Extended Finite Element Method with Global Enrichment

K. Agathos¹ E. Chatzi² S. P. A. Bordas^{3,4} D. Talaslidis¹

¹Institute of Structural Analysis and Dynamics of Structures Aristotle University Thessaloniki

> ²Institute of Structural Engineering ETH Zürich

³Research Unit in Engineering Sciences Luxembourg University

⁴Institute of Theoretical, Applied and Computational Mechanics Cardiff University

2015

K. Agathos et al.

GE-XFEM

2015 1 / 82

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Outline Problem statement

Governing equations Weak Form

Global enrichment XEEM

Motivation Related works Crack representation Tip enrichment Jump enrichment Point-wise matching Integral matching Displacement approximation Definition of the Front Elements Numerical examples

2D convergence study

3D convergence study

Conclusions

Referenceshos et al.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3D body geomery

<ロト <問ト < 目と < 目と

Governing equations

Equilibrium equations and boundary conditions:

$oldsymbol{ abla} \cdot oldsymbol{\sigma} + oldsymbol{b} = oldsymbol{0}$	in	Ω
$u = ar{u}$	on	Γ _u
$\pmb{\sigma}\cdot \pmb{n}= \pmb{ar{t}}$	on	Γ _t
$\pmb{\sigma}\cdot \mathbf{n}=0$	on	Γ_c^0
$oldsymbol{\sigma} \cdot {\sf n} = oldsymbol{ar{t}}_c$	on	Γ_c^t

Kinematic equations:

$$\epsilon = \nabla_s u$$

Constitutive equations:

$$\pmb{\sigma}=\pmb{D}$$
 : $\pmb{\epsilon}$

K. Agathos et al.

GE-XFEM

2015 4 / 82

イロト イヨト イヨト イヨト 二日

Weak form of equilibrium equations

Find $\boldsymbol{u} \in \mathcal{U}$ such that $\forall \boldsymbol{v} \in \mathcal{V}^0$

$$\int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{u}) : \boldsymbol{\epsilon}(\boldsymbol{v}) \ d\Omega = \int_{\Omega} \boldsymbol{b} \cdot \boldsymbol{v} \ d\Omega + \int_{\Gamma_t} \boldsymbol{\bar{t}} \cdot \boldsymbol{v} \ d\Gamma + \int_{\Gamma_c^t} \boldsymbol{\bar{t}}_c \cdot \boldsymbol{v} \ d\Gamma_c^t$$

where :

$$\mathcal{U} = \left\{ \boldsymbol{u} | \boldsymbol{u} \in \left(\mathcal{H}^{1} \left(\Omega \right) \right)^{3}, \boldsymbol{u} = \boldsymbol{\bar{u}} \text{ on } \Gamma_{u} \right\}$$

and

$$\mathcal{V} = \left\{ \boldsymbol{\nu} | \boldsymbol{\nu} \in \left(\mathcal{H}^{1}\left(\boldsymbol{\Omega} \right) \right)^{3}, \boldsymbol{\nu} = 0 \text{ on } \boldsymbol{\Gamma}_{u} \right\}$$

K. Agathos et al.

2015 5 / 82

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

- XFEM for industrially relevant (3D) crack problems
 - Requires robust methods for stress intensity evaluation.
 - Requires low solution times and ease of use.
- but standard XEEM leads to
 - Ill-conditioning of the stiffness matrix for "large" enrichment domains.
 - Lack of smoothness and accuracy of the stress intensity factor field along the crack front.
 - Blending issues close at the boundary of the enriched region.
 - Problem size for propagating cracks ("old" front-dofs must be kept for stability of time integration schemes).

K. Agathos et al.

2015 6 / 82

イロト 不得 トイラト イラト 一日

Global enrichment XFEM

There exists different approaches to alleviate the above difficulties:

- Preconditioning (e.g. Moës; Menk and Bordas)
- Ghost penalty (Burman)
- Stable XFEM/GFEM (Banerjee, Duarte, Babuška, Paladim, Bordas) behaviour for realistic 3D crack not clear.
- Corrected XFEM/GFEM (Fries, Loehnert)
- SIF-oriented (goal-oriented) error estimation methods for SIFs (Ródenas, Estrada, Ladevèze, Chamoin, Bordas)
- Restrict the variability of the enrichment within the enriched domain: doc-gathering, cut-off XFEM (Laborde, Renard, Chahine, Salün and the French team ;-)

K. Agathos et al.

Global enrichment XEEM

An XEEM variant is introduced which:

- Extends dof gathering to 3D through global enrichment.
- Employs point-wise matching of displacements.
- Employs integral matching of displacements.
- Enables the application of geometrical enrichment to 3D.

K. Agathos et al.

GE-XFEM

2015 8 / 82

イロト 不得 トイラト イラト 一日

Related works

Similar concepts to the ones introduced herein can be found:

- In the work of Laborde et al.
 - \rightarrow dof gathering
 - \rightarrow point-wise matching

(Laborde, Pommier, Renard, & Salaün, 2005)

- In the work of Chahine et al.
 - \rightarrow integral matching

(Chahine, Laborde, & Renard, 2011)

K. Agathos et al.

イロト イポト イヨト イヨト

Related works

- In the work of Langlois et al.
 - $\rightarrow\,$ discretization along the crack front
 - (Langlois, Gravouil, Baieto, & Réthoré, 2014)
- In the s-finite element method
 - $\rightarrow\,$ superimposed mesh
 - (Fish, 1992)

イロト イポト イヨト イヨト

Crack representation

Level set functions:

- $\phi(\mathbf{x})$ is the signed distance from the crack surface.
- $\psi(\mathbf{x})$ is a signed distance function such that:

$$\begin{array}{l} \rightarrow \ \nabla \phi \cdot \nabla \psi = 0 \\ \\ \rightarrow \ \phi \left({\bf x} \right) = 0 \ \text{and} \ \psi \left({\bf x} \right) = 0 \ \text{defines the crack front} \end{array}$$

Polar coordinates:

$$r = \sqrt{\phi^2 + \psi^2}, \qquad heta = \arctan\left(rac{\phi}{\psi}
ight)$$

K. Agathos et al.

2015 11 / 82

イロト 不得 トイラト イラト 一日

Crack representation

Tip enrichment

Enriched part of the approximation for tip elements:

$$\mathbf{u_{te}}\left(\mathbf{x}
ight) = \sum_{\mathcal{K}} N_{\mathcal{K}}^{g}\left(\mathbf{x}
ight) \sum_{j} F_{j}\left(\mathbf{x}
ight) \mathbf{c}_{\mathcal{K}j}$$

 N_{K}^{g} are the global shape functions to be defined.

Tip enrichment functions:

$$F_{j}(\mathbf{x}) \equiv F_{j}(r,\theta) = \left[\sqrt{r}\sin\frac{\theta}{2}, \sqrt{r}\cos\frac{\theta}{2}, \sqrt{r}\sin\frac{\theta}{2}\sin\theta, \sqrt{r}\cos\frac{\theta}{2}\sin\theta\right]$$

K. Agathos et al.

2015 13 / 82

イロト 不得 トイヨト イヨト 二日

Geometrical enrichment

- Enrichment radius *r_e* is defined.
- ▶ Nodal values *r_i* of variable *r* are computed.
- The condition $r_i < r_e$ is tested.
- If true for all nodes of an element, the element is tip enriched.

K. Agathos et al.

イロト 不得 トイラト イラト 一日

Jump enrichment

Jump enrichment function definition:

$$H(\phi) = \left\{egin{array}{ccc} 1 & ext{for } \phi > 0 \ - & 1 & ext{for } \phi < 0 \end{array}
ight.$$

Shifted jump enrichment functions are used throughout this work.

Enrichment strategy

Motivation for an alternative enrichment strategy:

- Tip enrichment functions are derived from the first term of the Williams expansion.
- Displacements consist of higher order terms as well.
- Those terms are represented by:
 - $\rightarrow\,$ the FE part
 - $\rightarrow\,$ spatial variation of the tip enrichment functions

K. Agathos et al.

GE-XFEM

2015 16 / 82

イロト 不得 トイラト イラト 一日

Enrichment strategy

- In the proposed method:
 - $\rightarrow\,$ no spatial variation is allowed
 - $\rightarrow\,$ higher order terms can only be approximated by the FE part
- Higher order displacement jumps can not be represented in tip elements.

K. Agathos et al.

イロト 不得 トイラト イラト 一日

Enrichment strategy

Proposed enrichment strategy:

- Tip enriched node
- Tip and jump enriched node

イロト 不得 トイヨト イヨト

- Jump enriched node
 - Tip enriched elements
- Jump enriched element

Both tip and jump enrichment is used for tip elements that contain the crack.

K. Agathos et al.

GE-XFEM

2015 18 / 82

Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Displacement approximations of regular and tip elements:

$$\mathbf{u}_{\mathbf{r}}(\mathbf{x}) = \sum_{I} N_{I}(\mathbf{x}) \mathbf{u}_{I} + \sum_{J} N_{J}(\mathbf{x}) \mathbf{a}_{J}$$
$$\mathbf{u}_{\mathbf{t}}(\mathbf{x}) = \sum_{I} N_{I}(\mathbf{x}) \mathbf{u}_{I} + \sum_{K} N_{K}^{g}(\mathbf{x}) \sum_{j} F_{j}(\mathbf{x}) \mathbf{c}_{Kj}$$

K. Agathos et al.

2015 19 / 82

Tip and Regular Elements

Displacements are matched by imposing the condition:

$$\mathbf{u_{r}}\left(\mathbf{x}_{l}\right) = \mathbf{u_{t}}\left(\mathbf{x}_{l}\right)$$

K. Agathos et al.

GE-XFEM

2015 20 / 82

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tip and Regular Elements

Parameters \mathbf{a}_{l} are obtained:

$$\mathbf{a}_I = \sum_{\mathcal{K}} N_{\mathcal{K}}^{g}(\mathbf{X}_I) \sum_j F_j(\mathbf{X}_I) \mathbf{c}_{\mathcal{K}j}$$

K. Agathos et al.

2015 21 / 82

A D N A B N A B N A B N

Tip and Regular Elements

Parameters \mathbf{a}_{l} can be expressed as:

$$\mathbf{a}_I = \sum_{K} \sum_j T_{IKj}^{t-r} \mathbf{c}_{Kj}$$

K. Agathos et al.

2015 22 / 82

A D N A B N A B N A B N

Tip and Jump Elements

Displacement approximations of tip and jump elements:

$$\begin{aligned} \mathbf{u}_{\mathbf{j}}\left(\mathbf{x}\right) &= \sum_{I} N_{I}\left(\mathbf{x}\right) \mathbf{u}_{I} + \sum_{J} N_{J}\left(\mathbf{x}\right) \mathbf{a}_{J} + \sum_{L} N_{L}\left(\mathbf{x}\right) \left(H\left(\mathbf{x}\right) - H_{L}\right) \mathbf{b}_{L} + \\ &+ \sum_{M} N_{M}\left(\mathbf{x}\right) \left(H\left(\mathbf{x}\right) - H_{M}\right) \mathbf{b}_{M}^{t} , \\ \mathbf{u}_{\mathbf{t}}\left(\mathbf{x}\right) &= \sum_{I} N_{I}\left(\mathbf{x}\right) \mathbf{u}_{I} + \sum_{J} N_{J}\left(\mathbf{x}\right) \left(H\left(\mathbf{x}\right) - H_{J}\right) \mathbf{b}_{J} + \\ &+ \sum_{K} N_{K}^{g}\left(\mathbf{x}\right) \sum_{j} F_{j}\left(\mathbf{x}\right) \mathbf{c}_{Kj} \end{aligned}$$

K. Agathos et al.

2015 23 / 82

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tip and Jump Elements

Tip enriched element

Jump enriched element

イロト イボト イヨト イヨト

Point-wise matching condition:

$$\mathbf{u_{j}}\left(\mathbf{x}_{n}\right)=\mathbf{u_{t}}\left(\mathbf{x}_{n}\right)$$

K. Agathos et al.

GE-XFEM

2015 24 / 82

Tip and Jump Elements

The condition is imposed:

- \blacktriangleright at nodes \rightarrow parameters $a_{\it l}$ are obtained
- at additional points \rightarrow parameters \mathbf{b}_{l}^{t} are obtained:

$$(H(\mathbf{X}_I) - H_I)\mathbf{b}_I^t = \sum_{K} N_K^g(\mathbf{X}_I) \sum_j F_j(\mathbf{X}_I) \mathbf{c}_{Kj} - \sum_I N_I(\mathbf{X}_I) \mathbf{a}_I$$

Parameters \mathbf{b}_{l}^{t} can be reformulated as:

$$\mathbf{b}_{I}^{t} = \sum_{K} \sum_{j} T_{IKj}^{t-j} \mathbf{c}_{Kj}$$

K. Agathos et al.

2015 25 / 82

イロト 不得 トイヨト イヨト 二日

The condition is imposed at the points where the crack intersects element edges or faces.

IV. / Igathos et al.	K.	Ag	at	hos	et	a	١.
----------------------	----	----	----	-----	----	---	----

GE-XFEM

2015 26 / 82

A D N A B N A B N A B N

3D case:

a) Point-wise matching at an edge

27 / 82

b) Point-wise matching at a face

c) Point-wise matching at several faces d) Point-wise matching at several faces K. Agathos et al. GE-XFEM 2015

Special case:

- Edge 3-4 does not belong to a tip element.
- Evaluating the tip enrichment functions at 3-4 leads to errors.
- The values obtained from edge 4-7 will be used for 3-4.

A D N A B N A B N A B N

K. Agathos et al.

2015 28 / 82

In order to implement the above procedure:

- > Point-wise matching elements are looped upon prior to the assembly.
- Parameters \mathbf{b}_i^t are computed and stored.

Parameters \mathbf{b}_{i}^{t} can be computed for all nodes.

The whole procedure is computationally inexpensive.

K. Agathos et al.

GE-XFEM

2015 29 / 82

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Integral matching

Motivation:

- For P1 elements and topological enrichment a loss of accuracy occurs.
- The effect is more pronounced for mode I loading.
- This is attributed to the displacement jump between regular and tip elements.
- A possible solution is the addition of one layer of tip elements.

K. Agathos et al.

GE-XFEM

2015 30 / 82

イロト イボト イヨト イヨト

Hierarchical functions

The addition of hierarchical blending functions is proposed.

Those functions:

- Eliminate the displacement jump in a weak sense.
- ► For linear quadrilateral elements assume the form:

$$N^{h}(\xi_{1},\xi_{2}) = rac{(1-|\xi_{1}|)(1+\xi_{2})}{2}$$

K. Agathos et al.

2015 31 / 82

イロト 不得 トイヨト イヨト

Integral matching

Displacements along the edges of regular and jump elements:

$$\mathbf{u}_{\mathbf{r}}(\xi_{1},\xi_{2}) = \sum_{I} N_{I}(\xi_{1},\xi_{2}) \mathbf{u}_{I} + \sum_{J} N_{J}(\xi_{1},\xi_{2}) \mathbf{a}_{J} + N^{h}(\xi_{1},\xi_{2}) \mathbf{a}^{h} \mathbf{u}_{\mathbf{t}}(\xi_{1},\xi_{2}) = \sum_{I} N_{I}(\xi_{1},\xi_{2}) \mathbf{u}_{I} + \sum_{K} N_{K}^{g}(\mathbf{x}) \sum_{j} F_{j}(\mathbf{x}) \mathbf{c}_{Kj}$$

Integral matching condition:

$$\int_{S} \left(\mathbf{u}_{\mathbf{r}} - \mathbf{u}_{\mathbf{t}} \right) dS = 0$$

Coefficients \mathbf{a}^h are obtained as:

$$\mathbf{a}_{i}^{h} = \sum_{K} \sum_{j} T_{iKj}^{h} \mathbf{c}_{Kj}$$

K. Agathos et al.

2015 32 / 82

イロト 不得 トイラト イラト 一日

Integral matching-Mode I

Mode I, hierarchical functions are used to eliminate displacement jumps in a weak sense:

< □ > < 同 > < 回 > < 回 >

Integral matching-Mode II

Mode II, displacement jumps almost vanish in a weak sense:

K. Agathos et al.

2015 34 / 82

A D N A B N A B N A B N

Integral matching

Imposition of integral matching condition:

2015 35 / 82

Displacement approximation

Displacement approximation for the whole domain:

$$\begin{aligned} \mathbf{u} \left(\mathbf{x} \right) &= \sum_{l \in \mathcal{N}} N_l \left(\mathbf{x} \right) \mathbf{u}_l + \sum_{j \in \mathcal{N}^j} N_J \left(\mathbf{x} \right) \left(H \left(\mathbf{x} \right) - H_J \right) \mathbf{b}_J + \\ &+ \sum_{K \in \mathcal{N}^s} N_K^g \left(\mathbf{x} \right) \sum_j F_j \left(\mathbf{x} \right) \mathbf{c}_{Kj} + \mathbf{u}^{\rho m} \left(\mathbf{x} \right) + \mathbf{u}^{im} \left(\mathbf{x} \right) \\ \mathbf{u}^{\rho m} \left(\mathbf{x} \right) &= \sum_{l \in \mathcal{N}^{s1}} N_l \left(\mathbf{x} \right) \sum_K \sum_j T_{lKj}^{t-r} \mathbf{c}_{Kj} + \\ &+ \sum_{J \in \mathcal{N}^{s1}} N_J \left(\mathbf{x} \right) \left(H \left(\mathbf{x} \right) - H_J \right) \sum_K \sum_j T_{lKj}^{t-j} \mathbf{c}_{Kj} \\ \mathbf{u}^{im} \left(\mathbf{x} \right) &= \sum_{l \in \mathcal{N}^h} N_l^h \left(\mathbf{x} \right) \sum_K \sum_j T_{lKj}^h \mathbf{c}_{Kj} \end{aligned}$$

Nodal sets:

 ${\cal N}\,$ set of all nodes in the FE mesh.

 \mathcal{N}^{j} set of jump enriched nodes.

 \mathcal{N}^{s} set of superimposed nodes which will be described next.

 \mathcal{N}^{t1} set of transition nodes between tip and regular elements.

 $\mathcal{N}^{t2}\,$ set of transition nodes between tip and jump elements.

 \mathcal{N}^h set of edges where the blending functions are added.

K. Agathos et al.

イロト イボト イヨト イヨト
A superimposed mesh is used to provide a basis for weighting tip enrichment functions.

Desired properties:

- Satisfaction of the partition of unity property.
- Spatial variation only along the direction of the crack front.

K. Agathos et al.

2015 37 / 82

イロト 不得 トイラト イラト 一日

Special elements are employed which are both:

- \blacktriangleright 1D \rightarrow shape functions vary only along one dimension
- \blacktriangleright 3D \rightarrow they are defined in a three-dimensional domain

K. Agathos et al.

2015 38 / 82

イロト 不得 トイラト イラト 一日

- A set of nodes along the crack front is defined.
- Such points are also required for SIF evaluation.
- ► A good starting point for front element thickness is *h*.

イロト 不得 トイヨト イヨト

K. Agathos et al.

GE-XFEM

2015 39 / 82

Volume corresponding to two consecutive front elements.

Different element colors correspond to different front elements.

K. Agathos et al.

GE-XFEM

2015 40 / 82

ヘロト ヘロト ヘヨト ヘヨト

Open crack fronts

Front element definition:

- Unit vectors \mathbf{e}_i are defined parallel to the element directions: $\mathbf{e}_i = \frac{\mathbf{x}_{i+1} - \mathbf{x}_i}{|\mathbf{x}_{i+1} - \mathbf{x}_i|}.$
- ► For every nodal point *i* a unit vector \mathbf{n}_i is defined: $\mathbf{n}_i = \frac{\mathbf{e}_i + \mathbf{e}_{i-1}}{|\mathbf{e}_i + \mathbf{e}_{i-1}|}$.
- A plane is defined that passes through the node: $\mathbf{n}_i \cdot (\mathbf{x}_0 \mathbf{x}_i) = 0$.
- The element volume is defined by the planes corresponding to its nodes.

K. Agathos et al.

GE-XFEM

2015 41 / 82

Open crack fronts

Vectors associated with front elements.

2015 42 / 82

A D N A B N A B N A B N

- a) Application of the method used for open crack fronts to closed crack fronts \rightarrow front elements overlap.
- b) Method used for closed crack fronts \rightarrow overlaps are avoided.

• • = • • = •

Element definition using an additional point (x_c) :

• Vectors \mathbf{e}_{i} are defined for every element.

• Point
$$\mathbf{x}_{\mathbf{c}}$$
 is defined as: $\mathbf{x}_{\mathbf{c}} = \frac{\sum_{i=1}^{n} \mathbf{x}_{\mathbf{c}}}{n}$.

► Vectors n_{ci} joining points *i* to the internal point x_c are defined: n_{ci} = x_c - x_i.

п

K. Agathos et al.

2015 44 / 82

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

▶ Vectors \mathbf{n}_{ni} normal to vectors \mathbf{e}_i and \mathbf{n}_{ci} are defined: $\mathbf{n}_{ni} = \mathbf{e}_i \times \mathbf{n}_{ci}$.

- ▶ Planes normal to the vectors \mathbf{n}_i are defined: $\mathbf{n}_i \cdot (\mathbf{x}_0 \mathbf{x}_i) = 0$.
- Element volumes are defined as in the open crack front case.

K. Agathos et al.

2015 45 / 82

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Vectors used in the definition of front elements.

< □ > < □ > < □ > < □ > < □ >

Discretization of a non-planar closed crack front using an additional point $\mathbf{x}_{\mathbf{c}}.$

K. Agathos et al.

2015 47 / 82

イロト イヨト イヨト イヨト 二日

A function similar to the level sets is defined which varies along the crack front.

イロト イボト イヨト イヨ

Evaluation of the parameter for a point x_0 :

Plane equations corresponding to the nodes of each element are evaluated:

$$f_i(\mathbf{x_0}) = \mathbf{n}_i \cdot (\mathbf{x_0} - \mathbf{x}_i)$$

$$f_{i+1}(\mathbf{x_0}) = \mathbf{n}_{i+1} \cdot (\mathbf{x_0} - \mathbf{x}_{i+1})$$

K. Agathos et al.

2015 49 / 82

イロト 不得 トイラト イラト 一日

Once f_i and f_{i+1} are obtained:

- If $f_i < 0$ or $f_{i+1} > 0$ the point lies outside the element
- If f_i = 0 or f_{i+1} = 0 the point lies on the plane corresponding to node i or i + 1: η = i or η = i + 1
- If $f_i > 0$ and $f_{i+1} < 0$ the point lies inside the element

K. Agathos et al.

2015 50 / 82

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

For points lying inside front elements:

- Integer Part: $\eta_i = i$
- Fractional part:

Fractional part:

Finally:

 $\eta = \eta_i + \eta_f$ A D N A B N A B N A B N

K. Agathos et al.

GE-XFEM

2015 52 / 82

Front element shape functions

Linear 1D shape functions are used:

$$\mathbf{N}^{g}\left(\xi
ight)=\left[rac{1-\xi}{2} \;\; rac{1+\xi}{2}
ight]$$

- ξ is the local coordinate of the superimposed element.
- Those functions are used to weight tip enrichment functions.

K. Agathos et al.

GE-XFEM

2015 53 / 82

イロト イヨト イヨト イヨト 二日

Front element shape functions

Definition of the front element parameter used for shape function evaluation.

Front element shape functions

The evaluation of ξ is almost identical to the evaluation of η_f :

$$\xi = \frac{2 \mathbf{x_{12}} \cdot \mathbf{x_{m0}}}{|\mathbf{x_{12}}|^2}$$

where

$$\begin{array}{rcl} x_{12} & = & x_2 - x_1 \\ x_{m0} & = & x_0 - x_m \\ x_m & = & \displaystyle \frac{x_1 + x_2}{2} \end{array}$$

K. Agathos et al.

2015 55 / 82

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- An $L \times L$ square domain with an edge crack of length *a* is considered.
- Boundary conditions are provided by the Griffith problem.
- Both topological and geometrical enrichment are used.
- The alternative jump enrichment strategy is not used.

K. Agathos et al.

2015 56 / 82

イロト 不得 トイラト イラト 一日

node where boundary conditions are applied

- Dimensions of the problem: L = 1 unit, a = 0.5 units.
- Material parameters: E = 100 units and $\nu = 0.0$.
- Mesh consists of $n \times n$ linear quadrilateral elements, n = 11, 21, 41, 61, 81, 101.

K. Agathos et al.

2015 57 / 82

Acronyms used for the 2D convergence study

Acronym	Description
FEM	The FE part of the approximation
XFEM	Standard XFEM (with shifted enrichment functions)
XFEMpm1	XFEM using dof gathering and point-wise matching
XFEMpm2	XFEMpm1 with the additional p.m. condition of subsection
GE-XFEM	XFEMpm2 with integral matching (Global Enrichment XFEM)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Convergence rates

	$r_{e} = 0.00$		$r_e = 0.12$	
	Mode I	Mode II	Mode I	Mode II
XFEM E	0.491	0.493	1.030	0.982
XFEM L_2	0.908	0.928	1.980	1.955
XFEMpm1 E	0.483	0.489	1.243	1.211
XFEMpm1 L ₂	1.044	0.984	2.355	1.773
XFEMpm2 E	0.483	0.479	1.245	1.179
XFEMpm2 L ₂	1.022	1.414	2.311	2.151
GE-XFEM E	0.477	0.476	1.156	1.140
GE-XFEM L ₂	1.326	1.446	2.086	2.100

K. Agathos et al.

GE-XFEM

Stress intensity factors

Convergence rates for the SIFs

	r = 0.00		r = 0.12	
	Mode I	Mode II	Mode I	Mode II
XFEM	1.071	1.005	2.195	2.021
GE-XFEM	0.759	1.246	2.545	2.029

K. Agathos et al.

2015 61 / 82

< 47 ▶

Conditioning

Condition numbers of the system matrices produced by XFEM and GE-XFEM.

Condition numbers of the FE part are also plotted.

K. Agathos et al.

2015 62 / 82

▲ □ ▶ ▲ □ ▶ ▲ □

A benchmark problem is proposed which:

- Includes the full solution for the whole crack.
- Involves variation of the SIFs along the crack front.
- Involves a curved crack front.

K. Agathos et al.

2015 63 / 82

A D N A B N A B N A B N

- A penny crack in an infinite solid is considered.
- Evaluation of L_2 and energy norms is possible.
- ► An L_x × L_y × L_z parallelepiped domain with a penny crack of radius a is used.
- ► Analytical displacements are imposed as boundary conditions.
- ► A uniform normal and shear load is applied at the crack faces.

K. Agathos et al.

2015 64 / 82

イロト 不得 トイヨト イヨト 二日

node where boundary conditions are applied

- Uniform normal and shear loads of magnitude 1 are applied at Γ^t_c.
- Problem dimensions: $L_x = L_y = 2L_z = 0.4$ units and a = 0.1 unit.
- Material parameters: E = 100 units and $\nu = 0.3$.
- Mesh consists of $n_x \times n_y \times n_z$ hexahedral elements, $n_x = n_y = 2n_z = n$ and $n \in \{21, 41, 61, 81, 101\}$.

K. Agathos et al.

Acronyms used for the 3D convergence study

Acronym	Description
XFEM	Standard XFEM (with shifted enrichment functions)
GE-XFEM	The proposed method (Global Enrichment XFEM)
GE-XFEM1	The proposed method without the new enrichment strategy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Influence of the crack front mesh density in the energy (E) and L_2 norms.

 n_f is the number of elements along the front.

K. Agathos et al.

2015 67 / 82

Influence of the enrichment radius (r_e) in the energy (*E*) and L_2 norms for the $31 \times 61 \times 61$ mesh.

The proposed enrichment strategy improves the behavior of the solution.

```
K. Agathos et al.
```

2015 68 / 82

Convergence rates

	$r_e = 0.00$	<i>r_e</i> = 2.2 <i>h</i>	$r_e = 0.02$	$r_e = 0.04$
XFEM E	0.492	0.686	0.911	1.015
XFEM L_2	1.009	1.405	1.824	1.976
GE-XFEM1 E	-	-	1.016	0.706
GE-XFEM1 L ₂	-	-	1.481	0.289
GE-XFEM E	0.558	0.850	1.057	0.988
GE-XFEM L_2	1.535	1.594	1.753	1.448

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stress intensity factors

Mode I, II and III stress intensity factors for the $21 \times 41 \times 41$ mesh.

Stress intensity factors

Mode I, II and III stress intensity factors for the 41 \times 81 \times 81 mesh.

- Conditioning of the proposed method is compared to XFEM.
- ▶ The number of iterations required by the solver is used as an estimate.
- A comparison of the time needed to solve the resulting systems of equations is also provided.
- A CG solver with a diagonal preconditioner is used.

K. Agathos et al.

2015 73 / 82

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Influence of the crack front mesh density in the number of iterations for the $31\times 61\times 61$ mesh.

 n_f is the number of elements along the front.

K. Agathos et al.

2015 74 / 82

・ 同 ト ・ ヨ ト ・ ヨ

Number of iterations required for three different enrichment radii.

A D N A B N A B N A B N

Performance of the PCG solver.

K. Agathos et al.

2015 76 / 82

イロト イボト イヨト イヨ

Number of additional dofs

Total number of enriched dofs

Mesh	FE dofs	XFEM dofs	XFEM dofs	XFEM dofs	GE-XFEM
		$(r_e = 0.00)$	$(r_e = 0.02)$	$(r_e = 0.04)$	dofs
$11 \times 21 \times 21$	17,424	2,232	2,232	5,856	696
$21 \times 41 \times 41$	116,424	5,376	11,904	42,288	1,920
$31 \times 61 \times 61$	369,024	9,456	37,752	137,280	4,464
$41 \times 81 \times 81$	847,224	14,424	84,696	320,664	7,512
51 imes 101 imes 101	1,623,024	20,376	162,528	620,184	11,544

K. Agathos et al.

GE-XFEM

E ► E ∽ Q (2015 77 / 82

イロン イ理 とく ヨン イ ヨン

Conclusions

A method was introduced which:

- Employs point-wise and integral matching.
- Uses a novel enrichment strategy.
- Generalizes and extends the dof gathering approach to 3D.
- Is applicable to general 3D problems.

K. Agathos et al.

GE-XFEM

2015 78 / 82

イロト イポト イヨト イヨト

Conclusions

A benchmark problem was proposed which:

- Involves a curved crack front.
- Enables the computation of L_2 and energy norms for the 3D case.

K. Agathos et al.

GE-XFEM

2015 79 / 82

イロト イボト イヨト イヨト

Conclusions

Advantages of the method:

- It improves accuracy almost in every case.
- Enables the application of geometrical enrichment in 3d applications.
- Reduces the number of additional dofs.
- Reduces computational cost in every case.

K. Agathos et al.

GE-XFEM

2015 80 / 82

イロト イポト イヨト イヨト

Conclusions

Possible disadvantages:

- When the enrichment radius exceeds a certain value, the L2 norm increases.
- The method is not straightforward to implement in existing XFEM codes.
- The additional point wise-matching constraints are complex to implement for higher order elements.

K. Agathos et al.

GE-XFEM

2015 81 / 82

イロト イポト イヨト イヨト

Bibliography

- Chahine, E., Laborde, P., & Renard, Y. (2011). A non-conformal eXtended Finite Element approach: Integral matching Xfem. *Applied Numerical Mathematics*.
- Fish, J. (1992). The s-version of the finite element method. *Computers & Structures*.
- Laborde, P., Pommier, J., Renard, Y., & Salaün, M. (2005). High-order extended finite element method for cracked domains. *International Journal for Numerical Methods in Engineering*.
- Langlois, C., Gravouil, A., Baieto, M., & Réthoré, J. (2014). Three-dimensional simulation of crack with curved front with direct estimation of stress intensity factors. *International Journal for Numerical Methods in Engineering*.

イロト 不得 トイラト イラト 一日