Strongly B-associative and preassociative functions

Bruno Teheux
joint work with Jean-Luc Marichal
University of Luxembourg

ISFE 2015

Strongly B-associative functions

Definition. $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is strongly B-associative if

$$
F(x y z)=F\left(F(x z)^{|x|} \mathbf{y} F(x z)^{|z|}\right) \quad \forall x y z \in X^{*}
$$

Example.
F defined by $F(\varepsilon)=\varepsilon$ and $F(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ for $n \geq 1$ and $\mathbf{x} \in \mathbb{R}^{n}$ is strongly B -associative and symmetric.
F defined by $F(\varepsilon)=\varepsilon$ and $F(\mathbf{x})=x_{1}$ for every $n \geq 1$ and $\mathbf{x} \in \mathbb{R}^{n}$ is strongly B -associative but not symmetric.

A strong version of B-associativity

$$
\begin{equation*}
F(\mathrm{xyz})=F\left(F(\mathrm{xz})^{|x|} \mathbf{y} F(\mathrm{xz})^{|z|}\right) \quad \forall \mathrm{xyz} \in X^{*} \tag{1}
\end{equation*}
$$

Proposition. F is strongly B-associative if and only if its value on \mathbf{x} does not change when replacing each letter of a substring \mathbf{y} of not necessarily consecutive letters of \mathbf{x} by $F(\mathbf{y})$.

For instance,

$$
\begin{aligned}
F\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right) & =F\left(F\left(x_{1} x_{3}\right) x_{2} F\left(x_{1} x_{3}\right) x_{4} x_{5}\right), \\
& =F\left(F\left(x_{1} x_{3}\right) x_{2} F\left(x_{1} x_{3}\right) F\left(x_{4} x_{5}\right) F\left(x_{4} x_{5}\right)\right) .
\end{aligned}
$$

Remark. We can assume $|\boldsymbol{y}|=1$ in (1).

Corollary. Any strongly B-associative function is B -associative.
Example. $F: \mathbb{R}^{*} \rightarrow \mathbb{R} \cup\{\varepsilon\}$ defined by $F(\varepsilon)=\varepsilon$ and

$$
F(\mathbf{x})=\sum_{i=1}^{n} \frac{2^{i-1}}{2^{n-1}} x_{i}, \quad n \geq 1, \mathbf{x} \in \mathbb{R}^{n}
$$

is B-associative but not strongly B-associative.

Proposition. If $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is strongly B-associative, then $\mathbf{y} \mapsto F(x \mathbf{y} z)$ is symmetric for every $x z \in X^{2}$.

A composition-free version of strong B-associativity

Definition. $\quad F: X^{*} \rightarrow Y$ is strongly B-preassociative if for all $\mathbf{x x}^{\prime} \mathbf{z z} \mathbf{y} \in X^{*}$ such that $|\mathbf{x}|=\left|\mathbf{x}^{\prime}\right|$ and $|\mathbf{z}|=\left|\mathbf{z}^{\prime}\right|$

$$
F(x z)=F\left(x^{\prime} z^{\prime}\right) \Longrightarrow F(x y z)=F\left(x^{\prime} y z^{\prime}\right)
$$

Example. The length function $F: X^{*} \rightarrow \mathbb{R}: \mathbf{x} \mapsto|\mathbf{x}|$ is strongly B-preassociative.

Proposition. Let $F: X^{*} \rightarrow X \cup\{\varepsilon\}$. The following conditions are equivalent.
(i) F is strongly B-associative.
(ii) F is strongly B-preassociative and satisfies $F\left(F(\mathbf{x})^{|\mathbf{x}|}\right)=F(\mathbf{x})$.

Factorization of strongly B-preassociative functions with strongly B -associative ones

$$
\begin{gathered}
F: X^{*} \rightarrow X \cup\{\varepsilon\} \text { is } \varepsilon \text {-standard if } F(\mathbf{x})=\varepsilon \Longleftrightarrow \mathbf{x}=\varepsilon . \\
\delta_{F_{n}}(x):=F_{n}(x \cdots x)
\end{gathered}
$$

Theorem. (AC) Let $F: X^{*} \rightarrow Y$. The following conditions are equivalent.
(i) F is strongly B-preassociative \& $\operatorname{ran}\left(F_{n}\right)=\operatorname{ran}\left(\delta_{F_{n}}\right)$ for all n;
(ii) $F_{n}=f_{n} \circ H_{n}$ for every $n \geq 1$ where

- $H: X^{*} \rightarrow X \cup\{\varepsilon\}$ is ε-standard and strongly B-associative,
- $f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow Y$ is one-to-one for every $n \geq 1$.

Factorization of strongly B-preassociative functions with associative ones

$H: X^{*} \rightarrow X^{*}$ is length-preserving if $|H(\mathbf{x})|=|\mathbf{x}|$ for all $\mathbf{x} \in X^{*}$.

Theorem. (AC) Let $F: X^{*} \rightarrow Y$. The following conditions are equivalent.
(i) F is strongly B-preassociative.
(ii) $F_{n}=f_{n} \circ H_{n}$ for every $n \geq 1$ where

- $H: X^{*} \rightarrow X^{*}$ is associative, length-preserving and strongly B-preassociative,
- $f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow Y$ is one-to-one for every $n \geq 1$.

Invariance by replication

$F: X^{*} \rightarrow Y$ is invariant by replication if $F\left(\mathbf{x}^{k}\right)=F(\mathbf{x})$ for all $\mathbf{x} \in X^{*}$ and $k \geq 1$.

Proposition. If $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is strongly B -associative, then the following conditions are equivalent.
(i) F is invariant by replication.
(ii) $\operatorname{ran}\left(F_{n}\right) \subseteq \operatorname{ran}\left(F_{k n}\right)$ for every $n \geq 0$ and $k \geq 1$.

Quasi-arithmetic pre-mean functions and Kolmogoroff - Nagumo's characterization

Quasi-arithmetic pre-mean functions

$\mathbb{I} \equiv$ non-trivial real interval.
Definition. $F: \mathbb{I}^{*} \rightarrow \mathbb{R}$ is a quasi-arithmetic pre-mean function if there are continuous and strictly increasing functions $f: \mathbb{I} \rightarrow \mathbb{R}$ and $f_{n}: \mathbb{R} \rightarrow \mathbb{R}(n \geq 1)$ such that

$$
F(\mathbf{x})=f_{n}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right), \quad n \geq 1, \mathbf{x} \in X^{n}
$$

If $f_{n}=f^{-1}$ for every $n \geq 1$ then F is a quasi-arithmetic mean function.

Example. The product function is a quasi-arithmetic pre-mean function over $\mathbb{I}=] 0,+\infty\left[\right.$ (take $f_{n}(x)=\exp (n x)$ and $f(x)=\ln (x)$) which is not a quasi-arithmetic mean function.

Kolmogoroff - Nagumo's characterization of quasi-arithmetic mean functions

Theorem (Kolmogoroff - Nagumo). Let $F: \mathbb{I}^{*} \rightarrow \mathbb{I}$. The following conditions are equivalent.
(i) F is a quasi-arithmetic mean function.
(ii) F is B-associative, and for every $n \geq 1, F_{n}$ is
symmetric,
continuous,
strictly increasing in each argument,
reflexive.

Theorem. B-associativity and symmetry can be replaced by strong B-associativity. Moreover, reflexivity can be removed.

Characterization of quasi-arithmetic pre-mean functions

Theorem. Let $F: \mathbb{I}^{*} \rightarrow \mathbb{R}$. The following conditions are equivalent.
(i) F is a quasi-arithmetic pre-mean function.
(ii) F is strongly B-preassociative, and for every $n \geq 1, F_{n}$ is symmetric,
continuous,
strictly increasing in each argument.

Open problems

Characterization of the class of $F: X^{*} \rightarrow X^{*}$ which are associative, length-preserving and strongly B-preassociative?

Which of those B-associative functions that satisfy

$$
F(x y z)=F(F(x z) y F(x z))
$$

are strongly B-associative?

Reference. J.-L. Marichal and B. Teheux. Strongly barycentrically associative and preassociative functions. arXiv:1411.5897

