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26Transient, laminar, natural-convection flow of a micropolar-nanofluid (Al2O3/water) in the presence of a
27magnetic field in an inclined rectangular enclosure is considered. A meshless point collocation method
28utilizing a velocity-correction scheme has been developed. The governing equations in their velocity–vor-
29ticity formulation are solved numerically for various Rayleigh (Ra) and Hartman (Ha) numbers, different
30nanoparticles volume fractions (u) of and considering different inclination angles and magnetic field
31directions. The results show that, both, the strength and orientation of the magnetic field significantly
32affect the flow and temperature fields. For the cases considering herein, experimentally given forms of
33dynamic viscosity, thermal conductivity and electrical conductivity are utilized.
34� 2014 Published by Elsevier Ltd.
35

36

37

38 1. Introduction

39 Magnetohydrodynamic (MHD) flows, associated with heat
40 transfer, have received considerable attention over the last decades
41 since there is a growing interest of understanding the underlying
42 physical processes occurring, that is natural convection under the
43 influence of a magnetic field. This is due to their wide variety of
44 application in engineering areas, such as crystal growth in liquid,
45 cooling of nuclear reactor, electronic package, microelectronic
46 devices, and solar technology. There has been an increasing inter-
47 est to understand the flow behavior and the heat transfer mecha-
48 nism of enclosures that are filled with electrically conducting
49 fluids under the influence of a magnetic field [1–3]. For an electri-
50 cally conducting fluid when the magnetic field is present, there are
51 two body forces, a buoyancy force and a Lorentz force. These two
52 forces interact with each other and influence the flow and heat
53 transfer.
54 Numerical studies have been performed in order to evaluate the
55 effect of the magnetic field on natural convection flow and heat
56 transfer in cavities. Authors in [4] studied the steady state, laminar
57 natural convection flow in the presence of a magnetic field, consid-
58 ering as a study case an inclined rectangular enclosure heated and

59cooled on adjacent walls. They stated that the magnetic field sup-
60pressed the convective flow and the heat transfer rate, while the
61orientation and the aspect ratio of the enclosure along with both
62the strength and direction of the magnetic field significantly
63affected the flow and temperature fields. Authors in [5] numeri-
64cally studied natural convection occurring in a water filled square
65cavity under the influence of a magnetic field. They considered
66temperature dependent physical properties and they observed that
67both flow and temperature fields were affected by changing the
68reference temperature parameter when both thermal conductivity
69and viscosity were temperature dependent. Additionally, they
70stated that the heat transfer rate was influenced by the direction
71of the external magnetic field and decreased by an increase of
72the magnetic field. Authors in [6] conducted a numerical study
73concerning a magneto-convection flow in a cavity with partially
74active vertical walls. They found that the average Nusselt number
75decreases with an increase of Hartmann number (Ha), while it
76increases with the Rayleigh number (Ra). Authors in [7] considered
77the effect of the magnetic field on convection heat transfer inside a
78tilted square enclosure. Their study showed that the heat transfer
79mechanism and flow characteristics inside the enclosure depend
80strongly upon both magnetic field and inclination angle.
81In applications where a significant amount of heat needs to be
82removed from a very small surface, the coolant should have more
83effective heat transfer characteristics. Due to technological
84achievements nanomaterials with size ranging from 1 to 100 nm,
85have been mainly used in the areas of heat transfer, electricity,
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86 magnetism and mechanics. These nanoscale particles, such as
87 oxide ceramics, nitride ceramics, carbide ceramics, metals and
88 semiconductors, when suspended in a base fluid such as water,
89 ethylene, glycol, engine oil or refrigerant form the so-called nano-
90 fluids [8]. In the numerical studies for natural convective heat
91 transfer of nanofluids conducted by several researchers, nanofluids
92 were treated as a single-phase fluid and conventional equations of
93 mass, momentum and energy were solved. Authors in [9] studied
94 natural convection of Cu-water nanofluid in a two-dimensional
95 enclosure assuming uniform volume fraction. The mass and
96 momentum equations were solved in their stream function-vortic-
97 ity formulation and it was stated that Nusselt number increases
98 with an increase of the volume fraction of the nanoparticles. In
99 [10] a study of natural convection in horizontal annuli using differ-

100 ent nanofluids took place and showed that the heat transfer is
101 enhanced by using nanofluids. In fact the Nusselt number increases
102 with increasing nanoparticles volume fraction. In Oztop and Abu-
103 Nada [11] authors studied the natural convection of a nanofluid
104 being in a partially heated enclosures considering different aspect
105 ratios. They found that the heat transfer was more pronounced at
106 low aspect ratio and high volume fraction of nanoparticles. Ami-
107 nossadati and Ghasemi [12] considered the effect of apex angle,
108 position and dimension of heat source on fluid flow and heat trans-
109 fer in a triangular enclosure using nanofluid. They found that at
110 low Rayleigh numbers, the heat transfer rate continuously

111increases with the enclosure apex angle and decreases with the
112distance of the heat source from the left vertex.
113Most of the studies which focus on the natural convection in
114enclosures with magnetic effects have considered an electrically
115conducting fluid with low thermal conductivity. This limits the
116enhancement of heat transfer in the enclosure especially when a
117magnetic field is applied. There are several studies dealing with
118the nanofluids heat transfer that state totally different findings.
119Most researchers argue that the addition of nanoparticles with rel-
120atively higher thermal conductivity to the base fluid results in an
121increase of the thermal performance of the resultant nanofluid
122[13–15]. On the other hand, some researchers argue that the dis-
123persion of nanoparticles in the base fluid may result in a decrease
124of the heat transfer [16]. The numerical studies and experimental
125findings in the case of natural convection in enclosures are contro-
126versial. Therefore, it is possible that the assumptions made in the
127theoretical models lead to false outcomes. The enhancement or
128mitigation of the heat transfer of nanofluids may be because of
129the formulae used for their thermal properties. A comprehensive
130nanofluid simulation study should take account of the structure,
131shape, size, aggregation and anisotropy of the nanoparticles as well
132as the type, fabrication process, particle aggregation and deteriora-
133tion of nanofluids. A fluid theory that potential can bridge the gap
134between the numerical and experimental finding is the micropolar
135flow theory. Micropolar fluids, introduced by Eringen [17], take
136into account the microstructure of the fluid along with the inertial
137characteristics of the substructure particles, which are allowed to
138undergo rotation. In such way nanofluids can be considered as a
139fluid medium whose properties and behavior are strongly influ-
140enced by the local motions of the material particles contained in
141each of its volume elements.
142In the present paper we incorporate the micropolar flow theory
143to study the natural convection of an electrically conducted nano-
144fluid in a square cavity subjected to a magnetic field. The work in

Nomenclature

Cp specific heat at constant pressure (J kg�1 K�1)
g gravitational acceleration (m s�2)
Ra Rayleigh number
L length of the enclosure (m)
k thermal conductivity (W m�1 K�1)
Nu Nusselt number
p pressure
Pr Prandtl number
T dimensional temperature (oC)
u,v dimensional velocity (m s�1)
U,V dimensionless velocity components
x,y dimensional coordinates (m)
X,Y dimensionless coordinates

Greek symbols
a thermal diffusivity (m2 s�1)
b thermal expansion coefficient (K�1)

h dimensionless temperature
l dimensionless thermal conductivity
qu density (kg m�3)relative nanoparticle volumetric

fraction
x dimensional vorticity (s�1)
X dimensionless vorticity
c angle of inclination of the enclosure from the horizontal

axis
n angle of orientation of the magnetic
s dimensionless time

Subscripts
avg average
C cold
H hot
F base fluid
P particle
nf nanofluid

H

H

HT

y

γ

ξ

B CT

g

x

Fig. 1. Geometry and coordinate system.

Table 1
Thermo-physical properties of water and nanoparticles.

qðkgr=m3Þ CpðJ=kgrKÞ kðW=mKÞ b� 10�5ðK�1Þ

Pure Water 997.1 4179 0.613 21
Alumina (Al2O3) 3970 765 40 0.85
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145 [18] has been extended, considering that nanofluid has an electri-
146 cal conductivity and incorporating suitably the influence of the
147 applied magnetic field in equations of the flow. An Al2O3/water

148nanofluid has been used due to available experimentally derived
149relations for the thermo-physical properties of the nanofluid, that
150is, thermal conductivity, dynamic viscosity and electrical

(c) 

(b)

(a) 

Fig. 2. Convergence analysis for the case of K = 2, Ha = 60, Ra = 104and u = 0.03 for (a) average Nusselt number (b) microrotation and (c) vorticity.
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151 conductivity. In Section 2, the governing equations of the proposed
152 micropolar nanofluid model are presented. Section 3 describes the
153 Moving Least Squares (MLS) approximation methods and the algo-
154 rithm used, while details of the numerical technique are presented
155 in the Appendix. In Section 4 the validation of the proposed
156 scheme is depicted. In Section 5, the heat transfer performance of a

157micropolar nanofluid enclosed in a rectangular cavity is studied for
158a range of solid volume fractions (0 6 u 6 0.05), Hartmann numbers
159(0 6 Ha 6 120), Rayleigh numbers (103

6 Ra 6 106) and, orientation
160(0 6 n 6 60o) along with inclination angles (0 6 c 6 60o). For all
161simulations, pure water is considered as the base fluid with
162Pr = 6.2. Finally, in Section 6, the conclusions complete the paper.

Table 2a
Numerical results for the local Nusselt number for various inclination angles using Finite Volume Method (FVM).

u Gr Nu (Ha = 0) Nu (Ha = 100)

u = 0� u = 45� u = 90�

0� 103 3.745834 3.681442 3.676955 3.678740
104 4.771623 3.683067 3.681906 3.681277
105 6.677280 3.824211 3.944665 3.885215
106 N/A 6.766862 N/A N/A

�45� 103 3.755500 3.682916 3.680122 3.680210
104 4.552761 3.680572 3.684567 3.684299
105 6.379730 3.854637 3.877413 3.875004
106 9.997426 N/A 6.151953 N/A

45� 103 3.682832 3.680268 3.681467 3.680166
104 4.334201 3.678017 3.682005 3.680053
105 5.686973 3.703160 3.683273 3.711887
106 N/A N/A N/A N/A

Table 3
Average Nusselt number at various Hartmann (Ha) numbers and volume fraction (u) with Ra = 105. First line for the results of FVM and second line for MPCVC method.

u = 0 u = 0.02 u = 0.04 u = 0.06

Ha = 0 Num 4.738 4.820 4.896 4.968
4.739 4.818 4.894 4.965

|W|max 11.053 11.313 11.561 11.801
11.018 10.920 11.559 11.798

Ha = 15 Num 4.143 4.179 4.211 4.239
4.142 4.170 4.211 4.238

|W|max 8.484 8.615 8.734 8.842
8.480 8.608 8.725 8.824

Ha = 30 Num 3.150 3.138 3.124 3.108
3.148 3.128 3.122 3.109

|W|max 5.710 5.682 5.642 5.591
5.711 5.682 5.634 5.584

Ha = 45 Num 2.369 2.342 2.317 2.293
2.345 2.335 2.315 2.284

|W|max 3.825 3.729 3.629 3.525
3.815 3.658 3.512 3.485

Ha = 60 Num 1.851 1.831 1.815 1.806
1.827 1.849 1.872 1.895

|W|max 2.623 2.518 2.415 2.314
2.615 2.483 2.360 2.246

Table 2b
Numerical results for the local Nusselt number for various inclination angles using the Meshless Point Collocation (MPC) method.

u Gr Nu (Ha = 0) Nu (Ha = 100)

u = 0� u = 45� u = 90�

0� 103 3.73583 3.669983 3.681255 3.668332
104 4.76083 3.678857 3.679896 3.680025
105 6.68012 3.830211 3.939895 3.879315
106 6.758962

�45� 103 3.742293 3.675116 3.678522 3.675810
104 4.514968 3.690238 3.688685 3.690359
105 6.290098 3.860638 3.887543 3.882854
106 9.986437 6.149953

45� 103 3.673349 3.680532 3.680025 3.670576
104 4.329640 3.669087 3.673368 3.682053
105 5.680058 3.710160 3.680465 3.709757
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163 2. Problem formulation

164 We consider transient, laminar, incompressible natural convec-
165 tion flow in the presence of a magnetic field in an inclined square
166 enclosure of length H filled with micropolar-nanofluid of Al2O3/
167 water. The geometry and the coordinate system are schematically
168 shown in Fig. 1. The angle of inclination of the enclosure from the
169 horizontal axis is denoted by c. A magnetic field of strength B is
170 applied at an angle n, with respect to the coordinate system. The
171 top and the bottom walls are insulated and the fluid is isothermally
172 heated and cooled by the left side and right side walls at uniform
173 temperatures of TH and TC, respectively.

174The physical properties of the fluid are assumed to be constant
175except the density in the buoyancy force term, which is estimated
176by the Boussinesq’s model. For the latter we can write for the
177buoyancy term (q�q0)g � �q0b(T�T0)g, where q0 is the constant
178density of the flow, T0 is the operating temperature and, b is the
179thermal expansion coefficient. The thermophysical properties of
180the nanofluid are listed in Table 1. For a micropolar electrically
181conductive nanofluid under the influence of an external magnetic
182field for the conservation of mass, linear momentum, angular
183momentum and in the case of natural convection conservation of
184energy, the models presented in [18,19] are extended as: 185

$ � u ¼ 0; ð1Þ 187187

Ha=60 Ha=120

Ra
=1

04

Ψmin=-0.2652 Ψmin=-0.1442

Ra
=1

0 5

Ψmin=-1.1077 Ψmin=-0.8189

Ra
=1

0 6

Ψmin=-2.3977 Ψmin=-2.0662

Fig. 3. Streamlines contours for Hartmann numbers Ha = 60 and Ha = 120, with Rayleigh number given as Ra = 104, Ra = 105 and Ra = 106.
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188

qnf
@u
@t
þ ðu � $Þu

� �
¼ �$pþ ðlnf þ jÞr2uþ jr�N

� gððqbTÞnf ðT � T0ÞÞ þ J � B; ð2Þ190190

191

qnf j
@N
@t
þ u � $

� �
N ¼ cnfr2N þ j$� u� 2jN; ð3Þ

193193

194
@T
@t
þ u � $T ¼ anfr2T; ð4Þ196196

197 where u = (u,v) is the velocity vector with u and v being the velocity
198 components along x and y axes, p is the pressure, T is the fluid tem-
199 perature, N is the microrotation vector, g is the acceleration due to
200 gravity, qnf is the density, lnf is the dynamic viscosity, j is the vor-
201 tex viscosity, cnf is the spin-gradient viscosity, j is the micro-inertia

202density, anf is the thermal diffusivity of the nanofluid, B is magnetic
203field and J is the current density which, in the absence of an electric
204field, can be written as

205J ¼ rnf ðu� BÞ: ð5Þ
207207

208In the present simulations, the magnetic Reynolds number was
209assumed to be small and the induced magnetic field due to the
210motion of the electrically conducting fluid was neglected [20].
211The Joule heating of the fluid and the effect of viscous dissipation
212were also considered to be negligible.
213By applying the curl operator to the vorticity, defined as x
214= $ � u and, using the mass conservation equation ($ � u = 0) for
215the incompressible fluid flow we get an elliptic Poisson equation
216for the velocity

Ha=60 Ha=120

Ra
=1

04
Ra

=1
0 5

Ra
=1

0 6

Fig. 4. Temperature contours for Hartmann numbers Ha = 60 and Ha = 120, with Rayleigh number given as Ra = 104, Ra = 105 and Ra = 106.
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217

r2uþ $�x ¼ 0: ð6Þ219219

220 Additionally, we can apply the curl operator to the momentum
221 conservation equation (Eq. (2)), taking into consideration that
222 $ �x = 0 and $ � N = 0, due to the vorticity and microrotation defi-
223 nition, along with $ � u = 0 due to mass conservation equation.
224 Finally, for the case of two-dimensional plane flow and accounting
225 for all previous assumptions the governing equations, in the veloc-
226 ity–vorticity formulation, can be written as:
227

r2u ¼ � @x
@y

; ð7Þ
229229

230

r2v ¼ @x
@x

; ð8Þ232232

233

qnf
@x
@t
þu �$x

� �
¼ðlnf þjÞr2x�jr2N

þgðqbTÞnf cosðcÞ@T
@x
� sinðcÞ@T

@y

� �

þrnf B2 sinðnÞcosðnÞ@u
@x
�cos2ðnÞ@v

@x

� �

þþrnf B2 sin2ðnÞ@u
@y
� sinðnÞcosðnÞ@v

@y

� �
ð9Þ 235235

236

qnf j
@N
@t
þ u � $N

� �
¼ cnfr2N � 2jN þ jx; ð10Þ

238238

239
@T
@t
þ u � $T ¼ anfr2T; ð11Þ 241241

b 

a 

Fig. 5. (a) Local Nusselt number along the hot wall for various Rayleigh (Ra) and Hartmann (Ha) numbers and (b) average Nusselt number plot versus Hartmann number (Ha)
with different Rayleigh (Ra) numbers for a micropolar nanofluid (solid line) and a nanofluid (dashed line).
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242 Further, we assume that cnf has the following form as proposed
243 in [21,22]
244

cnf ¼ lnf þ
j
2

� �
j: ð12Þ246246

247 The effective density of the nanofluid is given as
248

qnf ¼ ð1�uÞqf þuqp ð13Þ250250

251 and the effective dynamic viscosity of the nanofluid given by
252

lnf ¼ lf ð1þ 39:11uþ 533:9u2Þ; ð14Þ254254

255 measured experimentally by Pak and Cho [23]. The effective
256 diffusivity of the nanofluid is

257

anf ¼
knf

ðqCpÞnf

; ð15Þ
259259

260where the heat capacitance of the nanofluid is given as
261

ðqCpÞnf ¼ ð1�uÞðqCpÞf þuðqCpÞp: ð16Þ 263263

264The thermal expansion coefficient of the nanofluid can be deter-
265mined as
266

ðqbÞnf ¼ ð1�uÞðqbÞf þuðqbÞp: ð17Þ 268268

269In Eq. (15), knf is the thermal conductivity of the nanofluid which
270has been calculated experimentally [23] and is given by:
271

knf ¼ kf ð1þ 7:47uÞ: ð18Þ 273273

Ha=30 Ha=60

φ=
0.

01

Nmin=-1.026 Nmin=-1.208

φ=
0.

03

Nmin=-0.637 Nmin=-0.575

φ=
0.

05

Nmin=-0.401 Nmin=-0.320

Fig. 6. Microrotation contours (20 isocontours) for Hartmann numbers Ha = 30 and Ha = 60 having different volume fractions.
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(a) (b)
Fig. 7. Microrotation profiles are plotted along the centerlines of the cavity, at y = 0.5 and x = 0.5, respectively.

Fig. 8. Average Nusselt number (Nuave) for different volume fractions.
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274 The base fluid (de-ionized water) electrical conductivity can be
275 considered as negligible. Therefore, it can be safely stated that alu-
276 mina nanoparticles are the major contributor towards the electri-
277 cal conductivity of alumina nanofluid, calculated experimentally
278 in [24]
279

rnf ¼ 2982:7uþ 57:818 ð19Þ281281

282 The boundary and initial conditions for the natural convection
283 problem under investigation are set as
284

t ¼ 0 : u ¼ v ¼ 0; N ¼ 0; T ¼ 0
t > 0 : u ¼ v ¼ 0; T ¼ TH; N ¼ 0 for x ¼ 0; 0 � y � 1

u ¼ v ¼ 0; T ¼ TC ; N ¼ 0 for x ¼ 1; 0 � y � 1

u ¼ v ¼ 0;
@T
@y
¼ 0; N ¼ 0 for y ¼ 0;1;0 � x � 1

ð20Þ

286286

287 Introducing the following non-dimensional variables
288

s ¼ v f

H2 t; ðX;YÞ ¼ ðx; yÞ
H

; ðU;VÞ ¼ H
v f
ðu;vÞ;

ðN;XÞ ¼ H2

v f
ðN;xÞ; h ¼ T � TC

TH � TC
; j ¼ H2 ð21Þ

290290

291 for the case of two-dimensional flow and, accounting for all previ-
292 ous assumptions the final form of equations is written as follows:
293

r2U ¼ � @X
@Y

; ð22Þ295295

296

r2V ¼ @X
@X

; ð23Þ298298

299

@X
@s
þ U � $X ¼

lnf

lf
þ K

 !
qf

qnf

 !
r2X� K

qf

qnf

 !
r2N

þ Ra
Pr
ðqbÞnf

ðqbÞf

 !
qf

qnf

 !
cosðcÞ @h

@X
� sinðcÞ @h

@Y

� �

þ rnf

rf

� � qf

qnf

 !
Ha2 sinðnÞ cosðnÞ @U

@X
� cos2ðnÞ @V

@X

� �

þ rnf

rf

� � qf

qnf

 !
Ha2 sin2ðnÞ @U

@Y
� sinðnÞ cosðnÞ @V

@Y

� �

ð24Þ301301

302

@N
@s
þ U � $N ¼

lnf

lf
þ K

2

 !
qf

qnf

 !
r2N � 2K

qf

qnf

 !
N

þ K
qf

qnf

 !
X; ð25Þ

304304

305

@h
@s
þ U � $h ¼ knf

kf

� � ðqCpÞf
ðqCpÞnf

 !
1
Pr
r2h; ð26Þ

307307

308 where K ¼ j
lf

is the material parameter, Pr ¼ mf

af
is the Prandtl num-

309 ber, Ra ¼ gqbf DTH3

af v f
is the Rayleigh number and Ha ¼ B0L

ffiffiffiffi
rf

lf

q
is the

310 Hartmann number. The Nusselt number can be expressed as
311

Nu ¼ hf H
knf

: ð27Þ
313313

314 Regarding to heat transfer between a surface and a fluid flowing
315 past it, a thermal boundary layer develops if the fluid free stream
316 temperature and the surface temperatures differ. In fact, a temper-
317 ature profile exists due to the energy exchange resulting from this
318 temperature difference.
319 The convective heat transfer rate per area is expressed as

320
qw ¼ hf ðTH � TCÞ: ð28Þ 322322

323and because heat transfer at the surface is by conduction
324

qw ¼ �kf
@

@x
ðT � TCÞ: ð29Þ 326326

327By substituting Eqs. (28), (29) into Eq. (27), and using the dimen-
328sionless quantities, the Nusselt number on the left wall is written as
329

Nu ¼ � knf

kf

@h
@x
: ð30Þ

331331

332The average Nusselt number is defined as
333

Nuave ¼
Z 1

0
Nudy: ð31Þ

335335

3363. Moving Least Squares approximation and solution procedure

3373.1. Moving Least Squares

338The non-dimensional governing equations were discretized
339using the meshless point collocation method. The Moving Least
340Squares (MLS) method [25] was used for the approximation of
341the unknown field functions, namely velocity components, tem-
342perature and microrotation. In the context of the meshless approx-
343imation method schemes, the MLS method is widely used, since it
344can directly approximate the field variables in a local manner and,
345additionally, can easily be extended to n-dimensional problems.
346In the context of the MLS method, an unknown field function
347u(x) is approximated by uh(x) is expressed as
348

uhðxÞ ¼
Xm

i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ ð32Þ
350350

351where pT(x) is a polynomial basis in the space coordinates, and m is
352the total number of the terms in the basis (herein m = 6 since we
353use a second order polynomial basis) and a(x) is the vector of coef-
354ficients. The polynomial basis can be written as
355

pTðxÞ¼pT ðx�xiÞ

¼ ½1;ðx�xiÞ;ðy�yiÞ;ðx�xiÞ2;ðx�xiÞðy�yiÞ;ðy�yiÞ
2� ð33Þ 357357

358in 2D problems.
359There exists a unique local approximation associated with each
360point in the domain. In order to determine the form of a(x), a
361weighted discrete error norm is constructed and minimized.
362Finally, the approximation function takes the form
363

uhðxÞ ¼
Xn

i¼1

uiðxÞui ¼ pTðxÞA�1ðxÞBðxÞu ¼ UTðxÞu ð34Þ
365365

366where the spatial dependence has been lumped into one row
367matrix, UTðxÞ and, therefore, the approximation takes the form of
368a product of a matrix of shape functions with a vector of nodal data,
369while matrices A and B are defined in [26,27]. Derivatives of the
370shape functions [26,27] may be calculated by applying the product
371rule to
372

UT ¼ pT A�1B: ð35Þ 374374

3753.2. Solution procedure and algorithm

376For the solution of the Eqs. (22)–(26) the Meshless Point Collo-
377cation Velocity-Correction (MPCVC) method presented in [28] is
378used in relation to the # -weighting method for the spatial and
379temporal discretization (presented in the Appendix and [29]).
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380 After the linearization of the non-linear partial differential Eqs.
381 (21)–(26) and their discretization, the resultant algebraic linear
382 system of equations is solved using an iterative procedure. The
383 steps of the iterative method are described below:

384 � Set the initial velocity components u(0) and v(0) and calculate the
385 vorticity xð0Þ ¼ @vð0Þ

@x � @uð0Þ
@y .

386 � Calculate @xð0Þ
@x and @xð0Þ

@y and use them to solve the Poisson type
387 equations for the u and v velocity component (Eqs. (22) and
388 (23)), using the prescribed boundary conditions. The u⁄ and v⁄
389 intermediate velocity components are calculated.

390� A velocity-correction method [28] is used to calculate the
391updated velocity components u(k+1) and v(k+1), which satisfy
392the incompressibility constraint.
393� The updated velocity values are used to calculate the tempera-
394ture field by solving Eq. (26), using the linearization method
395described above, for the Lh operator (Eq. (A6)). The prescribed
396temperature boundary conditions are used.
397� The updated velocity values are used to calculate the microrota-
398tion values by solving Eq. (25), using the linearization method
399described above, for the LN operator (Eq. (A5)). The prescribed
400microrotation boundary conditions are used.

ξ=0 o ξ=30 o ξ=60 o
γ=

0o

Nmin=-1.250 Nmin=-1.268 Nmin=-1.279

γ=
30

 o

Nmin=-1.857 Nmin=-1.855 Nmin=-1.874

γ=
60

 o

Nmin=-2.375 Nmin=-2.348 Nmin=-2.369

Fig. 9. Microrotation contours for different inclination and magnetic field orientation angles.
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401 � The updated velocity and temperature values are used to calcu-
402 late the vorticity values by solving Eq. (24), using the lineariza-
403 tion method described above, for the LX operator (Eq. (A6)). The
404 vorticity boundary conditions are calculated by
405 xðkþ1Þ ¼ @vðkþ1Þ

@x � @uðkþ1Þ

@y .
406 � The L1 errors (maximum absolute error) for the u, v, N, h and X
407 are calculated and if their values are less than 10�6 the iteration
408 stops.
409

410 4. Code validation

411 A grid independence study took place for the natural convection
412 in the square cavity for K = 2, Ha = 60, Ra = 105 and u = 0.03 and, as
413 it can be seen in Fig. 2, a grid of size 161 � 161 (total of 25,921
414 nodes) satisfies the grid independence. For the sake of accuracy
415 we used a dense grid configuration of 261 � 261. For the numerical
416 simulations, iterations were stopped when the maximum absolute
417 values (L1 norm) of the difference between the successive solu-
418 tions for velocity components, vorticity, microrotation and temper-
419 ature at each mesh point are less than 10�6.
420 In order to validate the present scheme, the steady, laminar nat-
421 ural convection flow in the presence of a magnetic filed in an
422 inclined filled with air is considered [4]. The enclosure is heated
423 (high temperature (TH)) from one side (left vertical side) and cooled
424 (low temperature (TC)) from the adjacent side (top horizontal side)
425 while the remaining walls are adiabatic. The average Nusselt num-
426 bers (Nuave) for various inclination and magnetic field orientation
427 angles are listed in Table 2a. The numerical results obtained with
428 the proposed scheme are in an excellent agreement with those
429 using a Finite Volume Method (FVM) [4]. The comparison of the
430 proposed scheme with the FVM showed that the maximum abso-
431 lute error is 10�2. As a second example we considered the natural
432 convection in an enclosure that is filled with a water-Al2O3 nano-
433 fluid, influenced by a magnetic field. The enclosure is bounded by
434 two isothermal vertical walls at temperatures Th and Tc and by
435 two horizontal adiabatic walls. The average and maximum abso-
436 lute value for the stream function |Wmax| with the solid volume
437 fraction at different values of the Hartmann number (Ha) are listed
438 in Table 3. The numerical results obtained by the present scheme

439are compared with those obtained using the Finite Volume Method
440(FVM) [30] and, it can be seen that they are in a very good agree-
441ment.(See Table 2b)

4425. Numerical results

443The heat performance of the micropolar-nanofluid filled enclo-
444sure is studied for a range of solid volume fractions (0 6 u 6 0.05),
445Rayleigh number (104

6 Ra 6 106) to cover both buoyancy and
446magnetic field dominant flow regimes and, Hartmann number
447(0 6 Ha 6 120). For all simulations, pure water is considered as
448the base fluid with Pr = 6.2 and the microrotation number was
449set to K = 2. The latter value has been chosen since, as depicted
450in [18], the numerical results are closer to the experimental find-
451ings. From the vorticity equation it can be seen that the magni-
452tudes of Rayleigh (Ra) and Hartmann (Ha) numbers can regulate
453the buoyancy or the magnetic force dominant on the flow field
454inside the enclosure. In details, the buoyancy force is naturally
455more effective for higher Rayleigh numbers, where the Lorentz
456force reduces velocities and suppresses the convection currents.
457On the other hand, when Ra/Ha2 = O(1) both forces are equally
458effective. The buoyancy is dominant as long as O(Ra/Ha2) >> 1
459and the magnetic field is dominant when O(Ra/Ha2) << 1. Finally,
460although the transient governing equations have been solved, we
461plot the steady state solutions of the governing equations.

4625.1. The effects of the Rayleigh and Hartmann numbers

463In this part of the study, an enclosure filled with Al2O3/water
464micropolar nanofluid is considered. In all the computations con-
465ducted, the solid volume fraction of the nanoparticles was constant
466and equal to u = 0.03. Concerning the numerical computations, the
467Hartmann number was taken in the range of 0 6 Ha 6 120, the
468inclination angle was c = 0o, while the angle of orientation of the
469magnetic field was taken also as n = 0o (B = B0i). The Rayleigh num-
470ber used was varied in the range of 104

6 Ra 6 106 to cover the
471both buoyancy and magnetic field dominant flow regimes.
472In Figs. 3 and 4 streamlines and temperature contours are
473shown, for two different values of the Hartmann number, namely

Fig. 10. Local Nusselt number along the hot wall for different magnetic field orientation (n) angles for inclination angles (a) c = 0o (b) c = 30o and (c) c = 60o.
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474 for Ha = 60 and Ha = 120, with the Rayleigh number ranging from
475 Ra = 104 to Ra = 106. Since the enclosure is not inclined, the
476 buoyancy force ascends the fluid particles heated near the hot wall,
477 acts parallel to it and the streamlines form a single eddy with
478 clockwise rotation. As far the isotherms, buoyancy force is more

479active lifting the warm fluid particles along the hot wall, the fluid
480then is forced to move horizontally along the adiabatic walls and,
481finally is descends when it reaches the cold vertical wall. As a
482result, the isotherms are closer to each other near the hot wall indi-
483cating higher surface heat flux and slightly bulged toward the cold
484wall due to the rapid transfer of heat by circulating fluid. The same
485pattern is evident in both Hartmann numbers and for all the Ray-
486leigh numbers encountered. As it can be seen, as the Ra number
487increases the vortex that is formed in the middle of the cavity
488becomes more elongated to the x-direction. As the Hartmann num-
489ber increases lower values of streamlines were observed. The flow
490patterns indicate lower values of the streamlines and weaker rota-
491tion due to the higher Hartmann number. The streamlines are
492bended in the region between x = 0.2 and x = 0.8 and as the Ray-
493leigh number increases they tend orientate along with the x-axis
494direction, which is the magnetic field direction. This is also seen
495for Ha = 60 where the bending is more pronounced.
496Fig. 5a shows the Local Nusselt number along the hot wall for
497various Rayleigh (Ra) and Hartmann (Ha) numbers. It can be seen
498that as the Rayleigh (Ra) number increases the local Nusselt num-
499ber is shifted upwards. While, the increase of Hartmann (Ha) num-
500ber shifts the local Nusselt number curves downwards.
501In Fig. 5b the average Nusselt number was plotted against the
502Hartmann number, considering a micropolar nanofluid and a nano-
503fluid without the microrotation. For a micropolar nanofluid it can
504be observed that for all the Ra numbers considered the average
505Nusselt number is smaller compared with that of a pure nanofluid
506model (this is thoroughly analyzed in [18]). It can be noticed that
507when the Rayleigh number is low (Ra = 104) the average Nusselt
508number (Nuave) is slightly different for the two models and slightly
509changed for everyone when the Hartmann number increases. As
510the Rayleigh number increases the Nuave is different for the two
511models and decreases as the Ha number increases.

5125.2. The effects of solid volume fraction

513In this part of the study, an enclosure filled with Al2O3/water
514micropolar nanofluid is considered. In all the computations con-
515ducted, the solid volume fraction of the nanoparticles was taken
516in the range of 0 6 u 6 0.05 along with the Hartmann number
517ranging from Ha = 10 to Ha = 90. The Rayleigh number was set to
518Ra = 105.
519Fig. 6 shows the microrotation contours for with increasing
520solid volume fraction of the nanoparticles for different Hartmann
521numbers, namely Ha = 30 and Ha = 60. It can be seen that as the
522volume fraction of the nanoparticles increases the strength of
523the microrotation increases. In Fig. 7 the microrotation profiles
524are plotted along the centerlines of the cavity, at y = 0.5 and
525x = 0.5, respectively, for Hartmann numbers Ha = 30 and 60.
526Symmetric profiles are obtained, with the strength of the micro-
527rotation increasing as the volume fraction of the nanoparticles
528increases. This can be explained by the fact that the total
529amount of microrotation in the bulk is increased since the num-
530ber of nanoparticles increases and consequently the total micro-
531rotation is elevated. Additionally, as it can be seen from Fig. 8,
532the average Nusselt number decreased as the volume fraction
533of nanoparticles increases. This is more evident as the Hartmann
534number is low. This can be explained by the fact that when the
535applied magnetic field (Hartmann number) is low the rotation of
536the particles remains without no intense mixing in the fluid. The
537exchange of heat energy with the solid wall is low and the Nus-
538selt number is decreased. Notice that results show opposite
539behavior comparing with those of magnetite nanofluids under
540the influence of an external magnetic field [31]. That is, the
541increase of the magnetic field strength decreases the local heat
542transfer coefficient.

Fig. 11. Magnification of the local Nusselt number along the hot wall for different
magnetic field orientation (n) angles for inclination angles (a) c = 0o (b) c = 30o and
(c) c = 60o.
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543 5.3. The effects of inclination angles

544 Microrotation contour lines in a square enclosure for Ra = 106,
545 Ha = 60, K = 2, u = 0.03 and various enclosure inclinations and
546 magnetic field directions are shown in Fig. 9.
547 When the enclosure is tilted (30	 and 60	) the buoyancy force
548 forces fluid particles toward to and away from the hot wall is in
549 the clockwise direction. Therefore, while the streamlines form a
550 single eddy with clockwise rotation, the orientation and the
551 strength of the eddy change. This can also be noticed when the
552 magnetic field is not yet normal to the hot wall (30	 and 60	),
553 where the strength of the eddy increases as the inclination angle
554 increases. The magnetic field applied normal to the hot wall is
555 more effective reducing the convection and therefore the heat
556 transfer for square and tall enclosures and the magnetic field
557 applied normal to the cold wall is more effective reducing the con-
558 vection for the enclosure. Fig. 10 shows the local Nusselt number
559 along the hot wall for different inclination angles and orientation
560 of the magnetic field. It can be seen that as the inclination angle
561 (c) increases the local Nusselt number is shifted downwards. In
562 Fig. 11 a closer look of the local Nusselt number is shown and as
563 the orientation angle (n) of the magnetic fields increases the local
564 Nusselt number is up shifted.

565 6. Conclusions

566 The present study considers a numerical investigation of lami-
567 nar natural-convection flow through an Al2O3/water micropolar
568 nanofluid in the presence of a magnetic field in an inclined rectan-
569 gular enclosure. The rotation of the nanoparticles was incorporated
570 in the flow model. The mathematical theory that describes this
571 particular flow regime is the micropolar flow theory that expresses
572 apart from the conservation of linear momentum and angular
573 momentum. Experimentally given forms of thermo-physical nano-
574 fluids’s properties, as dynamic viscosity, thermal conductivity and
575 electrical conductivity, are utilized. A meshless point collocation
576 with velocity-correction method was utilized in order to numeri-
577 cally solve the governing equations. The study leads to the follow-
578 ing conclusions:

579 � The flow characteristics and the convection heat transfer inside
580 the tilted enclosure, depend strongly upon the strength and ori-
581 entation of the magnetic field, the inclination of the enclosure,
582 the microrotation number and the volume fraction of the nano-
583 particles used.
584 � Circulation and convection become stronger with increasing
585 Rayleigh and microrotation numbers but they are significantly
586 suppressed by the presence of a strong magnetic field.
587 � The local Nusselt number increases considerably with Rayleigh
588 number since the circulation becomes stronger. The magnetic
589 field significantly reduces the local Nusselt number by sup-
590 pressing the convection currents.
591 � The local Nusselt number is shifted upwards as the Rayleigh
592 (Ra) number increases. While, the local Nusselt number curves
593 are shifted downwards as the Hartmann (Ha) number is
594 increased.
595 � The presence of nanoparticles alters the thermal properties of
596 the base fluid. For small values of nanoparticles’s volume frac-
597 tion (u < 0.02) as the Hartmann number increases the average
598 Nusselt is increased, while for (u > 0.02) as the Hartmann num-
599 ber increases the average Nusselt is decreased.
600 � For a specific value of nanoparticles’s volume fraction (u = 0.03),
601 as the Rayleigh (Ra) number increases the average Nusselt is
602 increased, while as the Hartmann number increases and keeping
603 (Ra) constant the average Nusselt is slightly decreased.

604� For a micropolar nanofluid model it can be observed that for all
605the Rayleigh numbers considered the average Nusselt number
606was smaller compared with that of a pure nanofluid model.
607
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610Appendix A

611Solution procedure

612Consider the governing equation of the unsteady problem 613
@qðx; tÞ
@t

þ Lqðx; tÞ ¼ f ðx; tÞ; 8x 2 X 
 R3; t > 0 ðA1Þ 615615

616

Bqðx; tÞ ¼ gðx; tÞ; 8x 2 @X 
 R3; t > 0 ðA2Þ 618618

619where L is a differential operator and B is a boundary operator,
620which can be a Dirichlet, Neumann or a mixed operator. Using the
621notation q(k+1) = q(t(k+1)), where t(k+1 )= t(k) + dt and introducing
622h-weighting (0 6 h 6 1), we get
623

qðkþ1Þ � qðkÞ

dt
þ hLqðkþ1Þ þ ð1� hÞLqðkÞ ¼ hðkþ1Þ ðA3Þ 625625

626For the vorticity transport equation, the microrotation and the
627temperature equations under consideration the L operator is given
628by 629

LX ¼ U
@

@X
þ V

@

@Y
�

lnf

lf
þ K

 !
qf

qnf

 !
r2 ðA4Þ

631631

632

LN ¼ U
@

@X
þ V

@

@X
�

lnf

lf
þ K

2

 !
qf

qnf

 !
r2 þ 2K

qf

qnf

 !
ðA5Þ

634634

635

Lh ¼ U
@

@X
þ V

@

@X
� knf

kf

� � ðqCpÞf
ðqCpÞnf

 !
1
Pr
r2 ðA6Þ

637637

638and the right-hand side by
639

hX ¼ �K
qf

qnf

 !
r2N þ Ra

Pr
ðqbÞnf

ðqbÞf

 !
qf

qnf

 !
cosðcÞ @h

@X
� sinðcÞ @h

@Y

� �

þ rnf

rf

� � qf

qnf

 !
Ha2 sinðnÞ cosðnÞ @U

@X
� cos2ðnÞ @V

@X

� �

þ rnf

rf

� � qf

qnf

 !
Ha2 sin2ðnÞ @U

@Y
� sinðnÞ cosðnÞ @V

@Y

� �
ðA7Þ

641641

642

hN ¼ K
qf

qnf

 !
X ðA8Þ

644644

645

hh ¼ 0 ðA9Þ 647647

648For illustration purposes we will describe in details the lineariza-
649tion procedure used only for the vorticity. For now on we will use a
650notation (r,s) for the derivatives defined as differentiation of the var-
651iable r with respect to s. The Eq. (A3) using Eq. (A4) can be written as
652

Xðkþ1Þ �XðkÞ

dt
þ# ðUX;xÞðkþ1Þ þ ðVX;yÞðkþ1Þ �

lnf

lf
þK

 !
qf

qnf

 ! 

Xðkþ1Þ
;xx þXðkþ1Þ

;yy þ
� ��

þð1�#Þ ðUX;xÞðkÞ þ ðVX;yÞðkÞ �
lnf

lf
þK

 ! 

qf

qnf

 !
XðkÞ;xxþXðkÞ;yyþ
� �!

¼ðhXÞ
ðkþ1Þ ðA10Þ
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655 Following we linearize the non-linear terms of the Eq. (40) as
656

ðUX;iÞðkþ1Þ ffi UðkÞXðkþ1Þ
;i þ Uðkþ1ÞXðkÞ;i � UðkÞXðkÞ;i ðA11Þ658658

659 with i = x,y. Substituting Eq. (A11) in Eq. (A10), multiplying by dt
660 and after collecting the (k + 1) and the (k) terms on the left and
661 the right hand side, respectively, we get
662

Xðkþ1Þ þ dt# UðkÞXðkþ1Þ
;x þ V ðkÞXðkþ1Þ

;y �
lnf

lf
þ K

 !
qf

qnf

 ! 

Xðkþ1Þ
;xx þXðkþ1Þ

;yy

� ��
¼ XðkÞ � dt# Uðkþ1Þ � UðkÞ

� �
XðkÞ;x

�

þ V ðkþ1Þ � V ðkÞ
� �

XðkÞ;y
�
� dtð1� #Þ UðkÞXðkÞ;x þ V ðkÞXðkÞ;y �

lnf

lf
þ K

 ! 

qf

qnf

 !
XðkÞ;xx þXðkÞ;yy

� �!
þ dtðhXÞ

ðkþ1Þ
ðA12Þ

664664

665 Eq. (A12) can be written in matrix notation as
666

MXðkþ1Þ ¼ ðR þ Q ÞXðkÞ þ F ðA13Þ668668

669 where
670

M¼
Udþdt#�ðUðkÞ 	Ud

;xþV ðkÞ 	Ud
;y�

lnf

lf
þK

� �
qf

qnf

� �
�ðUd

;xxþUd
;yyÞÞ

Ub

2
4

3
5

ðA14Þ672672

673

R ¼ �dt#�ððUðkþ1Þ � UðkÞÞ 	Ud
;x þ ðV

ðkþ1Þ � V ðkÞÞ 	Ud
;yÞ

0

" #
ðA15Þ

675675

676

Q ¼ Ud�dtð1�#Þ � UðkÞ 	Ud
;xþV ðkÞ 	Ud

;y�
lnf

lf
þK

� �
qf

qnf

� �
� Ud

;xxþUd
;yy

� �� �
0

" #

ðA16Þ678678

679

F ¼ dtðhXÞ
ðkþ1Þ

gðkþ1Þ

" #
ðA17Þ

681681

682 where matrices U, U,s, U,ss, with s = x,y, give the unknown field
683 function approximation values and their spatial derivatives up to
684 second order and g are the boundary conditions. These matrices

685
can be written as U ¼ UNd

UNb

� �
‰ RN�N, corresponding to Nd interior

686 nodes and Nb boundary nodes (N = Nd + Nb), with N being the total
687 number of nodes. The symbol (w	D) means that the ith component
688 of the vector w is multiplied to every element of the ith row of the
689 matrix D.
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