64 x float64 x
float64 y float64 y
float64 z float64 z

float64 w

Table 2.1: ROS message examples

a ROS message, the time-stamp of the event is ignored. However, the Retalis language

provides direct references to time-stamp of events. This can be used, for instance, to

set the stamp in the std msgs header(seq,stamp,frame id) argument of an event and

hence in the header of its corresponding ROS message. ROS messages from different

topics can be of the same type and need to be distinguished. Therefore, we encode topic

names as main functor symbols of corresponding Retalis events. For example, if the event

pn(t1, .., tn)z is received from the topic x, the event is represented as x(pn(t1, .., tn))z.

1 geometry msgs PoseStamped (

2 s td msgs Header ( seq , stamp , f rame id ) ,

3 geometry msgs Pose (

4 geometry msgs Po int (x , y , z ) ,

5 geometry msgs Quatern ion (x , y , z ,w)

6 )

7 ) stamp

Listing 2.3: Retalis event format corresponding to geometry msgs/PoseStamped ROS

message type

2.3 Summary

The logic programming based Retalis language is introduced to develop Information

Engineering Components (IECs) of autonomous robots. In the Retalis program of an

IEC, the ELE language is used to program a set of rules to process input flows of events
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to the IEC on the fly. Complex temporal and logical patterns of events are detected,

based on which new events are generated. In the same program, the SLR language is

used specifying a knowledge base to selectively maintain and reason about the history

of events and domain knowledge. The interaction between the ELE and SLR parts of

a Retalis program is three-fold. First, ELE rules can query the information maintained

by SLR while detecting patterns of events. Second, SLR generates events when its

knowledge base is updated with new information. Such events are fed into ELE as its

input events which can be captured to detect complex events. Third, events generated

by ELE are fed to SLR as its input events, the history of which can be maintained by

SLR.

An IEC receives asynchronous events from other components and asynchronously sends

the events it generates to other components based on their runtime interests. Compo-

nents can also query the history of events maintained by the IEC and the IEC can also

access data or services from other components on-demand. Retalis has been integrated

in ROS providing user-friendly API to implement these synchronous and asynchronous

interactions and to automatically convert between ROS messages and Retalis events.

Components can also register queries to an IEC to asynchronously receive updates on

their results as the SLR knowledge base of the IEC is updated. This mechanism however

is not included in the current open-source release of the Retalis.
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On-Flow Information Processing

The question of this chapter is how to support on-flow processing of information. A

language for on-flow processing should be able to represent complex patterns of data,

including temporal and logical relations and transform them into new data. General

processing of data should be supported as well as interfacing with other languages to

import external processing functionalities such as spatial reasoning. The syntax of lan-

guage should be elegant to support an easy and compact implementation at a suitable

level of abstraction. It should also support specifying complex patterns in terms of sim-

pler ones built on top of each other that could be re-used and easy to understand. The

language should preferably have a declarative syntax and clear semantics to support the

correct implementation of functionalities and its execution engine should take the asyn-

chronicity of data into account. Finally, event-driven and real-time processing of data

requires an efficient incremental processing strategy and suitable memory management

mechanisms.

We discuss on-flow processing requirements of robotic information engineering and sug-

gest that information flow processing systems [Cugola and Margara, 2012] are suitable

technologies to address the requirements. Among the existing information flow process-

ing systems, we choose the ETALIS event-processing language (ELE) [Anicic et al.,

2012, 2010, Anicic, 2011] for on-flow information processing in robotics. The reason is,

in particular, that Etalis provides a logic-based language for event-driven and efficient

processing of flows of sensory information, enabling logical reasoning on domain knowl-

edge in processing flows of information. Moreover, Etalis is easy to interface with other

languages to integrate, for instance, spatial reasoning capabilities.

The remainder of this chapter is organized as follows. We first discuss the component

interactions, plan execution and monitoring, anchoring and situation recognition as four

main situations where on-flow processing of data is very useful in robotics. We then
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briefly discuss the information flow processing systems and present a detailed account of

the ELE language of Etalis. Afterwards, We extend Etalis with a subscription mechanism

allowing a run-time configurable content-based filtering of flows of data. Finally, we

present a detailed comparison of the Retalis support for on-flow processing, realized by

integrating the Etalis system and extending it with a runtime subscription mechanism,

with existing work and give a summary.

3.1 On-Flow Processing Requirements

On-flow processing of data is widespread in large areas of robot software. As examples,

the following presents four robotic situations where on-flow processing of data is very

useful.

The first situation is decoupling components interacting in robot software. This is usu-

ally supported by a publish-subscribe communication mechanism [Eugster et al., 2003]

based on an indirect addressing style [Brugali and Shakhimardanov, 2010, Wrede, 2009,

Quigley et al., 2009, Heintz et al., 2010b]. The publish-subscribe mechanism organizes

robot software in a data-driven manner where components continuously process data

generated by the other components. However, due to the limited resources of a robot,

sensory data needs to be processed selectively. This requires filtering of data passed

among components. Data should be filtered based on the robot’s operational context,

such as its focus of attention.

One way to support the filtering of data according to the robot’s operational context

is to write complex software components whose processes can be reconfigured at run-

time. However, such a reconfiguration might not be supported by the available com-

ponents. The publish-subscribe support in most existing robotic frameworks such as

ROS [Quigley et al., 2009] and YARP [Metta et al., 2006] is limited to topic-based in-

teractions. Providers publish data items on topics, which are received by subscribers to

those topics. In these frameworks, a component is usually subscribed to a fixed set of

topics.

More flexible and context-dependent interaction requires subscribers being able to spec-

ify their data of interest based on data patterns and policies [Wrede, 2009, Heintz et al.,

2010b, Lütkebohle, 2009]. Consider a robot looking for reliable recognition of yellow ob-

jects. The object segments sent to the object recognition component should be filtered

to include only the yellow and reliably recognized object segments. Another example is

the selective processing of new perceptions of object segments by the object recognition
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component. A new perception of an object should be processed only when the object

was perceived at a new location and this location did not change for a given time period.

The second situation is anchoring [Coradeschi and Saffiotti, 2003], creating symbolic

representation of objects perceived from sensory data. The symbols and the data con-

tinuously sensed about the objects should be correlated. In an anchoring process, sensory

data is interpreted into a set of hypotheses about recognized objects. For example, in a

traffic monitoring scenario [Heintz et al., 2010b], images from color and thermal cameras

are processed into a set of hypotheses about objects.

The object hypotheses need to be correlated over time to deal with the data association

problem [Bar-Shalom and Fortmann, 1988]. There may be false positive and negative

observations, temporal occlusions of objects and visually similar objects in the environ-

ment. One can reason also about the hypotheses based on, for instance, the normative

characteristics of the physical objects they represent [Heintz et al., 2010a, Elfring et al.,

2012]. For example, in the traffic monitoring scenario, one can consider the positions

and speeds of objects perceived over time and the layout of the road network. This can

be used to reason about stationary and moving objects and their types. For instance,

when a car is observed again after a temporary occlusion, it should be assigned the same

symbol before and after the occlusion.

The third situation pertains to flexible plan execution and monitoring in noisy and dy-

namic environments. The execution of actions/plans are to be driven, monitored and

controlled by various conditions [Verma and Jónsson, 2006, Doherty et al., 2009, Ziafati

et al., 2013a]. Conditions are monitored by low-level implementations of actions/behav-

iors to detect their success or failure. However, control and monitoring of plan execution

via observation of various conditions at system-level is necessary.

The advantages of system level plan execution control and monitoring are to use data

provided by different perception components to achieve system’s goals, to avoid com-

plicating implementation of actions and to avoid duplicating monitoring functionalities.

Depending on an application, conditions to be monitored can be as simple as monitor-

ing an object for being attached to the manipulator. They can be also complex logical,

temporal and numerical conditions.

The fourth situation is high-level event recognition to recognize and react in real-time

to situations in the environment. One example is detecting traffic violations such as

reckless driving by observing qualitative spatial relations among cars [Heintz et al., 2013].

Another example is detecting situations and events such as “successful pass”, “successful

tackle” and “goal scoring” in football simulation or “washing hand before examination”

and “basic clinical examinations carried out in time” in hospital simulations from lower
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level events [Ranathunga et al., 2012]. The last example is recognizing human activities

such as “cooking”, “eating” and “watching TV” in smart homes [Pecora et al., 2012,

Sabri et al., 2011]. Detecting such situations of the environment requires correlating and

aggregating sensory data about changes of the environment based on their temporal and

logical relations.

What all these situations have in common is a need for processing sensory data flows to

extract new knowledge as soon as the relevant data becomes available without requiring

persistent storage of data. Supporting on-flow processing requires an expressive and

efficient language for real-time processing of data flows based on complex relations among

the data items within the flows.

3.2 On-Flow Processing Systems

On-flow processing is an important requirement in various application domains [Cugola

and Margara, 2012]. In environment monitoring, sensory data is processed to acquire

information about the observed world, detect anomalies, or predict disasters. Financial

applications analyze stock data to identify trends. Banking fraud detection and net-

work intrusion detection require continuous processing of credit card transactions and

network traffic, respectively. RFID-based inventory management requires continuous

analysis of RFID readings. Manufacturing control systems often require observing sys-

tem behavior to detect anomalies. As the result of many years of research from different

research communities on such application domains, a large number of “information flow

processing systems” have been developed to support on-flow processing of data [Cugola

and Margara, 2012].

An extensive survey of information flow processing systems [Cugola and Margara, 2012]

shows that the functionalities of these systems are converging to a set of operations and

processing policies for on-flow filtering, combining and transformation of data, indicating

universal usability of such functionalities for on-flow processing of data. This makes the

existing information flow processing systems amenable to support on-flow information

processing in robot software.

Disregarding the large amount of research existing on information flow processing sys-

tems and developing new on-flow processing systems for robotics from scratch will most

probably end up with the development of similar systems to existing ones, adding to

the tower of Babel syndrome for information flow processing systems [Etzion, 2007],

negatively impacting the collaboration required to advance the state of the art [Cugola

and Margara, 2012]. Robotic research should rather examine the usability of current
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information flow systems for its different tasks to revise and extend these systems ac-

cordingly in order to satisfy its requirements and at the same time contribute to the

field of information flow processing.

Current information flow processing research has led to two competing classes of sys-

tems [Cugola and Margara, 2012], Data Stream Management Systems (DSMS s) and

Complex Event-Processing Systems” (CEPS s). DSMS s functionalities resemble database

management systems. They process generic flow of data through a sequence of trans-

formations based on common SQL operators like selections, aggregates and joins. Being

an extension of database systems, DSMS s focus on producing query answers, which are

continuously updated to adapt to the constantly changing contents of their input data.

In contrast, CEPS s see flowing data items as notification of events happening in the

external world. These events should be filtered and combined to detect occurrences

of particular patterns of events representing higher level events. CEPS s are rooted in

publish-subscribe model. They increase the expressive power of subscribing language in

traditional publish-subscribe systems with the ability to specify complex event patterns.

Both DSMS s and CEPS s have their own merits and the recent proposals attempt to

combine the best of both classes of systems [Cugola and Margara, 2012]. However, at

this stage, the CEPS s are more suitable to support robotic on-flow processing due to

the following reasons. First, the semantics given in CEPS s to data items as being event

notifications naturally corresponds to time-stamped sensory data being observations

of the environment by the robot perception components. Second, CEPS s put great

emphasis on detection and notification of complex patterns of events involving sequence

and ordering relations which constitutes a large number of robotic on-flow information

engineering problems which is usually out of scope of DSMS s.

The rest of this chapter introduces ETALIS, a state-of-the-art CEP, and discusses its

suitability for robotic on-flow information engineering through its comparison with re-

lated work.

3.3 ETALIS Language for Event-Processing (ELE)

The ETALIS language for event-processing (ELE )1 [Anicic et al., 2012, 2010, Anicic,

2011] is an expressive and efficient language with formal declarative semantics for real-

izing complex event-processing functionalities. ELE advances the state-of-the-art CEP

languages by allowing logical reasoning about domain knowledge in the specification

of complex event patterns. Logical reasoning can be used to relate events, accomplish

1http://code.google.com/p/etalis/
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complex filtering and classification of events and enrich events on the fly with relevant

background knowledge.

3.3.1 ELE Syntax

Event-processing functionalities in the ELE language are implemented by programming

a set of static rules, encoding the domain knowledge and a set of event rules, specifying

event patterns of interest to be detected in flow of data. The detected events can

themselves match other event patterns, providing a flexible way of composing events in

various steps of a hierarchy.

Definition 1 (ELE Signature [Anicic et al., 2012]). A signature 〈C, V, Fn, P sn, P en〉
for ELE language consists of:

• The set C of constant symbols.

• The set V of variables.

• For n ∈ N sets Fn of function symbols of arity n.

• For n ∈ N sets P sn of static predicate symbols of arity n.

• For n ∈ N sets P en of event predicate symbols of arity n with typical elements pen,

disjoint from P sn.

Based on the ELE signature, the following notions are defined.

Definition 2 (Term [Anicic et al., 2012]). A term t ::= c | v | fn(t1, ..., tn) | psn(t1, ..., tn).

Definition 3 (Atom [Anicic et al., 2012]). An static/event atom a ::= p
s/e
n (t1, ...tn)

where p
s/e
n is a static/event predicate symbol and t1, ..., tn are terms.

For example, the face(Fi,Pj) event atom is a template for observations of people’s faces

generated by the faceRec component.

Definition 4 (Event [Anicic et al., 2012]). An event is a ground event atom time-

stamped with an occurrence time.

• An atomic event refers to an instantaneous occurrence of interest.
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• A complex event refers to an occurrence with duration.

For example, the occurrence time of the atomic event face(’Neda’,70)28 is time 28 and

the occurrence time of the complex event observed(’Neda’)〈28,49〉 is time interval [28, 49].

Definition 5 (ELE Rule [Anicic et al., 2012]). An ELE rule is a static rule rs or

an event rule re.

• A static rule is a Horn clause a :- a1, ..., an where a, a1, ..., an are static atoms.Static

rules are used to encode the static knowledge of a domain.

• An event rule is a formula of the type pe(t1, .., tn) ← cp where cp is an event

pattern containing all variables occurring in pe(t1, .., tn). An event rule specifies

a complex event to be detected based on a temporal pattern of the occurrence of

other events and the static knowledge.

Definition 6 (Event Pattern [Anicic et al., 2012]). The language P of event pat-

terns is

P ::= pe(t1, ..., tn) | P WHERE t | q | (P ).q | P BIN P | not(P ).[P, P ]

where pe is an n-array event predicate, ti denote terms, t is a term of type boolean, q

is a non-negative rational number, and BIN is one of the binary operators SEQ, AND,

PAR, OR, EQUALS, MEETS, DURING, STARTS, or FINISHES.

3.3.2 ELE Semantics

As opposed to most CEPS s, ELE has formal declarative semantics. The input to an

ELE program is modeled as an event stream, a flow of events. The input event stream

specifies that each atomic event occurs at a specific instance of time.

Definition 7 (Event Stream [Anicic et al., 2012]). An event stream ε : Grounde →
2Q

+
is a mapping from ground event atoms to sets of non-negative rational numbers.

For example, ε(obj(o, c, p)) = {1, 3} means among all events received by ETALIS as its

input over its lifetime, the time points at which the event objRec(o, c, p) occurs are 1

and 3.

Definition 8 (ELE semantics [Anicic et al., 2012]). Given an ELE program with

a set R of ELE rules, an event stream ε, an event atom a and two non-negative rational
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Figure 3.1: ELE event-processing operator examples, re-produced from [Anicic et al.,
2012]

numbers q1 and q2, the ELE semantics determines whether an event a〈q1,q2〉, representing

the occurrence of a with the duration [q1, q2], can be inferred from R and ε (i.e. ε, R |=
a〈q1,q2〉).

Figure 3.1 informally introduces the ELE semantics. It provides examples of how ELE

operators are used to specify complex events in terms of simpler ones. The first three

lines show occurrences of the instances of events P1, P2 and P3 during time interval

[0,10]. The vertical dashed lines represent units of system time and horizontal bars

represent detected complex events for the given patterns. The presented patterns are

read as follows:

1. P2 AND P3: occurrence of both P2 and P3.

2. (P1).3 : occurrence of P1 within an interval of length 3 time units.

3. P1 SEQ P3 : occurrence of P3 after occurrence of P1.

4. P1 PAR P2: occurrence of both P1 and P2 with non-zero overlap.
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5. P2 OR P3: occurrence of P2 or occurrence of P3

6. P1 DURING (1 seq 6): occurrence of P1 during time interval [1,6]

7. P3 STARTS P1: occurrence of P3 and P1 both starting at the same time and P3

ending earlier than P1.

8. P1 EQUALS P3: occurrence of P2 and P3 both at the same time interval

9. not(P3).[P1, P1] : occurrence of P1 after occurrence of another P1 where there is

no occurrence of P3 in between, during the end of the first P1 and before the start

of the second P1.

10. P3 FINISHES P2: occurrence of P3 and P2 both ending at the same time and P3

starting later than P2.

11. P2 MEETS P3: occurrence of P2 and P3, P3 starting at the exact time P2 is ending.

For an example, consider the detection of fire from smoke and high temperature sensor

readings. This task is implemented using the following ELE rule.

fireAlam←

smoke(S1) AND high temperature(S2)

WHERE ( nearby(S1, S2) ).

This rule is read as follows. S1 and S2 are variables. When smoke is detected by a

sensor S1 and high temprature is detected by a sensor S2, a fire alarm event is generated,

if these sensors are located nearby. If P2 and P3 in figure 3.1 represent smoke and high-

temperature events from sensors located nearby, then a fire alarm is generated four times

during the time interval [0,10].

The static atom nearby(S1,S2) presents an example of logical reasoning in ELE. Given

an ontology of sensors and their locations, this term specifies whether the sensors are

located in the same area. Static atoms can be used to implement arbitrary functionalities

in Prolog. In addition, they can be used as interface to foreign languages, for instance,

to integrate libraries for spatial reasoning. In Retalis, ELE static terms are replaced by

SLR queries to, in addition, reason about histories of events.

Complex events are time stamped based on the temporal patterns they represent. For

example, in Figure 3.1, the occurrence times of the first instances of P2 and P3 events

are the intervals [1,3] and [3,4], respectively. According to ELE semantics, a fire alarm

detected from these events is time stamped with time interval [1,4]. The time stamp of

detected patterns can be used to filter the patterns. For example, a fire alarm should be
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generated, only if both smoke and high temperature are detected within 300 seconds.

This condition is added to the fire alarm pattern as follows.

fireAlam←

(

smoke(S1) AND high temperature(S2)

WHERE ( nearby(S1, S2) )

).300.

Filters on time intervals of event patterns are important for garbage collection. If the

fire alarm pattern does not contain the timing condition, a detection of smoke should be

recorded forever in order to generate an alarm whenever a high-temperature is sensed.

When the pattern includes the timing condition, the record is deleted after 300 seconds.

After this time, the detection of smoke is no longer relevant, even if a high temperature

is detected. Irrelevant records of events are automatically deleted by ELE garbage

collection mechanisms.

ELE is free of operational side-effects, including the order between event-processing rules

and delayed or out of order arrival of input events. For example, the sequence pattern

in Figure 3.1 detects three events during the time interval [0,10], no matter the order in

which ELE receives P1 and P3 events.

Listing 3.1 presents an ELE program to illustrate the modeling capabilities of the ELE

language. In this program, the robot detects an event whenever a person moves an

object. Such an event is detected when a person’s face is observed while the object is

moved.

The program is read piece by piece. The first clause generates a see(f) event for every

two immediate consecutive recognitions of a face f , occurring with confidence values

over fifty within half a second. The variable F is used to group the recognitions of faces

in the event pattern and to pass information to generated events. The rule also explicitly

encodes the start and end times of the sequence in content of the generated event by

Ts and Te variables.2 The second clause detects reliable recognition of objects, when

recognized three times within half a second with average confidence value over sixty.

pos avg is a static atom computing position of the object by averaging from its perceived

positions. The third clause detects cases when an object is moved over five centimetres

within a second. The fourth clause combines each two overlapping movement events of

an object into a new one with a longer occurrence time. The fifth clause combines two

2This is implemented by adding the CHECK(t1(Ts), t2(Te)) clause which, for brevity, has been
omitted.
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time periods of observing a person if they occur within three seconds after each other.

Finally, the last clause detects when an object is moved during the time period a person

is being observed.

1 s ee (F , Ts , Te) <−
2 (

3 NOT( f a c e (F , P3) ) . [ f a c e (F , P1) , f a c e (F , P2) ]

4 WHERE(P1 > 50 , P2 > 50)

5 ) . 0 . 5 s .

6

7 r e l S e g (O, L) <−
8 (

9 seg (O,C, P1 , L1 , X1) SEQ seg (O,C, P2 , L2 , X2)

10 SEQ seg (O,C, P3 , L3 , X3)

11 WHERE( pos avg ( [ L1 , L2 , L3 ] , L) , avg ( [ P1 , P2 , P3 ] ,P) , P>60)

12 ) . 0 . 5 s .

13

14 mov(O, L1 , L2 , Ts , Te) <−
15 (

16 r e l S e g (O, L1) AND r e l S e g (O, L2)

17 WHERE( d i s t ( [ L 2 , L 1 ] , L) , L>0 . 0 5 )

18 ) . 1 s .

19

20 mov(O, L1 , L4 , T1 , T4) <−
21 mov(O, L1 , L2 , T1 , T2) PAR mov(O, L3 , L4 , T3 , T4)

22 WHERE(T3>T1) .

23

24 s ee (F , T1 , T4) <−
25 ( s ee (F , T1 , T2) SEQ see (F , T3 , T4) )

26 OR

27 ( s ee (F , T1 , T2) MEETS see (F , T3 , T4) )

28 WHERE(T3−T2<3) .

29

30 movBy(O, F , L2 , T2) <−
31 mov(O, L1 , L2 , T1 , T2) DURING see (F , T1 , T2) .

Listing 3.1: An ELE program for monitoring objects moved by humans
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Assume an object has moved while the robot was seeing a face of a person. If the robot

continues to see the face, the above rules generate more and more events indicating

the person has moved the object, but one of such events might be sufficient for an

application. Each time a new event occurs, the event along with the past events can

match the pattern of a rule in several ways.

The ELE language offers various consumption policies to filter our repetitive rule firings.

These includes policies to select a particular pattern among possible matches and to limit

the use of an event to fire a rule more than once. While such policies are not aligned with

declarative semantics of ELE, they are widely adopted in CEPS s for practical reasons.

ETALIS also supports adding or deleting ELE rules at runtime allowing flexible recon-

figuration of event-processing functionalities.

3.4 Runtime Subscription in Retalis

ETALIS interface facilitates programming a fixed set of output channels to deliver cer-

tain types of events from the events it processes, its input flow of events and the events

it generates, to consumers. Retalis extends this functionality enabling robot software

components to subscribe to Retalis for their events of interest at run-time. The events

are sent to subscribers asynchronously as soon as they are processed by Retalis.

A component subscribes to Retalis by sending a subscription request using a ROS ser-

vice Retalis provides. A subscription is of type subscribe(Topic,Q, Tmpl, Ts, Te). The

process of the request by Retalis results in subscribing Topic to events matching the

query pattern Q that have occurred during time interval [Ts, Te]. A query pattern Q

is a tuple 〈e, Cond〉, where e is an event atom and Cond is a set of conditions on vari-

ables which are arguments of e. An event P matches a query pattern Q when there

is a substitution which can unify p and e and makes the conditions in Cond true (i.e.

∃θ(p = qθ)).

When a subscription is registered, every event matching the subscription is asynchronously

sent to the corresponding topic as the event is read from the Retalis input or generated

by ELE rules. Events are first converted to the template form Tmpl before being sent to

the topic. If a component does not know in advance the end time of its subscription, it

can subscribe to its events of interest using sub(Id, C,Q, Tmpl, Ts) and unsubscribe from

them at any time using unsub(Id, Te). Id is a unique identifier of such a subscription.

Example. When the robot is asked to follow the object segment seg11, the control

component sets the target location for the Gaze component to the location of seg11
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by sending the following subscription command to the Information-Engineering Compo-

nent. Consequently, every time IEC processes an event relObj(‘seg11’, L), it sends the

location L of seg11 to the Gaze in the pos goal(L) format. To unsubscribe, the control

component sends the unsub(100, ‘now’) command to IEC.

sub(100, ‘camCtrl’, 〈relObj(‘seg11’, L), 〈〉〉, pos goal(L), ‘now’)

3.5 Performance

The Etalis execution model is based on decomposition of complex event patterns into

intermediate binary event patterns (goals) and the compilation of goals into goal-directed

event-driven Prolog rules. As relevant events occur, these rules are executed deriving

corresponding goals progressing toward detecting complex event patterns. We will dis-

cuss the Etalis execution model in details in Chapter 6 and the performance of Retalis

integrating the extension of Etalis with run-time subscription mechanism in Chapter 5.

Information flow processing systems such as Etalis are designed for applications that

require a real-time processing of a large volume of data flow. We refer the reader to the

detailed evaluation of the performance of Etalis presented elsewhere [Anicic et al., 2012,

Anicic, 2011]. The evaluation shows, in terms of performance, Etalis is competitive with

ESPER,3 considered as a leading open source information flow processing system Cugola

and Margara [2012]. The comparison is briefly outlined below.

On the basic event patterns a SEQ b SEQ c and NOT (c(ID,Z).[a(Id,X), b(Id, Y )]

and a(Id,X) AND b(Id, Y ) AND c(Id, Z) and a(Id,X) SEQ b(Id, Y ) OR c(Id, Y ),

Etalis, executed by YAProlog4 significantly outperforms ESPER. The performance is

evaluated over input throughput, the number of input events processed per seconds, on

a usual workstation. Input throughput for ESPER is reported to be between 10K to 20K

and for Etalis is reported to be between 20k to 35k events per second. However, on the

pattern a(Id,X) SEQ b(Id, Y ) WHERE(Y < K) where the parameter K varies the

selectivity of the Y attribute, when the selectivity is in the range of 10 to 50%, ESPER

significantly outperforms Etalis. This is due to Etalis evaluating the WHERE clause at

the end. When the selectivity is 100%, Etalis performs slightly better than ESPER.

The performance of Etalis when detection of events includes reasoning tasks depends on

the complexity of the corresponding Prolog queries and knowledge base. For instance,

the execution of a pattern with throughput of 3900 events per second is reported in Anicic

3http://ESPER.codehaus.org/
4http://www.dcc.fc.up.pt/ vsc/Yap/
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et al. [2012]. Each time the pattern processes an event, it accesses the RDF5 data of

20k weather stations to find the latitude and longitude of the corresponding sensors,

then computes the distance between two sensors and checks if the distance is less than

a threshold. This shows that a large amount of background knowledge can be reasoned

about in on-flow processing of events.

3.6 Related Work

Previous robotic research is concerned with on-flow processing for specific research tasks

such as component interaction, anchoring, monitoring and event-recognition. The conse-

quence is the narrow scope of related robotic research reducing the community collabora-

tion in supporting on-flow processing in robot software. For instance, on-flow processing

support of open-source robotic software such as ROS is limited to fixed publish-subscribe

flow of data among components.

In parallel to this research, the DyKnow [Heintz et al., 2010b, Heintz, 2009] framework

has been extended with a number of tools that are relevant to on-flow processing [de Leng

and Heintz, 2014, Heintz and Leng, 2013, Heintz, 2013]. The main feature of the work is

the annotation of data streams and transformation processes with semantic descriptions.

The semantic descriptions are used for automatic construction of streams of data. The

C-SPARQL [Barbieri et al., 2010] language has been integrated to support the querying

of flows of data. C-SPARQL belongs to the DSMS s category of on-flow processing sys-

tems. The advantages of ETALIS over C-SPARQL is its support for capturing complex

data patterns. In contrast, Retalis does not support an automatic discovery of flows of

data, for instance, required to detect a complex event. The input and output subscrip-

tions of Information-Engineering Components and the event patterns they process are

reconfigurable at runtime. However, such reconfigurations are not made automatic.

The literature does not contain a comparison between the expressive power of infor-

mation flow processing systems. ETALIS is one of the most expressive systems as it

supports most of the existing information flow processing operations listed in the survey

of G. Cugola and A. Margara [Cugola and Margara, 2012]. In particular, ETALIS sup-

ports the representation of all possible thirteen temporal relations between time interval

occurrence times of two events as defined in Allen’s interval algebra [Allen, 1983], non-

occurrence of an event between the occurrence of two other events, and iterative and

aggregating patterns. Furthermore, arbitrary processes can be applied on events through

the use of static atoms in ETALIS syntax, provided that such processes are interfaced

5http://www.w3.org/RDF/
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with the Prolog language. An example is interfacing spatial reasoning functionalities

with Prolog presented by M. Tenorth and M. Beets [Tenorth and Beetz, 2012].

Logic-based approaches such as Chronicle Recognition [Ghallab, 1996] and Event Cal-

culus [Kowalski and Sergot, 1989, Shanahan, 1999] have received considerable attention

for event representation and recognition due to their merits, including expressiveness,

formal and declarative semantics and being supported by machine learning tools to au-

tomate the construction and refinement of event recognition rules [Artikis et al., 2010,

Anicic et al., 2012]. However, the query-response execution mode and scalability of

classic logic-based systems limits their usability for on-flow information processing. The

query-response execution means detecting an event at runtime requires frequently query-

ing the system for that event. Moreover, the event is detected only when the next time

the system is queried for that event. In addition, efficient evaluation of such queries

requires caching mechanisms not to re-evaluate queries over all historic data [Chittaro

and Montanari, 1996]. ETALIS bridges the gap between CEPS s and logic-based event-

recognition systems by offering a logic-based CEPS with an event-driven, incremental

and efficient execution model.

The IDA [Wrede, 2009, Lütkebohle et al.] and CAST [Hawes and Wyatt, 2010, Hawes

et al., 2008] are robotic frameworks supporting the subscription of components to their

events of interest based on the type and content of events. Using XML data format,

a subscriber can register for information items containing specific field of data. IDA

also provides few types of event filters such as the Frequency filter, which outputs only

every n-th received notification. Retalis provides a general framework to address a much

wider variety of event processing requirements, including temporal and spatial reasoning

over events to detect complex event patterns. Moreover, the subscription mechanisms of

IDA and CAST are tightly built over their underlying middleware. In contrast, Retalis

is framework-independent and has been interfaced with ROS which is widely used by

robotic community.

The use of CEPS s for detecting high-level events in agent research has been proposed

before. Buford et al. [Buford et al., 2006] extend the BDI architecture with situa-

tion management components for event correlation in distributed large-scale systems.

Ranathunga et al. [Ranathunga et al., 2012] utilize the ESPER6 event-processing lan-

guage to detect high-level events in second life virtual environments.7 However this work

is not concerned with the robotic on-flow information-processing problem, it does not

provide a formal account of event processing and does not support run-time subscrip-

tion. Other related work includes various approaches for high-level event recognition,

6Esper Reference, Esper Team and EsperTech Inc, accessible at http://esper.codehaus.org/esper-
4.9.0/doc/reference/en-US/html single/

7http://secondlife.com
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anchoring and monitoring, for instance, using Chronicle recognition, constraint satisfac-

tion or variants of temporal logic [Heintz et al., 2010b, Pecora et al., 2012, Heintz et al.,

2013, Doherty et al., 2014]. Such approaches do not satisfy all on-flow information pro-

cessing requirements. For instance, the Chronicle recognition or constrained satisfaction

approaches based on simple temporal networks cannot express atemporal constraints,

and temporal logic based approaches do not support transformation of information.

3.7 Summary

From an analysis of four robotic situations including component interactions, plan ex-

ecution and monitoring, anchoring and situation recognition, we generalize the on-flow

processing requirements as follows. On-flow processing requires on the fly processing of

sensory data flows to extract knowledge as soon as the relevant data becomes available

without requiring, at least in principle, persistent storage of data. Supporting on-flow

processing requires an expressive and efficient language for real-time processing of data

flows based on complex temporal and logical relations among the data within the flows.

Addressing these requirements is the focus of information flow processing systems ap-

plied in various domains such as banking fraud and network intrusion detection and stock

data analysis. Among these systems, we integrate the Etalis complex event-processing

system to support on-flow processing in Retalis.

The ELE language of Etalis is an expressive and efficient language with formal declara-

tive semantics for realizing complex event-processing functionalities. ELE advances the

state-of-the-art information flow processing systems by allowing logical reasoning about

domain knowledge in the specification of complex event patterns. ELE is one of the most

expressive on-flow information processing systems as it supports the representation of all

possible thirteen temporal relations among time interval occurrence times of two events,

non-occurrence of an events between the occurrence of two other events, and iterative

and aggregating patterns. Moreover, parsed and executed by Prolog, interfaces of the

underlying Prolog execution system with other languages can be used to interface ELE

with other systems and libraries, for instance, to perform spatial reasoning on patterns

of events. Despite its expressiveness and its execution by Prolog, it has been shown

that Etalis achieves a performance of competitive with state-of-the-art information-flow

processing systems such as ESPER.

We extend Etalis with a run-time subscription mechanism and interface it with ROS.

This allows ROS components to subscribe to Etalis for their events of interest at run-

time, filtered by logical conditions on the contents of events. It allows also to subscribe

Etalis to messages from ROS components. The conversion between ROS messages and
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Etalis events are performed automatically. Supporting runtime subscription, flows of

data among components can be configured according to runtime operational contexts

of the robot to change the robot’s behavior or save resources by communicating only

the relevant data. By integrating Etalis and extending it with a runtime subscription

mechanism, Retalis provides an advanced support for on-flow processing in robotics,

considerably improving over the existing systems, shown by providing its detailed com-

parison with existing systems and approaches.



Chapter 4

On-Demand Information

Processing

The question of this chapter is how to support on-demand processing of information. An

extensive study of robotics knowledge management requirements highlights the domi-

nant advantages of logic-based systems [Lemaignan, 2012]. The question is how to

address the limitation of existing systems with regard to selecting, managing, querying

and synchronizing the relevant parts of flows of sensory data in the knowledge base and

support active memory notifications. Language support is required to enable the defi-

nition of high-level policies for selective recording of data and pruning outdated data.

It is also required to facilitate the state-based representation of data built upon discrete

observations of the environment (i.e. events). An efficient management and querying of

histories of data requires their underlying management in suitable data structures and

using indexing mechanisms. Active memory notifications requires support for generation

and management of events. Finally, language support is needed to synchronize queries

on the state of the environment, built upon events, asynchronously received from the

perception components.

This chapter is organized as follows. We first briefly discuss the on-demand processing

requirements related to representation, management, querying and synchronization of

the discrete and asynchronous flows of sensory information continuously generated by

the robot’s perception components in the knowledge base. We then present the SLR

language [Ziafati et al., 2014], developed in this thesis, to address these on-demand

processing requirements that are not satisfactorily supported by existing systems. The

SLR syntax and semantics are presented and the usability of the language and its relation

with existing work is discussed. Finally, a summary is given.

58
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4.1 On-Demand Processing Requirements

On-demand information processing corresponds to managing data in memory or knowl-

edge base to be queried and reasoned upon on request. A large set of on-demand

information processing requirements has been discussed elsewhere [Lemaignan, 2012,

Wrede, 2009]. Consequently, in this section we only discuss the on-demand processing

requirements related to discreteness, asynchronicity and continuity of robotic sensory

data that are not satisfactorily supported by existing systems.

Robot knowledge includes knowledge of its domain, common-sense knowledge and knowl-

edge of the dynamics of its world collected by its perception components. Perception

components continuously process input sensory data and asynchronously output the re-

sults in the form of events representing various information types, such as recognized

objects, faces and robot position [Heintz et al., 2010b, Wrede, 2009]. The robot knowl-

edge collected by events, representing observations of the environment and time-stamped

with the time of their occurrence, needs to be properly represented and maintained to

reason on. However, the discrete and asynchronous nature of observations and the con-

tinuous generation of events make querying and reasoning on such knowledge difficult

and pose many challenges on their use, for instance, in robot task execution.

Building robot knowledge based on discrete observations is not always a straightforward

task, since events contain various information types that should be represented and

treated differently. For example, to accurately calculate the robot position at a time

point, one needs to interpolate its value based on the discrete observations of its value in

time. One also needs to deal with the persistence of knowledge and its temporal validity.

For example, it might be reasonable to assume that the color of an object remains the

same until a new observation is made indicating the change of color. In some other

cases, it may not be safe to infer an information, such as the location of an object, based

on an observation that is made in distant past.

Building robot knowledge of its environment upon sensory events requires language

support to simplify reasoning about the state of the environment at a time based on

discrete observations of the environment.

A network of distributed and parallel components processes robot sensory data and sends

the resulting events to the knowledge base. Due to processing times of the perception

components and possible network delays, the knowledge base may receive the events

with some delays and not necessarily in the order of their occurrence. For example,

the event indicating the recognition of an object in a 3D image is generated by the

object recognition component sometime after the actual time at which the object is
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observed, because of object recognition processing time. Another example is when data

is generated or needs to be verified by an external source with arbitrary operating time.

Dealing with asynchronicity of sensory data requires supporting the implementation of

synchronization mechanisms to assure evaluating queries when relevant data to queries

are available in the knowledge base. When the knowledge base is queried, correct evalua-

tion of the query may require waiting for the perception components to finish processing

of sensory data to ensure that all data necessary to evaluate the query is present in

the knowledge base. For example, the query, “how many cups are on the table at time

t?” should not be answered immediately at time t, but answering the query should

be delayed until after completing the processing of pictures of the table by the object

recognition component and the reception of the results by the knowledge base.

Robot perception components continuously send their observations to the knowledge

base, leading to a growth of memory required to store and maintain the robot knowledge.

The unlimited growth of the event history leads to a degradation of the efficiency of query

evaluation and may even lead to memory exhaustion. Bounding the growth of memory

requires supporting the implementation of mechanisms to prune outdated data.

4.2 SLR Language for Event Management and Querying

Synchronized Logical Reasoning language (SLR) [Ziafati et al., 2014] is a knowledge

management and querying language for robot software enabling the high-level represen-

tation, querying and maintenance of robot knowledge. In particular, SLR aims at sim-

plifying the representation of robot knowledge based on its discrete and asynchronous

observations and improving efficiency and accuracy of query evaluation by providing

synchronization and event-history management mechanisms. These mechanisms facili-

tate ensuring that all data necessary to answer a query is gathered before the query is

answered and that outdated and unnecessary data is removed from memory.

In an Information-Engineering Component programmed in Retalis, the input to SLR is

the stream of events processed by ETALIS. This consists of the input stream of events to

the IEC, time-stamped by the perception components and the events generated and time-

stamped by ETALIS. The SLR language bears close resemblance to logic programming

and is both in syntax and semantics very similar to Prolog. Therefore, we first review

the main elements of Prolog upon which we define the SLR language.

In Prolog syntax, a term is an expression of the form p(t1, . . . , tn), where p is a functor

symbol and t1, . . . , tn are constants, variables or terms. A term is ground if it contains

no variables. A Horn clause is of the form a1 ∧ . . . ∧ an → a, where a is a term
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called the Head of the clause, and a1, . . . , an is called the Body where ai are terms. In

Prolog syntax, the body can also include negation of terms. a ← true is called a fact

and usually written as a. A Prolog program P is a finite set of Horn clauses.

One executes a logic program by asking it a query. Prolog employs the SLDNF resolution

method [Apt and van Emden, 1982] to determine whether or not a query follows from

the program. Given a goal, SLDNF tries to prove the goal using the rules and facts of

the program. A goal is proved if there is a variable substitution by applying which the

goal matches a fact, or matches the head of a rule and the goals in body of the rule can

be proved from left to right. If a goal is a negation of a term, it succeeds when the term

can not be proved (i.e. negation as failure). Goals are resolved by trying the facts and

rules in the order they appear in the program. A query may result in a substitution of

free variables. We use P `SLDNF Qθ to denote a query Q on a program P , resulting in

a substitution θ.

4.2.1 SLR Syntax

An SLR signature includes constant symbols, Floating-point numbers, variables, time

points, and two types of functor symbols. Some functor symbols are ordinary Prolog

functor symbols called static functor symbols, while the others are called event functor

symbols.

Definition 9 (SLR Signature). A signature S = 〈C,R, V, Z, P s, P e〉 for SLR lan-

guage consists of:

• A set C of constant symbols.

• A set R ⊆ R of real numbers.

• A set V of variables.

• A set Z ⊆ Rr≥0 ∪ V of time points

• P s, a set of P sn of static functor symbols of arity n for n ∈ N.

• P e, a set of P en of event functor symbols of arity n for n ∈ Nn≥2, disjoint with P sn.

Definition 10 (Term). A static/event term is of the form

t ::= psn(t1, ..., tn)/pen(t1, ..., tn−2, z1, z2) where psn ∈ P sn and pen ∈ P en are static/event

functor symbols, ti are constant symbols, real numbers, variables or terms themselves

and z1, z2 are time points such that z1 ≤ z2.
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For the sake of readability, an event term is denoted as pn(t1, . . . , tn−2)
[z1,z2]. Moreover,

an event term whose z1 and z2 are identical is denoted as pn(t1, . . . , tn−2)
z (Z = Z1 =

Z2).

Definition 11 (Event). An event is a ground event term pn(t1, ...tn)[z1,z2], where z1 is

called the start time of the event and z2 is called its end time. The functor symbol pn

of an event is called its event type.1

We introduce two types of static terms, next and prev which respectively refer to occur-

rence of an event of a certain type observed right after and right before a time point, if

such an event exists. In the next section we provide the semantics. In this section, we

restrict ourselves to the syntax of SLR.

Definition 12 (Next Term). Given a signature S, a next term is of form

next(pn(t1, ...tn)[z1,z2], zs, ze). The arguments of a next term are two time points zs, ze,

representing a time interval [zs, ze], and an event term pn(t1, ...tn)[z1,z2].

Definition 13 (Previous Term). Given a signature S, a previous term is of form

prev(pn(t1, ...tn)[z1,z2], zs). The arguments of previous term are a time point zs and an

event term pn(t1, ...tn)[z1,z2].

Definition 14 (SLR Program). Given a signature S, an SLR program D consists

of a finite set of Horn clauses of the form a1 ∧ . . . ∧ an → a built from the signature

S, where next and prev terms can only appear in the body of rules and the program

excludes event facts (i.e. events).

4.2.2 SLR Semantics

An SLR knowledge base is modeled as an SLR program and an input stream of events.

In order to limit the scope of queries on a SLR knowledge base, we introduce a notion

of an event stream view, which contains all events occurring up to a certain time point.

Definition 15 (Event Stream). An event stream ε is a (possibly infinite) set of events.

The event stream models observations made by robot perception components. Events

are added to the SLR knowledge base in the form of facts when new observations are

made.
1The representation of events in SLR and ETALIS is similar, but the SLR signature is defined in a

way to be close to Prolog.
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Definition 16 (Event Stream View). An event stream view ε(z) is the maximum

subset of event stream ε such that events in ε(z) have their end time before or at time

point z, i.e. ε(z) = {pn(t1, . . . , tn−2)
[z1,z2] ∈ ε | z2 ≤ z}.

Definition 17 (Knowledge Base). Given a signature S, a knowledge base k is a tuple

〈D, ε〉 where D is an SLR program and ε is an event stream defined upon S.

Definition 18 (SLR Query). Given a signature S, an SLR query 〈Q, z〉 on an SLR

knowledge base k consists of a regular Prolog query Q built from the signature S and a

time point z. We write k `SLR 〈Q, z〉θ to denote an SLR query 〈Q, z〉 on a knowledge

base k, resulting in a substitution θ.

The operational semantics of SLR for query evaluation follows the standard Prolog

operational semantics (i.e. unification, resolution and backtracking) [Apt and van Em-

den, 1982] as follows: The evaluation of a query 〈Q, z〉 given an SLR knowledge base

k = 〈D, ε〉 consists in performing a depth-first search to find a variable binding that

enables derivation of Q from the rules and static facts in D, and events in ε. The result

is a set of substitutions (i.e. variable bindings) θ such that D ∪ ε `SLDNF Qθ under

the condition that event terms which are not arguments of next and prev terms can be

unified with events that belonging to ε(z).

The z parameter of a query sets the scope of the query to set of observations made up

until time z. This means that the query 〈Q, z〉 cannot be evaluated before time z, since

SLR would not have received the robot’s observations necessary to evaluate Q and the

query can be evaluated as soon as all observations up to time z is in place. The only

exceptions are the prev and next clauses whose evaluation might need observations made

after time z.

A query 〈Q, z〉 can be posted to SLR long after time z, in which case the SLR knowledge

base contains observations made after time z. In order to have a clear semantics of

queries, SLR evaluates a query 〈Q, z〉 by only taking into account the event facts in

ε(z). Regardless of the z parameters of queries, the next or prev clauses are evaluated

based on their declarative definitions as follows.

Definition 19 (Previous Term Semantics). The prev(pn(t1, ...tn)[z1,z2], zs) term uni-

fies pn(t1, ...tn)[z1,z2] with an event pn(t′1, ...t
′
n)[z

′
1,z

′
2] in ε(zs) such that there is no other

such event in ε(zs) that has its end time later than z′2. If such a unification is found, the
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prev clause succeeds and fails otherwise.

prev(pn(t1, ...tn)[z1,z2], zs) :



θ ∃pn(t′1, ...t
′
n)[z

′
1,z

′
2] ∈ ε(zs)|

∃θ((pn(t1, ...tn)[z1,z2])θ = (pn(t′1, ...t
′
n)[z

′
1,z

′
2])θ) ∧

6 ∃pn(t”1, ...t”n)[z”1,z”2] ∈ ε(zs)|
z”2 > z′2 ∧
∃γ((pn(t1, ...tn)[z1,z2])

γ
= (pn(t”1, ...t”n)[z”1,z”2])),

fails otherwise

By definition, the variable zs should be already instantiated when a prev clause is eval-

uated and an error is generated otherwise. It is also worth noting that a prev clause can

be evaluated only after time zs when all relevant events with end time earlier or equal

to zs have been received by and stored in the SLR knowledge base.

Definition 20 (Next Term Semantics). The next(pn(t1, ...tn)[z1,z2], zs, ze) term uni-

fies pn(t1, ...tn)[z1,z2] with an event pn(t′1, ...t
′
n)[z

′
1,z

′
2] in ε(ze) such that zs ≤ z′2 ≤ ze and

there is no other such event in ε that has its end time earlier than z′2. If such a unification

is found, the next clause succeeds and fails otherwise.

next(pn(t1, ...tn)[z1,z2], zs, ze) :



θ ∃pn(t′1, ...t
′
n)[z

′
1,z

′
2] ∈ ε(ze)|

z′2 ≥ zs∧
∃θ((pn(t1, ...tn)[z1,z2])θ = (pn(t′1, ...t

′
n)[z

′
1,z

′
2])θ) ∧

6 ∃pn(t”1, ...t”n)[z”1,z”2] ∈ ε(ze)|
zs ≤ z”2 < z′2∧
∃γ((pn(t1, ...tn)[z1,z2])

γ
= (pn(t”1, ...t”n)[z”1,z”2])),

fails otherwise

By definition, the variables zs and ze should be instantiated when a next clause is

evaluated and an error is generated otherwise. A next clause can only be evaluated after

time ze when all relevant events with end time earlier or equal to ze have been received

and stored in the SLR knowledge base. However, if we assume that events of the same

type (i.e. with same functor symbol and arity) are received by SLR in the order of

their end times, the next clause can be evaluated as soon as SLR receives the first event

with the end time equal or later than zs which is unifiable with pn(t1, ...tn)[z1,z2], not to

unnecessarily postpone queries.

The next and prev clauses can be implemented by the following two Prolog rules. How-

ever, we take advantage of the fact that SLR usually receives events of the same type in

the order of their end times. SLR maintains the sorted list of events of each type ordered

by their end times whose maintenance usually only requiring the assertion of events by
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the asserta Prolog built-in predicate. In this way, finding a previous/next event of a

type occurring before/after a time point requires examining only a part of the history

of those events. The ¬ symbol represents Negation as failure.

prev(pn(t1, ...tn)[z1,z2], zs):-

pn(t1, ...tn)[z1,z2],

z2 ≤ zs,

¬(pn(t1”, ...tn”)[z1”,z2”], z2” ≤ zs, z2” > z2). (4.1)

next(pn(t1, ...tn)[z1,z2], zs, ze):-

pn(t1, ...tn)[z1,z2],

zs ≤ z2 ≤ ze,

¬(pn(t1”, ...tn”)[z1”,z2”], zs ≤ z2” ≤ ze, z2” < z2). (4.2)

4.2.3 State-Based Knowledge Representation

SLR aims at simplifying the transformation of events into a state-based representation

of knowledge, using derived facts. The following paragraphs presents some typical cases

where a state-based representation is more suitable and how it is realized in SLR.

Persistent Knowledge Persistent knowledge refers to information that is assumed

not to change over time.

Example. The following rule specifies that the color of an object at a time T is the

color that the object was perceived to have at its last observation.

color(O,C)T :- prev(obj(O,,C)Z , T ). (4.3)

Persistence with Temporal Validity The temporal validity of persistence means

the period when it is assumed that information derived from an observation remains

valid.

Example. To pick up an object O, its location should be determined and sent to a

planner to produce a trajectory for the manipulator to perform the action. This task

can be naively presented as the sequence of actions: determine the object’s location L,

compute a manipulation trajectory Trj, and perform the manipulation. However, due to

environment dynamics and interleaving in task execution, the robot needs to check that

the object’s location has not been changed and the computed trajectory is still valid

before executing the actual manipulation task. The following three rules can be used to
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determine the location of an object and its validity as follows. If the last observation

of the object is within the last five seconds, the object location is set to the location at

which the object was seen last time. If the last observation was made longer than five

seconds ago, the second rule specifies that the location is outdated. The third rule sets

the location to “never-observed”, if the robot has never observed such an object. The

symbol ! represents Prolog cut operator and locations are assumed to be absolute.

location(O,L)T :-

prev(seg(O,L)Z , T ), T − Z ≤ 5, !. (4.4)

location(O, “outdated”)T :-

prev(seg(O,L)Z , T ), T − Z > 5, !. (4.5)

location(O, “never-observed”)T . (4.6)

Continuous Knowledge Continuous knowledge refers to information from a con-

tinuous domain.

Example. The following rule calculates the camera to base relative position L at a time

T . It interpolates from the last observation L1 before T to the first observation L2 after

T . est is a user defined term performing the actual interpolation.

tf(cam, base,L)T :-

prev(tf(cam, base, L1)
T1 , T ),

next(tf(cam, base, L2)
T2 , [T,∞]),

est([L, T ], [L1, T1], [L2, T2]). (4.7)

The following rule similarly interpolates the base to world relative position L at a time T .

However, if the position is not observed within a second after time T , the position is

assumed without change and is set to its last observed value. The → symbol represents

Prolog “If-Then-Else” choice operator.
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tf(base, rcf, L)T :-

prev(tf(base, rcf, L1)
T1 , T ),

(

next(tf(base, rcf, L2)
T2 , T, T + 1)→

est([L, T ], [L1, L2], [L2, T2])

;

L is L1

). (4.8)

The following ELE rule concerns recognition of an object O at a position Lo−c relative

to the camera at a time T . It generates a corresponding segR event. It calculates

the object position in the reference coordination frame by querying the SLR knowledge

base. The camera to base and base to world relative positions at time T are estimated

by rules (13) and (14).

segR(O,L)←

seg(O,Lo−c)
T

WHERE(

tf(cam, base, Lc−b)
T ,

tf(base, rcf, Lb−rcf )T ,

mul([Lo−c, Lc−b, Lb−rcf ], L)

). (4.9)

4.2.4 Active Memory

SLR supports selective recording and maintenance of data in knowledge bases using

memory instances.

Definition 21 (Memory Instance). A memory instance with an id Id, a query Q

and a policy 〈L,N〉 keeps the record of a subset of input events to SLR: the events that

match the query Q such that at each time T , the memory instance only contains the

events which have their end times within the last L seconds and only includes the recent

N number of such events ordered by their end time. An id is a ground term and a query

is of the form 〈e, Cond〉, where e is an event atom and Cond is a set of conditions on
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variables that are arguments of e. An event P matches a query pattern Q when there

is a substitution that can unify p and e and makes the conditions in Cond true (i.e.

∃θ(p = qθ)).

Memory instances are created by executing queries of the form c mem(Id,Q,N,L) on the

SLR knowledge base in initialization of the SLR program. They can also be created

at runtime by ELE rules or by external components using a ROS service the IEC

provides. Similarly, memory instances are deleted at runtime by executing queries of

the form d mem(Id) each deleting all memory instances whose idi match the term Id

(i.e. ∃θ(id = Idθ)).

Example. The c mem(tf, 〈tf(X,Y, Z), 〈〉〉,∞, 300) query creates a memory instance to

keep the history of tf(X,Y,Z)T events from the stateRec component for 300 seconds.

In the rule (15), we saw that the SLR knowledge base is queried to position object

segments in the reference coordination frame. If we assume that the IEC receives data

of object segments within 300 seconds since they appear in front of the camera, then

we only need to keep the history of tf events for 300 seconds. In another example, for

each object oi in segR(O,L) events, the ELE rule (16) generates a memory instance with

the corresponding id of obj(oi). A memory instance is generated, if it does not already

exist. This is checked using the ¬exist mem(monitor(O)) clause. Each memory instance

obj(oi) keeps the last occurrence of segR(oi, L) events at which oi is located on the floor,

checked by the onF loor Prolog term implementing the required spatial inference. The

use of DO clause is another way of performing SLR queries in Etalis syntax.

Do(c mem(obj(O), 〈segR(X,L), 〈X == O, onF loor(L)〉〉, 1,∞))

← segR(O,L)

WHERE(¬exist mem(obj(O))). (4.10)

The histories of events maintained in memory instances are accessed in the SLR program

using the following static terms.

Definition 22 (Memory Term Semantics). A mem(Id,X) term unifies X with an

event pn(t1, .., tn−2)
[z1,z2] that belongs to a memory instance whose id matches the term

Id (i.e. ∃θ(id = Idθ)). When backtracking over a mem(Id,X) term in evaluating an

SLR query, the possible unification of X is checked against all events recorded in all

such memory instances.

Definition 23 (Previous Memory Term Semantics). A prev(Id,X,Zs) term, where

Id is a ground term, unifies X with an event which has the latest occurrence time among
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the events that belong to the memory instance Id, are unifiable with X and have their

end time before or equal to Zs. The term fails if such a unification is not found.

Definition 24 (Next Memory Term Semantics). A next(Id,X, zs, ze) term, where

Id is a ground term, unifies X with an event which has the earliest occurrence time

among the events that belong to the memory instance Id, are unifiable with X and have

their end time within time interval [Zs, Ze]. The term fails if such a unification is not

found.

Example. The rule (4.11) re-writes the rule (4.8) by querying the previous tf (base,rcf,L)

event occurring before T and the next tf (base,rcf,L) event occurring during [T, T + 1]

from the memory instance tf, defined in the previous example to keep the history of tf

events for 300 seconds. Another example is the query f indAll(X, mem(obj(O),X), List)

which queries all obj(O) memory instances created by the rule (4.10) for their records

of segR(X,L) events using the mem(obj(O), X) template and put the list of results in

the variable List.

tf(base, rcf, L)T :-

prev(tf, tf(base, rcf, L1)
T1 , T ),

(

next(tf, tf(base, rcf, L2)
T2 , T, T + 1)→

est([L, T ], [L1, L2], [L2, T2])

;

L is L1

). (4.11)

SLR generates events when memory instances are created, deleted or updated. Memory

events are fed to Etalis as input. Consequently, patterns of memory events can be

captured by Etalis to notify external components with information about changes of

memory. Memory events are also used internally to keep track of the latest update

time of memory instances. This mechanism is used to synchronized queries, discussed

in Section 5.1.5.

This mechanism can be used to generate all sorts of events related to changes of the

memory such as the addition or deletion of memory instances or even the addition or

deletion of events to/from memory instances.
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4.2.5 Synchronizing Queries over Asynchronous Events

SLR supports the synchronization of queries to deal with the delayed and out of order

reception of sensory data to the knowledge base. A distributed and parallel network of

components with varying operating times processes robot sensory data. Therefore, an

event, containing information extracted by these components about an observation of

the environment, is generated at some time after the event occurrence time. Consider a

picture taken at a time t. If we assume it takes x second for the segRec component to

process the image, then the corresponding seg(oi, cj , pk, lg,pclh) events (i.e. recognized

object segments) are generated at time t + x but are time-stamped with time t. The

IEC receives these events over a network and sends those object segments that their

types have not yet been recognized with a high certainty to the objRec component. The

objRec component, which can be, for instance, a cloud web service [Kehoe et al., 2013]

receives such an event at some later time t+x+y. Then, the object segment is processed

for its type and the corresponding obj (oi,ot j , pk) event is generated and sent to the IEC.

The event is time-stamped with time t but received by the IEC at some later time

t+ x+ y + z.

Definition 25 (Event Process Time). The process time (i.e. tp(e)) of an event e is

the time at which the event is received by and added to the SLR knowledge base (i.e.

processed by IEC ).

Definition 26 (Event Delay Time). The delay time (td(e)) of an event e is the dif-

ference between its process time and its end time (i.e. td(p
[z1,z2]) = tp(p

[z1,z2])− z2).

A query should be evaluated after all events relevant to the query have been already

received by the SLR knowledge base. The parameter z of a query 〈goal, z〉 limits the

scope of the query to observations made up until time z. To evaluate the goal, a

number of memory instances are queried. Therefore, all relevant events to these memory

instances occurring up to time z should have been received by SLR before performing

the query.

Definition 27 (History Availability). The history of events of a type pn up to a

time z is available at a time t when at this time the SLR has received all events of type

pn occurring by time z (having end time earlier or equal to z).

Moreover, all previous and next memory terms should be correctly evaluated according

to their definitions. Finding the previous event of type pn(t1, .., tn) occurring up to
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time zs requires having received all pn(t1, .., tn) events occurring up until time zs. If we

assume events of each type are received by SLR in the order of their end times, then

finding the next event of type pn(t1, .., tn) occurring within time interval [zs, ze] requires

having received the first pn(t1, .., tn) event which has its end time equal or more than

zs, or make sure that no pn(t1, .., tn) event has occurred during [zs, ze]. SLR postpones

an individual query2 when necessary until it is achievable, as defined below.

Definition 28 (Dynamic Goal Set of Query). The dynamic goal set of a query

〈goal, z〉 for an SLR programD is the set of allmem(Id,X), prev(Id, Zs) and next(Id, Zs, Ze)

predicates that can possibly be queried when evaluating the goal on the knowledge

base. The dynamic goal set can be determined by going through all rules in D using

which the goal could be possibly proven and gathering all mem(Id,X), prev(Id, Zs)

and next(Id, Zs, Ze) terms appearing in bodies of those rules.

Definition 29 (Query Achievability). A query 〈goal, z〉 becomes achievable when

three conditions are met. First, the histories of all relevant events to memory instances

in dynamic goal set of the query are available up to time z. Second, for each prev(Id, Zs)

term in the dynamic goal set of the query, the history of all relevant events up to time Zs

is available. Third, for each next(Id, Zs, Ze) term in the dynamic goal set of the query,

a relevant event has been received or the history of all relevant events up to time Ze is

available.

To determine when the history of events of a type pn up to a time z is available, SLR

can be programmed in two complementary ways.

The first way is to set a maximum delay time (i.e. tdmax) for events of each type. When

the system time passes tdmax(pn) seconds after z, SLR assumes that the history of events

of type pn up to time z is available. The maximum delay times of events depends on

the runtime of the components generating them and need to be approximated. The

maximum delay times can be set the system developer. It can also be approximated by

SLR as follows. Whenever an event of type pn is processed, SLR checks its delay, the

difference between its end time and the current system time, and sets the tdmax(pn) to

the maximum delay time of pn events encountered so far.

When smaller maximum delay times of events are assumed, queries are evaluated sooner

and hence the overall system works in more real-time fashion, but there is more chance

of answering a query when the complete history of events asked by the query is not in

place yet. When larger maximum delay times of events are assumed, there is a higher

2Postponing one query does not delay the others.
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chance to have all sensory data up to the time specified by the query already processed

by the corresponding components and their results received by SLR when the query is

evaluated. However, queries are performed with more delays.

The second way of programming SLR to determine the availability of an event history

is as follows. SLR can ensure to have received the full history of events of a type pn

up to a time z, when it is told so by a component generating such events using special

updated(pn)z events. Whenever SLR receives such an event, it assumes that the history

of events of the type pn up to time z is available and proceeds with executing the relevant

queries.

The query synchronization is often required for a query that interpolates the value of an

attribute at a given time using next and prev term. The value can be interpolated as

soon as the first relevant event after that time is received. SLR monitors memory events,

discussed in Section 5.1.4, and evaluates the postponed queries as soon as necessary

events are received.

Example. When the position of an object O in the world coordination frame at a time T

is queried by the rule (15), the query can be answered as soon as both camera to base

and base to world relative positions at time T can be evaluated by rules (13) and (14).

The former can be evaluated (i.e. interpolated) as soon as SLR receives the first

tf(‘cam’, ‘base’, P ) event with a start time equal or later than T . The latter can be

evaluated as soon as the SLR receives the first tf(‘base’, ‘world’, P ) event with the start

time equal or later than T , or when it can ensure that no tf(‘base’, ‘world’, P ) event has

occurred within [T, T + 1]. If we assume tdmax(tf(‘base’, ‘world’, P )) is set to 0.5 second,

SLR has to wait 1.5 second after T to ensure this.

Example. The robot is asked about the objects it sees on table1. To answer the ques-

tion, the robot takes a number of pictures from the table starting at time t1 and finishing

by time t2 and then the SLR knowledge base is queried by 〈goal, t2〉 where the goal is

findall(

obj(O, Type, L),

( mem(obj(O), segR(O,L)Tx), t1 ≤ Tx ≤ t2, prev(obj(O, Type, P )Ty , t2) ),

List

) (4.12)

The query result is the list List of terms of the form obj(O,Type,L) matching the template

specified by the second argument of the findall term. This includes all object segments
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recorded as segR(O,L)Tx events in obj(O) memory instances recognized during [t1, t2].

The type of each object segment oi is recognized by querying the last obj(oi,Type,P)

event occurring before or at time t2.

To list all the objects, SLR makes sure to evaluate the query after the histories of both

segR(O,L) and obj(O,Type,L) events up to time t2 are available. A signaling mechanism

to realize this is as follows. After finishing the processing of each image taken at a time

t and outputting the recognized object segments, the segRec component sends out the

event updated(segR)t. The IEC receives these events sending object segments whose

type is not known and the updated(segR)t events to the objRec component. We assume

events of each type are communicated among the components in order. The objRec

component receives some object segments recognized at a time t, processes them in

the order it receives them and sends the recognized types back to the IEC. Whenever

the objRec processes an updated(segR)t event, it realizes that it has finished processing

of the object segments recognized up to time t and generates an updated(obj)t event.

Receiving updated(segR)t and updated(obj)t events, SLR is notified when the histories

of both types of events up to time t2 are available and then evaluates the query.

4.3 Related Work

The use of memory in existing research includes collecting data from various sources

and in time, mediating as a shared resource for component interaction (i.e. blackboard

architectural pattern [Watson, 1990]), refining data by various processes, and integrat-

ing various reasoning capabilities to maintain and query the robot’s knowledge of the

environment for task execution, human interaction and learning [Bauckhage et al., 2008,

Wrede, 2009, S. Wrede, M. Hanheide et al., 2004, Hawes and Wyatt, 2010, Hawes et al.,

2008, Tenorth and Beetz, 2009, 2012, Lemaignan et al., 2011, Lemaignan, 2012, Lim

et al., 2011, Mavridis and Deb Roy, 2006]. A large set of on-demand information pro-

cessing requirements have been discussed elsewhere [Lemaignan, 2012, Wrede, 2009].

A main concern in supporting on-demand information processing is the choice of lan-

guage for representing and storing data. The choice of language and its execution sys-

tem largely determines the extent to which various on-demand information processing

requirements along data, process, memory and access dimensions are supported, perhaps

the most important ones being knowledge modelling and reasoning.

The advantage of non logic-based data representations, for example, using program-

ming data structures in CAST [Hawes et al., 2008, Tenorth and Beetz, 2009] and
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GSM [Mavridis and Deb Roy, 2006], is the flexibility and efficiency in the representa-

tion and manipulation of amodal data such as image data and probability distributions.

However the expressiveness of queries for information maintained by such systems is

limited. An interesting approach is the XML data representation by IDA [Wrede, 2009,

S. Wrede, M. Hanheide et al., 2004] supporting Xpath queries [Birbeck, 2001], for ex-

ample, to retrieve data of objects recognized with confidence of more than a threshold.

The data representation in non-logic based systems is usually tightly related to the data

representation used in their underlying framework and does not support logical reason-

ing. In Retalis, binary data is represented as String. This requires encoding binary data

to the Prolog String format when importing a ROS message to Retalis and decoding it

when the data is sent back to ROS, which is time consuming. However, one can maintain

the actual binary objects in c++ and manipulate handlers to the objects in Retalis.

A recent survey of existing robotic information management systems [Lemaignan, 2012]

shows that most systems rely on logical formalisms, mainly including declarative lan-

guages such as the OWL3 language [Mike Dean and Stein, 2004] based on Description log-

ics [Baader et al., 2008] and/or rule-based languages such as the SWRL4 language [Hor-

rocks et al., 2004] for rule-based reasoning in OWL and Prolog. In particular, OWL is

a popular choice to define ontologies of various types of knowledge such as knowledge

of space, objects, actions and robot capabilities used, for instance, in ORO [Lemaignan

et al., 2011, Lemaignan, 2012], KnowRob [Tenorth and Beetz, 2012, 2009] and OUR-

K [Lim et al., 2011].

Defining ontologies are necessary to integrate various sources of knowledge such as the

domain and common sense knowledge as performed by the aforementioned systems and

for sharing robots’ knowledge, for instance, in the cloud [Tenorth et al., 2012]. While

we did not address modeling of knowledge, existing ontologies can be directly used in

Retalis as OWL ontologies can be represented and reasoned upon in Prolog. For example,

KnowRob offers one of the most comprehensive robotic ontologies and uses the Prolog

Semantic Web Library5 [Polleres et al., 2007] for loading and storing RDF 6 [Candan

et al., 2001] triples and the Thea7 OWL parser library [Vassiliadis et al., 2009] for OWL

reasoning on top of this representation.

The use of Prolog as the underlying technology for maintaining robotic OWL knowledge

has a few practical advantages for inference compared to the use of existing descrip-

tion logic reasoners such as the Pellet8 reasoner [Sirin et al., 2007] used in ORO. Those

3http://www.w3.org/TR/2004/REC-owl-ref-20040210/
4http://www.w3.org/Submission/SWRL/
5http://www.swi-prolog.org/pldoc/package/semweb.html
6http://www.w3.org/RDF/
7http://www.semanticweb.gr/thea/
8http://clarkparsia.com/pellet/
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reasoners keep a classified version of the knowledge base in memory specifying each indi-

vidual belonging to which classes. Therefore continuous changes of the knowledge base

through acquiring sensory data requires frequent re-classification of the whole knowledge

which can be costly [Tenorth and Beetz, 2012]. This problem can be partially addressed

by optimizing this operation using an incremental updating technique [Halashek-Wiener

et al., 2006].

The more important advantage is related to the open world assumption in Description

Logics versus the closed world assumption in Prolog, and the monotonicity of description

logics versus supporting a form of non-monotonicity in Prolog by the negation as failure

inference rule within the closed world assumption. In the closed world assumption,

representations can be more compact as ‘a fact not being true’ does not need to be

described but it can be inferred by not being able to prove the fact. Moreover, the open

world assumption and monotonicity of Description Logic makes the representation and

reasoning on dynamics of the environment (i.e. changes and actions) difficult requiring to

handle such aspects externally [Ziafati et al., 2011, Lemaignan, 2012], but, for instance,

KnowRob implements a predicate to return an object’s location at a time by searching

for the last observation of the object’s location before that time.

Reasoning about changes and actions has been extensively studied in various knowledge

formalisms such as Situation Calculus [Levesque et al., 1998] and Event Calculus [Kowal-

ski and Sergot, 1989, Shanahan, 1999]. The SLR language provides a practical and effi-

cient solution for representing robot knowledge based on discrete observations, providing

a means to deal with the temporal validity of data and representation of continuous do-

mains which is not the focus of such formalisms. Compared to the KnowRob approach

of, for instance, implementing a predicate to represent an object’s location at a time,

SLR simplifies the definition of such predicates in general and increases the efficiency

of their computations by maintaining the sorted list of events based on their occurrence

times.

Prolog provides a flexible support for access to external data or reasoning functionalities

while reasoning on knowledge through procedural attachments to the Prolog terms. This

feature is used in KnowRob, for instance, to compute spatial relations between objects

and in Retalis to integrate OpenGL Mathematics9 (GLM) for arithmetic operations.

The SLR support for synchronization of queries on knowledge built upon asynchronous

data is not presented elsewhere. However, similar synchronization mechanisms as found

in SLR are implemented in other robotic software in a more limited context. One

example is the DyKnow framework [Heintz, 2009] that synchronizes data received from

streams of data based on different policies to generate new ones. Another example is

9http://glm.g-truc.net/0.9.5/index.html
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the tf library [Foote, 2013] widely used in ROS for querying position transformation

between robot’s coordination frames over time. When a relative position at a time is

queried, the query is not answered until receiving the first observation of that position

at or after that time. The tf library only supports interpolation of data similar to

the SLR rule (13). Therefore, even if a position is constant in time, its value needs

to be continuously published to ROS consuming the network bandwidth. Moreover,

sometimes a component such as AMCL in ROS provides updates in a slow rate but

they are precise enough to be used until the next update is made available. In order to

not delay the processing of data until availability of the next update, this component

stamps its updates in the future.10 Apart from being semantically confusing, time

stamping updates in future can result in using old data even if new data is already

available. With the SLR extrapolation approach, for instance, implemented by the

rule (14), if a position transformation is static, its value does not need to be published

being extrapolated from its last observed value. In addition, the time bound of the next

predicate in SLR allows to specify how long SLR needs to wait to see whether a value

has been changed, assuming after each relevant change a notification is received.

Except a few, most information management systems leave pruning data from the mem-

ory to external components. In ORO, knowledge is stored in different memory profiles,

each keeping data for a certain period of time. In IDA, scripts are activated periodically

or in response to events of memory changes to perform garbage collection. In SLR,

flexible garbage collection functionalities are blended in the syntax of the language. In

addition, a subtle difference between SLR and other systems is that in the existing sys-

tems, external components store the data in memory. In SLR, memory instances are

declaratively defined which selectively store data from the input flow of events to the

SLR.

The storage of data in SLR is similar to active memories such as the ones of IDA

and CAST as data is recorded in memory instances with unique identifiers, however

SLR supports logical reasoning over the contents of memory instances. This approach

supports having different memory profiles for different pieces of data and a flexible way

of selecting the data that are to be reasoned about as a whole, thus allowing to reason

about a part of knowledge that could be inconsistent with other part of the knowledge

maintained in the memory.

Furthermore, active memories allow external components to update the contents of mem-

ory instances. As such, suitable error handling and locking mechanisms are necessary

to synchronize the parallel access to memory. In contrast, the modeling of the input

as a stream of events and clear semantics of memory instances in SLR removes much

10http://wiki.ros.org/tf/FAQ
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of the problems related to the parallel access of data. For an example, consider two

components processing object segment events to recognize the orientation and type of

objects. In our approach, this can be implemented as follows: an object segment event

is sent to both components, these components perform their processes and generate

their uniquely typed events. Then an ELE rule receives events from these components,

synchronizes them based on their object identifiers and occurrence times and produces

new events of recognized objects with their types and orientations. In a naive approach,

object segments are recorded in the memory and are processed and updated by both

components in parallel which could re-write each other results.

SLR supports notifying external components when memory instances are added or

deleted to the memory. This can be easily extended to also generate corresponding

notifications when events are added or deleted from memory instances. However, the

input flow of events to SLR is processed by ETALIS. Therefore external components

can subscribe to ETALIS to be notified when the data of interest is being fed to SLR.

While notifying changes of the memory is a main functionality in active memories, it

is less common in logic-based knowledge management systems. An exception is ORO

to which one can subscribe to receive a notification, whenever a fact can be inferred

by the ORO knowledge base. However it is not described whether or not this includes

the knowledge that can be derived by SWRL rules. Moreover, it not described whether

this functionality is implemented by continuously querying the knowledge base for such

a fact, or it is efficiently realized by an incremental and event-driven algorithm such as

backward chaining rules in ETALIS [Anicic et al., 2012, 2010, Anicic, 2011].

4.4 Summary

SLR language is developed in this thesis to address the on-demand processing require-

ments related to discreteness, continuity and asynchronicity of robotic sensory informa-

tion. SLR is a Prolog-based language extending the capabilities of existing logic-based

robotic knowledge management systems with active memory functionalities. In this way,

SLR unifies, advances and complements the capabilities of the state-of-the-art robotic

on-demand processing systems. This is shown by presenting a detailed comparison of

SLR with existing systems and approaches.

The input to SLR is modeled as a stream of events. SLR provides a high-level syn-

tax to specify what parts of this stream should be maintained in the knowledge base.

Records of data are maintained by memory instances, selectively recording parts of the

input stream filtered by types of events and logical reasoning on their contents. These
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memory instances are attached time-based and count-based memory profiles automati-

cally removing outdated data. SLR supports active memory notification by generating

corresponding events when memory instances are updated. These events can then be

processed by Etalis part of Retalis to detect patterns of changes of the knowledge base

to inform external components. In addition, SLR provides syntax support for state-

based representation of knowledge built upon discrete events and also implements two

mechanisms to synchronize queries which are to be answered based on events received

asynchronously. SLR uses particular data structures and indexing mechanisms to effi-

ciently implement its functionalities. An extensive empirical performance evaluation of

SLR is presented in Chapter 5.



Chapter 5

Retalis Performance

Software development is inherently of high importance for this thesis as its aim is the

support of timely processing, management and querying of information. In previous

chapters, we presented the Retalis language providing a high-level syntax and clear

semantics for implementing the on-flow and on-demand information functionalities of

autonomous robots. The main key to usefulness of any information engineering lan-

guage such as Retalis is its efficiency in execution of the processing, management and

querying functionalities. This chapter empirically evaluates the performance of Retalis

by demonstrating the implementation of an application for the NAO robot.

The remainder of this chapter is organized as follows. First, an implementation of an

application for the NAO robot is presented. The performance of the Retalis language,

integrating the ELE and SLR languages, as a whole is evaluated on this application

which involves processing, management and querying of a flow of sensory information

received at the rate of about 1900 events per second. We then present separate empiri-

cal performance evaluations of various information engineering functionalities of Retalis

including memorizing, forgetting, querying and query synchronization.

5.1 NAO application

In this section, we report the development of an application for NAO robot using Re-

talis and ROS .1 NAO is a small programmable humanoid robot offered by Aldebaran

Robotics2, equipped with advanced sensors such as cameras, touch sensors and micro-

phones. In the application, NAO observes objects in the environment, perceiving their

1Appendix A presents a for a tutorial about the implementation of this application.
2http://www.aldebaran.com/en
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Figure 5.1: NAO’s software components

relative positions to its camera, and computes the position of objects in the environ-

ment. Figure 5.1 presents software components3 of the NAO application, operating as

follows. The NAO nodes4 component provides an interface to acquire sensory data and

to command the NAO robot. It publishes images generated by the top camera of the

robot. It also publishes events about the transformation among the robot’s coordinate

frames. Each of these events contains a set of transformations where each transformation

specifies the relative position among two coordinate frames. The ar pose5 component

processes the images to recognize objects and calculates the position of objects with

respect to the camera. Each event from ar pose contains data of a set of observed

objects. The localizer component calculates the robot’s position in the world. The

IEC component is subscribed to information about objects’ positions, robot’s location

and coordinate transformations. It calculates the position of objects in the world from

the transformation among the following pairs of coordinate frames, (world, base link),

(base link, torso), (torso, neck), (neck, camera) and (camera, object). The arithmetic

operations are performed using the OpenGL Mathematics6 (GLM) library which has

been integrated in Retalis. The rviz 7 component visualizes the objects in the environ-

ment. The IEC communication with other nodes is realized by the Retalis-ROS interface

component. This component converts ROS messages to Retalis events and vice versa.

The IEC and the Retalis-ROS interface components are implemented in Retalis.

3The software includes also a face recognition component which is not discussed for brevity.
4http://wiki.ros.org/nao robot
5http://wiki.ros.org/ar pose
6http://glm.g-truc.net/0.9.5/index.html
7http://wiki.ros.org/rviz
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5.2 Evaluation

For a first test implementation, all software components run remotely on an XPS Intel

Core i7 CPU@ 2.1 GHz x 4 laptop running ubuntu 12.04 LTS, connected to the NAO

robot. After the evaluation phase, the software will be implemented in the NAO robot

itself. NAO comes with an Intel Atom CPU@1.6 GHz running Linux. The performance

is evaluated by measuring the CPU time, the amount of time of a CPU of the computer

that is used by the Retalis program. We measure the CPU time as the percentage of

the CPU’s capacity (i.e. CPU usage percentage) computed by the operating system.

In the following graphs, the vertical axis represents the CPU usage percentage and the

horizontal axis represents the running time in seconds. The CPU time is logged every

second and is plotted using ”gnuplot smooth bezier”.

The NAO application includes the following tasks:

• On-flow processing: events from ar pose and NAO nodes are split into respective

events such that each event contains data of a single object or the transformation

among a single pair of coordinate frames. The transformation data among pairs

of coordinate frames are published with frequencies from 8 to 50 hertz. There are

in average 7 objects perceived per second. In total, Retalis processes about 1900

events per second.

• Memorizing and forgetting: there are 5 memory instances observing the events.

They record and maintain the last 30 seconds histories of the transformation among

the pairs of coordination frames used to calculate the transformation among world

and camera.

• Querying memory instances: for each observed object, SLR is queried for the

world-to-camera transformation. The transformation among a pair of coordinate

frames at a time is calculated by interpolation, as performed by the rule (17) in

page 18. Each interpolation requires accessing a memory instance twice, once using

a prev term and once using a next term. To calculate the position of all objects,

memory instances are accessed 70 times per second.

• Synchronization: a query is delayed in case any of the necessary transformations

can not be interpolated from the data received so far. Retalis monitors the incom-

ing events and performs the delayed queries as soon as all data necessary for their

evaluations are available.

• Subscription: there are 8 distinct objects in the environment and consequently

8 subscriptions to publish recognized objects to distinct ROS topics. The rviz

component is subscribed to these topics to visualize the position of objects.
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Figure 5.2: NAO application

Figure 5.2 shows the CPU time used by the Retalis and Retalis-ROS -converter nodes

when running the NAO application. The Retalis node calculates the position of objects

in real-time. It processes about 1900 events, memorizes 130 new events and prunes 130

outdated events per second. It also queries memory instances, 70 times per second.

These tasks are performed using about 18 percent of the CPU time. In this experience,

the Retalis node has been directly subscribed to ROS messages containing information

about coordinate transformations and recognized objects. The Retalis-ROS -converter,

consuming about 5 percent of CPU time, only subscribes Retalis to the recognized faces

and converts and publishes events about objects’ positions to ROS topics.

As we saw in Chapter 2, Retalis provides an easy way to subscribe to ROS topics and

automatically convert ROS messages to events. This is implemented by the Retalis-

ROS -converter node. The implementation is in Python and is realized by inspecting

classes and objects at runtime and therefore is expensive. Figure 5.3 shows the CPU

time used by the Retalis and Retalis-ROS -converter nodes for the NAO application,

when the Retalis-ROS -converter is used to convert all ROS messages to Retalis events.

In the previous configuration, the conversion from ROS messages, containing informa-

tion about coordinate transformations and recognized objects, to events was performed

by a manually written c++ code, rather than using the Retalis automatic conversion

functionality written in Python. We observe that in the new configuration, the Retalis

node consumes a few percent less, but the Retalis-ROS -converter node consumes about

forty percent more CPU time, comparing to the previous configuration. These results

show that while the automatic conversion among messages and events are desirable in

a prototyping phase, the final application should implement it in C++ for performance

reasons. We will investigate the possibility to optimize and re-implement the Retalis-

ROS -converter node in C++.

Metric evaluation of languages and systems like Retalis, in general, is challenging for

the following reasons[Lemaignan, 2012, Langley et al., 2009, Mavridis and Deb Roy,

2006]. Experiments often involve many other modules running in parallel and building
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Figure 5.3: NAO application with automatic conversion of messages and events

repeatable experiments for robots in dynamic environments is challenging. In addition,

very few existing systems report metric evaluations and the lack of standard API s and

differences in functionalities makes it hard to compare these systems. The rest of this

chapter evaluates main Retalis functionalities. We report a number of experiments

using data from the NAO application, recorded by rosbag.8 Using rosbag, data can be

played in a simulation, as if it is played in real-time. While single performance results

in the following experiments depend on the NAO application, a serie of experiments is

presented for each functionality, allowing us to make a number of general observations

about the performance of Retalis functionalities.

5.2.1 Forgetting and Memorizing

This section evaluates the performance of the memorizing and forgetting functionalities.

We measure the CPU time for various runs of the NAO application where the numbers

and types of memory instances are varied. We discuss the performance of memory

instances by comparing the CPU time usages in different runs.

When an event is processed, updating memory instances includes the following costs:

• Unification: finding which memory instances match the event.

• Assertion: asserting the event in the database for each matched memory instance.

• Retraction: retracting old events from memory instances that reached their size

limit.

8http://wiki.ros.org/rosbag



Chapter 5. Evaluation 84

Figure 5.4: Irrelevant memory instances

Figure 5.4 shows the CPU time for a number of runs where up to 160 memory instances

are added to the NAO application. These memory instances record a(X,Y,Z,W) events.

Among the events processed by Retalis, there are no such events. The results show that

the increase in CPU time is negligible. This shows that a memory instance consumes

CPU time only if the input stream of events contains events whose type matches the

type of events the memory instance records.

In Figure 5.5, the green and blue lines show the CPU time for cases where 20 mem-

ory instances of type tf(X,Y,V,Q) are added to the NAO application. These memory

instances match all tf events, about 1900 of such is processed every second. The size

of memory instances for the green line is 2500. These memory instances reach their

size limit in two seconds. After this time, the CPU time usage is constant over time

and includes the costs of unification, assertion and retraction for updating 20 memory

instances with 1900 events per second. The size of memory instances for the blue line is

150,000. It takes about 80 seconds for this memory instances to reach their size limit.

Consequently, the CPU time before the time 80 only includes the costs of unification

and assertion, but not the costs of retraction. After the time 100, the CPU usages of

both runs are equal. This shows that the cost of a memory instance does not depend

on its size.

The purple line shows the CPU time for the case where similarly there are 20 memory

instances of type tf(X,Y,V,Q). However, these memory instances record events until they

reach their size limit. We added a condition for these memory instances such that after

reaching their size limit, they perform no operation when receiving new events. After

the time 100, the CPU time is constant about 23 percent, being 5 percent more than the

CPU time of the NAO application, represented by the red line. This 5 percent increase

represents the unification cost. This also shows that the costs of about 38000 assertions

and 38000 retractions per second is about 30 percent of CPU time. In other words, 2500
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Figure 5.5: tf(X,Y,V,Q) memory instances (1)

memory updates (i.e. assertions or retractions) are processed using one percent of CPU

time.

Figure 5.6 shows the CPU time for a number of runs where up to 40 memory instances

of type tf(X,Y,Z,W) and size 2500 are added to the NAO application. The red line

at the bottom shows the CPU time for the NAO application. We make the following

observations. Adding first 10 memory instances to the NAO application increases the

CPU time about 20 percent. After that, adding each set of 10 memory instances increases

the CPU time about 13 percents. This shows that the cost grows less than linearly. The

implementation of memory instances is in a way that the cost of an assertion or a

retraction can be assumed constant. This means that the unification cost for the first

set of memory instances is the highest. In other words, the unification cost per memory

instance decreases when the number of memory instances are increased. The reason

relates to the way that the underlying SWI-Prolog engine searches and unifies terms

which is not investigated here.

Figure 5.7 shows the CPU time for a number of runs where up to 640 memory instances

of type tf(head,camera,Z,W) and size 2500 are added to the NAO application. The

events matching these memory instances are received with the frequency of 50 Hz. We

make the following observations. First, it takes 50 seconds for these memory instances
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Figure 5.6: tf(X,Y,V,Q) memory instances (2)

to reach their size limit. After 50 seconds, these memory instances reach their maximum

CPU usages, as the costs of retraction is added. Second, each memory instance filters

1900 events per second recording about two percent of them. The cost of 640 memory

instances is about 35 percent of CPU time. Third, the unification cost per memory

instance is decreased when the number of memory instances are increased.

Figure 5.8 compares the costs of different types of memory instances. The purple

line shows the CPU time for the case where there are 10 memory instances of type

tf(X,Y,V,Q). The green line shows the CPU time for the case where there are 320 mem-

ory instances of type tf(head,cam,V,Q). We observe that the costs of both cases are

equal. The memory instances in the former case record 19,000 events per second (i.e.

10*1900). The memory instances in the latter case filter 1900 events per seconds for

tf(head,cam,V,Q) events, recording 16000 events per second (i.e. 320*50). The results

show the efficiency of the filtering mechanism.

The brown line shows the CPU time for the case where there are 10 memory instances

of type tf(X,Y,V,Q) and 320 memory instances of type tf(head,cam,V,Q). Comparing

it with the green and purple lines shows that the CPU time usage of these memory

instances is less than sum of the CPU usages by 10 tf(X,Y,V,Q) memory instances

and 320 tf(head,cam,V,Q) memory instances. This shows that the unification cost per
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Figure 5.7: tf(head,cam,V,Q) memory instances

memory instance is decreased when the number of memory instances are increased, even

when the memory instances are not of the same type.

These experiments show that Retalis is able to maintain a history of a large volume of

data. Memorizing and forgetting functionalities of SLR have been optimized as follows.

A memory instance memorizes an event by creating an event record containing the event

and the identifier of the memory instance. The event record is asserted as the top fact

in the database. This operation takes a constant time. Event records of a memory

instance are numbered in order of the event occurrence times. SLR generates a hash key

for each event record, based on the respective identifier and the record number. Event

records are indexed on their hash keys. Consequently, accessing an event record takes a

constant time SLR keeps track of the number of the oldest event record of each memory

instance. Therefore, forgetting takes a constant time, irrelevant of the size of memory

instances.

5.2.2 Querying

Retalis queries are Prolog-like queries executed by the SWI-Prolog system. The following

evaluates the performance of next and prev terms and the synchronization mechanism
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Figure 5.8: Memory instances of different types

which are specific to Retalis. The performance of next and prev terms are important

because the sensory data recorded by Retalis is queries using these terms. Not only does

Retalis extend the Prolog language with these built-in terms to provide easier syntax for

querying history of data, but also to make querying of data more efficient.

Querying Memory Instances

This section evaluates the performance of prev and next terms used to access event

records in memory instances. Retalis optimizes the evaluation of these terms as follows.

It keeps track of the number of event records in each memory instance. The prev and

next terms are evaluated by a binary search on event records. An access to an event

record by its number takes a constant time. Consequently, the evaluation of prev and

next is done in logarithmic time on the size of the respective memory instance. In

Figures 5.9, 5.10 and 5.11 below, the red line visualizes the CPU time of the NAO

application.

The green line in Figure 5.9 visualizes the CPU time of the NAO application adapted

as follows. There is an additional tf(head,cam,V,Q) memory instance of size 128. This

memory instance is queried by 1000 next terms for each recognition of an object. In
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Figure 5.9: Next and prev terms (1)

average, 7000 next terms are evaluated per second. The blue line visualize the CPU time

of a similar program in which 7000 prev terms are evaluated per seconds. The figure

shows that the costs of the evaluations of prev and next terms are similar. The purple

line shows the CPU time of the case where 14,000 next terms are evaluated per second.

We observe that the cost grows linearly.

The blue line in Figure 5.10 visualizes the CPU time of the case where 7000 next terms

are evaluated per second. The green line visualizes the CPU time of the case where

there are 320 tf(head,cam,V,Q) memory instances added to the NAO application. The

purple line visualizes the CPU time of the case where 7000 next terms are evaluated per

second and there are 320 tf(head,cam,V,Q) memory instances. We observe that the cost

of accessing a memory instance does not depend on existence of other memory instances.

The green line in Figure 5.11 visualizes the CPU time of evaluating 7000 next terms

per second on a memory instance of size 128. The blue linevisualizes the CPU time of

evaluating 7000 next terms per second on a memory instance of size 16384. The size of

the memory instance in the latter case is the power of two of the size of the memory

instance in the former case. The increase in the CPU time for the latter case, with

respect to the NAO application, is less than two times of the increase in the CPU time

for the former case.
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Figure 5.10: Next and prev terms (2)

Figure 5.11: Next and prev terms (3)
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Figure 5.12: Synchronization with no delay

The prev and next terms provide efficient ways of accessing records of events. Otherwise,

all event records should be read, for instance, to find the latest position of an object.

For example, an experiment is reported for the KnowRob knowledge base where there

are 65,000 records of events about the location of an object. It takes 11 seconds to find

the latest location [Tenorth and Beetz, 2012].

Synchronization

The synchronization mechanism is implemented as follows. Before evaluating a query,

memory instances are checked whether they are up-to-date with respect to the query (i.e.

the query is achievable as defined in Section 4.2.5). If the query cannot be evaluated, it

is recorded as a postponed query. For each postponed query, Retalis generates a set of

monitors. Monitors observe memory update events. As soon as all necessary events are

in place in memory instances, the query is performed. The implementation of monitors

are similar to the implementation of memory instances.

The red line in Figure 5.12 visualizes the CPU time of the NAO application where in

each second, 1000 next queries on a memory instance of size 2500 are evaluated. In

addition, for each next query, a new event is generated. The green line visualizes the

CPU time of a similar case where the next queries are synchronized. This experiment

is conducted in a way that no query needs to be delayed. Comparing these two cases

shows that when queries are not delayed, the synchronization cost is negligible.

Figure 5.13 shows the CPU time of four cases. In all these cases, 1000 synchronized

next queries are evaluated and 1000 events are generated in each second. The red

line visualizes the case where no query is delayed. The green line visualizes the case

where queries are delayed for 5 seconds. In this case, the memory instance queried by a

next term has not yet received the data necessary to evaluate the query. The query is
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Figure 5.13: Synchronization with delays

performed as soon as the memory instance is updated with relevant information. There

are 1000 queries per seconds, each delayed for 5 seconds. This means there exist 5000

monitors at each time. These monitors observe 1900 events processed by Retalis per

second. We observe that for such a large number of monitors observing such a high-

frequency input stream of events, the increase in CPU time is less than 30 percent.

5.2.3 On-Flow Processing

On-flow processing functionalities in Retalis are implemented using Etalis. Etalis ex-

ecution model is based on decomposition of complex event patterns into intermediate

binary event patterns (goals) and the compilation of goals into goal-directed event-driven

Prolog rules. As relevant events occur, these rules are executed deriving corresponding

goals progressing toward detecting complex event patterns.

Information flow processing systems such as Etalis are designed for applications that

require a real-time processing of a large volume of data flow. We refer the reader to the

evaluation of the performance of Etalis presented elsewhere [Anicic et al., 2012, Anicic,

2011]. The evaluation shows, in terms of performance, Etalis is competitive with respect

to the state-of-the-art information processing systems.
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5.2.4 Subscription

The implementation of the subscriptions is similar to the implementation of memory

instances. The only difference is that an event matching a memory instance is asserted

to the knowledge base for that memory instance, and an old event is retracted if the

memory instance is full, but an event matching a subscription is delivered to the respec-

tive subscriber. Consequently, the costs of subscriptions include the unification cost,

discussed in section 5.2.1, and the costs to publish events to subscribed ROS topics.

The latter comprises the costs for converting events to ROS messages and the costs of

message transportation within the ROS framework.

5.3 Summary

Metric evaluation of languages and systems like Retalis, in general, is challenging. Ex-

periments often involve many other modules running in parallel and building repeatable

experiments for robots in dynamic environments is challenging. In addition, very few

existing systems report metric evaluations and the lack of standard API s and differences

in functionalities makes it hard to compare these systems.

An application for NAO robot is presented involving processing, management and query-

ing of a large flow of sensory information, received at the rate of about 1900 events per

second. The performance of Retalis, measured by CPU usage, is evaluated on this appli-

cation. Furthermore, the performance of main functionalities of Retalis are separately

evaluated in a number of experiments. The results show that Retalis can handle the

processing of a large flow of events, filter it to selectively record a large amount of data

in knowledge base, efficiently access the recorded data and efficiently synchronize the

queries. Consequently, Retalis is proven to be an efficient language to implement the

information engineering functionalities of autonomous robots.



Chapter 6

Active Queries

The question of this chapter is how to support incremental evaluation of logic program

queries. Language support is needed to be able to register queries as active queries

that are evaluated on the current knowledge base (i.e. logic program) and their results

are incrementally and efficiently updated as the knowledge base changes. The question

is how to provide an efficient mix of top-down (i.e. query-driven) and bottom-up (i.e.

data-driven) query evaluation strategies deployed in on-demand and on-flow processing

models. Active queries should be evaluated in a top-down manner and their results

should be efficiently updated in a bottom-up manner until they are unregistered. The

bottom-up evaluation strategy updating the query results should only take into account

the queries which are active at the time.

The rest of this chapter is organized as follows. First, we describe the definite logic

programs and the Prolog strategy to evaluate definite logic program queries. Then,

we describe the ELE execution model for an incremental evaluation of definite logic

programs. Afterwards, we present two approaches for implementation of active definite

logic program queries, the Naive approach and the Optimized approach. The Naive

approach builds directly on top of the ELE execution model to support registering and

un-registering active queries at run-time. The optimized approach is a new approach

developed in this thesis, revising the Naive approach to provide a more elegant and

more efficient mechanism for implementation of active queries. The approach is further

developed by incorporating the tabling technique to further optimize it and to deal with

the problem of falling into infinite loops in bottom-up evaluation of logic programs that

contain recursion. Finally, we present the related work and give a summary.

94
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6.1 Introduction

Querying current logic programming systems such as Prolog follows the request-response

pattern of interaction. An asker component submits a query and a logic programming

system evaluates the query and responds with the results. Given a query, a top-down

evaluation strategy is used examining the relevant rules and facts in the knowledge base

to find answers of the query. The advantage is that the search is guided by the type of

the query and its bound variables.

There are however cases where the same query should be continuously evaluated on the

knowledge base. For example in focused reasoning, an asker wants to find an answer for

a query and wants to find it as soon as there exists one [Schlegel and Shapiro, 2004]. If

the knowledge base is a logic program and the query does not have an answer at the

time, the asker should re-evaluate the query after each change of the knowledge base in

order to find the answer as soon as it exists.

In current logic programming systems such as Prolog, re-evaluating the same query

requires to re-submit the query which in turn results in re-computation of the query

from scratch. Not only has this a disadvantage on performance but also on reactivity

of the integrated system (e.g. robot). If the system’s operations depend on monitoring

results of some queries to its logic programming component, then the system has to

repeatedly perform the queries. When the logic programming component is updated

with new information, the system does not notice changes to results of the queries until

the next time it re-evaluates them.

For example, BDI-based agent programs developed in agent programming languages [Bor-

dini et al., 2006, Vikhorev et al., 2010] such as 2APL [Dastani, 2008], GOAL [Hindriks,

2009] and Jason [Bordini and Hübner, 2005, Ṕıbil et al., 2012] contain a set of rules each

generating a plan to reach a goal or to respond to an event, applicable in certain belief

states. To determine the applicability of such rules, the same queries are repeatedly

performed on the agent knowledge base resulting in performance issues [Alechina et al.,

2012].

An approach to reduce the cost of repeated queries is to cache query results. When

a query is re-evaluated, a caching mechanism determines whether the knowledge base

has been updated with some facts which may be relevant to the query. If not, the

cached results are used. For instance, such an approach has been recently adopted by a

large portion of agent programming languages community [Alechina et al., 2013]. The

limitation of this approach is that as soon as the knowledge base is updated with new

information, the cached results of queries depending on such information are invalidated,

hence those queries are to be re-evaluated from scratch. For example, when the fact c(1)
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is added or deleted from the knowledge base, the cached results of the query q(X,Y,Z)

is invalidated if the knowledge base contains the rule q(X,Y,Z) :- a(X), b(Y), c(Z).

Moreover, this approach does not benefit from caching results of queries’ sub-goals as

it only caches results of high-level queries. For example, the two queries q(2,1,Z) and

q(1,1,Z) evaluates their common sub-goal b(1) separately, the result of which could be

re-used when computed once.

As opposed to backward reasoning systems where top-down query evaluation strategies

are used, forward reasoning systems such as RETE [Forgy, 1982] and its descendant

deploy bottom-up query evaluation strategies. Forward reasoning systems derive and

keep an up-to-date list of all facts which can be inferred from the facts and rules in

the knowledge base. In these systems, queries of interest are usually known in advance.

Given a set of queries and a knowledge-base, the rules in the knowledge base are trans-

formed such that the forward reasoning mechanism deployed is only concerned with the

queries of interest. The knowledge-base then explicitly stores and maintains the up-to-

date list of all relevant results that can be derived from the given facts and rules in

the knowledge base. The advantages of these approaches is in their use of data-driven

evaluation mechanisms to efficiently update the results of queries of interests, as facts

are added or removed from the knowledge base.

This chapter in concerned with incremental evaluation of logic program queries to sup-

port the implementation of active queries mixing top-down and bottom-up evaluation

strategies to take the advantages of both. From the software architecture point of view,

an active knowledge base provides a means for other components to register logic pro-

gramming queries as active queries, each assigned a unique id. As the knowledge base

is updated with new information, it notifies changes to results of the registered queries

to interested components. Such changes are the addition or deletion of some results for

each query.

From the query evaluation point of view, an active query is evaluated on the current

knowledge in the knowledge base in a top-down manner, but its results are incremen-

tally and efficiently updated as the knowledge base is updated with new information.

When updating query results in a bottom-up manner, the propagation of changes of the

knowledge base is directed toward and constrained by those queries which are active at

the time. Comparing to re-evaluation of queries from scratch, an incremental evalua-

tion propagates the changes and thus only recomputes necessary parts of proof trees of

queries.
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6.2 Definite Logic Programs

A definite logic program consists of a set of logical clauses describing a problem domain.

A clause or a rule is of the form a ← a1 ∧ .. ∧ an. In a logic programming language,

such clause is represented as a :- a1 ∧ .. ∧ an, the declarative meaning of which is a is

true, if a1 and ... and an are true. In such a rule, a is called the head and a1 ∧ .. ∧ an

is called the body. a and ai are terms which are atomic formula of the form p(t1, .., tn)

where p is a functor symbol and t1, .., tn are constants, variables or terms. A term is

ground, if it contains no variables. a ← true is called a fact and is represented as a.

6.2.1 SLD Resolution

Prolog execution is query-driven. Given a query Q to be evaluated on a definite logic

program P 1, the Prolog engine uses the SLD resolution strategy to determine whether

or not Q is a logical consequence of P [Lloyd, 1984b]. To explain this strategy, let’s

assume Q is a single term. Prolog performs a top-down depth-first search to evaluate Q.

The query is regarded as a goal and relevant rules and facts in the knowledge base (i.e.

logic program) are tried to find answers of Q.

A goal is proven, if there is a variable substitution by applying which the goal matches

a fact, or matches the head of a rule and the (sub-)goals in body of the rule can be

proved from left to right. When matching the head of a rule, the variable substitution

used is applied to the body of the rule before proving the goals in the body. In addition,

the variable substitution used to prove a goal in the body is applied to all goals in the

body in the right hand side of the goal before proceeding to the rest. When the query

is derived from the program using this strategy, the variable substitution used to prove

the goal is returned to the user as an answer.

For each goal, there may be different facts or rules in the program matching it. In

such a case, Prolog creates a choice-point and unifies the goal with the first alternative.

It then continues with its execution until it proves the query or a goal fails. In the

latter case, Prolog backtracks by disregarding all variable bindings made since the most

recent choice-point and trying the next alternative of that choice-point. When choosing

among alternatives, rules and facts are always tried in the order they appear in the logic

program. Backtracking is performed in the case of a failure, but It is also used to find

other ways of proving a goal.

1Prolog syntax extends the definite logic program syntax with built-in predicates and language oper-
ators such as the negation as failure predicate and the cut operator and employs the SLDNF resolution
method to evaluate the query [Apt and van Emden, 1982]. In this chapter, we only consider definite
logic programs.
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For an example, consider the Program 1 presented in Listing 6.1. Prolog evaluates the

query a(X,Z) on this program as follows. The goal a(X,Z) matches the head of the first

clause, resulting in evaluation of the goals in body of the clause from left to right. The

first goal b(X,Y) is resolved using the b(1,2) clause, binding the variables X and Y to

1 and 2, respectively. The execution continues with evaluating the second goal in the

body, c(Y,Z). As Y has been bound to 2, the goal to be evaluated is c(2,Z). This goal

matches the second and fourth clauses, creating a choice-point. The first alternative to

resolve c(2,Z) is to use the second clause, producing the new goal e(2,Z) which is resolved

against the e(2,4) clause, binding Z to 4. Then, the third goal d(4) is evaluated but

does not match any clause. Consequently, this path of execution fails and the execution

backtracks to the last choice point. The second alternative to resolve c(2,Z) is using the

c(2,3) clause, binding Z to 3. Then, the goal d(3) is evaluated, matching the fifth clause.

At this point, all goals have been resolved, the query has been proven and the answer

X=1, Z=3 is returned. As all choice-points have been exhausted, no more answer can

be derived and the execution terminates.

1 a (X, Z) :− b(X,Y) , c (Y, Z) , d (Z) .

2 c (Y, Z) :− e (Y, Z) .

3 b (1 , 2 ) .

4 c (2 , 3 ) .

5 d (3) .

6 e (2 , 4 ) .

Listing 6.1: Program 1

In Prolog, the knowledge, encoded as a logic program, can be updated by addition or

deletion of facts using the assert and retract meta-predicates, respectively. For example,

suppose that the clause “add(d(X)) :- assert(d(X)).” is included in Program 1. Now if

the query add(d(4)) is evaluated on Program 1, the goal add(d(4)) is called matching

the head of the “add(d(X)) :- assert(d(X)).” clause, binding X to 4. Consequently,

the goal assert(d(4)) in the body is called, adding the fact d(4) to Program 1. As

all goals has been resolved, the query add(d(4)) succeeds. This example shows the

evaluation of a Prolog query can have side effects such as adding a fact to the knowledge

base. Alternatively, we could directly add d(4) to Program 1 by executing the query

assert(d(4)).

Suppose that the knowledge base (i.e. Program 1) is updated by addition of the fact

d(4). If the query a(X,Z) is an active query, then we need to re-evaluate it to check

whether its results have been changed by the update. When the query is re-evaluated

on the updated knowledge base, the answers X=1, Z=4 and X=1, Z=3 are derived.
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The query evaluation steps are similar as before except that the goal d(4) does not fail

but matches the newly added fact d(4), deriving the answer X=1, Z=4. This chapter

develops the Naive and Tabled Optimized approaches that efficiently derive the answer

X=1, Z=4 from the addition of d(4), without the need for re-evaluation of the query

from scratch. Suppose that now the knowledge base is updated by removal of the fact

d(3). Again, we need to re-evaluate the query a(X,Z) which results only in the answer

X=1, Z=4. When the fact d(3) is removed, the Naive and Tabled Optimized approaches

efficiently compute that the answer X=1, Z=3 should be removed from the set of answers

of the query a(X,Z), without the need for re-evaluation of the query from scratch.

6.3 ELE Execution Model

As described in Chapter 3, an ELE program consists of a set of event rules, specifying

events to be detected in terms of patterns of other events. An ELE program can be

viewed as a definite logic program where ELE event rules are Horn clauses and events

are ground facts. In fact, the ELE execution system first parses the event rules into

Horn clauses 2 before applying further transformations on them. However, the execution

model of ELE is data-driven as opposed to query-driven execution model of Prolog.

In Prolog, each rule a :- a1 ∧.. ∧ an is interpreted as “to prove a, prove a1 ∧.. ∧ an”, but

in ELE, such a rule is interpreted as “if a1 ∧ .. ∧ an is proven, then a is proven. In other

words, Prolog is asked a query and SLD resolution is used to answer the query using

facts and rules in the knowledge base, but ELE derives all facts that can be inferred

from a given set of rules and facts and there is no explicit notion of query.

There is also another difference between Prolog and ELE programs. A Prolog program

contains a set of facts and rules. When the program is updated, for instance, by addition

of a fact using the assert predicate, the fact becomes part of the program. In contrary,

the set of rules of an ELE program does not contain any fact. An ELE program receives

facts as its input. When a fact is fed to an ELE program as its input, we say that the

fact is added to the program. However, the fact does not become a first class citizen of

the program as in Prolog, but it is processed in order to derive new facts according to

the ELE rules. Consider P and F to be an ELE program (i.e. a set of Horn clauses

containing no facts) and a set of facts, respectively. If the facts in F are added to P

(i.e. processed as inputs of P ), then the ELE execution system derives all facts that can

be inferred given the logic program P ∪ F . In general, the ELE execution system sends

the derived facts to external components subscribed to such facts and disregards them

2The transformed program may include negation as failure but we only consider definite logic pro-
grams.
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afterwards. However, some derived facts are memorized by ELE to possibly derive other

facts using future input facts.

As for addition, the notion of deletion for ELE is different from Prolog. When a fact

is added to ELE, ELE derives all facts that can be inferred using the newly added fact

in combination with the ELE rules and previous input facts. External components are

then notified about the derived facts. When a fact is deleted from ELE, ELE computes

all facts that were derived using the deleted fact and notifies the external components

about those facts.

Given an original program Po, a definite logic program containing no fact, the ELE

execution system transforms it into a logically equivalent Prolog program Pt (i.e. trans-

formed program), whose execution model is data-driven. The transformation is such that

as new facts are processed by the system, intermediate goals are generated, progressing

toward detection of derived facts and a derived fact is detected as soon as the last fact

required for its detection is processed by the system. When facts are deleted, dependent

intermediate goals are deleted and dependant derived facts are efficiently determined as

deleted to notify the external components.

For an example, consider the first two clauses of program 1 to be the ELE program Po

and suppose that the external component comp1 is subscribed to ELE for the facts of

the form a(X,Y). The ELE execution system transforms Po to Pt, the Prolog program

presented in Listing 6.2.3 The forall clauses implement some loops. For instance, the

forall clause in the second rule is read as follows. For all facts in the transformed program

matching goal(b(X,Y),c(Y,Z),e12(X,Y,Z)), call add(e12(X,Y,Z)). The set of such facts

in the transformed program is initially empty. A fact f is added to ELE by calling

add(f) on the transformed program and applying all applicable rules. The transformed

program contains also rules to implement a set of procedures for deletion of facts which

have been omitted for brevity.

Now, suppose that the facts b(1,2), d(3), c(2,3) and e(2,4) are added to ELE in the

corresponding sequence order. The execution of the transformed program is as fol-

lows. First, b(1, 2) is added by calling add(b(1,2)) matching the head of the first

two rules in Pt, binding X to 1 and Y to 2 in both cases. The first rule asserts the

fact goal(c(2,Z),b(1,2),e12(1,2,Z)) into Pt. The execution of the second rule has no

effect as the first argument of forall does not match any fact. Then, d(3) is added

by calling add(d(3)), matching the seventh and eighth rules. Similarly, the effect is

the assertion of the fact goal(e12(X,Y,3),d(3),a(X,3)) into Pt. Then, c(2,3) is added

by calling add(c(2,3)), matching the third and fourth rules, binding Y to 2 and Z

to 3 in both cases. The third rule asserts the fact goal(b(X,2),c(2,3),e12(X,2,3)) into

3The code is not exactly the same as is produced by ELE.
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Pt. Applying the fourth rule and given Y and Z respectively bound to 2 and 3, the

goal(c(2,3),b(X,2),e1,2(X,2,3)) argument of forall matches goal(c(2,Z),b(1,2),e12(1,2,Z))

in Pt, binding X to 1. Consequently, add(e12(1,2,3)) is called, matching the the fifth

and sixth rules, binding X, Y and Z respectively to 1, 2 and 3. The fifth rule asserts

goal(d(3),e12(1,2,3),a(1,3) into Pt. Applying the sixth rule, the goal(e12(1,2,3),d(3),a(1,3))

argument of forall matches the fact goal(e12(X,Y,3),d(3),a(X,3)) in Pt, calling a(1,3).

The call matches the 10th clause and the fact a(1,3) is sent to comp1 to be added to

the set of facts matching the subscription.

1 add (b(X,Y) ) : a s s e r t ( goa l ( c (Y, Z) ,b (X,Y) ,e12 (X,Y, Z) ) ) .

2 add (b(X,Y) ) : f o r a l l ( goa l (b(X,Y) , c (Y, Z) ,e12 (X,Y, Z) ) ,

add (e12 (X,Y, Z) ) ) .

3 add ( c (Y, Z) ) : a s s e r t ( goa l (b(X,Y) , c (Y, Z) ,e12 (X,Y, Z) ) ) .

4 add ( c (Y, Z) ) : f o r a l l ( goa l ( c (Y, Z) ,b (X,Y) ,e1,2 (X,Y, Z) ) ,

add (e12 (X,Y, Z) ) ) .

5 add (e12 (X,Y, Z) ) : a s s e r t ( goa l (d(Z) ,e12 (X,Y, Z) , a (X, Z) ) ) .

6 add (e12 (X,Y, Z) ) : f o r a l l ( goa l (e12 (X,Y, Z) ,d (Z) , a (X, Z) ) ,

add ( a (X, Z) ) ) .

7 add (d(Z) ) : a s s e r t ( goa l (e12 (X,Y, Z) ,d (Z) , a (X, Z) ) ) .

8 add (d(Z) ) : f o r a l l ( goa l (d(Z) ,e12 (X,Y, Z) , a (X, Z) ) ,

add ( a (X, Z) ) ) .

9 add ( e (Y, Z) ) : add ( c (Y, Z) ) .

10 add ( a (X,Y) ) : n o t i f y ( ‘ comp1 ’ , ‘ add ’ , a (X,Y) ) .

Listing 6.2: The transformed program Pt for the first two clauses of Program 1

The example shows how the transformed program derives the fact a(1,3) in an incremen-

tal manner and derives it as soon as all necessary facts are added to ELE. Now, we add

e(2,4) by calling add(e(2,4)), which matches the 9th rule calling add(c(2,4)). The call

matches the third and fourth rules. The third rule asserts goal(b(X,2),c(2,4),e12(X,2,4))
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into Pt. Applying the fourth rule, the goal(c(2,4),b(X,2),e1,2(X,2,4)) argument of forall

matches the fact goal(c(2,Z),b(1,2),e12(1,2,Z)) in Pt, binding X to 1. Consequently,

add(e12(1,2,4)) is called, matching the the fifth and sixth rules, binding X, Y and Z

respectively to 1, 2 and 4. The fifth rule assertz goal(d(4),e12(1,2,4),a(1,4)) into Pt and

the sixth rule has no effect.

Now, suppose that the fact d(4) is added to Program 1. To see the changes in results of

the query a(X,Y) due to the update, we need to re-evaluate the query, when Prolog runs

Program 1. When Prolog runs the transformed program of Program 1, we add d(4) by

calling add(d(4)). The call matches the seventh rule asserting goal(e12(X,Y,4),d(4),a(X,4))

into Pt. The call matches also the eighth rule where the goal(goal(d(4),e12(X,Y,4),a(X,4)

argument of forall matches the fact goal(d(4),e12(1,2,4),a(1,4)) in Pt, calling a(1,4).

Consequently, the new answer X=1, Y=4 for the query a(X,Y) can be efficiently de-

rived without the need for re-evaluation of the query from scratch.

6.3.1 Event-Driven Backward Chaining Rules

This section describes how ELE transforms a definite logic program into a Prolog pro-

gram that has a data-driven execution model using the Event-Driven Backward Chaining

(EDBC) rules developed by D. Anicic [Anicic, 2011]. Our definition of these rules how-

ever does not strictly follow their original definition but closely resembles it. The EDBC

rules are presented here as implemented for the experimental evaluation presented in

Section 6.4.1. In particular, ELE manipulates events which are timed-stamped ground

facts, but we manipulate facts. In addition, ELE assigns IDs to events. When an event

is retracted (i.e. a fact is deleted), its ID is used to detect and retract the dependant

derived events. We do not use any ID to handle deletion.

The first step of the transformation is the binarization of rules. Each rule is transformed

into a set of rules, each containing just two literals in the body. The second step is the

transformation of each binary rule into a set of add and delete EDBC rules. When a

fact f is added or removed from the knowledge base, all relevant add and delete rules

are applied by calling add(f) or delete(f) on the transformed program, respectively.

In the binarization step, each rule is assigned a unique number k. Then, a rule number

k of the form k-) a :- a1 ∧ a2 ∧ .. ∧ an with n literals in its body is transformed to the
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following set of n binary rules where ek0 equals true and ekn is replaced by a.

ek1 :- ek0 ∧ a1.

ek2 :- ek1 ∧ a2.

...

ek(n−1) :- ek(n−2) ∧ a(n−1).

ekn :- ek(n−1) ∧ an.

For an example, Listing 6.3 presents the binary rules corresponding to the first two

clauses of Program 1. Please note that the head of each ith binary rule, corresponding

to the ith literal in the body of rule k is assigned the unique identifier 〈k, i〉 and the set

of all variables appearing in the body of a binary rule is also appearing in its head.

1 −−Binary r u l e s o f 1) a (X, Z) :− b(X,Y) , c (Y, Z) , d (Z)−−
2 e11 (X,Y) :− t rue ∧ b(X,Y) .

3 e12 (X,Y, Z) :− e11 (X,Y) ∧ c (Y, Z) .

4 a (X, Z) :− e12 (X,Y, Z) ∧ d(Z) .

5

6 −−Binary r u l e s o f 2) c (Y, Z) :− e (Y, Z).−−
7 c (X, Z) :− t rue ∧ e (Y, Z) .

Listing 6.3: Binary rules of the program 1

The format we presented above is to give a precise form to generate binary rules. In

practice, true clauses from conjunctions in the bodies of binary rules can be removed

and when a rule has more than one binary rule, its first and second binary rules can

be merged. Listing 6.4 presents the binary rules of Program 1 after applying these

simplifications.

1 e12 (X,Y, Z) :− b(X,Y) ∧ c (Y, Z) .

2 a (X, Z) :− e12 (X,Y, Z) ∧ d(Z) .

3

4 c (X, Z) :− e (Y, Z) .

Listing 6.4: Binary rules of the program 1

In the second step of the transformation, each binary rule eki :- ek(i−1) ∧ ai is

transformed to a set of add EDBC rules implementing the four procedures presented

in Algorithm 1. These procedures work as follows. When an instance of ai is added to

ELE (i.e. add(ai) is called on the transformed program), the first procedure encodes
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this information by asserting the fact goal(ek(i−1), ai, eki) into the transformed program

which is read as follows. We have an instance of ai (the second argument) and we are

waiting for an instance of ek(i−1) (the first argument) to derive the corresponding instance

of eki (the third argument). When an instance of ek(i−1) is derived (i.e. add(ek(i−1)) is

called), the third procedure encodes this information by asserting the fact goal(ai, ek(i−1),

eki) which is read as follows. We have an instance of ek(i−1) (the second argument) and

we are waiting for an instance of ai (the first argument) to derive the corresponding

instance of eki (the third argument).

When add(ai) is called, in addition to the first procedure, the second procedure is applied

checking whether there is any fact of the form goal(ai, ek(i−1), eki) in the transformed

program to derive the corresponding instance of eki. When add(ek(i−1)) is called, in

addition to the third procedure, the fourth procedure is applied checking if there is

any fact of the form goal(ek(i−1), ai, eki) in the transformed program to derive the

corresponding instance of eki. In both cases, add(eki) is called, matching add EDBC

rules of the next binary rule and so on. The overall effect is that when a fact is added

to the knowledge base, a chain of relevant add EDBC rules are applied, generating all

facts that can be derived from the newly added fact in combination with the previous

input facts and the initial set of rules.

Algorithm 1 EDBC add procedures of eki :- ek(i−1) ∧ ai

add(ai):
assert( goal(ek(i−1), ai, eki) ).

add(ai):
for all goal(ai, ek(i−1), eki) do

add(eki).
end for

add(ek(i−1)):
assert( goal(ai, ek(i−1), eki) ).

add(ek(i−1)):
for all goal(ek,(i−1), ai, eki) do

add(eki).
end for

In the second step of transformation, a set of delete EDBC rules are also generated

for each binary rule, implementing the four procedures presented in Algorithm 2. These

procedures encode the meta-predicate delete, which should be called to delete a fact from

ELE. These procedures work as follows. When an instant of ai is deleted (i.e. delete(ai)

is called on the transformed program), the first procedure retracts the goal that encodes

“ai has been added to the knowledge base and we are waiting for ek(i−1) to derive eki”
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from the transformed program. The second procedure is also applied calling delete(eki)

for all eki facts that were derived using ai. Such calls match the delete procedures of the

next binary rule and so on, propagating the deletion to dependant derived facts. The

overall effect is that when a fact is deleted, a chain of delete EDBC rules are applied,

deleting all intermediate facts and derived facts that were derived using the deleted fact.

The last two procedure are similar to the first two procedures, but are when delete is

called on instances of ek(i−1).

Algorithm 2 EDBC delete procedures of eki :- ek(i−1) ∧ ai

delete(ai):
retract( goal(ek(i−1), ai, eki) ).

delete(ai):
for all goal(ai, ek(i−1), eki) do

delete(eki).
end for

delete(ek(i−1)):
retract( goal(ai, ek(i−1), eki) ).

delete(ek(i−1)):
for all goal(ek(i−1), ai, eki) do

delete(eki).
end for

For example, Listing 6.5 shows some of the delete EDBC rules of the transformed pro-

gram of Program 1. The last rule in this listing is added due to subscription of the

component ‘comp1’ to ELE for the facts of the form a(X,Z). Suppose that we continue

the example described in Section 6.3 with deleting the fact d(3) from ELE by calling

delete(d(3)) on the transformed program. Consequently, the first rule is applied and the

fact goal(e12(X,Y,3),d(3),a(X,3)) is retracted from the transformed program. The fact is

removed because it says “we have d(3) and we are waiting for an instance of e12(X,Y,3) to

derive an instance of a(X,3)”, but d(3) has been deleted. The second rule is also applied

with the substitution Z=3. Applying this rule, the goal(d(3),(*e12*)(X,Y,3),a(X,3) of

forall matches the fact goal(d(3),e12(1,2,3),a(1,3) in the transformed program, binding

X and Y respectively to 1 and 2 and hence calling delete(a(1,3)). The call matches

the last rule and the fact a(1,3) is sent to ‘comp1’ to be deleted from the set of facts

matching the subscription.
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1 d e l e t e (d(Z) ) : r e t r a c t ( goa l (e12 (X,Y, Z) ,d (Z) , a (X, Z) ) ) .

2 d e l e t e (d(Z) ) : f o r a l l ( goa l (d(Z) ,e12 (X,Y, Z) , a (X, Z) ) ,

d e l e t e ( a (X, Z) ) ) .

3 d e l e t e ( a (X, Z) ) : n o t i f y ( ‘ comp1 ’ , ‘ d e l e t e ’ , a (X, Z) ) .

Listing 6.5: Some of the delete rules of the transformed program of Program 1

6.4 Active Queries: Naive Approach

In the previous section, we saw how a definite logic program, excluding facts, can be

transformed to a set of EDBC rules incrementally deriving all facts that can be inferred

from the program when the program is updated. While such an execution model suits

on-flow processing tasks described in Chapter 3, it does not suit on-demand processing

tasks for two reasons. First, explicitly representing all facts that can be inferred from

the knowledge base may incur a large space complexity exhausting the memory. Second,

deriving all facts that can be inferred from the program and keeping the set up-to-date

after each update of the knowledge base may be computationally expensive and is a

waste of resources when not all such facts are of interest for the current operational

context of the robot.

We only need to derive and update the results of the active queries, queries which are

of interest at the time. In this section, we present an approach based on EDBC rules

to implement active queries. We consider a knowledge base 〈F, P 〉 partitioned into two

logic programs F and P where F is a set of facts and P is a set of rules containing no fact.

The knowledge base is updated by asserting or retracting facts from F . An active query

is a typical logic program query Q with a unique id Id, represented as 〈Q, Id〉. Active

queries are registered to the knowledge base with their unique identifiers, the results of

which are derived and maintained up-to-date as the knowledge base is updated, until

they are unregistered.

First, we consider the special case of F being empty, when an active query 〈Q, Id〉 is

registered to the knowledge base 〈F, P 〉. In this case, the Naive approach works as

follows. First, it determines the program P ′ which is the subset of P that is relevant

to the query Q, defined below as the relevant rule set of Q. Then, P ′ is transformed

to the program P ′′ that has a data-driven execution model (i.e. EDBC rules). When

the knowledge base 〈F, P 〉 is updated by assertion or retraction of a fact f from F , the
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Naive approach calls add(f) or delete(f) on P ′′, respectively, incrementally updating the

results of Q.

Definition 30 (Relevant Rule Set). The relevant rule set of a query Q for a program

P is the program P ′ that is a minimum subset of P such that the results of Q for both

knowledge bases 〈T, P 〉 and 〈T, P ′〉 for an arbitrary set of facts T are the same.

The relevant rule set of Q is the largest set of rules from P that SLD resolution could

possibly backtrack on, when evaluating Q on P. This set can be determined by gathering

all rules in P using which the query Q could be possibly proven. For example, consider

the first two classes of Program 1 to be the program P . Then, the relevant rule set

of the query a(X,Z) contains both clauses of P and the relevant rule set of the query

c(Y,Z) contains only the second clause of P .

Definition 31 (Event-Driven Backward Chaining Rule Set of Rule). The EDBC

rule set of a rule R is the set of all add and delete EDBC rules generated from R by

applying the transformation described in Section 6.3.1.

Definition 32 (Event-Driven Backward Chaining Rule Set of Query). The EDBC

rule set of a query Q, denoted by EDBC(Q), is the set of all rules in EDBC rule sets of

all relevant rules of Q.

In addition to the EDBC rule set of a query Q, the transformed program P ′′ of Q also

includes the following rules to notify the asker component when the results of Q are

updated. The asker is the component who has registered Q. The effect of these rules

is that when a new answer for Q is derived, or a derived answer is deleted, the asker is

informed thorough calling the corresponding notify function.

add(Q) :- notify(Id, ‘add’, Q).

delete(Q) :- notify(Id, ‘delete’, Q).

The EDBC rule set of a query generates answers of the query if the set F of facts in the

knowledge base 〈F, P 〉 is initially empty. An active query is however registered to the

knowledge base at runtime where some facts may exist in F . Therefore, when a query

is registered, we determine the set of its EDBC rules and call add(f) for every fact f in

F that is relevant to Q. We call the latter step initialization by which we generate all
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goal facts and results of the query that can be derived from the facts already exist in F .

After this, when F is updated by assertion or retraction of facts, the corresponding add

and delete meta-predicates are called on the transformed program, keeping the results

of the query up-to-date. The relevant facts of a query are the facts whose types are

included in the relevant predicate set of the query defined below.

Definition 33 (Relevant Predicate Set). The relevant predicate set of a query Q

for a program P is the largest set of predicate types on the term of which the SLD

method could possibly backtrack, when evaluating Q on P.

The relevant predicate set of Q can be determined by gathering all predicate types

appearing in the relevant rule set of Q. For example, the relevant predicate set of the

query a(X,Z) for program 1 contains the predicate types b/2, c/2, d/1, e/2.

The EDBC rule set of a query Q ::= pn(T1, . . . , Tn)4 generates all facts of type pn.

However, some variables in arguments Ti of the query may be bound to some variables.

This information can be taken into account to respectively bind the variables in EDBC

rule set of the query to generate the only facts that are answers to the query according

to the given variable substitution. Binding variables in EDBC rules results in their

activation by less number of facts, only the ones which are relevant to the query, and

hence the computational performance increases.

Definition 34 (Substituted EDBC Rule Set of Query). The substituted EDBC rule

set of a query Q, denoted by EDBCs(Q), is generated by applying the maximal substi-

tution on EDBC rule set of Q, such that those rules generate a fact if and only if such

fact is a result for Q (i.e. can be unified with Q).

The following summarises the Naive approach for implementing active queries on a

knowledge base being a union of a set of facts F and a set of rules P . At the initialization

phase of the system, create an empty Prolog program P ′′. When a query is registered,

first determine its substituted EDBC rules for the program P and add them to P ′′.

Then, for each fact f in F which belongs to the relevant predicate set of Q, call add(f)

on P ′′. When the knowledge base is updated by asserting or retracting a fact f from F ,

respectively call add(f) or delete(f) on P ′′. When the query is unregistered, remove its

substituted EDBC rules and the goal facts generated by these rules from P ′′.

4If the query is a conjunction of terms Q1 ∧ . . . Qn, we add a corresponding rule Q : −Q1 ∧ . . . Qn.
to the knowledge base and replace the query with Q. Q is given a predicate name not conflicting with
existing predicate symbols in the belief base.
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The substituted EDBC rule sets of two queries may have some rules in common which

should be taken into account in implementation of the Naive approach. To avoid side-

effects of the EDBC rules of different queries on each other, we encode the Id of each

query in the EDBC rules added to P ′′ for that query. In this way, the goal and derived

facts generated by EDBC rules of a query are made local to the query.

6.4.1 Evaluation

The only robotic system supporting a form of active query mechanism is ORO. How-

ever, ORO does not present any detail on the performance of its active query mechanism.

Pellet, the reasoning engine of ORO, does not support incremental query evaluation in

general, for instance, when the knowledge base contains rules. Therefore, it is not pos-

sible to compare our approach with ORO. Instead, we evaluate our approach by demon-

strating its use to evaluate logical queries in the 2APL agent programming language

and discussing its performance. In the next chapter, we consider the plan execution

requirements of agent programming languages in robotic applications and discuss the

benefits of using active queries in planning and plan execution monitoring to address

the requirements.

2APL is a well-known BDI-based agent programming language developed and main-

tained at Utrecht University. In the 2APL program of an agent, there is a set of pg-rules

used to generate plans to achieve the goals of agent. The execution of the agent program

is cyclic and in each cycle, all pg-rules are evaluated, each may include a query to be

evaluated on the agent’s belief base. To deal with performance issues caused by the

repeated evaluation of these belief queries, 2APL has recently implemented the caching

mechanism described in the introduction of this chapter. In this section, we first describe

how pg-rules are evaluated in the 2APL deliberation cycle, implementing the aforemen-

tioned caching mechanism. We then describe how the Naive approach presented for

implementing active queries, can be used to evaluate belief queries of pg-rules, imple-

menting them as active queries. Finally, we compare the performance of our approach

with that of the caching mechanism currently used by 2APL on an agent program.

6.4.1.1 Belief Query Evaluation in 2APL

A 2APL program of an agent has a set of pg-rules of the form [〈goalquery〉]“ ←
”〈belquery〉“|”〈π〉 where goalquery is a query to the goal base (i.e. GB) of the agent,

belquery is a query to the belief base (i.e. BB) of the agent and π is a plan template

containing variables.
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A pg-rule is applied when the goal query can be derived from the agent’s goals and the

belief query can be derived from the agent’s beliefs. These queries result in substitution

of variables by applying which the plan is instantiated and added to the plan base (i.e.

PB) to be executed by the agent. The agent goal base consists of an independent list of

goals. Therefore the goalquery can be derived from different agent’s goals resulting in

different sets of substitutions. This means a pg-rule can be applied more than once for

different agent’s goals. The belief query can also have more than one result. 2APL does

not generate a separate plan for each of such results but only for one of them. This is

realized by checking whether there is currently no plan being executed which has been

created by applying the same pg-rule for the same goal.

Algorithm 3 presents a part of the 2APL delibration cycle in which the pg-rules are

applied, which is read as follows. For each pg-rule of which the head is true, if the rule

has not been applied to generate a plan currently being executed and the belief query

results in a substitution θ, then θ is applied on the plan π and the instantiated plan is

added to the plan base to be executed.

For each pg-rule of which the head is a goal query, for each distinguished substitution

β using which the goal query can be derived from the agent goal base, do the following.

If the goal has not been achieved (i.e. it is not inferred from the belief base) and β has

not been used for this rule to generate a plan being executed, then β is applied on the

belief query, and if the instantiated belief query can be derived from the agent belief

base using a substitution θ, then the substitutions β and θ are applied to instantiate

the plan and the plan is added to the plan base. In this algorithm, queries are posted

to the belief base only if there is no cache available for them or if the cache has been

invalidated. The cached query results are used otherwise.

Algorithm 3 Evaluation of pg-rules in 2APL Deliberation Cycle

for all pg-rule R::=goalQ← belQ|π in agent program do
if goalQ is true then

if π 6∈ PB ∧ BB`θ belQ then
Add πθ to PB

end if
else

for all β that GB`β goalQ do
if BB 6` goalQβ ∧ πβ 6∈ PB ∧ BB`θ belQβ then

Add πβθ to PB
end if

end for
end if

end for
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6.4.1.2 Naive Approach for Data-Driven Belief Query Evaluation in 2APL

Algorithms 4 and 5 present an approach for implementing the belief queries of pg-rules

as active queries using the Naive approach. Algorithm 4 presents the procedures that

are performed at compile time which are the followings. We generate relevant rule sets,

relevant predicate sets and EDBC rule sets of belief queries of pg-rules. In addition, for

each pg-rule of which the head is true, we generate and activate (i.e. add to the belief

base and initialize) their substituted EDBC rules because as soon as the belief query

of such a rule has a result, the rule can be applied if a corresponding plan is not being

executed. Therefore we are always interested on results of such belief queries.

Algorithm 4 Naive Approach for Data-Driven Evaluation of pg-rules in 2APL Delib-
eration Cycle - Compile Time

for all Prolog rule R in agent program belief base do
generate EDBC-Rule-Set(R)

end for
for all pg-rule R::=goalQ← belQ|π in agent program do

generate Relevant-Rule-Set(belQ)
generate Relevant-Predicate-set(belQ)
generate EDBC(belQ)
if goalQ is true then

generate EDBCs(belQ)
add EDBCs(belQ) to BB
for all facts pn(t1, . . . , tn)∈BB | pn ∈

Relevant-Predicate-set(belQ) do
call(add(pn(t1, . . . , tn)) on BB

end for
end if

end for

At runtime, pg-rules are evaluated using the procedures presented in Algorithm 5. In

summary, this algorithm works as follows. Whenever the goal query of a pg-rule can be

derived from the goal base using a substitution, the substitution is applied on EDBC

rules of the belief query of the pg-rule, generating the corresponding substituted EDBCs

rules. The EDBCs rules are added to the belief base and are initialized, generating the

results of the belief query and maintaining the results up-to-date as facts are added

or deleted from the belief base. The results of a query are sent from the belief base

to the agent Java program and are maintained in a Hash Map. As facts are added

or removed from the belief base, add or delete meta-predicates of EDBCs rules are

called5 updating the query results maintained in the agent program thorough sending

notifications. Whenever the belief query has a result and a plan for the given goal is

not being executed, the pg-rule is applied, generating a plan. The EDBCs rules of a

5Adding or deleting facts occurs in another part of the agent program and therefore is not shown in
Algorithm 5.
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belief query are deleted whenever the agent has no longer the goal for which the EDBC

rules were substituted. For the case of pg-rules whose head is true, their corresponding

EDBCs rules are always in the belief base and hence the results of their belief queries

are always maintained up-to-date.

Algorithm 5 Naive Approach for Data-Driven Evaluation of pg-rules in 2APL Delib-
eration Cycle - Run Time

for all pg-rule R::=goalQ← belQ|π in agent program do
if goalQ is true then

if π 6∈ PB ∧ Results(belQ) != ∅ then
unify(Results(belQ).Element(),belQ)θ
Add πθ to PB

end if
else

for all β that GB`β goalQ do
if BB 6` goalQβ ∧ πβ 6∈ PB then

if not added EDBCs(belQβ) then
generate EDBCs(belQβ)
add EDBCs(belQβ) to BB
for all facts pn(t1, . . . , tn)∈BB | pn ∈

Relevant-Predicate-set(belQ) do
call(add(pn(t1, . . . , tn)) in BB

end for
end if
if Result-Set(belQβ) != ∅ then

unify(Results(belQ).Element(),belQ)θ
Add πβθ to PB

end if
end if

end for
for all EDBCs(belQβ) in BB do

if GB 6` goalQβ then
delete EDBCs(belQβ) from BB
delete results(belQβ)

end if
end for

end if
end for

6.4.1.3 Empirical Results

This section discusses the performance of the Naive approach for incremental evalua-

tion of belief queries of pg-rules by comparing it with that of the caching mechanism

currently used in 2APL. The performance of these approaches depends on many factors

including the nature of the knowledge base, queries and updates of the knowledge base

which are application dependent. Therefore, a fair evaluation requires the comparison
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of performance on a variety of typical applications of agent programming languages.

There is a number of exemplary applications, the implementation of which are available

for a number of agent programming languages [Alechina, 2013], that are good candi-

dates for the purpose of evaluation. However, the implementation of these applications

often include Prolog built-in predicates such as negation as failure which are not yet

supported in our approach. Consequently, we compare the performance on the following

application scenario to highlight its main pros and cons.

The scenario we consider is as follows. An agent receives goals of the form need(O)

representing the need to buy an object of type O. It also receives events of the form

addSeller(S,T) representing the availability of a seller S of type T and events of the form

addOffer(S,O,P) representing an offer by a seller S, selling an object of type O with a

price P . The agent has one pg-rule need(O) ← accessible(O, S)| {dropgoal(need(O));

@env(newgoal(true),Return);} . This rule is read as “when the agent needs object O,

if it believes that seller S offers O, it drops the goal (i.e. buys it) and asks for a new

goal”. The agent belief base contains the rule accessible(O, S) :- seller(S, T), has(T,O),

offers(S, O, P). This rule is read as “an object of type O is accessible from seller S, if

the seller is of type T and sellers of type T sell objects of type O and the seller has an

offer for selling an object of type O”.

The following usecases are evaluated on an XPS Dell laptop with Intel Core i7 CPU @

2.10GHz x 4 running 64 bits Ubuntu 12.04 LTS.

• Usecase 1: there are 10 types of seller, 100 unique object types per each type of

seller (i.e. 1000 object types in total) and 100 sellers, each offering 10 objects. The

agent is always given goals which are available in the market.

• Usecase 2: this usecase is similar to the usecase 1, but there are 50 types of seller,

100 unique object types per each type of seller (i.e. 5000 object types in total)

and 100 sellers, each offering 50 objects.

• Usecase 3: this usecase is similar to the usecase 1, however agent is given a goal

which is never available in the market. At each deliberation cycle, the market is

updated by adding one new seller offering one object.

• Usecase 4: this usecase is similar to the usecase 2, however agent is given a goal

which is never available in the market. At each deliberation cycle, the market is

updated by adding one new seller offering one object.

• Usecase 5: this usecase is similar to the usecase 3, however the market is updated

by adding 10 new offers and deleting 10 old offers in each deliberation cycle.
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Multi Cycle Caching Cycles Averag-time

Usecase 1 415560 1,442

Usecase 2 92070 6,515

Usecase 3 12145 49,391

Usecase 4 5095 117,718

Usecase 5 2077 286,377

Usecase 6 1002 592,248

Table 6.1: Performance of the caching mechanism

• Usecase 6: this usecase is similar to the usecase 5, however the market is updated

by adding 30 new offers and deleting 30 old offers in each deliberation cycle.

We evaluate the performance by running each usecase once using the current version

of 2APL that uses caching and once using the modified version of 2APL that uses

the naive approach. We run each usecase for 10 minutes and measure the number of

deliberation cycles performed and the average deliberation cycle time in milliseconds. As

belief queries are performed faster, the average deliberation cycle is less and the program

performs more deliberation cycle. In our scenario, performing more deliberation cycle

means the agent achieves more goals in its 10 minutes run.

Tables 6.1 and 6.2 present the performance of caching and Naive approaches, respec-

tively. In usecases 1 and 2, each belief query succeeds at its first attempt. The perfor-

mance results for these usecases show that in such case, the average deliberation cycle

time of the caching approach is 2 to 3 times less. Taking into account that the agent

execution contains other steps such as processing events and executing plans, this means

caching approach performs more than 2 to 3 times better when the first evaluation of

belief queries is succeeded. The results are as expected, because the Naive approach

pays extra prices to add and remove EDBC rules and goal facts and it does not bring

any advantage as no query is incrementally evaluated.

In usecases 3 and 4, one goal is given to the agent and the corresponding belief query

is repeatedly executed in every deliberation cycle. The results show that if queries are

repeated while the knowledge base goes through small changes, the cost of data-driven

approach is extremely low, tens of times less than the cost of caching mechanism. Finally,

usecases 5 and 6 show that as larger as the number of updates happening in between

the repetition of a query, the more is the cost of the data-driven approach until a point

that the caching mechanism performs better.
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Data-Driven Queries Cycles Averag-time

Usecase 1 143550 4,174

Usecase 2 38640 15,522

Usecase 3 211077 2,841

Usecase 4 207382 2,891

Usecase 5 2062 290,779

Usecase 6 967 614,847

Table 6.2: Performance of the Naive active query mechanism

6.5 Active Queries: Optimized Approach

The Naive approach suffers from inefficiency in performing the following tasks that are

addressed by the Optimized approach developed in this section:

1. To register an active query, a set of corresponding EDBC rules are generated.

2. The relevant substitution is computed and applied to the EDBC rules.

3. Substituted EDBCs rules are added to the knowledge base.

4. The procedure add(f) is called for all relevant facts f in the knowledge base.

5. The EDBC rules of the query and intermediate results are deleted when the query

is unregistered.

When the set of queries to be performed in the life time of the program is known in

advance, as is the case in agent programming languages, then the first task can be per-

formed at compile time. The rest are however to be performed at runtime. Among these

tasks, the most expensive one in terms of both computation and memory is the fourth

task. Examining the computations performed by EDBC rules of a Horn clause, one can

notice that every fact that matches a literal in the body of the clause is remembered

by EDBC rules by asserting a corresponding goal fact. Consequently, not only does

the fourth task creates multiple copies of the facts in the knowledge base, but also it

can be very expensive as all relevant facts are read from the knowledge base and copies

of which are asserted as goal facts. These copies are then retracted when the query is

unregistered. Read and write operations are of the most expensive in Prolog and thus

is an important subject of optimization.

This section describes the Optimized approach for source code transformation of definite

logic programs into active logic programs that support active queries. Given a logic

program Po (i.e original program), the Optimized approach transforms it to a Prolog

program Pt (i.e. transformed program) such that the results of a query q for both Po
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and Pt are the same. The difference between Po and Pt is when they are updated by

addition or deletion of facts. When Po, executed by a Prolog system, is updated after the

evaluation of a query, the query should be re-evaluated from scratch to update the results

of the query. In contrary, queries can be (un-)registered to Pt as active queries. When

Pt is updated, it efficiently updates the results of the active queries in an incremental

manner. To update Pt by addition or deletion of a fact f , we assert f in Pt or retract

f from Pt respectively using assert(f) or retract(f), as in a normal Prolog program. In

addition, we respectively call add(f) or delete(f) on Pt to update the results of active

queries.

A query to a transformed logic program is of the form 〈q, id〉 where q is a valid query

to the original logic program and id is the unique id of the query. When a query is

registered to a Prolog system executing the transformed program, the system answers

with results of the query and notifies about the changes of the query results when the

program is updated by addition or deletion of facts. At the system architecture level,

the Prolog execution system is provided with a wrapper to enable the execution of

callback functions whenever query results are updated. Query result updates are sent

to components who have registered the queries.

The following describes how the Optimized approach transforms a definite logic program

Po into an active logic program Pt, in a few steps. At first, we present a transformation

algorithm where the transformed program is able to derive some answers of queries.

Then, we gradually complete the algorithm such that the transformed program derives

all answers of queries.

Given an original program Po, Pt is constructed as follows. First, we add all clauses of

the form a :- true (i.e. facts) from Po to Pt. Then, for each rule in Po with n literals in

the body where n≥1, n+1 Optimized approach Active Query (OAQ) rules are generated

and added to Pt as follows. Each rule a :- a1, a2, . . . an is assigned a unique number k,

from which the following n intermediate binary rules are generated. The term ek0 in

the first binary rule represents a term constructed by the “ek0” functor symbol and the

arguments of the term a.6

ek1 :- ek0 ∧ a1.

ek2 :- ek1 ∧ a2.

...

ekn :- ek(n−1) ∧ an.

6Note that in the binarization step described in Section 6.3.1, ek0 was replaced by true.



Chapter 6. Active Queries 117

For example, the first clause of Program 2 presented in Listing 6.6 is converted to the

binary rules presented in Listing 6.7. In generating the binary rules, the original clause

has been given the number 1. As shown in the example, each term eki in the head of a

binary rule has the terms ek0, a1, a2, . . . ai as its arguments, the reason for which will be

explained in Section 6.6.3.

1 a (X) :− b(X,Y) , c (Y, Z) .

2 b (0 , 1 ) . b (1 , 2 ) . c ( 2 , 3 ) .

Listing 6.6: Program 2

1 e11 ( e10 (X) ,b(X,Y) ) :− e10 (X) , b(X,Y) .

2 e12 ( e10 (X) ,b(X,Y) , c (Y, Z) ) :− e11 ( e10 (X) ,b(X,Y) ) , c (Y, Z) .

Listing 6.7: Binary rules of Program 2

So far, we have transformed each rule k of Po that has n literals in the body into n

binary rules. Now, for each rule k, the rule presented in Algorithm 6 is added to Pt.

Also, for each binary rule eki :- ek(i−1) ∧ ai of a rule k (1 ≤ i ≤ n), the rule presented in

Algorithm 7 is added to Pt.
7 Therefore in total, each rule in Po is transformed into n+1

OAQ rules in Pt. In these algorithms, ek(i−1)/θi represents the term derived by applying

the substitution θi to the term ek(i−1) and Pt |=θj ai/θi means that ai/θi is derived from

the program Pt by applying the substitution θj . As Pt and Po only shares the facts of

Po, Pt |=θj ai/θi means that there is a fact in the original program matching ai/θi by

applying the substitution θj .

Algorithm 6 For each rule a :- a1, a2, . . . an

add(ekn/θn+1
) : add(a/θn+1

).

Algorithm 7 For each binary rule eki :- ek(i−1) ∧ ai
add(ek(i−1)/θi) :
for all ai/θi such that Pt |=θj ai/θi do

add(eki/θiθj ).
end for

For a query q matching the head a of a rule number k in Po, the corresponding OAQ rules

in Pt are used to generate the answers of q that can be inferred by applying the rule k. A

query q matches a if there is a substitution of variables θ1 that unifies a and q represented

by unify(a,q)θ1 . To derive answers of q using the rule k and given unify(q,a)θ1 , we call

add(ek0/θ1) on the transformed program Pt. If we ignore the intermediate generated goals

of types ek1 . . . ekn, calling add(ek0/θ1) generates chains of computations that result in

7The rule is in Pseudo code.
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finding some answers of q that are derivable by applying the SLD resolution strategy

on the rule k in the original program Po. Only some answers are found, because each

sub-goal ai/θi is resolved only using facts. In SLD resolution, a sub-goal can also be

resolved using rules. We will later extend our algorithm accordingly, but let us first see

an example of how OAQ rules work.

Listing 6.8 presents the transformed program Pt of Program 2 from Listing 6.6. To

evaluate the query a(X) on Program 2, we call add(e10(X)) on Pt. The call matches the

head of the first rule, calling add(e11(e10(X),b(X,Y)))) for each b(X,Y) in Pt. First,

b(X,Y) matches b(0,1) and add(e11(e10(0),b(0,1)))) is called, matching the second rule,

binding X to 0 and Y to 1. Consequently, the sub-goal c(1,Z) in the body of the second

rule is called which fails. Then b(X,Y) matches b(1,2), calling add(e11(e10(1),b(1,2)))

which matches the second rule, binding X to 1 and Y to 2. The sub-goal c(2,Z) is

resolved using the fact c(2,3), binding Z to 3. Consequently, add(e12(e10(1),b(1,2),

c(2,3))) is called, matching the third rule, generating the answer a(1). By “generating

the answer a(1)”, we mean that add(a(1)) is called which should be captured to derive

the answer X=1 for the query a(X). In the example, note how the use of variable

substitutions guiding the generation of intermediate results toward generating answers

of the given query. Note also that answers are derived by a depth-first search strategy

as is the case for the SLD resolution algorithm. In this way, if we wish to find only one

answer for a given query, we can stop the computation as soon as an answer is found.

1 add ( e10 (X) ) :− f o r a l l (b (X,Y) ,

2 add ( e11 ( e10 (X) ,b(X,Y) ) ) ) .

3

4 add ( e11 ( e10 (X) ,b(X,Y) ) :− f o r a l l ( c (Y, Z) ,

5 add ( e12 ( e10 (X) ,b(X,Y) , c (Y, Z) ) ) .

6

7 add ( e12 ( e10 (X) ,b(X,Y) , c (Y, Z) ) ) :− add ( a (X) ) .

8

9 b (0 , 1 ) . b (1 , 2 ) . c ( 2 , 3 ) .

Listing 6.8: Transformed program of Program 2

Given a query q and a rule number k whose head a is unified with q by applying a

substitution θ, the above example shows how calling ek0/θ derives answers of q that can be

derived using the rule k and facts. We call this activating the rule k for the substitution

θ. A query can match the head of a number of rules. To apply all such rules to search

for answers of the query, we activate all such rules with corresponding substitutions.

In addition, some results of the query can be present in Pt as facts imported directly

from Po which should be taken into account. Putting all these together, Algorithm 8
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presents the perform procedure to perform a query Q on Pt. We generate such a perform

procedure for each unique functor-symbol/arity in Po and add it to Pt.

Algorithm 8 Performing a query

perform(q) :
for all rule number k in Po with the head ak such that unify(q, ak)θk do

add(ek0/θk).
end for
for all facts fk in Pt such that unify(q,fk)θk do

add(fk/θk).
end for

When a rule a :- a1, a2, . . . an is activated by a substitution θ, the corresponding OAQ

rules generate results of a/θ, searching over the facts to resolve each sub-goal ai/θi .

However, a sub-goal ai/θi could be also resolved by applying a rule number h whose

head matches the sub-goal by applying the substitution θh. Therefore, we need to

activate all such rules h by calling eh0/θiθh to generate answers of the sub-goal ai/θi that

can be derived using those rules. Therefore, we accordingly revise Algorithm 7 into

Algorithm 9. The activation of rules are goal-directed as the relevant substitutions are

applied to avoid computing irrelevant answers to sub-goals.

Algorithm 9 For each binary rule eki :- ek(i−1) ∧ ai
add(ek(i−1)/θi) :
for all ai/θi such that Pt |=θj ai/θi do

add(eki/θiθj ).
end for
for all rule number h in Po with the head ah such that unify(ai/θi , ah)θh do

activate the rule number h by the substitution θiθh
(i.e. add(eh0/θiθh) )

end for

For a sub-goal ai/θi , Algorithm 7 activates each rule h that ah, the head of the rule h,

matches the sub-goal by applying a substitution θh. When such a rule h is activated,

the OAQ rules of h generate answers of the sub-goal that can be derived by applying

the rule h. When such an answer ai/θiθhθl is derived, add(ai/θiθhθl) is called. However,

Algorithm 7 does not capture the call to resolve the sub-goal using the derived answer.

To resolve the sub-goal using the answers derived by the activated rules, we revise

Algorithm 9 into Algorithm 10, which works as follows. When add(ek(i−1)/θi) is called,

it asserts goal(ai/θi, eki/θi) into Pt which is read as “we are waiting for a fact that

matches ai/θi to generate eki/θi (i.e. to call add(eki/θi) ).” When a fact ai/θiθhθl is

derived by an activated rule and hence add(ai/θiθhθl) is called. The call matches the last

procedure, calling add(eki/θiθhθl) for each recorded goal(ai/θi , eki/θi). In this way, the

answers derived by activated rules are used to resolve the sub-goals.
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Algorithm 10 For each binary rule eki :- ek(i−1) ∧ ai
add(ek(i−1)/θi) :
for all ai/θi such that Pt |=θj ai/θj do

add(eki/θ1θj ).
end for
assert(goal(ai/θi , eki/θi )).
for all rule number h in Po with the head ah such that unify(ai/θi , ah)θh do

activate the rule number h by substitution θiθh
(i.e. add(eh0/θiθh) )

end for

add(ai/θiθhθl) :
for all goal(ai/θi , eki/θi ) do

add(eki/θiθhθl)
end for

For example, Listing 6.10 presents the transformed program of Program 3 from List-

ing 6.9.8 To evaluate the query a(0,Z) on Program 3, we call add(e10(0,Z)) on the

transformed program, because the query matches the head of the first rule of Pro-

gram 3 using the substitution X=0. The call matches the first rule in Pt, binding

X to 0. Consequently, for each b(0,Y) in Pt, add(e11(e10(0,Z),b(0,Y)))) is called.

The sub-goal b(0,Y) is resolved using the fact b(0,1) and add(e11(e10(0,Z),b(0,1))))

is called. The call matches the second and third rules, binding X to 0 and Y to 1.

The second rule has no effect because c(1,Z) does not match any fact. The third rule

asserts goal(c(1,Z),e12(e10(0,Z),b(0,1),c(1,Z))) into Pt and then calls add(e20(1,Z)).

The effect is that the second rule of Po is activated to derive answers for the sub-

goal c(1,Z) because its head c(X,Y) matches the sub-goal by binding X to 1 and re-

naming Y to Z. The call add(e20(1,Z)) matches the fifth rule by binding X to 1

and renaming Y to Z. The sub-goal d(1,Z) in the body is resolved using d(1,0), call-

ing add(e21(e20(1,0),d(1,0)))) which matches the sixth rule, calling add(c(1,0)). The

call matches the seventh rule, binding Y to 1 and Z to 0. The seventh rule uses

the answer c(1,0) that has been derived for the sub-goal c(1,Z), as follows. When

the body of the seventh rule is evaluated, goal(c(1,0),e12(e10(X,0),b(X,1), c(1,0))) is

matched with goal(c(1,Z),e12(e10(0,Z),b(0,1),c(1,Z))) which was previously asserted,

calling add(e12(e10(0,0),b(0,1),c(1,0))). The call matches the fourth rule, deriving the

answer a(0,0) for the query a(0,Z).

1 a (X) :− b(X,Y) , c (Y, Z) .

2 c (X,Y) :− d(X,Y) .

3 b (0 , 1 ) . b (1 , 2 ) . c ( 2 , 3 ) . d (1 , 0 ) . d (5 , 3 ) .

8The perform procedures are not presented for brevity.
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Listing 6.9: Program 3

1 add ( e10 (X, Z) ) :− f o r a l l (b (X,Y) ,

add ( e11 ( e10 (X, Z) ,b (X,Y) ) ) ) .

2 add ( e11 ( e10 (X, Z) ,b (X,Y) ) :− f o r a l l ( c (Y, Z) ,

add ( e12 ( e10 (X, Z) ,b (X,Y) , c (Y, Z) ) ) .

3 add ( e11 ( e10 (X, Z) ,b (X,Y) ) :−
a s s e r t ( goa l ( c (Y, Z) , e12 ( e10 (X, Z) ,b (X,Y) , c (Y, Z) ) ) ) ,

add ( e20 (Y, Z) ) .

4 add ( e12 ( e10 (X, Z) ,b (X,Y) , c (Y, Z) ) ) :− add ( a (X, Z) ) .

5 add ( e20 (X,Y) ) :− f o r a l l (d (X,Y) ,

add ( e21 ( e20 (X,Y) ,d(X,Y) ) ) ) .

6 add ( e21 ( e20 (X,Y) ,d(X,Y) ) ) :− add ( c (X,Y) ) .

7 add ( c (Y, Z) ) :− f o r a l l ( goa l ( c (Y, Z) , e12 ( e10 (X, Z) ,b (X,Y) , c (Y, Z) ) ) ,

add ( e12 ( e10 (X, Z) ,b (X,Y) , c (Y, Z) ) .

8 b (0 , 1 ) . b (1 , 2 ) . c ( 2 , 3 ) . d (1 , 0 ) .

Listing 6.10: Transformed program of Program 3

The evaluation of different queries may include the evaluation of sub-goals of the same

type. Even the evaluation of one query may include the evaluation of sub-goals of the

same type. When sub-goals of the same type are evaluated, they may be the same sub-

goals or different ones due to different substitutions. Evaluations of sub-goals activate

those rules whose head match the sub-goals. In our algorithm, corresponding rules

are activated by the number of times the sub-goals are evaluated. Consequently, the

same rule may derive the same answer a number of times due to its activation by a

number of sub-goals. To make the derived answers local to each sub-goal, we include

an Id argument in eki terms of the binary rules. In this way, each rule is activated to

derive answers of a specific query/sub-goal and derived answers are consumed by the

corresponding query/sub-goal. For each active query 〈q, id〉, the id is used to activate

the rules whose heads match the query and is passed to all other rules, activated to

derive answers of the sub-goals of the query. When a query is unregistered, its id is used

to efficiently deactivate the query by deleting all goal facts (i.e. intermediate results)

generated for the query. Activating a rule multiple times for the same sub-goals is

a redundant task. We will further develop the Optimized approach into the Tabled

Optimized approach that allows re-using the sub-goal results whenever possible.
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6.5.1 Incremental Update

Algorithm 10 not only does enable us to utilize the answers generated for sub-goals by

activating their corresponding rules, but also inherently supports an incremental update

of query results when the knowledge base is updated by adding or removing facts. To add

a fact f to the knowledge base (i.e. logic program), we perform two operations. First,

we assert the fact to the knowledge base. This step is required because, as observed in

Algorithm 10, facts are used to resolve sub-goals when an active query is registered and

evaluated for the first time. Second, we perform add(f) to update the results of the

active queries.

To explain how add(f) updates the query results, consider a binary rule of the form

eki:-ek(i−1) ∧ ai. When active queries are evaluated for the first time, some goals of the

form goal(ai/θi , eki/θi) are asserted in the knowledge base. When a fact fj is added to

the knowledge base and add(fj) is called, for each such a goal such that unify(fj , ai/θi)θj ,

add(eki/θiθj ) is called, as if fj was derived by an activated rule for the sub-goal ai/θi . For

example, consider updating Program 3 by adding the fact c(1,3) where the query a(0,Z)

is active. First, c(1,3) is asserted in Pt and then add(c(1,3)) is called. The call matches

the seventh rule, binding Y to 1 and Z to 3. Then, goal(c(1,3),e12(e10(X,3),b(X,1),

c(1,3))) is matched with goal(c(1,Z),e12(e10(0,Z),b(0,1),c(1,Z))) which was asserted

when evaluating the query a(0,Z), calling add(e12(e10(0,3),b(0,1),c(1,3))). The call

matches the fourth rule, deriving the answer a(0,3) for the query a(0,Z).

The way the OAQ rules update query results is similar to the way the add EDBC rules

update the query results. The difference is that the add EDBC rules of a binary rule of

the form eki :- ek(i−1) ∧ ai generate two types of goal facts but the OAQ rules generate

one type. In ELE, goal facts of the forms goal(ek(i−1), ai, eki) and goal(ai, ek(i−1), eki)

are generated. The optimized approach however generates only goal facts of the form

goal(ai, eki). Consequently, the Optimized approach directly stores the facts in the

knowledge base and asserts goal facts only for derived intermediate results. As opposed,

ELE creates a separate copy of relevant facts for each binary rule.

To handle incremental deletion of facts, the transformed program includes also the set

of OAQ delete rules presented in Algorithm 11 for each binary rule. When a fact f

is deleted, we retract it from Pt and then call delete(f), propagating the deletion to

accordingly update the query results. The definition of OAQ delete rules is also similar

to the definition of delete EDBC rules. The difference is that as the Optimized approach

directly stores the facts, a fact can be simply removed by retracting it from the knowledge

base, rather than the need for removing multiple copies of it stored as goal(ek,i−1, ai,
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ek,i) facts by add EDBC rules. After retracting the fact, retraction is propagated by

delete OAQ rules as in ELE.

Algorithm 11 OAQ delete rules of each eki :- ek(i−1) ∧ ai

delete(ai/θi):
for all goal(ai/θi , eki/θi) do

delete(eki/θi).
end for

delete(ek(i−1)/θi):
retract(goal(ai/θi , eki/θi ))
for all rule number h in Po with the head ah such that unify(ai/θi,ah)θh do

delete(eh0/θiθh).
end for
for all ai/θi such that Pt |=θj ai/θj do

delete(eki/θiθj ).
end for

6.5.2 Comparison with Naive Approach

In the beginning of this section, we listed the following five tasks of the Naive approach

that are optimized in the Optimized approach:

• Generating EDBC rules of a query when the query is registered.

• Generating substituted EDBCs rules of the query.

• Adding EDBCs rules to the knowledge base.

• Calling the add(f) for all relevant facts in the knowledge base.

• Deleting EDBCs rules (and goal facts) when the query is unregistered.

The Optimized approach optimizes these tasks using two techniques. The first technique

is replacing ek0 with a term constructed by the “ek0” functor symbol and the arguments

of a, as opposed to replacing it by true. This technique removes the need to perform

the first three tasks and part of the fifth task. Using this technique, we only need to

call the relevant add(ek0) to register a query. The effect is that all relevant rules are

automatically activated to generate the query results. The use of the ek0 term does not

only provide a mechanism to activate relevant rules of a query q, thus removing the tasks

1, 3 and 5, but also applies a form of information passing by having the arguments of

the query as its argument. In this way, the information about the bound arguments of

the query is passed to the activated rules, limiting their computations to only generate

the relevant results, the effect of which is similar to effect of the second task above.
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Information passing is a technique used in bottom-up evaluation approaches such as

Magic Set to limit the forward reasoning computations such that the only facts are

derived that are relevant to a query [Beeri and Ramakrishnan, 1991].

The second technique is optimizing the fourth and fifth tasks. As explained in the

previous section, the Optimized approach directly resolves sub-goals using the facts in

the knowledge base and does not make separate copies of relevant facts for the sub-goals.

Therefore, it removes the tasks of storing facts as goal(ek,i−1, ai, ek,i) goals and later on

removing those goals when queries are unregistered.

6.6 Active Queries: Tabled Optimized Approach

In this section, we extend the Optimized approach with the tabling technique to make

it more efficient and more declarative. To this end, we first briefly describe the tabling

technique used in the paradigm of Tabled Logic Programming and then present the

Tabled Optimized approach. Extending the Optimized approach with tabling relates

our approach to research on incremental evaluation of tabled logic programs. We discuss

the connection and presents empirical performance results.

6.6.1 Tabled Logic Programming

The SLD resolution in theory is complete in a sense that for every answer of a query q to

a program P , there is a SLD proof. However, the search for a proof in practice may not

terminate, even when P is a datalog program. Datalog programs are similar to definite

logic programs, but with the restriction that arguments of terms can only be constants

or variables.

For example, consider the query path(0,Y) to Program 4 presented in Listing 6.11. There

are SLD proofs for both answers Y=1 and Y=2. However, the query executed by Prolog

never terminates and cannot produce any of these answers. Prolog resolves the query by

applying the first rule leading to the sub-goal path(0,Z). This sub-goal is resolved again

by applying the first rule. The search falls into an infinite loop where infinite number of

sub-goals being variants of the query itself are generated. Two sub-goals are variants if

they can be made equivalent by renaming their variables.

1 path (X,Y) :− path (X, Z) , edge (Z ,Y) .

2 path (X,Y) :− edge (X,Y) .

3 edge (0 , 1 ) .

4 edge (1 , 2 ) .
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Listing 6.11: Program 4

The problem of vulnerability to infinite looping, for instance when there are left recursive

rules as in Program 4, is well-known for logic programs. This problem can be partly

addressed by the tabling technique studied in the paradigm of Tabled Logic Programming

to make Prolog more declarative and more efficient [Swift and Warren, 2010]. The

main idea in tabled logic programming is to cache the sub-goals encountered in query

evaluation and the results of the sub-goals in tables. When a sub-goal is re-encountered,

the cached results are used to resolve the sub-goal, rather than re-performing resolution

against program clauses.

A well-known tabling mechanism is SLG resolution [Chen and Warren, 1996], an informal

description of which is as follows. In SLG resolution, sub-goals encountered for the first

time are resolved as in SLD resolution and their answers are cached. When a sub-goal is

re-encountered, the cached answers are used to resolve the sub-goal and the sub-goal is

suspended when all answers are used. The computation then continues by backtracking

to explore some other computation path. Once more answers have been derived for

suspended sub-goals, they are resumed and resolved against the new answers.

Tabling has a number of advantages [Swift and Warren, 2010] including the following.

First, it ensures the termination of programs where the size of sub-goals and answers

generated in query evaluation is less than a fixed number. Second, for a large class

of programs such as datalog programs, tabling can achieve the optimal complexity for

query evaluation. In general, tabling can factor out redundant evaluations of sub-goals

by caching their results. However, tabling takes up computational and memory resources

to create and manage tables and is beneficial only when sub-goals are repeated. In tabled

logic programming systems, it is possible to declare only some of the predicates as tabled

and non-tabled predicates are evaluated by SLD resolution.

6.6.1.1 Incremental Evaluation of Tabled Logic Programs

When a query is evaluated, a tabled logic programming system tables the sub-goals. Not

only can the cached results of sub-goals be used when sub-goals are re-encountered in the

query evaluation, but they can be also used to resolve the sub-goals of other subsequent

queries. However, the knowledge base may have been updated in the meantime by

addition or deletion of facts (and rules) making the cached results stale. Approaches for

incremental evaluation of tabled logic programs deal with the issue of how to update

the answers of tabled sub-goals in accordance to changes of the knowledge base.
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The major work on incremental evaluation of tabled logic programs is presented in the

PhD thesis of D. Saha [Saha, 2006]. The work builds on top of the bottom-up evaluation

approaches for materialized view maintenance in deductive databases [Gupta et al., 1993].

Two main approaches have been proposed. One is to determine the sub-goals whose

results have been made stale due to knowledge base updates and re-evaluates them

from scratch [Saha and Ramakrishnan, 2006a]. This approach is similar to the caching

approach for agent programming languages [Alechina, 2013], mentioned in Section 6.1.

The advantage of this approach is that it can be used for arbitrary Prolog programs

that include, for instance, Prolog built-ins aggregation operations. The other one is to

incrementally evaluate the changes of the tabled sub-goal results according to changes of

the knowledge base which is more relevant to our work [Saha and Ramakrishnan, 2003].

Incremental Evaluation of Tabled Logic Programs after Addition

For a definite logic program P and a query q, let ansP (q) represent answers of q with

respect to P and δP represent a set of facts and rules added to P . The problem is to

find the smallest set 4 of answers such that ansP∪δP (q) = 4 ∪ ansP (q). In other words,

the problem is to find new answers of a query q that can be inferred by considering the

new set of facts and rules added to the knowledge base.

Given a program P and an added program δP , a transformed program P ′ is generated as

follows [Saha and Ramakrishnan, 2006a]. For each term p/n (i.e. with predicate symbol

p and arity n) in P ∪ δP , a corresponding term p′/n is introduced (i.e. p is replaced by

p′. The transformed program P ′ include all clauses in P . For each fact p in δP , p′ is

added to P ′. For each clause of the form a:-a1 ∧ a2.. ∧ an in P ∪ δP , the corresponding

clauses a′:-(a1; a
′
1) ∧ ..(ai−1; a′i−1) ∧ a′i ∧ ai+1.. ∧ an for each i ∈ [1, n] is added to P ′.

The ith clause computes new answers of a due to new answers of ai. The transformed

program P ′ is such that ansP (q) ∪ ans′P (q’) = ansP∪δP (q). For example, Listing 6.12

presents the transformed program for incremental evaluation of addition to Program 4

presented in Listing 6.11.

1 path ’ (X,Y) :− path ’ (X, Z) , edge (Z ,Y) .

2 path ’ (X,Y) :− ( path (X, Z) ; path ’ (X, Z) ) , edge ’ (Z ,Y)

3 path ’ (X,Y) :− edge ’ (X,Y) .

Listing 6.12: Transformed Program for Incremental Addition to Program 4

The transformation is based on finite differencing [Paige and Koenig, 1982], widely used

for materialized view maintenance in bottom-up query evaluation approaches [Gupta
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et al., 1993]. The approach is also the underlying mechanism in the Seminaive bottom-

up query evaluation [Ceri et al., 1990]. In the Naive bottom-up query evaluation, 9 rules

are applied in a loop on the set of facts and derived facts until no new fact is generated.

This approach is inefficient because each step applies the rules on all facts and derived

facts so far. The Seminaive approach optimizes this by limiting the computation such

that, in each step, only those facts are derived that depend on the set of new facts

derived in the previous step.

Incremental Evaluation of Tabled Logic Programs after Deletion

A well-known algorithm to update programs containing recursive rules after deletion of

facts is DRed [Gupta et al., 1993]. DRed operates in three steps performed by bottom-up

evaluation mechanisms. Given a program P and a set of facts 4 to be deleted from P ,

the first step derives all facts that can be inferred from P ∪ 4 that are depending on

4 and deletes them. The first step overestimates the set of facts to be deleted, because

a fact which has a derivation based on deleted facts may have another derivation that

does not include any of the deleted facts. The second step re-derives some of the facts

deleted in the first step that have alternative derivations. Finally, the third step derives

new facts using the facts re-derived in the second step.

D. Saha proposes an algorithm, that we call Materialized DRed, extending DRed as

follows [Saha and Ramakrishnan, 2003]. For each derived answer, the facts and rules

used to derive the answer are called a support of the answer and are maintained in a

data structure called support graph. In DRed, the Seminaive approach is used to derive

facts that are dependent on deleted facts. The support that causes the derivation of

a fact for the first time is its primary support and is acyclic. When a fact is deleted,

all its dependant facts are marked as deleted and the deletion propagates to other facts

depending on the marked facts. However, an answer is not marked as long as it has

an unmarked primary support. Taking the primary supports into account reduces the

number of facts that are deleted and re-derived. The support graph takes up a lot of

memory and has been made more compact in another work [Saha and Ramakrishnan,

2005]. In addition, another work has been presented that interleaves the deletion and

addition such that an update operation is more efficient than the corresponding deletion

and addition operations made separately [Saha and Ramakrishnan, 2006b].

9This is not to be mistaken with the Naive approach described in this chapter for active queries.
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6.6.2 Tabled Optimized Approach

When evaluating the sub-goal ai of a binary rule of the form eki :- ek(i−1) ∧ ai in the

Optimized approach, each rule whose head is unified with ai by applying a substitution

θ is activated by the substitution θ. We call such rules relevant-rules of the sub-goal.

When evaluating the same sub-goal, the Optimized approach re-activates those rules

again. Not only this has a disadvantage on performance, but also it could result in

infinite looping. For example, evaluating the query p(X) on a program that includes the

rule p(X) :- p(X) and the fact P(1) using the Optimized approach falls into an infinite

loop.

We adopt the tabling technique as follows. When a sub-goal is encountered for the first

time, it is assigned a unique id and its relevant rules are activated by corresponding

substitutions and all answers derived for the sub-goal by its relevant-rules are recorded.

After this, when we evaluate a sub-goal of the same type (i.e. with the same predicate

symbol and arity), we first check to see whether the cached results of the sub-goal derived

by activating its relevant rules are re-usable. Relevant rules of a sub-goal are activated

only when there is no prior sub-goal whose cached results can be re-used.

A sub-goal i can re-use the cached results of a sub-goal j, if the sub-goal j is a variant of

the sub-goal i or it subsumes it. Two sub-goals are variants, if there exists a renaming

of variables that makes the two sub-goals equivalent and the sub-goal j subsumes i if

there is a substitution that can be applied to j to make it equivalent to i. Comparing

among the two choices of variant or subsumption based sub-goal caching, both choices

have their own advantage and disadvantage on performance. We have implemented

both approaches, the choice of which is made by setting a parameter. When evaluating

sub-goal i, if a sub-goal j is found whose cached results could be re-used, we read those

results and feed it to our algorithm as if these results were generated by activating

relevant rules of the sub-goal i. Moreover, we record that the sub-goal i depends on the

sub-goal j and whenever a new answer is generated by relevant-rules of the sub-goal j,

we feed that answer to the sub-goal i as well. However, if no sub-goal is found for re-use,

relevant-rules of the sub-goal i are activated with corresponding substitutions.

While the tabling mechanism above eliminates the unnecessary re-activation of sub-

goals it does not guarantee the termination even when the size of sub-goals and answers

generated in query evaluation is less than a fixed number. The algorithm falls into an

infinite loop when there is a loop in the program that derives an answer based on itself.

The simplest example is the loop made by the rule p(X) :- p(X). In general, there may

be different ways to derive a single answer of a sub-goal. Resolving a sub-goal using the

same answers multiple times is inefficient, in addition to bring amenability to infinite
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looping. To deal with this issue, we implement the answer invariant tabling technique

as follows. When an answer is found for a sub-goal, it is used to resolve the sub-goal,

and other dependent sub-goals, only if it is a new answer and disregarded otherwise.

An answer is new for a sub-goal, only if its invariant has not already been used and

cached for the sub-goal. Another approach is to consider an answer new, only if it is not

subsumed by another cached answer.

Incremental Evaluation

As described in Section 6.5.1, the Optimized approach naturally handles incremental

addition. When a fact is added to the knowledge base, it is used to resolve all corre-

sponding sub-goals as if the answer is derived by relevant rules of the sub-goals. The

only difference in Tabled Optimized approach is that the added fact is first checked

against the cached results of the matched sub-goals and is used to resolve a sub-goal

only when its invariant has not already been used to resolve the sub-goal.

Incremental deletion is however more complex. When a fact is deleted, the Optimized

approach derives its dependent derived facts and deletes them. In the Tabled Optimized

approach however, an overestimated set of dependant derived facts may be deleted,

due to the use of answer invariant tabling. The reason is that a fact which has a

derivation based on the deleted facts may have a derivation that does not depend on the

deleted fact and therefore should not be deleted. Consequently, a variant of the DRed

algorithm is required. We implemented the Materialized DRed that explicitly maintains

dependencies between derived facts and the rules and facts used to derive them [Saha

and Ramakrishnan, 2003].

6.6.3 Evaluation

The purpose of this section is providing an empirical evaluation of the Tabled Optimized

approach presented in this chapter for implementing active queries. The most relevant

approach to the Tabled Optimized approach is tabled logic programming. In particular,

the approaches for incremental evaluation of tabled logic programs are of the most

interest to our work. While there are a few of such approaches, building on a large body

of work on incremental view maintenance in deductive databases, the lack of standard

benchmarks, open-source implementations and the application dependent performance

of different approaches make it hard to provide a fair empirical comparison.
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task path(0,X) path(0,1000) Add(edge(1000,1001))

Xsb 0.064 0.004 0.066

Tabled Optimized 2.047 0.051 0.014

Table 6.3: Comparision of performance on Program 5

To give some insight into the empirical performance of our implementation of the Tabled

Optimized approach, we compare its performance with that of the XSB Prolog system10

version 3.5.x for a number of query evaluation tasks on two programs. The reason

for comparing our performance with that of XSB Prolog is that XSB offers one of the

most stable and efficient tabled logic programming systems [Swift and Warren, 2010].

To evaluate the performance of the Tabled Optimized approach, we run the resulting

transformed programs by the SWI-Prolog system11. The performances of the SWI-

Prolog system, running the Tabled Optimized approach and the XSB Prolog system are

evaluated on an XPS Intel Core i7 CPU@ 2.1 GHZ x 4 laptop running ubuntu 12.04

LTS.

Our first benchmark program is the reachability graph presented in Listing 6.13 where

the graph has 1000 edges. Table 6.3 presents the query cost in seconds for the path(0, X)

and the path(0, 1000) queries, and for the incremental addition of the edge(1000, 1001)

when the query path(0, X) is active. For the XSB system, the predicate path/2 is tabled.

In the case of the incremental addition for XSB, we first evaluate the query path(0, X)

and then add the edge(1000, 1001) fact using the XSB incr assert/1 predicate and

update the tabled results using the XSB incr table update/0 command.

1 path (x , y ) :− edge (X, Z) , path (Z ,Y) .

2 path (X,Y) :− edge (X,Y) .

3 edge (0 , 1 ) . edge (1 , 2 ) . . . . edge (998 ,999) . edge (999 ,1000) .

Listing 6.13: Program 5

Our second benchmark program, presented in Listing 6.14 implements the following

scenario. There are 100 artists, each is going to perform 30 shows. Each show has a

price and a location. There are also 500 users each living in a location and is interested

in 30 artists. For each artist of her interest, a user specifies the maximum price he

would be willing to pay for a show of the artist and the maximum distance he would

be willing to travel to see the show. The query notify(X,Y, Z,W ) computes which

shows are of interest to who based on users’ preferences. Table 6.4 shows the cost of

the notify(X,Y, Z,W ) query and the update cost of adding the loc(1,[2,3]) fact for the

10http://xsb.sourceforge.net/
11www.swi-prolog.org
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task notify(X,Y,Z,W) Add(loc(1,[2,3])

Xsb 4.61 4.64

Tabled Optimized 13.598 0.25

Table 6.4: Comparision of performance on Program 6

Tabled Optimized approach, executed by SWI-Prolog, and the XSB system. For XSB,

the predicate notify/4 is tabled.

1 n o t i f y ( Uers , Art i s t , Pr ice , [ LX,LY] ) :−
2 show ( Art i s t , Pr ice , [ LX,LY] ) ,

3 l i k e s ( User , Art i s t , MaxPrice , MaxDistance ) ,

4 Pr ice < MaxPrice ,

5 l o c ( User , [ Lx , Ly ] ) ,

6 s q r t ( (LX−Lx) ∗(LX−Lx)+(LY−Ly) ∗(LY−Ly) ) < MaxDistance .

7

8 l o c (1 , [ 6 , 5 ] ) . . . . l o c (500 , [ 2 , 6 ] ) .

9

10 show (1 , 10 , [ 2 , 8 ] ) . . . .

11 . . .

12 show (100 , 2 , [ 4 , 2 ] ) . . . .

13

14 l i k e s (1 , 33 , 9 , 13 .237514377220565) . . . .

15 . . .

16 l i k e s (500 , 74 , 3 , 5 .851154344003308) . . . .

Listing 6.14: Program 6

The performance results presented in Tables 6.3 and 6.4 show that the initial evaluation

of queries to both programs are much faster by XSB. This is expected due to two rea-

sons. The first reason is that the Tabled Optimized approach memorizes all intermediate

results within the evaluation of each rule by binarization. However, in evaluation of Pro-

gram 5, there are no intermediate results and the query evaluations in both approaches

are similar in terms of the sub-goals and the results that are cached. The second reason,

and perhaps the more important one, is due to the different data structures XSB and

the Tabled Optimized approach use to cache and to search the sub-goal results.

The tabled Optimized approach is general in a sense that a transformed program (i.e.

target program) is executable by any Prolog system. However, if the target Prolog system

is known in advance, its indexing mechanisms can be taken into account to generate more

optimized target programs. We only did one such optimization for SWI-Prolog, used to

run our experiments, as follows. In our approach, each sub-goal is given a unique Id. The

computed results of a sub-goal are cached by asserting cached(id, result k) clauses where
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each result k represents a unique answer for the sub-goal id. Whenever a result is found

for a sub-goal, it is propagated (i.e. used to resolve the sub-goal) only if it is a new one.

To check if a result is new, it is checked against the cached results of the sub-goal. We

optimized this operation for SWI-Prolog by indexing on the combination of the id and

result k. This was implemented by generating a hash key HashKey k for each tuple (id,

result k) and recording cached results as cached(HashKey k, i, result k) clauses. This

simple optimization made the transformed program of Program 5 more than 10 times

faster. Such operations have been made highly optimized in systems such as XSB as

result of long term developments and by a tight and low-level integration of tabling into

the Prolog engine. For example, the use of trie-based data structures can significantly

improve the performance of assertion and look-up of the cached answers [Ramakrishnan

et al., 1999].

Regarding the incremental addition, it is observed that the Tabled Optimized approach

performance is far more superior than that of the XSB. In fact, it is apparent from the

results that XSB re-evaluates the queries from scratch, even though we use the XSB

commands for incremental addition. Consequently, it seems that the current version

of XSB implements the approach that invalidates and re-evaluates the cached results

affected by updates. Nevertheless, the results show that incremental addition in Tabled

Optimized approach is far more efficient than re-evaluation of queries from scratch.

To provide further insights into the performance of incremental addition in Tabled Op-

timized approach from the algorithmic point of view, we compares it with the approach

based on finite differencing, discussed in Section 6.6.1.1. The Tabled Optimized approach

memorizes all intermediate results of query evaluation within each rule. On the con-

trary, the finite differencing approach computes those intermediate results from scratch.

The first consequence is that the Tabled Optimized approach uses more memory. The

second consequence is that when the computations to derive intermediate results are

more expensive than memorizing the results generated during the incremental addition,

the Tabled Optimized approach is more efficient and vice versa.

For example, consider the incremental evaluation of the first rule of Program 6 when

adding the fact loc(1,[2,3]). Listing 6.15 presents a program to derive new answers of the

query notify(X,Y,Z,W) to Program 6 due to addition of the loc(1,[2,3]) fact using the

finite differencing approach12. To derive the new answers, the query notify’(X,Y,Z,W)

to the program presented in Listing 6.15 is to be evaluated. Note that the incre-

mental evaluation in finite differencing approach includes the evaluation of the clause

show(Artist,Price,[LX,LY]), likes(User,Artist,MaxPrice,MaxDistance), Price <MaxPrice.

12The first rule includes more sub-goals to also account for addition of facts of type show and likes.
As the example only considers the addition of a fact of type loc, those sub-goals have no effect and have
been removed for brevity.
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In the Tabled Optimized approach, the results of the evaluation of this clause is encoded

and cached using goal(ai, eki) facts. In our example, there are some goal facts each

encoding that “there is a show by an artist that the user 1 likes and is comfortable

with the price.” The goal further encodes that “we are waiting for a new fact of type

loc(1,[Lx,Ly]) where the distance from the location [Lx,Ly] to the location of the show

is less than an specified number and when such a fact is added to the knowledge base, a

new fact of type notify(X,Y,W,Z) with corresponding substitution is to be generated.”

As goal facts goal(ai, eki) are indexed by ai (in this example by loc(1,[Lx,Ly])), the

relevant goal facts for addition of loc(1,[2,3]) are efficiently accessed to derive the relevant

notify(X,Y,W,Z) facts.

1 n o t i f y ’ ( Uers , Art i s t , Pr ice , [ LX,LY] ) :−
2 show ( Art i s t , Pr ice , [ LX,LY] ) ,

3 l i k e s ( User , Art i s t , MaxPrice , MaxDistance ) ,

4 Pr ice < MaxPrice ,

5 l o c ’ ( User , [ Lx , Ly ] ) ,

6 s q r t ( (LX−Lx) ∗(LX−Lx)+(LY−Ly) ∗(LY−Ly) ) < MaxDistance .

7

8 l o c ’ ( 1 , [ 2 , 3 ] )

9

10 l o c (1 , [ 6 , 5 ] ) . . . . l o c (500 , [ 2 , 6 ] ) .

11

12 show (1 , 10 , [ 2 , 8 ] ) . . . .

13 . . .

14 show (100 , 2 , [ 4 , 2 ] ) . . . .

15

16 l i k e s (1 , 33 , 9 , 13 .237514377220565) . . . .

17 . . .

18 l i k e s (500 , 74 , 3 , 5 .851154344003308) . . . .

Listing 6.15: Finite Differencing Incremental Addition for Program 6

For incremental deletion of facts, we implemented the Materialized DRed approach de-

scribed in Section 6.6.1.1. The materialization of the dependencies between facts and

rules and derived facts and storage of the support graph, in our implementation turned

out to be expensive. For example, the implementation of the approach changed the cost

of the evaluation of the queries path(0,X), Add(edge(1000,1001)) and notify(X,Y,Z,W)

from 2.047, 0.014 and 13.598 to 3.278, 0.019 and 20.035, respectively. The cost of Mate-

rialized DRed include the cost of deriving the dependencies and the cost of memorizing

the dependencies. In our implementation of the Tabled Optimized approach, ekn (i.e.

the head of the last binary rule of a clause includes a1, .., an (i.e. literals in the body
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of the clause) as its arguments. Therefore, the dependencies are already accumulated

and the only task to build the support graph is to parse the arguments of ekn into its

separate elements. Therefore the main cost seems to be for storage of the support graph.

The Tabled Optimized approach caches all intermediate results within the rules when

queries are evaluated. Consequently, it allows to efficiently compute the facts that can

be derived from a fact, as described for the case of incremental addition. Therefore, the

first and third steps of the basic DRed algorithm, which the Materialized DRed aims to

optimize, can be efficiently implemented for the Tabled Optimized approach. The second

step, checking if deleted facts have alternative derivations, can be also efficiently imple-

mented querying the program for such facts and regarding the queries as tabled logic

program queries instead of Tabled Optimized logic program queries. In other words,

as we do not need to support incremental addition when performing the second step of

DRed, a basic top-down tabled query evaluation strategy, without caching intermediate

results within the rules, suffice. Therefore it seems that an approach to support incre-

mental deletion, based on the basic DRed suits more for the Tabled Optimized approach.

The implementation however is left as future work.

6.7 Related Work

The only robotic system that implements a form of active query mechanism is ORO.

ORO does not however present any performance result for its implementation. In partic-

ular, the Pellet reasoning engine used by ORO does not support incremental evaluation

of queries in general, for instance, when the knowledge base contains rules. After each

change of the knowledge base, ORO re-classifies the whole knowledge and then evalu-

ates the queries against the knowledge base, rather than updating only the results of

the active queries as in the Tabled Optimized approach.

Some agent programming languages have recently adopted the idea of query caching

to deal with performance issues caused by the repeated evaluation of queries on the

agent knowledge base. Active queries takes the caching approach one step further by

supporting incremental evaluation of queries. In the caching approach, cached results are

invalidated and queries are evaluated from scratch when the knowledge base is updated

with a relevant fact.

Among the existing logic-based knowledge representation and reasoning systems, ap-

proaches for incremental evaluation of tabled logic programs are of the most relevant

to the Tabled Optimized approach presented in this chapter for implementing active

queries. There are however subtle differences. The existing approaches provide a means
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to declare sub-goals as tabled to cache their answers and incrementally update their

answers. They do not however support registering and unregistering active queries. In

these systems, the programmer manually manages what and when sub-goals are tabled.

In our approach, all sub-goals of a query are tabled when the query is registered, they

are updated by changes of the knowledge base as far as the query is registered and

are disregarded when the query is unregistered. In other words, the management of

what sub-goals should be tabled and updated according to active queries at the time is

handled automatically.

From the technical point of view, the Tabled Optimized approach for incremental eval-

uation of sub-goals is similar to existing approaches for incremental evaluation of tabled

logic programs. The difference is that the Tabled Optimized approach caches the in-

termediate results within rules that are computed during query evaluation using the

binarization technique. Consequently, by supporting a more fine grained caching, it

trades memory and performance of the first run of queries for better performance in

incremental query evaluation.

Last but not the least, the Tabled Optimized approach is based on a source code trans-

formation where the transformed program is executable by any Prolog system. Con-

sequently, it can be used to bring the advantages of tabling and incremental query

evaluation to well-developed Prolog systems such as SWI-Prolog that do not support

tabling and incremental query evaluation. Developing a Prolog system with tabling

and incremental tabling capabilities otherwise from scratch require a large amount of

development effort. The implementation of tabling by applying source code transforma-

tion has been proposed before, for instance, by Rocha, R. [Rocha et al., 2007]. Exist-

ing transformation-based approaches however do not support incremental updating of

queries.

6.8 Summary

In this chapter, we present two approaches for implementing active logic program queries.

The Naive approach builds directly on top of the EDBC rules of the ELE system. The

Optimized approach is a new approach developed in this thesis, improving over the

Naive approach. The Optimized approach is then further extended into the Tabled

Optimized approach using the tabling technique from the paradigm of Tabled Logic

Programming. The Tabled Optimized approach transforms definite logic programs into

Prolog programs with the following properties. First, the evaluation of a query on the

transformed program, for instance, by a Prolog system that does not support tabling is

performed in a top-down manner supporting tabling. Second, a component can register



Chapter 6. Active Queries 136

queries to receive updates on their results when the knowledge base changes. Third,

as far as a query is active, its results are incrementally and efficiently updated in a

bottom-up manner when the program is updated by addition or deletion of facts. The

incremental query evaluation approach is goal-directed in a sense that changes of the

knowledge base are propagated such that queries of interest are updated and only the

changes are propagated that are relevant for updating queries of interest.

The first advantage of the approach is that benefits of tabling such as avoiding infinite

loops and reducing the time complexity can be added, for instance, to the well-known

SWI-Prolog system that does not support tabling, without any need to change the

underlying Prolog engine that would have been non-trivial needing a large development

effort. Second, a fine grained level of caching is provided that supports a highly efficient

incremental update of query results. Third, the approach can be incorporated in agent

and robotic systems to support efficient implementation of active queries to be used, for

instance, in plan execution and monitoring tasks enabling agents and robots to perform

complex reasoning in dynamic environments.



Chapter 7

RobAPL Agent Programming

Language

The question of this chapter is regarding the application of agent programming lan-

guages in robotics. We investigate what the plan execution control requirements of

these language in robotics are and how to support the requirements. In particular, we

are interested in the relation between such requirements and the information engineering

requirements of these languages. We ask the question of whether and to what extent

the information engineering techniques developed in this thesis address the information

engineering requirements of these languages and support the real-time and event-driven

execution of plans to apply these languages in robotics.

The chapter is organized as follows. First, we discuss the plan execution control re-

quirements of these languages to facilitate their applications in robotics. Afterwards,

we present the RobAPL language [Ziafati, 2014], a proposal developed in this thesis

to extend agent programming languages with robotic plan execution capabilities. We

will then follow by discussing the information engineering requirements of RobAPL and

elaborate on how these requirements are addressed byRetalis and the information en-

gineering techniques developed in this thesis. Finally, we discuss the related work and

give a summary.

7.1 Plan Execution Control Requirements

Current agent programming languages (APLs) provide simple mechanisms for execu-

tion control of a robot’s plans. Such mechanisms are often a combination of sequence,

parallel, atomic, random order, ordered choice, random choice, conditional choice and

137
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iteration plan operators. In order to facilitate the programming of autonomous robots,

more advanced mechanisms are needed to deal with temporal and functional constraints

related to a robot’s tasks and its physics, to synchronize the parallel access of different

plans to robot’s resources and to handle the conflicts.

There are a number of robotic plan execution languages used to represent and execute

plans. In these languages, plans are generated manually by robotic software developers

or automatically by planning systems [Verma and Jónsson, 2005]. Such languages pro-

vide different mechanisms for controlling, coordinating and monitoring the executions of

plans. In the following, we derive a list of robotic plan execution control requirements

by generalizing from the functionalities supported by TDL [Simmons and Apfelbaum,

1998], PLEXIL [Tara and Vandi, 2006], APEX Freed [1998], SMARTTCL [Steck and

Schlegel, 2010], PRS [Georgeff and Lansky, 1987] and PRS-lite [Myers, 1996] plan exe-

cution languages. To illustrate the requirements, we first present a usecase scenario.

7.1.1 Usecase Scenario

Araz and Mori are old and have Alzheimer. Moreover, Mori is under medication. To

help them living easier and increase their safety, their children have bought them an

assistant robot called NAO. NAO helps them by performing the following tasks:

1. T1: To remind Mori to take drug A every morning at 10 am. To remind Mori,

NAO calls, “Take drug A Mori”. When NAO hears the response back, “OK, I will

take A”, it considers the task as successfully finished.

2. T2: To check if drug A is finished. Drug A’s color is red and is placed in a white

box. NAO should check the box every afternoon to see if there are enough A in the

box. If drug A is finished, NAO asks more if he has already ordered. Otherwise,

it orders itself by sending an email to drugstore.

3. T3: To open the door if a visitor rings the bell. NAO checks the visitor face

from the door camera; if it recognizes the face, it opens the door by pressing

the OPEN DOOR BUTTON. Otherwise it informs Araz and Mori by calling, “A

stranger is behind the door”. In this case, the task is finished when NAO hears

the response back, “Ok, I check it”.

4. T4: To frequently check if there is any trash (a black cube) on the table and throw

it to the trash can.

5. T5: To remind Araz and Mori about the places of their personal objects. E.g.

Mori goes in front of the NAO’s camera or introduces himself by saying, “It’s
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Mori” and asks NAO, “Remember my key is on the desk”. He can later ask NAO,

“Where is my key?”. NAO should answer, “On the desk”.

6. T6: To bring drinks from the kitchen table on users’ requests.

7. T7: If Araz or Mori calls, “Help!”, NAO should call for emergency assistance by

pressing a RED BUTTON placed in the the room. Also in T1 and T3, if NAO

communicates with Araz/Mori for 3 times and does not hear the response back,

NAO calls for emergency assistance as it might be sign of a dangerous situation.

7.1.2 Complex Plan Execution Control

To perform complex tasks, different plan operators are needed for synchronizing the

execution of actions/plans in complex arrangements, beyond the simple sequential and

parallel settings provided by the existing agent programming languages. For example

to check whether there is enough drug in the box, NAO needs to go in front of the box

(location L), orient its head’s camera toward the box (orientation O), and then take

and analyse a picture. To achieve this goal in an efficient way, NAO should be able to

perform both actions of move to(L) and orient head(O) in parallel, and then to take a

picture only after both move to(L) and orient head(O) actions have been successfully

performed. Moreover it may be necessary for the camera to wait for a few second after

the robot has arrived to the location and stopped walking, to stabilize before taking the

picture.

Developing autonomous robot applications requires agent programming languages to be

enriched with the following mechanisms to control and monitor the execution of plans.

• Composing a complex plan from a set of other plans (i.e. sub-plans) in sequence

and parallel orderings in different levels of a hierarchy.

• Controlling and monitoring the execution of a plan at different levels of its hierar-

chy.

• Supporting conditional contingencies, floating contingencies (i.e. event driven task

execution) and loops in the task tree decomposition. Different conditions are to be

checked before, during and after the execution of a plan to control its execution.

• Supporting conditional and floating contingencies in monitoring the execution of

a plan to guarantee its safe execution. Some conditions should be checked before

starting/resuming the plan, some conditions should be checked continuously during

the plan execution and some should be checked after finishing the execution of the

plan.
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• Governing and monitoring the plan execution (i.e. when to start, stop, suspend,

resume or abort a plan/sub-plan) by different conditions such as temporal con-

straints on the absolute time and execution status of other sub-plans, occurrence

of events, constraints on the state of the robot’s environment and by direct access

from other sub-plans (e.g. using shared variables).

7.1.3 Plan Execution Coordination

An autonomous robot has different goals and receives different events. In a BDI ar-

chitecture, the robot generates different plans to achieve such goals and react to such

events. To provide a good level of autonomy and intelligence, a robot should be able

to follow its different plans in parallel. For example, when NAO is moving toward the

drug box to check whether it’s empty or not, it should be in the same time responsive

to requests from its users (e.g. Task 5).

Execution of different plans in parallel can be conflicting due to a robot’s functional

and resource constraints and should be coordinated based on the priorities of plans. For

example consider a use case in which NAO has picked up a piece of trash and going to

put it into the trash can. Suddenly, NAO hears a user asking for help. To be able to

help the user, NAO should go toward the Red Button and have empty hands to press it.

This plan has two conflicts with the previous plan of the NAO (i.e. walking to the trash

bin and having trash in hand). As helping the user is of the highest priority, NAO should

leave the trash and start walking toward the Red Button immediately. In another case,

a guest may ring the door. In this case, NAO should first put the trash it has in its

hand into the trash can. It should then open the door and continue with the cleaning

task afterwards.

To facilitate the use of agent programming languages for implementing control systems of

autonomous robots, these languages should be extended with different mechanisms and

corresponding programming constructs to support the coordination of parallel execution

of plans. Moreover, the execution of plans should be monitored and their failures should

be handled in a proper way. Plan execution coordination requirements include:

• Representing and determining conflicts between different plans (e.g. explicit rep-

resentation by denoting the resources they require or by providing shared variables

and locking mechanisms).

• Dealing with conflicts based on plans priorities and deadlines including dynamic

prioritization and pre-emption.
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• Supporting different policies to deal with pre-empted plans such as stopping, sus-

pending or aborting.

• Recovering from a plan failure and performing wind-down activities after suspen-

sion and before resuming a plan.

7.2 RobAPL: a Robotic Agent Programming Language

In order to extend the plan execution capabilities of agent programming languages, we

opt to build upon the PLEXIL[Verma et al., 2005, Gilles Dowek, César Muñoz and

Pasareanu, 2010] plan execution language developed at NASA due to the following rea-

sons. PLEXIL offers a simple structure for plan representation, a hierarchy of nodes

with few syntactic constructs, but it is one of the most expressive plan execution lan-

guages unifying many of the existing ones. Moreover, PLEXIL has formal semantics

which allows for the formal study of various types of determinism of plan execution. In

addition, the operational semantics of PLEXIL is presented in a modular way at vari-

ous levels of plan execution easing the formal study and modification of the language.

Finally, the language has been successfully used in various robotic applications.

We adapt the PLEXIL syntax and semantics to be integrated in BDI-based agent pro-

gramming languages for representing and executing plans. This includes introducing

basic actions for querying and manipulating the agent’s beliefs and goals in the BDI

architecture and presenting an operational semantics for PLEXIL-like plan execution in

the BDI deliberation cycle. Moreover, PLEXIL is extended to support pausing, resum-

ing and pre-empting plans, performing clean-up and wind-down activities when pausing,

resuming, aborting and pre-empting plans, and coordinating the parallel execution of

plans over shared resources.

7.2.1 RobAPL Architecture

This section presents the RobAPL language for extending agent programming languages

with PLEXIL-Like plan execution control capabilities. RobAPL architecture is based

on a simple model of the existing BDI-based agent programming languages. It is de-

signed to include the core components and operations of these languages and abstract

away from their implementation details or specific features. The aim is to design an

abstract language that can be adapted to extend the plan representation and execution

capabilities of the existing BDI-based APLs to support their applications in Robotics.

RobAPL has the following components:
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• A belief base and a goal base representing beliefs and goals of the agent.

• An event base representing events received from the outside world or generated

internally by execution of the agent program during the last execution cycle.

• A plan base containing plans that are being executed by the agent.

• A rule base containing a set of plan generating rules that are applied to find a

suitable plan for achieving a goal or responding to an event.

A plan generating rule specifies a partially instantiated plan that can be applied in a

certain belief state to reach a goal, to respond to an event or to replace an abstract

action. Such a plan is built upon the following basic types of actions.

• Belief-update: updating the belief base. A belief update action has a pre and

post conditions. If the pre-condition is entailed by the agent belief base, the belief

update action can be executed. The execution alters the belief base such that

post-condition of the belief update action is entailed by the belief base.

• Goal-update: updating the goal base by adopting a new goal or dropping an

existing one.

• External: performing an external action by invoking a function call. An external

action can return a result value.

• Test: performing queries to the agent belief and goal bases to check whether the

agent has certain beliefs and goals. If the action succeeds, it binds the free variables

of the queries as result of performing the queries.

• Abstract: performing an abstract action which replaces this action with a plan

that is associated to the abstract action by a plan generating rule.

In the rest of this section, we treat goals and events uniformly and call them events in

the rest of this chapter, managed in the event base component. The difference between

events and various types of goals in agent programming languages is in semantics of

their dynamics. For example a goal of type achievement can be interpreted as a belief

state that the agent wishes to brings about. In this case, if the execution of a plan for

that goal fails, the goal is still in the goal set of the agent and is not removed from the

agent goals. Our uniform treatment of event and goals supports the implementation of

different semantics for events and goals. To support various semantics for events and

goals, we assume that at the beginning of each deliberation cycle, some goals and events

from previous deliberation cycles are added to the event base for example because the

agent has not yet found suitable plans for them.
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The RobAPL deliberation cycle consists of a planning and an execution step. In a

planning step, plan generating rules are applied to plan for events in the event base.

The result of this step is generation of a number of plans added to the plan base. In

an execution step, events in the event base are processed again but this time for event-

driven controlling of the plans. Events can be of a type for which a plan needs to be

generated, of a type which is used for execution and monitoring of plans or it can be of

both types.

7.2.2 RobAPL Plan Overview

A RobAPL plan consists of a hierarchical set of 8 types of nodes. Belief-update, goal-

update, external, test and abstract are child nodes which are analogous to belief-update,

goal-update, external, test and abstract actions, respectively. There are also list, re-

sume/pause and abort/pre-empt parent nodes containing other nodes as their children.

The root node of each plan is always a list node.

The execution of RobAPL plans (i.e. nodes) is controlled and monitored by a set of

conditions on occurrence of events, the agent beliefs, the system time and a number of

implicit and explicit attributes assigned to nodes. A node’s attributes are the following

ones among which the Id, priority, estimated execution time and resources are assigned

by the programmer.

• Id: is a unique identifies of a node. Each node is uniquely identified by its own

name and the name of its ancestors. The name of the list node at the root of a

plan is randomly assigned at the run time.

• Status: represents the execution state of a node such as running, finished, etc.

• Outcome: represents the outcome of a node such as success, failed, etc.

• Execution Priority: is an Integer value used for resolving conflicts in parallel exe-

cution of nodes.

• Start time: indicates the system time at which a node starts execution.

• End time: indicates the system time at which a node finishes its execution.

• Estimated Execution time: is an estimated amount of overall time required for

executing a node.

• Variables: containing all free and bounded variables used by a node.
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• Resources: is a set of resource usages of the form 〈Name, Type, V alue〉 where

Name is a unique identifier of a resource, Type is one of the blocking, using and

adding usage types and Value is an amount of resource usage.

The following are the conditions programmed for each node to control and monitor its

execution.

• Start: determines when a node should start executing.

• End: determines when a node should stop executing.

• Invariant: determines when a node should abort executing.

• Pre: is checked right before executing a node and determines whether a node can

start executing. If it does not hold, the node finishes its execution with the failure

outcome.

• Post: is checked right after a node finishes its execution and determines whether

the execution was successful. If it does not hold, the node finishes its execution

with the failure outcome.

• Pre-empt: determines when a node should be pre-empted.

• Pause: determines when a node should pause executing.

• Resume: determines when a paused node should resume executing.

• Repeat: determines whether a node should repeat executing.

• Resource: determines when required resources of a node is available.

The pre, post and repeat conditions are queries on the agent’s beliefs, the node’s at-

tributes, the system time and the status, outcome, start time and end time of other

nodes of the same plan. These three types of conditions are only checked once when a

node is going to start execution or it finishes its execution.

The start, end, invariant, pre-empt, pause and resume conditions are queries on occur-

rence of events and on the agent’s beliefs, the node’s attributes, the system time and

the status, outcome, start time and end time of other nodes of the same plan. These

conditions are continuously monitored during the time that they are allowed to make a

transition in a node execution status. We will discuss the exact form of these conditions

in Section 7.3.1. An agent has a pool of resources that nodes can query for resource

availability. Moreover, the resource pool notifies the availability of resources when a

node is waiting to acquire some resources.
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7.2.3 RobAPL Plan Execution Operational Semantics

In the execution step of a deliberation cycle, plans are executed by processing all events of

the event base in first-come first-served order by so called macro steps. In the beginning

of a macro step, an event is processed making some conditions of some nodes in the plan

base true. All such nodes make parallel and synchronous atomic transitions referred to

as micro step. These transitions alter nodes’ attributes which can make other conditions

true resulting in another micro step. Micro steps are applied until no more micro step is

possible. Detailed semantics of RobAPL atomic transitions are presented in Appendix B.

The following informally describes the semantics.

The atomic transitions are defined in terms of atomic changes in execution status of

individual nodes. At the beginning, all nodes are initialized in the Inactive state except

the root node of each plan which is initialized in the Waiting state. In the Inactive state,

none of the conditions of a node is monitored. A node in a Waiting state transits to the

Executing state whenever its start condition becomes true, its pre-condition holds and

its required resources are available. If the pre-condition does not hold, the node transits

to the Iteration-Ended state having the Failure outcome. If required resources are not

available, the node transits to the Waiting-Resource state from which it transits to the

Waiting state again when resources become available.

Upon transiting to the Executing state, the action of a child node is executed which

succeeds or fails. We assume all actions are performed in a synchronous way. By the

synchronous execution, we mean that the next micro step is performed when actions of

all child nodes in the Executing states are finished. For a Long running action which

could long delay a micro step, the node can start the action by commanding an external

component and then wait for the result to be received as an external event.

When the end condition of a node becomes true, an action node transits to Iteration-

Ended state and its success or failure is determined by checking its post condition. Then

if the repeat condition of the node is evaluated to true, the node repeats its execution

by transiting from the Iteration-Ended state to the Waiting state. Otherwise it transits

to the Finished state.

List nodes act as containers of other nodes. After a list node transits to the Executing

state, its child nodes transit to the waiting state which are then monitored for execution.

When the end condition of a list node becomes true, the list node does not immediately

transit to the Iteration-Ended state but to the Finishing state waiting for its children

being executed to finish their executions.
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A node fails whenever one of its pre, post, invariant or pre-empt conditions is violated.

A node also fails if one of its ancestors fails or a pause condition of one of its ancestors

evaluates to true. When a failure occurs, action nodes in the Executing state abort their

executions, list nodes being executed transit to the Failing state waiting for their children

to be aborted and action and list nodes in inactive or waiting states skip execution. The

outcome of a node specifies whether the execution of a node for the current iteration was

skipped, successful or failure, whether it was failure of the node itself or its ancestors or

whether it was due to the pre-emption of the node or its ancestors.

A node pauses its execution when its pause condition becomes true. The node first fails

its children and then goes to the Paused state. When the resume condition of a paused

node evaluates to true, it goes to the Resume state waiting for its resume nodes to finish

executing and then transits to the Waiting state. When a node is paused, its children are

put in the Inactive state if they were in the Inactive or Waiting state or if their repeat

condition evaluates to true. Other children transit and remain in the Finish state.

The execution semantics of resume/pause and abort/pre-empt nodes are different than

of the other types of nodes. These special types of nodes are for handling clean-up and

wind-down activities when other nodes are paused, resumed, failed or pre-empted. The

abort/pre-empt and resume/pause nodes transit from the Inactive state to the Wait-

ing state when their ancestors are aborting/pre-empting or resuming/pausing. A list

node which is failing/pre-empting or pausing/resuming waits for its abort/pre-empt or

resume/pause children nodes to finish their executions before aborting or pausing/re-

suming its execution.

A difference between RobAPL and PLEXIL is the introduction of resume/pause and

abort/pre-empt list nodes in RobAPL. The abort, pre-empt and pause list nodes are

considered for execution before their parents are failed, pre-empted or paused. Simi-

larly, resume list nodes are considered for execution before their parents are resumed.

This facilitates a structured and bottom-up implementation of clean-up and wind-down

activities for nodes that are failed, pre-empted or paused and support performing pre-

resumption tasks before resuming nodes. Another difference is the distinction made

between failing and pre-empting nodes in RobAPL to distinguish between execution

failure, and pre-emption as the result of resource scheduling. This supports utilizing an

external scheduler to monitor the plan execution to control pausing or pre-emption of

plans based on their deadlines, priorities and available resources.

In each micro step, node transitions are performed in parallel and synchronously. There

can be two sources of conflicts in parallel transitions of nodes. One type of conflict

is when two nodes require a common resource of which is not enough available to be

assigned to both. Similarly, access to shared variables and belief base and goal base
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needs to be synchronized. For example, two test nodes could attempt to bind a shared

variable to two different values. Whenever the execution of two nodes is conflicting,

they are executed in the order of their priorities. The other source of conflict is when

more than one transition is available for a node. Such conflicts are resolved based on

priorities of transitions.

7.3 Information Engineering Requirements

In BDI-based agent programming languages, information from outside sources is received

through a mix of active and passive perception mechanisms. In active perception, an

agent receives information as the result of executing actions. After executing an action

of a plan, the agent receives its result. The result is then used in the execution of the

rest of the plan, for instance, to update the agent’s goals and beliefs.

In passive perception, the agent receives information as events without taking explicit

actions for it. At the beginning of each deliberation cycle, the agent processes the events

received from its environment during the last deliberation cycle. In current BDI-based

agent programming languages such as 2APL and GOAL, events are processed by means

of event handling rules which generate plans in response. For example, event-handling

rules in 2APL are of the form 〈atom〉 ← 〈belquery〉|〈plan〉. Such a rule generates

a specific plan as the response to an event which matches its head. The 〈belquery〉
specifies in which belief state the rule can be applied. A generated plan may include

external actions to react to the event and actions to update the agent’s goals and beliefs.

The agent’s knowledge of the environment in APLs is managed in the belief base (e.g.

Prolog) and is updated through active and passive perceptions. This knowledge is

queried by plan generating rules to generate plans for the goals and events and to choose

and instantiate external actions during the plan execution. The interaction between the

agent’s belief base and the rest of the agent program is based on the request-response

pattern of interaction where the belief base executes queries from the agent program

and answers with the results.

Current APLs do not support on-flow processing of data due to their use of the request-

response pattern for processing, management and querying of sensory data. While the

on-flow processing functionalities can be implemented in current APLs using event han-

dling rules, the lack of a systematic support for a high-level and event-driven imple-

mentation of on-flow processing functionalities makes the implementation difficult and

inefficient for the following reasons.
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• Concurrency: While deliberation in APLs is a cyclic process consisting of sense,

reason, and act operations, on-flow processing is an event-driven process. There-

fore on-flow processing functionalities should be naturally performed in a separate

thread of execution from that of the deliberation cycle. This enables the con-

current processing of events while for example the deliberation cycle is blocked

with respect to the result of an external action. Also in distributed settings (e.g.

a robot’s software), event-processing should be performed in different places in

the network. There are various reasons for this such as to utilize the distributed

processing setting and to process events in the network closer to the components

generating them.

• Efficient implementation: Events of interest should be detected as soon as the last

information (i.e. event) necessary for their detection becomes available. To this

end, the belief base in current APLs should be continuously queried for events of

interest after each update of the belief base. Also events should be kept in mem-

ory as far as they can contribute in the construction of an event of interest and

removed afterwards. Removing unused events prevents the used memory growing

unbounded and increases the efficiency as those events are no longer considered in

detecting an event pattern. An efficient and event-driven implementation of on-

flow processing operations and necessary memory management mechanisms require

specialized algorithms and implementation care which is far more than a trivial

task to be delegated to an end user of a programming language. Furthermore, con-

struction and possibly scheduling of plans when on-flow processing operations are

implemented using APLs event-handling rules can cause a performance decrease.

• Correct implementation: Events might be received with delays which makes a cor-

rect implementation of some event patterns difficult without having a systematic

support.

• Ease of programming: implementing on-flow processing operations in current APLs

is inconvenient as a programmer needs to implement such operations at the low

level of directly working with event occurrence times. For example an event pattern

composed of 5 different event types needs at least the implementation of 5 event-

handling rules and many comparisons on content and temporal attributes of its

composed events.

The lack of an event-driven (i.e. data-driven) and incremental query evaluation mech-

anism also results in performance issues in evaluation of the belief queries of plan gen-

erating rules. As explained in Section 6, an incremental query evaluation mechanism is

needed to incrementally update the results of belief queries, as opposed to evaluate the

queries from scratch.
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Current agent programming languages also lack support for a high-level and efficient

implementation of the on-demand processing functionalities to deal with the continuity,

discreteness and asynchronicity of sensory data. For example, 2APL and GOAL use

standard Prolog systems as their underlying knowledge base for managing beliefs. Con-

sequently, they lack the on-demand processing supports added by the SLR language to

Prolog.

7.3.1 Information Engineering in RobAPL

Our design choice to support information engineering in RobAPL is to support the

development of separate Information Engineering Components (i.e. IECs) and their

interactions with RobAPL, rather than tightly integrating information engineering sup-

port in the language. One reason is that, as argued above, on-flow processing should be

performed in a different thread of execution from that of a robot’s deliberation cycle.

Furthermore, clean separation between the specification of IECs and the robot’s con-

trol component, implemented in RobAPL, supports the separation of concerns software

engineering principle. Such a separation enables the development of re-usable IECs for

an autonomous robot to be used by different control components developed for different

application scenarios. In addition to increasing the re-usability, such a separation is also

beneficial in multi-robots settings or when there is more than one control component.

In such cases, the information generated and managed by an IEC can be used by more

than one control component.

Moreover, enabling support for the development of IECs and their interactions with

a robot’s control component is aligned with our goal of providing such support for

agent programming languages in general rather than for a specific language. It also

enables utilizing different information engineering languages for developing IECs as such

languages evolve.

The Retalis language is a suitable choice to support information engineering in RobAPL

due to the following reasons. First, it is a logic programming based language. and hence

is easy to interface with BDI-based agent programming languages such as RobAPL.

Second, it provide a comprehensive support for on-flow and on-demand processing and

active queries unifying and advancing the information engineering functionalities of the

existing systems.

As described in Section 7.2.2, the start, end, invariant, pre-empt, pause and resume

conditions in RobAPL plans are queries on occurrence of events, the agent’s beliefs

and the node’s attributes. These conditions should be continuously monitored when
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they are allowed to make a transition in a node execution status. Using Retalis that

integrates support for active queries as the underlying information engineering system

of RobAPL, we can allow the implementation of these conditions by two mechanisms.

The first mechanism is the implementation using event-rules. In this case, a condition

is a complex event detected based on occurrence of a pattern of other events and a

query on the SLR knowledge base of the IEC that processes the event rule. The second

mechanism is the implementation using active queries. In this case, a condition is an

active query on the knowledge base of an IEC. In both cases, as soon as the condition

holds (i.e. the complex event is detected or the active query has an answer), the IEC

informs the RobAPL program. In both mechanism, we assume that the information

about the status, start time and end times of nodes are made available in the IEC

knowledge base.

7.4 Related Work

The plan execution control capabilities of existing agent programming languages are very

limited with respect to the requirements presented in Section 7.1. They provide limited

support for parallel, event-driven and hierarchical task execution, synchronization and

monitoring and then do not support the coordination of parallel execution of plans and

implementing win-down activities. The information engineering capabilities of agent

programming languages are also very limited. While there have been some attempts to

implement robotic applications using BDI-based APLs [Ross, 2003, Verbeek, 2002], our

research pioneers the systematic development of these languages for robotic applications.

While there are robotic plan execution languages that provide strong supports for the

complex plan execution control requirements discussed in Section 7.1.2, these languages

are often weak with respect to the plan execution coordination requirements discussed

in Section 7.1.3. There is no such language that meets both sets of requirements. Fur-

thermore, these languages are used to represent plans that are developed manually or by

planners. Consequently, these languages lack the advantages of BDI-based APLs such

as reasoning on goals and beliefs, reactive planning and plan repair capabilities.

The most close work to ours is the language of CRAM [Beetz et al., 2010] for robot

programming. In CRAM, a knowledge base is provided to maintain and reason on the

state of the environment which is similar to the belief base in APLs. Also in CRAM,

plans are first citizen objects that can be manipulated and reasoned upon. However,

the CRAM itself does not support the reactive planning and plan repair capabilities of

BDI-based APLs. Moreover, the plan representation and execution language of CRAM

provides no support for coordinating the parallel execution of plans over shared resources
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and limited support for performing wind-down activities. Furthermore, the language

comes with no formal semantics.

RobAPL extends the PLEXIL execution control and monitoring functionalities to mon-

itor the availability of resources and control the pausing, resumption and pre-emption

of plans. It also introduces new types of execution nodes to support the implementation

of safety and wind-down activities in pre-emption, pausing and resumption of plans.

While such monitoring and control functionalities provides a basic means for resource

assignment and systematic pausing and pre-emption of execution nodes, we also need

to incorporate a scheduling component for automatic scheduling of plans at run-time.

To support the runtime scheduling of plans in, we will look into utilizing constraint

satisfaction solvers such as EUROPA due to their expressive problem representation

and any-time behavior. This requires developing a mapping from the representation of

plans in PLEXIL into a constraint satisfaction problem for scheduling plans based on

their estimated execution times, priorities and deadlines and their absolute and relative

temporal orderings.

A related work is the PhD thesis of Fernando Koch [Koch, 2009] which investigates

the requirements of BDI-based agent programming languages to implement intelligent

mobile services. The BDI architecture is extended to support an efficient adaptation of

the deliberation process according to situations of the environment in order to increase

the responsiveness of the agent. This work shares many ideas and is complimentary to

ours. The architecture supports an event-driven scheduling of goals and intentions, goals

to which the agent has committed, according to their priorities. An observer module is

presented to monitor events in order to efficiently determine when to process goals to

generate plans and when to re-schedule the intentions, instead of checking all relevant

conditions in every deliberation cycle. The agent’s plans are executed in parallel threads

that can be paused, resumed and aborted at runtime. We did not discuss the scheduling

of goals. On the other hand, we presented a plan representation language that supports a

complex event-driven control and synchronization of actions within a plan. The focus of

the work of F. Koch is not on the plan representation and execution. More importantly,

the observer module to a large extent remains conceptual and no general support for its

implementation is provided. The on-flow processing and incremental query evaluation

approaches presented in this thesis can be used to provide such support.

A feature of PLEXIL is its formal semantics that allows to analyse various properties

of the language and PLEXIL plans. RobAPL extension to PLEXIL preserves the syn-

chronous execution model of PLEXIL, but formal analysis of RobAPL integrating a

PLEXIL-like plan execution control in a BDI-based deliberation cycle is left for future

work.
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7.5 Summary

The chapter presents work toward addressing plan execution control and information

engineering requirements of agent programming languages to facilitate their use in robot

programming. The PLEXIL language is adapted to be integrated in the BDI-architecture

implemented by BDI-based agent programming languages. This includes introducing

execution nodes for querying and manipulating agent’s beliefs and goals and presenting

a theoretical framework for interleaving the execution of PLEXIL-like plans with the

plan generating phase of agent programming languages in each deliberation cycle of an

agent.

RobAPL extends the PLEXIL language to support pausing, resuming and pre-empting

plans and facilitating the implementation of clean-up and wind-down activities when

pausing, resuming, pre-empting and aborting plans. Various future works are foreseen to

mature the presented work. The proposed language should be implemented and used in

practice to justify its usability for robot programming. Moreover, it is hard to manually

verify whether the presented semantics follow the intuitions behind various operations of

the language. It is also hard to manually verify whether various determinism properties

of PLEXIL hold for the RobAPL language. However, similarity of RobAPL syntax and

semantics to PLEXIL makes it amenable for formal analysis of its properties similar to

formal analysis of PLEXIL.



Chapter 8

Summary

Retalis is introduced in this thesis to develop information engineering components of

autonomous robots. Such components are used for timely processing, management and

querying of the robot’s sensory data to create and use knowledge of the robot’s envi-

ronment. Information engineering is an essential robotic technique to apply AI methods

such as situation awareness, task-level planning and knowledge-intensive task execu-

tion. Consequently, Retalis addresses a major challenge to make robotic systems more

responsive to real-world situations.

Retalis offers a high-level and declarative language for an efficient implementation of a

wide range of information engineering functionalities. The requirements of Retalis are de-

rived by generalizing from an extensive survey of research tasks related to robotic sensory

data processing, management and querying. This includes an analysis of the function-

alities supported by various classes of systems such as robotic frameworks, knowledge

bases and active memories. Retalis advances the state-of-the-art robotic information en-

gineering by integrating and extending the information engineering support of existing

systems and approaches. It is evaluated by its detailed comparison with existing systems

and empirical analysis of its performance.

The information engineering functionalities are classified into three models of informa-

tion processing. On-flow processing is concerned with processing flows of data on the

fly to detect complex events. On-demand processing is concerned with storing data

in memory and querying it on-demand. The third model is concerned with incremen-

tal re-evaluation of queries referred to as active queries. Active queries are evaluated

on-demand and their results are incrementally updated as new information is made

available.
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Robotic information engineering in its broad form includes all types of process that are

performed in robot software such as recognizing faces in images. This thesis is concerned

with a narrower form of processing data at system-level where data at higher levels of

abstraction is provided by perception components and can be represented in symbolic

form. In particular, the interest is on methods that support logical representation and

reasoning in processing of data. Logic based approaches for system-level processing and

management of data are dominant in robotics in order to integrate and reason about

different pieces of common-sense and domain knowledge to empower robots with AI

capabilities.

Previous work develops ontologies to model and represent data for service robots in

house-hold task execution and human-robot interaction applications. In such applica-

tions, logic-based systems are used in robot software as central components for knowl-

edge representation and reasoning. They enable ontological and logical reasoning and

are interfaced with other components to support, for instance, spatial and probabilistic

reasoning. Other work focuses on the integration and support of the processing and

communication of information among the robot’s software component.

This work provides a novel architecture for processing, management and querying of

information in robot software. An information engineering component developed in

Retalis processes its input flow of data on the fly and informs other components with

information of their interests. It actively records relevant information and prunes the

memory from unnecessary data. In addition to support querying the knowledge base,

it also supports an incremental evaluation of queries. Consequently, an information

engineering component is not a passive knowledge base that is updated and queried by

other robot software. Retalis provides a high-level syntax to program the information

engineering components and implements their functionalities efficiently.

Retalis integrates ELE and SLR, two logic programming based languages for on-demand

and on-flow processing, respectively. ELE is used for temporal and logical reasoning,

and data transformation in flows of data. SLR is used to implement a knowledge base

maintaining history of some events. SLR supports state-based representation of knowl-

edge built upon discrete sensory data, management of sensory data in active memories

and synchronization of queries over asynchronous sensory data. Retalis also supports

active logic program queries using the Tabled Optimized approach.
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8.1 Contribution

The contribution of this thesis is fivefold. The first contribution is the development

of SLR language. SLR advances the state-of-the-art robotic on-demand processing sys-

tems by supporting a blend and extension of functionalities provided by active memories

and logic-based knowledge management systems. On the one hand, histories of events

are maintained in memory instances with unique identifiers. Similar to active memory

systems, events are generated according to changes of the memory and histories are

maintained according to some policies. On the other hand, logical queries can be per-

formed on histories of data that are conveniently and efficiently accessed using some

high-level language operators. In this sense, memory instances act like small knowl-

edge bases whose content can be integrated and reasoned on. Consequently, a separate

garbage collection profile can be defined for each memory instance. In addition, memory

instances may contain knowledge that is not globally consistent but its pieces can be

separately reasoned about.

The second contribution is the extension of ELE with a dynamic subscription mechanism

and is integration with SLR languages concerning four issues. The first issue is to

allow an external component to (un-)subscribe itself or other components to information

processed by an information engineering component at runtime. Components can narrow

down the information they receive by specifying a set of conditions on the information.

Information can be filtered out based on the type of an event and a set of conditions

including logical reasoning on its content and occurrence time. The second issue is

to process flows of sensory data on the fly by ELE to extract relevant knowledge for

its compact storage in SLR. The third issue is to query SLR for the knowledge built

upon sensory data while processing flows of data. The fourth issue is to process events of

changes of SLR memory by ELE to notify external components with patterns of changes

that are of their interest.

The third contribution of the declarative Retalis language is a semantics based on a

model of sensory data taking into account their occurrence times. This may be con-

trasted to alternative semantics based on processing times. In this way, the model

captures and handles various issues related to asynchronous processing of data in robot

software. In ELE, semantics of temporal relations among events are based on their occur-

rence times and the processing engine of the language correctly handles the cases where

events are received unordered. SLR provides two mechanisms to synchronize queries

over asynchronous events. Using these mechanisms, an IEC ensures to have received all

relevant information from the perception components, before answering a query.
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The fourth contribution is development of the Tabled Optimized approach for incremental

evaluation of definite logic programs. This approach introduces a new way of interaction

with logic programs. As opposed to the classical query-response interaction mechanism,

a component can register a query and receive updates on results of the query. Changes

to results of a registered query is incrementally computed as the knowledge base changes,

significantly improving the performance over existing approaches.

The fifth contribution is design of the RobAPL language extending the plan execu-

tion support of existing agent programming languages to facilitate their applications

in robotics. The proposal extends the PLEXIL plan execution control language with

mechanisms for the coordination of parallel execution of plans and adapts it for plan

execution control in BDI architecture. It is discussed that Retalis is suitable to sup-

port information engineering requirements of RobAPL to develop a BDI-based robot

programming language.

Moreover, Retalis is an open-source1 and framework-independent software library. There-

fore, it can be used to empower the existing robotic frameworks with its wide range of

functionalities as opposed to, for instance, robotic active memories which are tightly

integrated with specific robotic frameworks. Retalis has been integrated in ROS and

used to implement a few proof-of-concept tasks for NAO robot, including data trans-

formation, runtime subscription, high-level event detection, sensory data management,

state-based representation and query synchronization.

8.2 Conclusion and Future Work

The time has now come to conclude this work and review the questions laid down in

introduction of this thesis. The following recalls and answers the questions and presents

some directions of future work.

The overall question of this thesis is how to provide a language support for robotic

information engineering. In autonomous robots with AI capabilities, logic-based rep-

resentation is necessary to integrate and reason about knowledge from various sources.

In particular, flexible action execution and human-robot interaction requires a formal

representation and reasoning about common-sense knowledge rather than implicitly en-

coding such knowledge in control instructions of the robot that would lead to poor re-

usability and scalability. Consequently, we investigate information engineering methods

that support logic-based knowledge representation and reasoning.

1The current release of Retalis does not include the support for active queries
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Support of information engineering requires identifying and supporting general function-

alities and design patterns that are useful in processing, management and querying of

data in a wide range of robotic tasks. To this end, we classify the information engineer-

ing functionalities into three models of information processing. These models have been

mostly the focus of separate research tasks. We derive the requirements of these models

by an extensive survey of related work.

The requirements are not binary and different systems may support them to some ex-

tend. Retalis is developed that support all three models to a large extend integrating

and advancing the existing approaches and systems. This is shown by a detailed compar-

ison of Retalis with related work. Efficient implementation of information engineering

functionalities is of a great consideration. We report a number of experiments showing

the efficiency and scalability of Retalis.

Further evaluation and development of Retalis requires analysis of its application for

information engineering in various robotic systems from different view points such as

usability, performance, generality and comprehensiveness. It is hoped that making the

Retalis open-source would encourage its use by the community to receive feedbacks

essential for its further development.

An important question of information engineering is what kind of knowledge is relevant

for robots and how to represent it. This question has been extensively studied in recent

research on robotic knowledge management systems and therefore is not studied in this

thesis. The W3C Web Ontology Language (OWL), based on description logics, is the

common language for modelling knowledge in robotics. This language and tools for

developing, maintaining and reasoning about OWL ontologies are being pushed forward

by a large effort from the semantic web community and therefore are expected to remain

as main technologies for knowledge representation and reasoning in robotics.

Logic programming systems such as Prolog used by Retalis, have been made mature over

time and for reasoning purposes have some practical advantages compared to standard

description logic reasoners. The advantages include a more compact knowledge repre-

sentation by having the closed world assumption, a better support of reasoning about

changes and actions by supporting a form of non-monotonic reasoning and easier inte-

gration of external functionalities and reasoning capabilities. An example of the latter

one is the integration of the GML library for Mathematical computations in Retalis

using the C++ interface of SWI-Prolog. While description logic reasoners are in general

very efficient, a number of techniques are presented and developed in this thesis showing

that Prolog can be used to process, manage and query a large flow of data on the fly

and in fact may be a better choice even in term of performance. Anyway, description

logics and logic programming have a large overlap in their representation expressiveness
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[Lemaignan, 2012] and there are software libraries to manipulate OWL knowledge in

Prolog, used for instance by the KnowRob system.

A short term future work of this thesis is to integrate existing robotic ontologies in Retalis

and to develop the RobAPL language using Retalis as its information engineering lan-

guage. Having these components in place provides us with a BDI-based cognitive frame-

work for implementing control and information engineering components of autonomous

robots that may be able to perform more complex task in dynamic environments and

be more responsive comparing to existing robots.

Information engineering of autonomous robot that are to ground their knowledge on

observations of their continuous and geometrical environments and to represent and

reason about common-sense knowledge is challenging in many aspects and much remains

to be explored in future research. For instance, we did not consider the uncertainty in

representation and reasoning about the robot’s sensory data. Most existing systems do

not deal with uncertainty at the system and decision making level leaving it to lower

level processing of data. With more advancement of formalisms and algorithms for

representing and reasoning about uncertainty however, such support is to be integrated

in information engineering. In the following, we discuss some future work regarding the

sub-questions of this thesis.

On-Flow Processing

This thesis suggests ELE as a suitable language for on-flow processing of information in

robot software. We argue that the general requirements of robotic on-flow processing

tasks are the same as the requirements for which on-flow processing languages such

as ELE have been developed. On-flow processing is an emerging research field and yet

formal comparison of expressiveness among existing languages is not available. However,

existing languages are converging into supporting a set of operators to describe patterns

of events and the supported operators provide a qualitative point of comparison. ELE is

chosen as one of the most expressive on-flow processing systems and due to its support

of logical reasoning on patterns of events.

A future work is to use ELE for processing and fusion of data in anchoring, situation

recognition and plan execution control and monitoring tasks of different applications.

The goal would be to understand and document the tasks that are convenient to develop

by ELE. For other tasks, the language may need to be extended or revised to provide a

better support while keeping its efficiency. In particular, various forms of consumption
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policies are often convenient and even necessary to implement on-flow processing func-

tionalities. ELE supports a few that change the semantics of the language in an ad-hoc

way. More comprehensive and systematic support of such policies is to be investigated.

Event rules can be added or removed from ELE at runtime. In addition, robot software

components can subscribe to events from ELE and ELE can be subscribed to events

from other components at runtime using the Retalis interface of ELE. An interesting fu-

ture work is to make such configurations automatic according to, for instance, the plan

execution context of the robot. For example, if an event is of interest in a given context,

the event rule required for its detection could be automatically recognized, parametrized

and added to ELE and ELE could be automatically subscribed to events that are rele-

vant for the rule. Such automatic adaptation of processes have been developed for the

DyKnow framework.

On-Demand Processing

SLR extends Prolog with domain specific operators to manage and query the asyn-

chronous and discrete flows of sensory data in the knowledge base. The SLR design

has aimed for simplicity and efficiency supporting memory management and state-based

representation at rather low levels of implementation. Further models and mechanisms

are needed to provide higher level support for a compact and efficient representation,

storage and querying of the robot’s knowledge built upon its sensory data, some outlined

below.

A future work is to integrate and extend existing robotic ontologies. Moritz Tenorth,

the developer of the KnowRob ontologies points out the need for a more thorough repre-

sentation of spatial information including semantic representation of units of measure,

coordinate frames and transformations among them. In a more broad sense, Severin

Lemaignan, the developer of ORO ontologies, points out the need for a more proper

context management. This includes identifying what contextual information is relevant

for robots and how to represent, store and reason about it. For instance, contextual

information could be attached to the facts in the knowledge base or groups of facts

could be modularized according to different context. Another future work pointed out

by Severin Lemaignan is management of inconsistent knowledge. Simply recognizing

inconsistent knowledge that, for instance, may arise due to error in perception is not

enough. Mechanisms are required to solve and remove inconsistency that would other-

wise prevent reasoning about the knowledge.

Another future work is to further support compact storage of information in memory.

In Retalis, the ELE language can be used to extract information from the input flows of
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data in order to make the information stored by SLR more contact. As pointed out by

Motitz Tenorth, an effective way to reduce memory usage is to compute expectations and

store only surprising data. Retalis supports this by querying SLR in on-flow processing.

In general, the granularity at which to record changes of the robot’s environment is to

be determined and mechanisms to compute and efficiently store the changes is to be

investigated. In addition, mechanisms for removing information about the past into

external long-term memories and accessing it when necessary may be required.

SLR supports state-based representation for instance to deal with temporal validity of

knowledge using next and prev operators. While these operators are simple and efficient

to reason about changes of the robot’s state of the environment, a more thorough support

of reasoning about changes of the robot’s state is required. In particular, mechanisms

are required to specify and reason about the relation between fluents, describing state

of the world, and actions and events, as studied in logical formalisms such as situation

calculus and event calculus.

Active Queries

Tabled Optimized approach supports the implementation of active queries which are

definite logic program queries. A short term future work is on incremental update of

query results after deletion of facts as well as developing more optimized data structures

for caching and accessing sub-goal results. A long term future work is to extend the

Tabled Optimized approach to support the negation as failure operator in logic program-

ming. In addition, supporting built-in Prolog predicates such as aggregation or random

predicates is other part of future work.

RobAPL Agent Programming Language

This thesis presents the design of RobAPL language for a BDI-based implementation of

control components of autonomous robots with advanced plan execution control capa-

bilities. The implementation of the language, as well as its integration with Retalis to

support information engineering in planning and plan execution is however left as future

work.
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Retalis API and Tutorial

This chapter presents the API of Retalis and provides a tutorial on implementation of

the NAO application presented in section 6.

A.1 Nodes

The Retalis ROS package includes two ROS nodes: retalis and retalis ros interface.

The retalis node is the main one, implementing on-flow and on-demand functionalities.

This node provide the following services to configure the Retalis at runtime.

• add output subscription: adds a subscription.

• delete output subscription: deletes a subscription.

• add memory: adds a memory instance.

• delete memory: deletes a memory instance.

The retalis ros interface automates the conversion between ROS messages and Retalis

events. It provides the following services to configure the Retalis at runtime.

• add input subscription: subscribes Retalis to a ROS topic.

• delete input subscription: un-subscribes Retalis from a ROS topic.
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A.2 Tutorial: Coordinate Transformation for NAO Robot

The usecase is to position the recognized objects in the world coordination frame and

reason on high-level events occurring in the environment.

Input data to Retalis are:

• Recognized objects (ar pose markers) positioned relative to the robot’s top camera

• Recognized faces

• Transformation among coordinate frames

Output data from Retalis are:

• Position of objects in the environment

• Events about situations of the environment

A.2.1 Programming

Retalis is programmed using three files, located in the application source folder of the

Retalis package:

• pub sub.xml : subscribes Retalis to ROS topics. It also specifies the message types

of topics to which Retalis may publish messages.

• goalPredicates.txt: creates a set of subscriptions and memory instances. A sub-

scription subscribes a ROS topic to Retalis by a policy to selectively send data

to that topic. A memory instance selectively records and maintains data in the

Retalis knowledge base based on a policy.

• eventRules.txt: specifies rules to perform complex event-processing functionalities

and to query the Retalis knowledge base.

A.2.2 Input from ROS

Retalis is subscribed to the tf, ar pose marker and face recognition/feedback topics as in

Listing 2.2, see the pub sub.xml file. Messages received by Retalis from the subscribed

topics are automatically converted to events. For example, Figure A.1 presents a mes-

sage of type tf/tfMessage. This message is converted to the Retalis event, presented in

Figure A.2.
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Figure A.1: Example of a tf/tfMessage message

Figure A.2: Example of a tf/tfMessage event

A.2.3 Event-Processing

Listing A.1 shows a part of the eventRules.txt program that splits each tf/tfMessage event

into a set of events by calling the split tf function. The function is implemented as a

Prolog rule. It splits the Transforms, its input list of geometry msgs/TransformStamped

messages, into the elements and generates a new tf event for each. Each tf event is

time-stamped according to header file of the corresponding message.
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1 n u l l do s p l i t t f ( Transforms ) <− t f 0 t f M e s s a g e ( Transforms ) .

2

3 s p l i t t f ( [ Head | Tale ] ) :−
4 Head = geometry msgs 0 TransformStamped (

5 s td msgs 0 Header ( , [ S , NS ] , Parent ) ,

6 Child ,

7 geometry msgs 0 Transform (

8 geometry msgs 0 Vector3 (P1 , P2 , P3) ,

9 geometry msgs 0 Quatern ion (Q1, Q2, Q3,Q4)

10 )

11 ) ,

12 new event ( t f ( Parent , Child , [ P1 , P2 , P3 ] , [ Q1 , Q2, Q3,Q4 ] , S ,NS) ,

13 s p l i t t f ( Tale ) .

14

15 s p l i t t f ( [ ] ) .

Listing A.1: Retalis Splitting tf/tfMessage events

For instance, when Retalis receives the event presented in Figure A.2, the following event

is generated:

1 t f ( ’ ”/odom” ’ , ’ ”/ b a s e l i n k ” ’ , [ 0 , −0 . 0 1 , 0 . 1 ] ,

[ 0 . 0 5 , 0 . 0 0 8 , −0 . 0 2 , 0 . 9 ] )

Listing A.2: Example of tf/tfMessage event

The event is time-stamped with the time-stamp (1413748205, 981209993), represented

in the datime format. The format of time-stamps are datime(Y,M,D,H,Min,S,Counter)

where Counter encodes nanoseconds since seconds (i.e. stamp.nsec in ROS messages).

A.2.4 Memorizing

The following clause in the goalPredicates.txt file creates a memory instance, named

odom base, that keeps the history of the last 2500 events of the form

tf( ’”/odom”’,’”/base link”’,V,Q). The list of conditions on events to be recorded is

empty. Events are recorded in the tf(V,Q) format.

For example, the event presented in Listing A.2 matches this memory instance. This

event is recorded by this memory instance as tf([0,-0.01,0.1], [0.05,0.008,-0.02,0.9]).
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A.2.5 Querying

The Prolog program in the eventRules.txt file together with the dynamic knowledge

maintained by memory instances represent a Prolog-based knowledge base. Queries to

the knowledge base are normal Prolog queries, but with two main differences, described

below.

A.2.5.1 Accessing Memory Instances

An example of using prev and next terms is presented in Listing A.3. The input values

to the interpolate tf(Id,T,Pos) function is the Id of a memory instance, keeping the

history of some tf events, and a time point. The tf events represent observations of

the transformation between two coordinate frames over time. From these observations,

this function interpolates the transformation between the frames at time T . This is

implemented as follows. The last observation before T and the first observation after

T are found using the prev and next terms. Then the position is linearly interpolated

by making a function call to the OpenGL Mathematics library that has been integrated

with Retalis.

1 i n t e r p o l a t e t f ( Id ,T, Pos ) :−
2 prev ( Id , t f (V1 ,Q1) , T1 , , T) ,

3 n e x t i n f ( Id , t f (V2 ,Q2) , T2 , , T) ,

4 d a t i m e i n t e r p o l a t e (T1 , T2 ,T, Fract ion ) ,

5 i n t e r p o l a t e q u a t e r n i o n (V1 , Q1, V2 , Q2 , [ Fract ion ] , Pos ) .

Listing A.3: interpolate tf function

The transform marker(RelativePos,Time,AbsolutePose) function in Listing A.4 uses the

interpolate tf function to position an object in the world reference frame. Given Rel-

ativePos, the position of an object relative to the camera at time Time, this func-

tion computes AbsolutePose, the position in the world, as follows. First, it changes

the time format from ROS time to datime. Then, it interpolates the transformation

between /odom-to-/base link, base link-to-torso, torso-to-Neck, Neck-to-Head and Head-

to-CameraTop frame at the time Time. Third, it applies these transformations on the

RelativePos by making a function call to the OpenGL Mathematics library. It is assumed

that the /odom frame is aligned with the world reference frame.

1 transform marker ( Relat ivePos , Time , AbsolutePose ) :−
2 conver t to dat ime (Time ,T) ,

3 i n t e r p o l a t e t f ( odom base ,T, P1) ,
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4 i n t e r p o l a t e t f ( base to r so ,T, P2) ,

5 i n t e r p o l a t e t f ( to r so neck ,T, P3) ,

6 i n t e r p o l a t e t f ( neck head ,T, P4) ,

7 i n t e r p o l a t e t f ( head cam ,T, P5) ,

8 t rans fo rm quate rn ion ( [ P1 , P2 , P3 , P4 , P5 , Re lat ivePos ] ,

9 AbsolutePose ) .

Listing A.4: transform marker function

A.2.5.2 Query Synchronization

To interpolate the position, for instance, between the /odom and /base link coordination

frames at time t, the position should have been observed, at least once, after t. The obser-

vations, tf/tfMessage messages here, are received asynchronously. Therefore, the interpo-

late tf(odom base,t,Pos) function should be evaluated only after the odom base memory

instance has been updated with an event occurring after t. This is realized in Retalis us-

ing a synchronized event, as follows. The synchronized(Event,Query,SynchConditions)

function, performs the Query, when the SynchConditions are satisfied and then generate

the Event. An example of a synchronized event rule is presented in Listing A.5. This

rule computes the position of recognized markers in the world and is read as follows.

1 syncron i zed (

2 geometry msgs 0 PoseStamped (

3 s td msgs 0 Header ( Seq , [ Sec , NSec ] , Name) ,

4 geometry msgs 0 Pose (

5 geometry msgs 0 Point (P11 , P12 , P13 ) ,

6 geometry msgs 0 Quatern ion (Q11 , Q12 , Q13 , Q14)

7 )

8 ) ,

9 transform marker (

10 RelPose , [ Sec , NSec ] , [ [ P11 , P12 , P13 ] , [ Q11 , Q12 , Q13 , Q14 ] ]

11 ) ,

12 [ [ odom base , Z ] , [ ba se to r so , Z ] , [ to r so neck , Z ] ,

13 [ neck head , Z ] , [ head cam , Z ] ]

14 )

15 <− ar marker ( Seq , Name, RelPose , Sec , NSec )

16 where (Z i s Sec + ( NSec ∗ 0 .000000001) ) .

Listing A.5: Synchronized event rule
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For each ar marker event, specified in Line 15, the position is computed by calling

the transform marker function, as in Line 9. After computing the position, a geome-

try msgs 0 PoseStamped event, as in Line 2, is generated. Such an event encodes the

marker’s name, its position in the world and the time of recognition.

The SyncConditions are specified in Line 12. These conditions specify that the trans-

form marker function should be evaluated, only after all odom base, base torso, torso neck,

neck head and head cam memory instances have been updated, at least once, with events

occurring after time Z. The time Z is the time of recognition of the marker.

Retalis performs the synchronization of events in an event-driven and efficient way. The

generation of a synchronized Event is postponed, until the SyncConditions are satisfied.

Postponing an event does not postpone the generation of other events and postponed

events are generated as soon as necessary conditions are met.

A.2.6 Subscription

Listing A.6 presents a subscription clause from the goalPredicates.txt file. The subscrip-

tion subscribes the topic marker1 to the PoseStamped events in which Name is ’”4x4 1”’.

Such events are generated by the synchronized event rule, presented in Listing A.5. They

contain the position of the marker 4x4 1 in the world coordination frame. The id of the

subscription is m1 which can be used to cancel the subscription at any time.

1 s ub s c r i b e (

2 geometry msgs 0 PoseStamped (

3 s td msgs 0 Header ( , , ’ ”4 x4 1 ” ’ ) , ) , [ ] ,

4 ,

5 marker1 ,

6 m1)

Listing A.6: Subscription



Appendix B

RobAPL Plan Execution Atomic

Transitions

Figures 1-17 present semantics of RobAPL plan execution atomic transitions in simi-

lar notations to transition diagrams of Plexil [Tara and Vandi, 2006] as follows. The

eclipses represent node states. The rectangles represent condition changes that cause a

transition from a node state. Only the condition change explicitly represented causes the

transition. The diamonds represent checks and the hexagons represents node outcomes.

Transitions are represented by directed arrows. If multiple transitions are simultane-

ously enabled, the top-down order of presenting transitions represent the precedence

order. The T, F and U represents the evaluation of a condition to true, false and un-

known. The abbreviations Inv, Prmt, P-failure and P-Prmt correspondingly represent

Invariant and Pre-empt conditions and Parent-Failure and Parent-Pre-empt outcomes.

The resume/pause and abort/pre-empt nodes are called wind-down list nodes.
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Figure B.1: Transitions of child and list nodes from the Inactive state
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Figure B.2: Transitions of child and list nodes from the Waiting state
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Figure B.3: Transitions of child and list nodes from the Waiting-Resources state
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Figure B.4: Transitions of abort/pre-empt nodes from the Inactive state

Figure B.5: Transitions of pause/resume nodes from the Inactive state

Figure B.6: Transitions of abort/pre-empt nodes from the Waiting state
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Figure B.7: Transitions of pause/resume nodes from the Waiting state

Figure B.8: Transitions of list nodes from the Executing state
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Figure B.9: Transitions of abort/pre-empt nodes from the Executing state

Figure B.10: Transitions of pause/resume nodes from the Executing state



Appendix B. RobAPL Plan Execution Atomic Transitions 175

Figure B.11: Transitions of child nodes from the Executing state

Figure B.12: Transitions from the Failing state
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Figure B.13: Transitions from the Finishing state

Figure B.14: Transitions from the Pausing state
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Figure B.15: Transitions from the Deactiving state

Figure B.16: Transitions from the Paused state
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Figure B.17: Transitions from the Iteration-Ended state
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Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth. CRAM — A Cognitive

Robot Abstract Machine for everyday manipulation in human environments. In 2010

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1012–

1017. IEEE, October 2010. ISBN 978-1-4244-6674-0.

Mark Birbeck. Professional XML. Wrox Press, 2001.

Nico Blodow, Dominik Jain, Zoltan-Csaba Marton, and Michael Beetz. Perception

and probabilistic anchoring for dynamic world state logging. 2010 10th IEEE-RAS

International Conference on Humanoid Robots, pages 160–166, December 2010. doi:

10.1109/ICHR.2010.5686341.

Mario Bollini, Jennifer Barry, and Daniela Rus. Bakebot: Baking cookies with the

pr2. The PR2 Workshop: Results, Challenges and Lessons Learned in Advancing

Robots with a Common Platform, IROS, 2011. URL http://web.mit.edu/mbollini/

Public/icra/BakebotICRASubmit.pdf.
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Summary in English

In order to engage and help in our daily life, autonomous robots are to operate in

dynamic and unstructured environments and interact with people. As the robot’s en-

vironment and its behaviour are getting more complex, so are the robot’s software and

the knowledge that the robot needs to carry out its operations. In collaborating with a

human to bake a cake, for instance, the robot needs a large number of components to

perceive and manipulate the objects and to communicate and coordinate the task with

the human. It also needs a large body of knowledge such as the cooking instruction,

the model of objects and common-sense knowledge such as, “eggs are usually found in

the fridge.” To cope with such complexity, there has been a large body of research

on robotic frameworks and robotic knowledge representation and reasoning systems.

Robotic frameworks increase the re-usability of the robot’s software by supporting its

decomposition into separate components and supporting the configuration, composition,

communication and coordination of the components. Robotic knowledge representation

and reasoning systems provide common language structures and tools to represent, share

and integrate pieces of knowledge and to reason about it. However, there is a lack of

tools and mechanisms to support aggregating and correlating sensory data to extract

knowledge of the robot’s environment and to manage, update and query such changing

knowledge in an efficient way.

The robot’s sensory components continuously and asynchronously process its sensory

data into events, discrete pieces of information. Information engineering is the process-

ing, management and querying of sensory events to create and use knowledge of the

robot’s environment. To be responsive to the situations of the environment, flows of

sensory events should be processed on the fly to detect the occurrence of complex events

(i.e. on-flow processing). Also, some information should be extracted and maintained in

memory to query the state of the environment in the past (i.e. on-demand processing).

In addition, planning and plan execution requires the repeated evaluation of the same

queries. Doing so efficiently requires an incremental approach to update the results of
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these queries when the robot’s knowledge base is updated (i.e. incremental query eval-

uation). The focus of this thesis is on supporting these three models of information

processing in autonomous robot software.

This thesis builds on top of recent advances in logic programming to provide a novel

architecture for robotic information engineering. It develops the Retalis language for a

high-level and efficient implementation of information engineering functionalities. Based

on logic programming, Retalis supports rule-based representation and reasoning about

knowledge in all three models of information processing. In particular, Retalis addresses

the problem of processing discrete and asynchronous flows of sensory data to efficiently

extract, represent and manage the robot’s knowledge of the state of the environment

which is frequently updated through perception and queried for planning and plan ex-

ecution. We discuss how Retalis can be used to develop a novel agent-based language

for autonomous robot programming and present the design specification of such a lan-

guage. Retalis has been released as a software package for the widely used ROS robotic

framework, making it accessible to the robotic community.



Samenvatting in het Nederlands

Autonome robots die hulp en ondersteuning moeten bieden in het dagelijkse leven op-

ereren in een dynamische en ongestructureerde omgeving en ze moeten kunnen com-

municeren met mensen. Naarmate het gedrag van de robot en de omgeving waarin de

robot opereert complexer worden, wordt ook de software en benodigde kennis die de

robot nodig heeft om zijn taken uit te voeren complexer. Om samen te kunnen werken

met mensen moet een robot uit een groot aantal componenten bestaan, voor taken

zoals waarneming, manipulatie van voorwerpen, communicatie en coördinatie van han-

delingen met mensen. Voor het uitvoeren van een taak zoals het bakken van een taart

moet een robot bijvoorbeeld kennis hebben van de ingrediënten en bereidingswijze maar

ook van praktische zaken zoals “eieren vindt men doorgaans in de koelkast.” Om met

dergelijke complexiteit om te kunnen gaan is er veel onderzoek verricht naar robotische

raamwerken en naar kennisrepresentatie en redeneersystemen voor robots. Door middel

van decompositie bevorderen robotische raamwerken de herbruikbaarheid van software

voor robots. Bovendien ondersteunen robotische raamwerken taken zoals configuratie,

compositie, communicatie en coördinatie van componenten. Kennisrepresentatie en re-

deneersystemen voor robots bieden algemene taalstructuren en hulpmiddelen voor de

representatie, uitwisseling en integratie van kennis. Desondanks bestaat er een gebrek

aan hulpmiddelen voor het verzamelen en correleren van sensorische gegevens, voor de

extractie van kennis over de omgeving waarin de robot opereert, en voor het managen,

updaten en queryen van deze kennis op een efficiënte manier.

De sensorische componenten van de robot verwerken continu op asynchrone wijze sen-

sorische gegevens tot discrete stukken informatie (zogenaamde events). Information

engineering betreft het verwerken, managen en opvragen van deze events met als doel

de creatie en aanwending van kennis over de omgeving waarin de robot opereert. Om re-

sponsief te zijn op situaties in de omgeving, moet de stroom van sensorische events on the

fly verwerkt worden, zodat complexe events gedetecteerd kunnen worden (zogenaamde

on-flow processing). Bovendien moet sommige informatie uit deze gegevensstroom wor-

den geëxtraheerd en opgeslagen in het geheugen, zodat het mogelijk is om informatie

over de toestand van de omgeving in het verleden op te kunnen vragen (zogenaamde
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on demand-processing). Tot slot moeten, in planning- en uitvoertaken, dezelfde queries

vaak herhaaldelijk worden uitgevoerd. Het efficient uitvoeren van deze queries vraagt

om een incrementele benadering teneinde de resultaten van deze queries te updaten

wanneer de kennisbank van de robot wordt geüpdatet (zogenaamde incremental query

evaluation). Deze drie modellen voor gegevensverwerking vormen gezamenlijk het infor-

mation engineering probleem van deze studie.

In dit proefschrift bouwen wij voort op recente ontwikkelingen in de toepassing van logic

programming als architectuur voor robotic information engineering. We beschrijven de

Retalis taal, die we ontwikkeld hebben voor efficiënte high-level implementatie van in-

formation engineering functionaliteit. De Retalis taal is gebaseerd op logic programming

en ondersteunt rule-based representatie en redenatie voor de drie eerder genoemde mod-

ellen voor gegevensverwerking. De Retalis taal maakt het mogelijk om gegevensstromen

bestaande uit discrete en asynchrone sensorische gegevens te verwerken. Retalis on-

dersteunt daarmee de extractie, representatie en het management van kennis over de

toestand van de omgeving waarin de robot opereert, met name wanneer deze kennis

veelvuldig wordt geüpdatet als gevolg van waarnemingen, en wordt gequeryd ten beho-

eve van planning en planuitvoer. Verder bespreken we hoe Retalis kan worden gebruikt

voor de ontwikkeling van een nieuwe agent-gebaseerde taal voor het programmeren van

autonome robots en we presenteren de ontwerpspecificatie van deze taal. Retalis is uit-

gebracht als een softwarepakket voor het veelgebruikte ROS robotisch raamwerk en is

daarmee beschikbaar voor ontwikkelaars in het vakgebied robotica.
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