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Summary

Consider an associative operation G: X2 - X
on a set X and denote G(a,b) merely by ab.
By definition, we have (ab)c = a(bc) for all
a,b,c € X and this property enables us to
define the expression abc unambiguously by
setting abe = (ab)c. More generally, for any
ai,as,...,a, € X, we can set

a1a203 " Gy = ( ((a1a2)a3)...)an

and associativity shows that this expression
can be computed regardless of how parenthe-
ses are inserted. This means that the identity

al...aj QG = Aqct (a] ...ak)...an

holds for any integers 1 < j <k < n.

This latter condition has been considered in
aggregation function theory to extend the
classical associativity property of binary op-
erations to variadic operations, i.e., those op-
erations that have an indefinite arity. In this
note we survey the most recent results ob-
tained not only on this extension of associa-
tivity but also on some variants and general-
izations of this property, including barycen-
tric associativity and preassociativity.
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1 Introduction

Let X denote a nonempty set, called the alphabet, and
its elements are called letters. The symbol X stands
for the set U,>q X™ of all tuples on X. Its elements
are called strings and denoted by bold roman letters

X,y,Z, ... If we want to stress that such an element is
a letter of X, we use non-bold italic letters x, vy, z,. ..
We assume that X has only one element; we denote it
by € and call it the empty string. We endow the set X*
with the concatenation operation for which the empty
string € is the neutral element. For instance, if x € X™
and y € X, then xye = xy € X™*!. For every string x
and every integer n > 1, the power x” stands for the
string obtained by concatenating n copies of x. By
extension, we set x° = . The length of a string x is
denoted by |x|. For instance, we have |e| = 0.

Let Y be a nonempty set. Recall that, for every integer
n >0, a function F: X" - Y is said to be n-ary. Also,
a function F: X* - Y is said to have an indefinite arity
or to be variadic or *-ary (pronounced “star-ary”). A
unary operation on X * is a particular variadic function
F: X* —» X* called a string function over the alphabet
X.

The main functional properties for variadic functions
that we present and investigate in this survey are given
in the following definition.

Definition 1.1. A string function F: X* - X* is said
to be
e associative if, for every x,y,z € X*, we have
F(xyz) = F(xF(y)z);
e barycentrically associative (or B-associative) if,
for every x,y,z € X, we have
F(xyz) = F(xF(y)¥z).

A variadic function F: X* - Y is said to be

o preassociative if, for every x,y,y’,z € X*, we have
F(y) = F(y') = F(xyz) = F(xy'z);

e barycentrically preassociative (or B-preassociati-
ve) if, for every x,y,y’,z € X*, we have

F(y) = F(y')
lyl = |yl

} = F(xyz) = F(xy'z).



For any variadic function F: X* — Y and any integer
n > 0, we denote by F, the n-ary part of F, i.e., the
restriction F|x» of F to the set X™. We also let X* =
X*~ {e} and denote the restriction F|x+ of F' to X~
by F*. The range of any function f is denoted by

ran(f).

A variadic function F: X* — Y is said to be

e a variadic operation on X (or an operation for

short) if ran(F) ¢ X u {e}.
o standard if F(x) = F(e) if and only if x = ¢.

e c-standard if £ € Y and if we have F(x) = ¢ if and
only if x = €.

2 Associativity and variants

In this main section we investigate the properties given
in Definition 1.1.

2.1 Associativity

We first discuss the associativity property for the class
of variadic operations, which constitutes an important
subclass of string functions. Recall that a binary op-
eration G: X2 — X is said to be associative if

G(G(zy)z) = G(xG(y2)),  wy,zeX.

A huge number of associative binary operations have
been discovered and investigated for years. They are at
the root of the concepts of group and semigroup. For
instance, the set intersection and union over a power
set are associative binary operations. Logical connec-
tives “and” and “or” as well as many of their fuzzy
counterparts are also associative binary operations.

More recently, associative binary operations have also
been studied as real or complex functions within the
theories of functional equations and aggregation func-
tions (see, e.g., [15]). Various classes of associative
binary operations over real intervals can be found in
[2,4,6-9,11,14-17,20-22, 24,33, 34].

Let us now consider an associative standard opera-
tion F: X* - X u{e}. This operation is necessarily e-
standard and can always be constructed from an asso-
ciative binary operation G: X2 - X simply by setting
Fo=¢, Fy =idx, F> =G, and F,11(yz) = Fo(F,.(y)z)
for every n > 2. To give an example, from the bi-
nary operation G:R? — R defined by G(x,y) = = +v,
we can construct the associative standard operation
F:R* - Ru{e} defined by F,(x) = X7, z; for every
integer n > 1.

This construction process immediately follows from
the following important proposition.

Proposition 2.1 ( [19,27,28]). A standard operation
F: X* > X u{e} is associative if and only if the fol-
lowing conditions hold.

(a) Fo(€) =g, FloFy=F, FloF5=F5.

(b) Fa(zy) = Fa(Fi(x)y) = Fa(zFi(y)) for all z,y €
X.

(¢) Fs is associative.

(d) F(yz) = F(F(y)z) for ally e X* and all z € X
such that lyz| > 3.

Proposition 2.1 provides a characterization of associa~
tive standard operations F: X* — X u {e} in terms
of conditions on their constitutive parts F,, (n > 0).
Conditions (a)—(c) are actually necessary and suffi-
cient conditions on Fy, Fy, and Fy for F' to be as-
sociative, while condition (d) provides an induction
property which shows that every F,, (n > 3) can be
constructed uniquely from F.

Corollary 2.2. Any associative standard variadic op-
eration is completely determined by its unary and bi-
nary parts.

Let us now say some words about associativity for
string functions. It is noteworthy that several data
processing tasks correspond to associative string func-
tions. For instance, the function which corresponds to
sorting the letters of every string in alphabetical order
is associative. Similarly, the function which consists
in transforming a string of letters into upper case is
also associative. In such a context, associativity is a
natural property since it enables us to work locally on
small pieces of data at a time.

It is to be noted that the definition of associativity
remains unchanged if the length of the string xz is
bounded by one. This observation provides an equiv-
alent but weaker form of associativity.

Proposition 2.3 ( [19,27,28]). A function F: X* —
X* is associative if and only if F(xyz) = F(xF(y)z)
for any x,y,z € X* such that |xz| < 1.

2.2 B-associativity

By definition, B-associativity expresses that the func-
tion value of a string does not change when replacing
every letter of a substring with the value of this sub-
string. For instance, the arithmetic mean over the set
of real numbers, regarded as the e-standard operation
F:R* > Ru{e} defined as F,,(x) = + YL, a; for every
integer n 2 1, is B-associative.

Remark 1. The name B-associativity is justified by
the following geometric interpretation. Consider a set
of identical homogeneous balls in X = R™. Each ball
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Figure 1: Barycentric associativity

is identified by the coordinates x € X of its center.
Let F: X* - X u{e} be the e-standard variadic oper-
ation which carries any set of balls into their barycen-
ter. Because of the associativity-like property of the
barycenter, the operation F' has to satisfy the func-
tional property of B-associativity (see Fig. 1).

A noteworthy class of B-associative variadic operations
is given by the so-called quasi-arithmetic mean func-
tions, axiomatized independently by Kolmogoroff [18]
and Nagumo [32].

Definition 2.4. Let I be a nontrivial real interval (i.e.,
nonempty and not a singleton), possibly unbounded.
A function F:T* - R is said to be a quasi-arithmetic
mean function if there is a continuous and strictly
monotonic function f:T — R such that

F,(x) = fl(iif(xi)), n>1.

The following theorem gives the axiomatization by
Kolmogoroff. Even though Kolmogoroff considered
functions F:U,»1 [™ — I, here we have extended the
domain of these functions to I*. Also, it has been re-
cently proved [30] that the idempotence property of F),
(i.e., F,(2™) = x for every x €I), originally stated in
Kolmogoroff-Nagumo’s characterization, is not needed
and hence can be removed. Note also that a variant
and a relaxation of Kolmogoroff-Nagumo’s characteri-
zation can also be found in [12,13,22].

Theorem 2.5 (Kolmogoroff-Nagumo). Let I be a
nontrivial real interval, possibly unbounded. A func-
tion F:1" — 1 is B-associative and, for every integer
n 2 1, the n-ary part F,, is symmetric, continuous, and
strictly increasing in each argument if and only if F is
a quasi-arithmetic mean function.

The existence of nonsymmetric B-associative opera-
tions can be illustrated by the following example, in-
troduced in [21, p. 81] (see also [26]). For every z € R,
the e-standard operation M*R* - Ru {e} defined as

Z?zl Zn—z(l _ Z)i—l Z;

M? = ” -
n(X) Z?:l Zn—z(l _ 2)1—1 ’

nzl,

is B-associative. Actually, one can show [25] that any
B-associative e-standard operation over R whose n-
ary part is a nonconstant linear function for every
n 2 1 is necessarily one of the operations M* (z € R).
More generally, the class of B-associative polynomial
e-standard operations (i.e., such that the n-ary part
is a polynomial function for every m > 1) over an in-
finite commutative integral domain D has also been
characterized in [25].

2.3 Preassociativity

By definition, a function F: X* — Y is preassociative if
the function value of any string does not change when
modifying any of its substring without changing its
value. For instance, any e-standard operation F:R* —
Ru{e} defined by F,,(x) = f(Xi1 x;) for every integer
n > 1, where f:R — R is a one-to-one function, is
preassociative.

The following two results clearly show that preassocia-
tivity is a generalization of associativity.
Proposition 2.6 ( [19]). A function F: X* - X* is
associative if and only if it is preassociative and satis-
fies F=FoF.

Proposition 2.7 ( [27,28]). An e-standard operation
F:X* > X u{e} is associative if and only if it is pre-
associative and satisfies F* = Fy o F'*.

Apart from the fact that it constitutes a less stringent
form of associativity, preassociativity has the remark-
able feature of avoiding functional composition in its
definition. Actually, Propositions 2.6 and 2.7 suggest
that preassociativity is precisely the property we ob-
tain from associativity when cleared of any functional
composition. Due to this feature, preassociativity can
be considered within the wider class of functions taking
as inputs strings over an alphabet X and valued over
a possibly different set Y. A natural and noteworthy
example of a preassociative function is the mapping
that outputs the length of strings.

We now show that all preassociative functions F: X* —
Y are actually strongly related to associativity, even
if the set Y is different from X*. More precisely, we
give a characterization of the preassociative functions
F:X* - Y as compositions of the form F = fo H,
where H: X* - X* is associative and f:ran(H) - Y
is one-to-one.

Theorem 2.8 ( [19]). Let F:X* - Y be a function.
The following conditions are equivalent.

(i) F is preassociative.

(i1) There exists an associative function H: X* - X*
and a one-to-one function f:ran(H) - Y such
that F'= fo H.



Corollary 2.9 ([27,28]). Let F: X* > Y be a standard
function. The following conditions are equivalent.

(i) F is preassociative and satisfies ran(Fp) =
ran(F).

(i) There exists an associative e-standard operation
H:X* - X u{e} and a one-to-one function
firan(H*) > Y such that F* = fo H™.

Corollary 2.9 enables us to construct preassociative
functions very easily from known associative variadic
operations. Just take nonempty sets X and Y, an
associative e-standard operation H: X* - X u{e}, and
a one-to-one function f:iran(H*) - Y. For any e ¢
Y, the standard function F: X* - Y u {e} defined by
F(e)=eand F* = fo H* is preassociative.

Example 2.10. Recall that the multilinear extension
of a pseudo-Boolean function f:{0,1}" — R is the
unique multilinear polynomial function MLE(f) ob-
tained from f by linear interpolation with respect to
each of the n variables. Its restriction to {0,1}" is the
function f. Let X and Y denote the class of n-variable
pseudo-Boolean functions and the class of n-variable
multilinear polynomial functions, respectively. For
any e ¢ Y and any e-standard operation H:X* —
X u{e}, the standard function F: X* — Y u{e} defined
by F(e) =e and F* = MLE o H* is preassociative.

Corollary 2.9 also enables us to produce axiomatiza-
tions of classes of preassociative functions from known
axiomatizations of classes of associative functions. Let
us illustrate this observation on an example. Further
examples can be found in [29].

Let us recall an axiomatization of the Aczélian semi-
groups due to Aczél [1] (see also [7,8]).

Proposition 2.11 ( [1]). Let T be a nontrivial real
interval, possibly unbounded. An operation H:I? — 1
s continuous, one-to-one in each argument, and as-
sociative if and only if there exists a continuous and
strictly monotonic function p:1 - J such that

H(z,y) = ¢ " (o(2)+¢(y)),

where J is a real interval of one of the forms ]—o0,b][,
]-00,b], Ja,o[, [a,00[ or R = ]-oco,00[ (b <0 < a).
For such an operation H, the interval I is necessarily
open at least on one end. Moreover, ¢ can be chosen
to be strictly increasing.

It is easy to see that there is only one associative &-
standard operation H:I* - I u {e} whose binary part
coincides with the one given in Proposition 2.11. This
operation is defined by

Hy(x) = ¢! (iap(ml)), n>l.

Combining this observation with Corollary 2.9 pro-
duces the following characterization result.

Theorem 2.12 ( [29]). Let I be a nontrivial real
interval, possibly unbounded. A standard function
F:T* - R is preassociative and unarily quasi-range-
idempotent, and Fy and Fy are continuous and one-
to-one in each argument if and only if there exist con-
tinuous and strictly monotonic functions ¢:1 - J and
:J - R such that

Fu(x) - w(iw(%)), 01,

where J is a real interval of one of the forms ]—o0,b[,
]-00,b], Ja, o[, [a,00[ or R = ]—00,00[ (b <0 < a).
For such a function F, we have ¢ = F; o ™! and I is
necessarily open at least on one end. Moreover, p can
be chosen to be strictly increasing.

2.4 B-preassociativity

Contrary to preassociativity, B-preassociativity recalls
the associativity-like property of the barycenter and
may be easily interpreted in various areas. In decision
making for instance, in a sense it says that if we express
an indifference when comparing two profiles, then this
indifference is preserved when adding identical pieces
of information to these profiles. In descriptive statis-
tics and aggregation function theory, it says that the
aggregated value of a series of numerical values re-
mains unchanged when modifying a bundle of these
values without changing their partial aggregation.

The following result is the barycentric version of
Proposition 2.6 and shows that B-preassociativity is
a generalization of B-associativity.

Proposition 2.13 ( [30]). A function F:X* - X* is
B-associative if and only if it is B-preassociative and

satisfies F(x) = F(F(x)X) for all x e X*.

The e-standard sum operation F:R* - Ru{e} defined
as F(x) = YL, x; for every n > 1 is an instance of
B-preassociative function which is not B-associative.

A string function F: X* — X* is said to be length-
preserving if |F(x)| = |x| for every x € X*.
Proposition 2.14 ( [31]). Let F:X* - X* be a
length-preserving function. Then F is associative if
and only if it is B-preassociative and satisfies F,, =
F, o F, for everyn>0.

We now show that, along with preassociative func-
tions, all B-preassociative functions F: X* — Y are
strongly related to associativity. More precisely, B-
preassociative functions can be factorized as composi-
tions of length-preserving associative string functions
with one-to-one unary maps.



Theorem 2.15 ( [31]). Let F: X* - Y be a function.
The following assertions are equivalent.

(i) F is B-preassociative.

(ii) There exist an associative and length-preserving
function H: X* - X* and a sequence (fn)ns1 of
one-to-one functions f,:ran(H,) — Y such that
F,=f,0oH, for everyn>1.

The following corollary provides an alternative factor-
ization result for B-preassociative functions in which
the inner functions are B-associative operations. For
every integer n > 1, the diagonal section dg: X - Y of
a function F: X™ - Y is defined as 6p(x) = F(z™).

Corollary 2.16 ( [30]). Let F: X* >Y be a function.
The following assertions are equivalent.

(i) F is B-preassociative and satisfies ran(dp,) =
ran(F,,) for every n> 1.

(i) There exists a B-associative e-standard operation
H:X* - X u{e} and a sequence (fn)ns1 of one-
to-one functions fp:ran(H,) - Y such that F,, =
fno H, for everyn>1.

Corollary 2.16 enables us to produce axiomatizations
of classes of B-preassociative functions from known
axiomatizations of classes of B-associative functions.
Let us illustrate this observation on the class of quasi-
arithmetic pre-mean functions.

Definition 2.17 ( [30]). Let I be a nontrivial real
interval, possibly unbounded. A function F:1* — R
is said to be a quasi-arithmetic pre-mean function if

there are continuous and strictly increasing functions
fil>Rand f,:R >R (n>1) such that

Fo(x) = fn(iif(ml))’ n > 1.

As expected, the class of quasi-arithmetic pre-mean
functions includes all the quasi-arithmetic mean func-
tions (just take f, = f7!). Actually the quasi-
arithmetic mean functions are exactly those quasi-
arithmetic pre-mean functions which are idempotent
(i.e., such that f, o f = idy for every integer n > 1).
However, there are also many non-idempotent quasi-
arithmetic pre-mean functions. Taking for instance
fn(x) = nz and f(x) = x over the reals I = R, we ob-
tain the sum function. Taking f,(z) = exp(nz) and
f(z) = In(z) over T = ]0,00[, we obtain the product
function.

We have the following characterization of the quasi-
arithmetic pre-mean functions, which generalizes
Kolmogoroff-Nagumo’s axiomatization of the quasi-
arithmetic mean functions.

Theorem 2.18 ( [30]). Let I be a nontrivial real in-
terval, possibly unbounded. A function F:1* - R is B-
preassociative and, for every n > 1, the function F, is
symmetric, continuous, and strictly increasing in each
argument if and only if F is a quasi-arithmetic pre-
mean function.

3 Historical notes

In the framework of aggregation function theory,
the associativity property for functions having an
indefinite arity was introduced first for functions
F:Ups1 X™ - X satisfying Fy = idx (see [21, p. 24];
see also [5, p. 16], [15, p. 32], [17, p. 216] for alternative
forms). Then it was introduced for e-standard variadic
operations F: X* - X u{e} (see [6,27,28]), and finally
for string functions (see [19]).

A basic form of B-associativity was first proposed
for symmetric real functions F:U,>; R” — R inde-
pendently by Schimmack [35], Kolmogoroff [18], and
Nagumo [32]. More precisely, Schimmack introduced
the condition F(yz) = F(F(y)¥!z) while Kolmogo-
roff and Nagumo considered the condition F(yz) =
F(F(y)¥z) with |z| > 1. A more general definition
appeared more recently in [3] and [21] and has then
been used to characterize various classes of functions;
see, e.g., [12,13,23,25,26]. The general definition of B-
associativity given in Definition 1.1 appeared in [31].
For general background on B-associativity and its links
with associativity, see [15, Sect. 2.3] and [30]. The
B-associativity property and its different versions are
known under at least three different names: associativ-
ity of means [10], decomposability [14, Sect. 5.3], and
barycentric associativity [3,30].

Preassociativity was introduced in [27,28] to generalize
the associativity property. B-preassociativity was in-
troduced in [30] to generalize the B-associativity prop-
erty. The basic idea behind this latter definition goes
back to 1931 when de Finetti [10] introduced the fol-
lowing associativity-like property for mean functions:
for any u € X and any x,y,z € X* such that |xz| > 1
and |y| > 1, we have F(xyz) = F(xuPlz) whenever
F(y) = F(u).
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