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Abstract

This paper proposes to enhance low resolution dynamic
depth videos containing freely non–rigidly moving objects
with a new dynamic multi–frame super–resolution algo-
rithm. Existent methods are either limited to rigid objects,
or restricted to global lateral motions discarding radial dis-
placements. We address these shortcomings by accounting
for non–rigid displacements in 3D. In addition to 2D opti-
cal flow, we estimate the depth displacement, and simulta-
neously correct the depth measurement by Kalman filtering.
This concept is incorporated efficiently in a multi–frame
super–resolution framework. It is formulated in a recursive
manner that ensures an efficient deployment in real–time.
Results show the overall improved performance of the pro-
posed method as compared to alternative approaches, and
specifically in handling relatively large 3D motions. Test
examples range from a full moving human body to a highly
dynamic facial video with varying expressions.

1. Introduction
The recent developments in depth sensing technologies,

be it time–of–flight (ToF) cameras or structured light cam-
eras, have seen the explosion of their applications in gam-
ing, automotive sensing, surveillance, medical care, and
many more. The major problem of these sensors is their
high contamination with noise and low spatial resolution.
In addition, in the case of large distances between the sen-
sor and the scene of interest, a similar effect is observed
even by using a relatively high resolution depth sensor.

In this paper, we consider dynamic depth videos with one
or multiple moving objects deforming non–rigidly. This is
a very typical scenario encountered in people sensing, cloth
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Figure 1. Different super–resolution methods applied to a real low
resolution dynamic depth sequence captured with a ToF camera
with SR scale factor of r = 4. (a) Low resolution depth frame. (b)
Bicubic interpolation. (c) Patch Based Single Image Super Res-
olution (SISR) [5]. (d) Upsampling for Precise Super Resolution
(UP-SR) [4]. (e) Proposed algorithm (50 ms per frame).

deformation, hand gesture, variations of facial expressions,
to name a few. Such scenes are more challenging than static
scenes. Indeed, in addition to challenges due to noise and
outliers, non–rigid deformations in 3D cause occlusions,
which result in missing data, and in undesired holes.
Super-resolution (SR) algorithms have been proposed as
a solution to this problem. Two categories of algorithms
may be distinguished; multi–frame SR which use multiple
frames in an inverse problem formulation to reconstruct one
high resolution frame [16, 7, 4]. The second category is
known as single–image SR. It is based on dictionary learn-
ing and a heavy training [5, 12].

In [4], we proposed the first dynamic multi-frame depth
SR. This algorithm is, however, limited to lateral motions,
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and fails in the case of radial deformations. Moreover, it is
not practical due to a heavy cumulative motion estimation
process applied to a certain number of frames buffered in
the memory. Alternatively, a recursive formulation may be
thought of as in [15] where an iterative SR was proposed
based on a block affine motion model resulting in a rela-
tively efficient processing. This, however, is not applicable
to non–lateral motions.
Earlier attempts for recursive SR approaches have proposed
to use a Kalman filter formulation [8, 10, 9, 13, 18]. These
methods work only under two conditions: constant transla-
tional motion between low resolution frames which repre-
sents the system motion model (i.e. transition matrix), and
intensity consistency assumption between each pair of im-
ages in the video sequence. In the case of dynamic depth
videos, these assumptions are not always valid. Indeed, for
such videos, individual pixel motions have to be tracked
through the video. A local motion model such as a dense
2D optical flow as in [4] is not sufficient, it is necessary
to account for the full 3D motion in the SR reconstruction,
known as scene flow, or the 2.5D motion, known as range
flow.

For a reduced complexity we herein propose to approxi-
mate range flow by estimating radial motions on top of the
2D optical flow. Moreover, we propose a recursive depth
multi-frame SR algorithm by using multiple Kalman filters.
To ensure efficiency, we propose to treat a video as a set
of one–dimensional signals. By so doing, we show that
we reach an approximation of range flow; which enables us
to take radial deformations into account in the SR estima-
tion. To adequately preserve the smoothness properties of
the depth surface, and remove noise and blur without over
smoothing, we propose to use a multi–level version of the
iterative bilateral total variation regularization given in [11].
In summary, the contribution of this paper is a new mutli–
frame depth SR algorithm which has the following prop-
erties: 1) Recursive, hence, suitable for real–time applica-
tions. 2) Robust to radial motions without explicitly com-
puting range flow. 3) Accurate depth video reconstruction
thanks to the proposed multi–level iterative bilateral regu-
larization. An overview of the proposed algorithm is shown
in Figure 2.

The remainder of the paper is organized as follows: Sec-
tion 2 gives the problem for depth video super–resolution.
Section 3 explains the proposed concept for handling ra-
dial motion within the super–resolution framework. The
proposed recursive depth video SR algorithm is presented
in Section 4. Quantitative and qualitative evaluations and
comparisons with other approaches are given in Section 5.
Finally, the conclusion is given in Section 6.
The following notations will be considered: bold small let-
ters correspond to vectors. Bold capital letters denote matri-
ces. Italic letters are scalars. pt denotes a pixel position on

image plane at instant t, and mt denotes the corresponding
2D optical flow at t.

2. Background and Problem Formulation

We briefly review the problem of multi–frame SR of dy-
namic depth videos and highlight the challenges that remain
untackled by existing approaches. Let us consider a video
of N observed low resolution (LR) depth frames of a dy-
namically deforming depth scene F acquired using a depth
sensor, ToF or structured light. The scene is assumed to
contain one or multiple moving objects. Each LR frame
gt, t = 1, · · · , N , is represented by a column vector of
size (m × 1) corresponding to the lexicographic ordering
of frame pixels. The objective of depth SR is to reconstruct
a higher resolution (HR) depth video {ft, t = 1, · · · , N},
where each frame is of size (n × 1) with n

m = r ∈ N∗ be-
ing the SR scale factor. The classical multi–frame depth SR
problem may be simplified by reconstructing one HR frame
at a time, referred to as reference frame, by using the ob-
served video. Therefore, if the reference time is t0, then the
problem is to reconstruct ft0 using the N ′ = (N − t0 + 1)
preceding measurements. The operation may be repeated
for t0 = 1, · · · , N . A noisy LR observation is modelled as
follows:

gt = DHMt
t0ft0 + nt, t0 ≤ t and t, t0 ∈ [1, N ] ⊂ N∗,

(1)
where D is a known constant downsampling matrix of di-
mension (m× n). The system blur is represented by the
time and space invariant matrix H. The (n× n) matrices
Mt

t0 correspond to the motion between ft0 and gt before
their downsampling. The vector nt is an additive white
noise at time instant t. Without loss of generality, both H
and Mt

t0 are assumed to be block circulant matrices, so they
are commutative. As a result, the estimation of ft0 may be
decomposed into two steps; estimation of a blurred HR im-
age, followed by a deblurring step.

While the LidarBoost algorithm [16] is a reference
method for multi–frame depth SR, it is only applicable to
static scenes for object scanning. The UP-SR algorithm
in [4] is, so far, the only depth multi–frame SR proposed
for dynamic scenes. This algorithm is based on two key
components. The first one is to densely upsample the ob-
served LR sequence prior to any operation. This is shown
to ensure a more accurate registration of frames. The result-
ing r–times upsampled image is defined as gt ↑= U · gt,
where U is an (n × m) upsampling matrix. The second
component of UP-SR is to use a cumulative motion com-
pensation approach between the reference frame and all ob-
servations. This operation starts by estimating the motion
between consecutive frames, using classical dense 2D opti-
cal flow estimation between the upsamled versions gt−1 ↑



Figure 2. Flow chart of the proposed multi–frame depth super–resolution algorithm for dynamic depth videos containing one or multiple
non–rigidly deforming objects.

and gt ↑, namely,

M̂t
t−1 = arg min

M
Ψ (gt−1 ↑,gt ↑,M) , (2)

where Ψ is a dense optical flow-related cost function and

gt ↑= Mt
t−1gt−1 ↑ +δt. (3)

The vector δt is referred to as the innovation image. It con-
tains novel points appearing, or disappearing due to occlu-
sions or large motions. This innovation is assumed in [4]
to be negligible. In addition, similarly to [8], for ana-
lytical convenience, it is assumed that all pixels in gt ↑
originate from pixels in gt−1 ↑ in a one to one mapping.
Therefore, each row in Mt

t−1 contains 1 for each posi-
tion corresponding to the address of the source pixel in
gt−1 ↑. This assumption of bijectiveness implies that the
matrix M̂t

t−1 is assumed to be an invertible permutation,
s.t., [M̂t

t−1]−1 = M̂t−1
t . Furthermore, its estimate leads to

the following registration to gt−1 ↑:

gt−1
t ↑= M̂t−1

t gt ↑ . (4)

Using a cumulative motion compensation approach, the reg-
istration of a non–consecutive frame gt ↑ to the reference
gt0 ↑ is achieved as follows:

gt0
t ↑= M̂t0

t gt ↑= M̂t0
t0+1 · · · M̂

t−1
t︸ ︷︷ ︸

(t− t0) times

·gt ↑ . (5)

Choosing the upsampling matrix U to be the transpose of
D, the product UD = A gives a block circulant matrix A
that defines a new blurring matrix B = AH. Therefore,
the estimation of ft0 starts by estimating its blurred version
ht0 = Bft0 . The data model in (1) becomes

gt0
t ↑= ht0 + νt, t0 ≤ t and t, t0 ∈ [1, N ] ⊂ N∗, (6)

where νt = M̂t0
t U ·nt is an additive noise vector of length

n. It is assumed to be independent and identically dis-
tributed. Using an L1–norm, the blurred estimate is found

by pixel–wise temporal median filtering of the upsampled
registered LR observations such as:

ĥt0 = arg min
ht0

N∑
t=t0

‖ht0 − gt0
t ↑ ‖1 = medt{gt0

t ↑}Nt=t0 .

(7)
Then, as a second step, follows an image deblurring to re-
cover f̂t0 from ĥt0 . The robustness of the UP-SR algo-
rithm in handling large motions is achieved thanks to the
cumulative motion approach combined with upsampling, as
has been shown experimentally in [4]. However, as de-
scribed above, the only considered motions are lateral mo-
tions using 2D dense optical flow. Radial displacements in
the depth direction, often encountered in depth sequences,
are therefore not handled. Moreover, the UP-SR registra-
tion step is based on a heavy cumulative motion estimation
which makes this algorithm not suitable for real–time appli-
cations.

3. Range Flow Approximation

We argue that the above mentioned challenges may be
resolved by incorporating the 2.5D version of dense optical
flow [20], known as range flow, in the UP-SR framework.
The direct computation of range flow can be complex. In-
stead of its direct computation, we propose an approxima-
tion by decomposing range flow into 2D optical flow and a
filtered radial motion.

3.1. Flow Decoupling

In order to address the problem of radial motions, it is
important to consider the full 3D motion per pixel. At a
time instant t, and for a pixel position pt = (xt, yt) on the
sensor image plane, the depth surface F can be defined as
the following mapping:

F : R2 × N → R3

pt 7→ (xt, yt, zt(xt, yt)) . (8)



The deformation of the surface F from (t0 − 1) to t0 takes
the point pt0−1 to a new position pt0 . Given ut0 = ∂xt

∂t

∣∣
t0

and vt0 = ∂yt

∂t

∣∣∣
t0

, the vector ` = (ut0 , vt0 , 1)T represents

the direction of the displacement from pt0−1 to pt0 . The
surface deformation may then be expressed through the
derivative of F following the direction ` resulting in a
range flow (ut0 , vt0 , wt0) where the lateral displacement is
mt0 = (ut0 , vt0) and the radial displacement in the depth
direction is wt0 = ∂zt

∂t |t0 .
Applying the gradient constraint on the depth total

derivative, we find the range flow constraint as first pro-
posed in [20], and defined as follows:

ut0
∂zt
∂xt

∣∣∣∣
t0

+ vt0
∂zt
∂yt

∣∣∣∣
t0

+ wt0 =
dzt
dt
. (9)

In this work we propose to decouple mt0 from the radial dis-
placement wt0 . We compute mt0 using available approaches
for 2D optical flow estimation. We compute the 2D optical
flow using the low resolution 2D intensity images associ-
ated with the considered depth sensor. Note that the inten-
sity (amplitude) images provided by the ToF camera can not
be used directly. Their values differ significantly depending
on the integration time and object distance from the cam-
era. Thus, in order to guarantee an accurate registration,
we apply a standardization step similar to the one proposed
in [17] prior to motion estimation, see Figure 3. If the inten-
sity images are not available (e.g. using synthetic data) the
2D optical flow can be directly estimated using the depth
images after a preprocessing step with a bilateral filter. The
bilateral filter is only used in the preprocessing step while
the original depth data is mapped in the registration step.
We define the registered depth image from (t0 − 1) to t0
as z̄t0t0−1. Consequently, the radial displacement wt0 may
be approximated by the temporal difference between depth
values, i.e.,

wt0 ≈ zt0(pt0)− z̄t0t0−1(pt0). (10)

This first approximation of wt0 is an initial value that re-
quires further refinement directly accounting for the system
noise. We propose to do that using tracking with a Kalman
filter as detailed in Section 3.2.

3.2. Refinement by Filtering

Let us start by simplifying the notation as zt(pt) ≡ zt.
Since, by definition, we have zt−1(pt−1) = z̄tt−1, then we
may write z̄tt−1(pt) ≡ zt−1. We consider the following
state vector:

st =

(
zt
wt

)
, (11)

where both the depth measurement and the radial displace-
ment are to be filtered. To apply the Kalman filter, one needs

(a) (b)

(c) (d)
Figure 3. Correcting the amplitude images using a standardization
step [17] . We can see in (a) and (b) the original amplitude im-
ages for a dynamic scene containing a moving hand towards the
camera where the intensity (amplitude) values differ significantly
depending on the object distance from the camera. The corrected
amplitude images for the same scene are presented in (c) and (d),
where the intensity consistency is preserved.

to introduce a Gaussian system; so a noisy depth observa-
tion may be modelled as

z̃t = b · st + nt, (12)

where the observation vector is b = (1, 0)T , and the ob-
servation noise nt is Gaussian with the variance σ2

n, i.e.,
nt ∼ N (0, σ2

n). We assume a constant velocity model
with an acceleration γt following a Gaussian distribution
γt ∼ N (0, σ2

a). The dynamic model is then defined as{
zt = zt−1 + wt−1∆t+ 1

2γt∆t
2.

wt = wt−1 + γt∆t.
, (13)

which can be rewritten as:

st = Kst−1 + γt, (14)

where K =

(
1 ∆t
0 1

)
, and γt = γt

(
1
2∆t2

∆t

)
is the process

error which is white Gaussian with the covariance

Q = σ2
a∆t2

(
∆t2/4 ∆t/2
∆t/2 1

)
. (15)

Using the standard Kalman equations, the prediction is
achieved as{

ŝt|t−1 = Kst−1|t−1,

P̂t|t−1 = KPt−1|t−1K
T + Q.

(16)

The error in the prediction of ŝt|t−1 is corrected using the
observed measurement z̃t. This error is considered as the



difference between the prediction and the observation, and
weighted using the Kalman gain matrix Gt|t which is cal-
culated as follows:

Gt|t = P̂t|t−1b
T
(
bP̂t|t−1b

T + σ2
n

)−1

. (17)

The corrected state vector st|t =

(
zt|t
wt|t

)
and corrected

error covariance matrix Pt are computed as follows:{
st|t = ŝt|t−1 + Gt|t

(
z̃t − bŝt|t−1

)
,

Pt|t = P̂t|t−1 −Gt|tbP̂t|t−1,
(18)

This per pixel filtering is extended to all the depth frame and
incorporated in the SR framework in Section 4.

4. Proposed Recursive Depth Video Super-
Resolution

In what follows, we define a recursive multi–frame
super–resolution algorithm by incorporating the Kalman fil-
tering framework of Section 3.2 to the dynamic depth video
SR problem. In addition to handling radial motions, and
in order to properly preserve non–rigidity, we propose to
recursively filter each pixel trajectory separately by assum-
ing that all trajectories are independent. This assumption
requires a corrective step to bring back the correlation be-
tween neighbouring pixels from the original depth surface
F . To that end, we use a maximum a posteriori (MAP) es-
timation where we propose a multi–level iterative bilateral
total variation (TV) regularization. The advantage of the
processing per pixel is to keep the exact same formulation as
in Section 3.2; hence, all the required matrix inversions will
be for (2 × 2) matrices. The burden of traditional Kalman
filter–based SR as in [8] will consequently be avoided. For
a recursive multi–frame SR algorithm, instead of using the
whole video sequence of lengthN to recover one frame, we
use the preceding recovered frame f̂t−1 to estimate ft from
the current upsampled observation gt ↑.

Similarly to the UP–SR algorithm, we estimate ft in two
steps; first, finding a blurred version ĥt as the result of the
Kalman filtering, then a deblurred version f̂t as the result of
the MAP iterative regularization.

4.1. Blurred Estimation

To extend the range flow approximation of Section 3 to a
full frame, the point pt is now considered as an element of
a grid constituting a discrete sampling of R2. We, thus, end
up with discrete positions pit = (xit , y

i
t ) such that i ∈ [1, n].

We define the depth image at t as the column vector of all
the blurred depth values zt(pit ), and write ht = [zt(p

i
t )],∀i.

The obtained motion vectors are further scaled using the SR
factor r. The scaled motion vectors are then used in or-
der to register the depth images f̂t−1 and gt ↑, resulting in

f̄ tt−1. The registration step reorders the pixels in order to
have a correspondence that enables a direct pixel–wise fil-
tering over time. Moreover, to apply the Kalman filter of
Section 3.2, one needs to define a Gaussian system simi-
lar to the one defined by (12) and (14). The observation
model in (12) is applicable to the SR data model in (6) un-
der the assumption of a zero mean additive white Gaussian
noise. The dynamic model in (14) is actually equivalent to
the model in (3), and one can prove that the innovation is
related to the depth displacement wi

t−1 and acceleration un-
certainty γit of the pixel pit by the following equation:

δt(i) = wi
t−1∆t+

1

2
γit (∆t)2. (19)

The result of the n joint filters run in parallel is the blurred
depth image estimate ĥt.
Furthermore, in order to separate background from fore-
ground depth pixels, and tackle the problem of flying pixels,
especially around edges we define a fixed threshold τ such
that:{

Continue the track if |z̃t − ẑt|t−1| < τ ;

New track & spatial median if |z̃t − ẑt|t−1| > τ.

The choice of the threshold value τ is related to the type of
the used depth sensor and the level of the sensor–specific
noise. In order to correct the artifacts due to this one–
dimensional processing of an image, we propose a multi-
level iterative bilateral TV deblurring step as described in
the next section.

4.2. Multi–Level Iterative Bilateral TV Deblurring

In order to estimate the deblurred high resolution depth
image ft from ĥt, we apply the following MAP deblurring
framework:

f̂t = argmin
ft

(
‖Bft − ĥt‖1 + λΓ(ft)

)
, (20)

where λ is the regularization parameter, and B is the blur-
ring matrix. We choose to use a bilateral TV regularizer [11]
defined as:

Γ(ft) =

i=I∑
i=−I

j=J∑
j=−J

α|i|+|j| ‖ ft − Si
xS

j
yft ‖1 . (21)

The matrices Si
x and Sj

y are shifting matrices which shift ft
by i, and j pixels in the horizontal and vertical directions,
respectively. The scalar α ∈]0, 1] is the base of the expo-
nential kernel which controls the speed of decay [3]. In
order to effectively deblur ĥt while keeping the details of
ft without over smoothing, we apply the MAP estimation
in (20) where we propose to use a multi–level version
in a similar fashion as in [14, 19, 6]. Combined with a



steepest descent numerical solver, the proposed solution is
described by the following pseudo–code:

for l = 1, · · · , L
for k = 1, · · · ,K

f̂k,l = f̂(k−1),l − β
{
BT sign

(
Bf̂(k−1),l − ht

)
+
λ

2l

i=I∑
i=−I

j=J∑
j=−J

α|i|+|j|[I− S−jy S−ix ]sign
(
f̂(k−1),l − Si

xS
j
y f̂(k−1),l

)}
end for
ht ←− f̂K,l

end for

The parameter β is a scalar which represents the step
size in the direction of the gradient, and I is the identity
matrix and sign(·) is the sign function. In our experiments,
we used three levels with L = 3, and seven iterations per
level with K = 7.

5. Experimental Results
In this section, we evaluate the performance of the pro-

posed algorithm using: (i) synthetic depth videos, and (ii)
real depth videos of dynamic scenes captured by a ToF cam-
era (pmd CamBoard nano). We show the effectiveness of
the proposed algorithm as compared to state–of–art meth-
ods where we provide quantitative and qualitative evalua-
tions.

5.1. Synthetic Data

In order to provide a quantitative evaluation, we first start
with a simple and fully controlled set–up. We use a gener-
ated sequence of 20 depth frames of a synthetic hand mov-
ing radially with respect to the camera (5 cm difference be-
tween each two successive frames, and ∆t = 0.1 seconds).
We downsample the sequence with a scale factor of r = 2,
and r = 4. These sequences are further degraded with ad-
ditive noise with σ varying from 10 to 80 mm. The created
LR noisy depth sequences are then super–resolved using the
proposed algorithm with, r = 1, r = 2, and a scale factor
of r = 4. In the simple case where r = 1, the SR reso-
lution problem is merely a denoising one. In other words,
the objective is not to increase resolution, and hence there
is no blur due to upsampling. In contrast, by increasing the
SR factor r more blurring effects occur leading to a higher
3D error in the final reconstructed HR scene Figure 4. In
order to evaluate the quality of the filtered depth data and
the filtered velocity, we randomly choose one pixel pt and
track its filtered depth value zt and its filtered velocity ∆zt

∆t
through the super-resolved sequence. We do the same for all
SR factors. In Figure 5, we report the tracking results of the

Figure 4. 3D RMSE in mm of the super–resolved hand sequence
using the proposed method with different SR scale factors. In-
creasing the SR factor leads to a higher 3D reconstruction error.
This is due to the blurring effects of the upsampling process and
the lower resolution of the used LR depth sequence as compared
to the one used with r = 1.

randomly chosen pixels from the super-resolved sequences
with r = 1, r = 2, and r = 4, and a fixed noise level of
σ = 50 mm. We can see how the depth values are filtered
(blue lines) as compared to the noisy depth measurements
(red lines) for all scale factors as shown in Figure 5 (a), (b),
and (c). Similar behaviour is observed for the correspond-
ing filtered velocities in Figure 5 (d), (e), and (f).

5.2. Publically Available Data

We tested the proposed method using a complex scene
with a highly non–rigidly moving object. We use the pub-
licly available “Samba” [1] data. This dataset provides a
real sequence of a full 3D dynamic dancing lady scene
with high resolution ground truth. This sequence is quite
complex where it contains both non–rigid radial motions
and self–occlusions, represented by hands and leg move-
ments, respectively. We use the publicly available tool-
box V-REP [2] to create from the “Samba” data a synthetic
depth sequence with fully known ground truth. We choose
to fix a depth camera at a distance of 2 meters from the 3D
scene. Its resolution is 10242 pixels. The camera is used
to capture the depth sequence. Then, similarly to the pre-
vious set-up, we downsample the obtained depth sequence
with r = 4 and further degrade it with additive noise with
standard deviation σ varying from 0 to 50 mm. The cre-
ated LR noisy depth sequence is then super–resolved us-
ing state–of–art methods, the conventional bicubic interpo-
lation, UP-SR [4], SISR [5], and the proposed algorithm.
To measure the accuracy of each method, we back project
the reconstructed HR depth images to the 3D world using
the camera matrix. Then, we calculate the 3D RMSE of
each back projected 3D point cloud as compared to the 3D



Figure 5. Tracking results for different depth values randomly chosen from the super-resolved sequences with different SR scale factors
r = 1, r = 2, and r = 4, are plotted in (a), (b), and (c), respectively. The corresponding filtered depth displacements are shown in (d), (e),
and (f), receptively.

σ = 25mm
Hand Torso Leg Full body

Bicubic 10.5 7.5 8.9 8.8
SISR 9.0 5.6 8.4 6.6

UP-SR 22.2 15.6 9.3 15.9
Proposed 9.6 3.6 7.5 6.3

σ = 50mm
Hand Torso Leg Full body
25.2 14.9 13.1 16.5
14.1 6.9 9.6 9.7
29.7 17.4 12.8 23.5
9.9 4.8 8.1 9.5

Table 1. 3D RMSE in mm for the super–resolved dancing girl sequence using different SR methods. These methods are applied on LR
noisy depth sequences with two noise levels. The super–resolution scale factor for this experiment is r = 4.

Figure 6. 3D Plotting of one super-resolved depth frame with r = 4 using: (b) bicubic interpolation, (c) Patch based single image SR
(SISR) [5], (d) UP-SR [4], (e) our new proposed algorithm. (a) 3D plotting of one LR depth frame. (f) 3D ground truth.

ground truth. Table 1 shows the 3D reconstruction error of
the bicubic, UP-SR [4], and SISR [5] methods as compared
to the proposed method versus different noise levels. The
comparison is done at two levels: (i) Different parts of the
reconstructed 3D body, namely, hand, torso, and the leg, and

(ii) full reconstructed 3D body. As expected, by applying
the conventional bicubic interpolation method directly on
depth images, a large error is obtained. This error is mainly
due to the flying pixels around object boundaries. Thus, we
run another round of experiments using a modified bicubic



interpolation, where we remove all flying pixels by defin-
ing a fixed threshold. Yet, the 3D reconstruction error is
still relatively high across all noise levels, see Table 1. This
is due to the fact that bicubic interpolation does not profit
from the temporal information provided by the sequence.
We observe in Table 1 that the proposed method provides,
most of the time, better results as compared to state–of–art
algorithms. In order to visually evaluate the performance of
the proposed algorithm, we plot the super–resolved results
of the dancing girl sequence in 3D. We show the results for
the sequence at the noise level of σ = 30 mm. We note
that the proposed algorithm outperforms state–of–art meth-
ods by keeping the fine details (e.g. the details of the face)
as can be seen in Figure 6 (e). Note that the UP-SR algo-
rithm fails in the presence of radial movements and self–
occlusions, see red boxes in Figure 6 (d). In contrast, the
SISR algorithm can handle these cases, but cannot keep the
fine details due to its patch–based nature, see Figure 6 (c).
In addition, a heavy training phase is required.

5.3. Real Data

Finally, we tested the proposed algorithm on a real se-
quence captured with a ToF camera (pmd CamBoard Nano).
The captured LR depth sequence contains a non rigidly
moving face. Samples of the LR captured frames are plot-
ted in the first and second rows of Figure 7. We super–
resolve this sequence using the proposed algorithm with an
SR scale factor of r = 4. Obtained results are given in 3D in
the third and fourth rows of Figure 7. The obtained results
show the effectiveness of the proposed algorithm in reduc-
ing the noise, and further increasing the resolution of the
reconstructed 3D face under large non–rigid deformations.
To visually appreciate these results as compared to state–
of–art methods, we tested the bicubic, UP-SR, and SISR on
the same LR real depth sequence. Obtained results show
the superiority of the proposed algorithm as compared to
other methods, see Figure 1. In Figure 8, we plot the fil-
tered depth value of a randomly chosen tracked pixel. The
blue line shows the filtered trajectory of this pixel as com-
pared to its row noisy measurement in red. The algorithm’s
run–time on this sequence is 50 ms per frame on a 2.2 GHz
i7 processor with 4 Gigabyte ram.

6. Conclusion
A new real–time dynamic multi–frame super-resolution

algorithm for depth videos has been proposed. It has been
shown to be effective in enhancing the resolution and the
quality of low resolution dynamic scenes with highly non–
rigidly moving objects. Obtained results show the robust-
ness of the proposed algorithm against radial motions. This
is handled by first estimating the depth displacement, and si-
multaneously correcting the depth measurement by Kalman
filtering. For the sake of real–time processing, the proposed

Figure 7. Results of applying the proposed algorithm on a real se-
quence captured by a LR ToF camera (120×160 pixels) of a non–
rigidly moving face. First and second rows contain a 3D plotting
of selected LR captured frames. Third and fourth rows contain the
3D plotting of the super-resolved depth frames with r = 4.

Figure 8. Filtered depth value profile of a tracked pixel through the
super-resolved sequence of a real face, with SR scale factor of 4.

algorithm is based on per–pixel temporal processing of the
depth video sequence such that multiple one–dimensional
signals are filtered separately. Each filtered depth frame is
further refined using a multi–level iterative bilateral total
variation regularization after filtering and before proceed-
ing to the next frame in the sequence. In the case of self-
occlusions, the proposed algorithm needs a few number of
depth measurements before converging, which is not suit-
able for some applications. Our future work will focus on
increasing robustness to self–occlusions.
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