Strongly B-associative and preassociative functions

Bruno TEHEUX joint work with Jean-Luc MARICHAL

University of Luxembourg

ISFE 2015

Strongly B-associative functions

Definition. $F: X^* \to X \cup \{\varepsilon\}$ is *strongly B-associative* if

$$F(\mathbf{xyz}) = F(F(\mathbf{xz})^{|\mathbf{x}|}\mathbf{y}F(\mathbf{xz})^{|\mathbf{z}|}) \quad \forall \mathbf{xyz} \in X^*$$

Example.

F defined by $F(\varepsilon) = \varepsilon$ and $F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} x_i$ for $n \ge 1$ and $\mathbf{x} \in \mathbb{R}^n$ is strongly B-associative and symmetric.

F defined by $F(\varepsilon) = \varepsilon$ and $F(\mathbf{x}) = x_1$ for every $n \ge 1$ and $\mathbf{x} \in \mathbb{R}^n$ is strongly B-associative but not symmetric.

A strong version of B-associativity

$$egin{array}{lll} {\sf F}({\sf xyz}) &=& {\sf F}({\sf F}({\sf xz})^{|{\sf x}|}{\sf y}{\sf F}({\sf xz})^{|{\sf z}|}) & orall \; {\sf xyz} \in X^* \end{array}$$

Proposition. F is strongly B-associative if and only if its value on **x** does not change when replacing each letter of a substring **y** of not necessarily consecutive letters of **x** by $F(\mathbf{y})$.

For instance,

$$F(x_1x_2x_3x_4x_5) = F(F(x_1x_3)x_2F(x_1x_3)x_4x_5),$$

= $F(F(x_1x_3)x_2F(x_1x_3)F(x_4x_5)F(x_4x_5)).$

Remark. We can assume $|\mathbf{y}| = 1$ in (1).

Corollary. Any strongly *B*-associative function is B-associative.

Example. $F : \mathbb{R}^* \to \mathbb{R} \cup \{\varepsilon\}$ defined by $F(\varepsilon) = \varepsilon$ and

$$F(\mathbf{x}) = \sum_{i=1}^n \frac{2^{i-1}}{2^{n-1}} x_i, \qquad n \ge 1, \mathbf{x} \in \mathbb{R}^n,$$

is B-associative but not strongly B-associative.

Proposition. If $F: X^* \to X \cup \{\varepsilon\}$ is strongly B-associative, then $\mathbf{y} \mapsto F(x\mathbf{y}z)$ is symmetric for every $xz \in X^2$.

A composition-free version of strong B-associativity

Definition. $F: X^* \to Y$ is *strongly B-preassociative* if for all $xx'zz'y \in X^*$ such that |x| = |x'| and |z| = |z'|

$$F(\mathbf{x}\mathbf{z}) = F(\mathbf{x}'\mathbf{z}') \implies F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}'\mathbf{y}\mathbf{z}').$$

Example. The length function $F : X^* \to \mathbb{R} : \mathbf{x} \mapsto |\mathbf{x}|$ is strongly B-preassociative.

Proposition. Let $F: X^* \to X \cup \{\varepsilon\}$. The following conditions are equivalent.

(i) F is strongly B-associative.

(ii) F is strongly B-preassociative and satisfies $F(F(\mathbf{x})^{|\mathbf{x}|}) = F(\mathbf{x})$.

Factorization of strongly B-preassociative functions with strongly B-associative ones

 $F: X^* \to X \cup \{\varepsilon\} \text{ is } \varepsilon \text{-standard if } F(\mathbf{x}) = \varepsilon \iff \mathbf{x} = \varepsilon.$

$$\delta_{F_n}(x) := F_n(x \cdots x)$$

Theorem. (AC) Let $F: X^* \to Y$. The following conditions are equivalent.

(i) F is strongly B-preassociative & $ran(F_n) = ran(\delta_{F_n})$ for all n;

(ii)
$$F_n = f_n \circ H_n$$
 for every $n \ge 1$ where
 $\cdot H: X^* \to X \cup \{\varepsilon\}$ is ε -standard and strongly B-associative,
 $\cdot f_n: \operatorname{ran}(H_n) \to Y$ is one-to-one for every $n \ge 1$.

Factorization of strongly B-preassociative functions with associative ones

 $H: X^* \to X^*$ is *length-preserving* if $|H(\mathbf{x})| = |\mathbf{x}|$ for all $\mathbf{x} \in X^*$.

Theorem. (AC) Let $F: X^* \to Y$. The following conditions are equivalent.

(i) F is strongly B-preassociative.

(ii) $F_n = f_n \circ H_n$ for every $n \ge 1$ where

- · $H: X^* \to X^*$ is associative, length-preserving and strongly B-preassociative,
- f_n : ran $(H_n) \to Y$ is one-to-one for every $n \ge 1$.

Invariance by replication

 $F: X^* \to Y$ is *invariant by replication* if $F(\mathbf{x}^k) = F(\mathbf{x})$ for all $\mathbf{x} \in X^*$ and $k \ge 1$.

Proposition. If $F: X^* \to X \cup \{\varepsilon\}$ is strongly B-associative, then the following conditions are equivalent.

(i) F is invariant by replication.

(ii) $\operatorname{ran}(F_n) \subseteq \operatorname{ran}(F_{kn})$ for every $n \ge 0$ and $k \ge 1$.

Quasi-arithmetic pre-mean functions and Kolmogoroff - Nagumo's characterization

Quasi-arithmetic pre-mean functions

 $\mathbb{I} \equiv$ non-trivial real interval.

Definition. $F: \mathbb{I}^* \to \mathbb{R}$ is a *quasi-arithmetic pre-mean function* if there are continuous and strictly increasing functions $f: \mathbb{I} \to \mathbb{R}$ and $f_n: \mathbb{R} \to \mathbb{R}$ $(n \ge 1)$ such that

$$F(\mathbf{x}) = f_n\left(\frac{1}{n}\sum_{i=1}^n f(x_i)\right), \qquad n \ge 1, \mathbf{x} \in X^n.$$

If $f_n = f^{-1}$ for every $n \ge 1$ then F is a *quasi-arithmetic mean function*.

Example. The product function is a quasi-arithmetic pre-mean function over $\mathbb{I} =]0, +\infty[$ (take $f_n(x) = \exp(nx)$ and $f(x) = \ln(x)$) which is not a quasi-arithmetic mean function.

Kolmogoroff - Nagumo's characterization of quasi-arithmetic mean functions

Theorem (Kolmogoroff - Nagumo). Let $F : \mathbb{I}^* \to \mathbb{I}$. The following conditions are equivalent.

(i) F is a quasi-arithmetic mean function.

(ii) F is B-associative, and for every $n \ge 1$, F_n is symmetric, continuous,

strictly increasing in each argument,

reflexive.

Theorem. B-associativity and symmetry can be replaced by strong B-associativity. Moreover, reflexivity can be removed.

Characterization of quasi-arithmetic pre-mean functions

Theorem. Let $F : \mathbb{I}^* \to \mathbb{R}$. The following conditions are equivalent.

(i) F is a quasi-arithmetic pre-mean function.

(ii) F is strongly B-preassociative, and for every $n \ge 1$, F_n is symmetric,

continuous,

strictly increasing in each argument.

Open problems

Characterization of the class of $F: X^* \to X^*$ which are associative, length-preserving and strongly B-preassociative?

Which of those B-associative functions that satisfy

$$F(xyz) = F(F(xz)yF(xz))$$

are strongly B-associative?

Reference. J.-L. Marichal and B. Teheux. Strongly barycentrically associative and preassociative functions. arXiv:1411.5897