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Abstract. This note describes an information theory problem that arose
from some analysis of quantum key distribution protocols. The problem
seems very natural and is very easy to state but has not to our knowl-
edge been addressed before in the information theory literature: suppose
that we have a random bit string y of length n and we reveal k bits at
random positions, preserving the order but without revealing the posi-
tions, how much information about y is revealed? We show that while
the cardinality of the set of compatible y strings depends only on n and
k, the amount of leakage does depend on the exact revealed x string. We
observe that the maximal leakage, measured as decrease in the Shannon
entropy of the space of possible bit strings, corresponds to the x string
being all zeros or all ones and that the minimum leakage corresponds to
the alternating x strings. We derive a formula for the maximum leakage
(minimal entropy) in terms of n and k. We discuss the relevance of other
measures of information, in particular min-entropy, in a cryptographic
context. Finally, we describe a simulation tool to explore these results.
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1 Introduction

The problem that we investigate here arose from some analysis of quantum key
distribution (QKD) protocols. We do not go into the details of the motivating
context here, more detail can be found at [1]. For the moment we just remark
that in QKD protocols it is typical for the parties, after the quantum phase, to
compare bits of the fresh session key at randomly sampled positions in order
to obtain an estimate of the Quantum Bit Error Rate (QBER). This indicates
the proportion of bits that have been flipped as the result of either noise or
eavesdropping on the quantum channel. This serves to bound the amount of
information leakage to any eavesdropper, and as long as this falls below an
appropriate threshold the parties continue with the key reconciliation and secrecy
amplification steps.

Usually, the sample set is agreed and the bits compared using un-encrypted
but authenticated exchanges over a classical channel, hence the positions of
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the compared bits are known to a potential eavesdropper and these bits are
discarded. In [1], it is suggested that the sample set be computed secretly by
the parties based on prior shared secrets. They still compare the bits over an
un-encrypted channel, but now an eavesdropper does not learn where the bits
lie in the key stream. This prompts the possibility of retaining these bits, but
now we must be careful to bound the information leakage and ensure that later
privacy amplification takes account of this leakage.

Further advantages of the above approach are that it provides implicit au-
thentication at a very early stage and it ensures fairness in the selection of the
sampling, i.e. neither party controls the selection.

In practice it would probably be judged too risky to retain these bits on
forward secrecy grounds: leakage of the prior secret string at a later time would
compromise these bits. Nonetheless, the possibility does present the rather in-
triguing mathematical challenge that we address in this paper.

The structure of the paper is as follows: in the next section we give the
problem statement, some notation and the necessary background theory. Sec-
tion 3 presents our approach for solving the problem as well as the obtained
results, followed by a few discussions on privacy amplification and alternative
approaches in Section 4. Section 5 describes how we use simulations to obtain
numerical results and to tackle some of the problems addressed in this paper for
which deriving analytic expressions proved to be difficult. Finally, we conclude
by summarizing our contributions in Section 6.

2 Problem Statement

Given an alphabet Σ = {0, 1}, Σn denotes the set of all Σ-strings of length
n. Consider a bit string y of length n chosen at random from the space of all
possible bit strings of length n, i.e. y ∈ Σn. More precisely, we assume that the
probability distribution over the n-bit strings is flat. We assume that the bits are
indexed 1 through n and a subset S of {1, ...., n} of size k (k ≤ n) is chosen at
random and we reveal the bits of y at these indices, preserving the order of the
bits but without revealing S. Call the resulting, revealed string x. We assume
that S is chosen with a flat distribution over the set of subsets of {1, ....n} of
size k, thus every subset of size k is equally probable. As an example, suppose
that for n = 12 and k = 4 we have:

y = 〈011000011001〉
and we choose S = {2, 4, 5, 8}, then x = 〈1001〉.

The question now is, what is the resulting information leakage about y? We
assume that the “adversary” knows the rules of the game, i.e. she knows n and
she knows that the leaked string preserves the order but she does not know the
chosen S mask. In particular, can we write the leakage as a function purely of k
and n or does it depend on the exact form of x? If it does depend on x, can we
bound this?
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To illustrate: if you reveal 0 bits then obviously you reveal nothing about the
full string. If you reveal just one bit (k = 1) and suppose that it is a 0, then
essentially all you have revealed about the full string is that the all 1 string is not
possible. At the other extreme, if you reveal all the bits (k = n) then obviously
you reveal all n bits of the original string. For k = n/2, we see that from Theorem
1 the number of possible y strings is (2n)/2, which for a flat distribution would
correspond to exactly 1 bit of leakage. However, in our problem the distribution
departs from flat so the leakage is in fact a little more than 1 bit. So intuitively
the function starts off very shallow but rises very fast as k approaches n.

2.1 Notation

Let us introduce some notation. First we define x = Mask(y, S) to mean that the
string y filtered by the mask S gives the string x. Now we define the uncertainty
set : given an x and n, this is the set of y strings that could project to x for some
mask S.

Υn,x := {y ∈ {0, 1}n,∃S •Mask(y, S) = x}

– Let ωx(y) denote the number of distinct ways that y can project onto x. We
will refer to this as the weight of y (w.r.t x).

ωx(y) := |{S ∈ P(N) : Mask(y, S) = x}| .

– and µn,x the number of configurations for n and x, i.e. the number of pairs
{y, S} such that Mask(y, S) = x. It is easy to see that this is given by:

µn,k =

(
n

k

)
· 2n−k (1)

The concepts presented here are closely related to the notions of subse-
quences, here denoted by x strings, and supersequences (y strings), in formal
languages and combinatorics on words. They also crop up in coding theory as a
maximum likelihood decoding in the context of deletion and insertion channels.

2.2 Related Work

The closest results to our work are mainly found either in studies dealing with
subsequences and supersequences or in the context of deletion channels. However,
the questions addressed in this paper remain open in related studies. The main
problem boils down to determining the probability distribution discussed in the
previous section. Here we give a brief survey of the most relevant and closely
related results in the literature.
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Subsequences and Supersequences: Despite their rather simple descriptions,
the spaces of subsequences and supersequences remain largely unexplored and
present many unanswered questions. Fundamental results can be found in the
works of Levenshtein, Hirschberg and Calabi [2,3,4,5] who provide tight upper
and lower bounds on the number of distinct subsequences. Furthermore, it was
proved by Chase [6] that the number of distinct k-long subsequences is maxi-
mized by repeated permutations of an alphabet Σ, i.e. no letter appears twice
without all of the other letters of Σ intervening. Flaxman et al. [7] also provide
a probabilistic method for determining the string that maximizes the number
of distinct subsequences. Results for the mean and the variance of subsequences
for the sequence searching problem, also known as the hidden pattern problem,
can be found at [8].

For a thorough presentation of efficient algorithms for computing the number
of distinct subsequences, e.g. using dynamic programming, and related problems
in the realm of DNA sequencing, we refer the reader to [9,10,11,12].

Maximum Likelihood Decoding in Deletion Channels: In a deletion chan-
nel [13], for a received sequence, the probability that it arose from a given code-
word is proportional to the number of different ways it is contained as a subse-
quence in that codeword. This translates into a maximum likelihood decoding
for deletion channels as follows: For a received sequence, we count the number of
times it appears as a subsequence of each codeword and we choose the codeword
that admits the largest count. The problem of determining and bounding these
particular distributions remains unexplored and presents a considerable number
of open questions. Case-specific results for double insertion/deletion channels
can be found in [14]. Moreover, improved bounds for the number of subsequences
obtained via the deletion channel and proofs for how balanced and unbalanced
strings lead to the highest and lowest number of distinct subsequences are given
in [15].

2.3 Entropy Measures

The obvious follow-on question to the problem posed at the start of this section
is: what is the appropriate measure of information to use? Perhaps the simplest
measure is the Hartley measure, the log of the cardinality of the uncertainty
set. This coincides with the Shannon measure if the probability distribution is
uniform. In this case the solution is simple as we will see below: the cardinality
of the uncertainty set is a simple function of n and k. However, the probability
distribution turns out to be rather far from uniform, so Hartley does not seem
appropriate here.

Thought of purely as an information theory puzzle, the standard commonly
used measure is Shannon’s [16]. For this we have a number of interesting results
and observations. In particular, our observations suggest that the maximum
leakage for all n and k occurs for the all zero or all one x strings and we have
a formula for the leakage in these cases. However, we have not yet been able to
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prove this conjecture, although we do have intuitions as to why this appears to
be the case.

Given the cryptographic motivation for the problem, it is worth considering
whether alternative information measures are in fact more appropriate. The
Shannon measure has a very specific interpretation: the expected number of
binary questions required to identify the exact value of the variable. In various
cryptographic contexts, this might not be the most appropriate interpretation.
For example, in some situations it might not be necessary to pin down the
exact value and a good approximation may be damaging. In our context, the
session key derived from the key reconciliation phase will be subjected to privacy
amplification to reduce the adversary’s knowledge of the key to a negligible
amount. What we really need therefore is a measure of the leakage that can
be used to control the degree of amplification required. This question has been
extensively studied in [17,18,19,20,21], and below we summarize the key results.

Various measures of entropy may be applicable depending on the parameters
of the context in question, such as the scheme used for privacy amplification,
e.g. universal hashing vs. randomness extractors or whether a distinction is made
between passive adversaries and active adversaries [17]. As noted in the works
of Bennett et al. [21,22], the Rényi entropy [23,24] provides a lower bound on
the size of the secret key s′ distillable from the partially secret key s initially
shared by Alice and Bob. Moreover, it is shown in [17], that the min-entropy
provides an upper bound on the amount of permissible leakage and specific
constraints are derived as a function of the min-entropy of s and the length of
the partially secret string. More recently, Renner and Wolf show in [18] that the
Shannon entropy H can be generalized and extended to two simple quantities,
Hε

0 and Hε
∞, called smooth Rényi entropy values, which provide tight bounds for

privacy amplification and information reconciliation in contexts such as QKD,
where the assumption of having independent repetitions of a random experiment
is generally not satisfied.

For the purpose of our study, we consider the following measures of informa-
tion, which can be considered as special cases of the Rényi Entropy.

Rényi Entropy of order α. For α ≥ 0 and α 6= 1, the Rényi entropy of order
α of a random variable X is

Hα(X) =
1

1− α log2

∑
x∈X

PX(x)α. (2)

Hartley Entropy. The Hartley measure corresponds to Rényi entropy of order
zero and is defined as

H0(X) := −log2 |X | . (3)

Second-order Rényi Entropy. For α = 2, we get the collision entropy, also
simply referred to as the Rényi entropy
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R(x) = H2(X) := −log2

∑
x∈X

PX(x)2. (4)

Shannon Entropy. As α → 1, in the limit we get the Shannon entropy of a
random variable X

H(X) = −
∑
x∈X

PX(x) · log2PX(x). (5)

Min-Entropy. In the limit, as α → ∞, Hα converges to the min-entropy of a
random variable X

H∞(X) := −log2 max
x∈X

(PX(x)). (6)

As noted in [17], the entropy measures given above satisfy

H(X) ≥ H2(X) ≥ H∞(X) (7)

3 Information Leakage

In this section we show that the size of the uncertainty set only depends on
n and k and provide an expression for computing its cardinality, followed by a
proof. We then analyze the amount of information leakage and observe that the
maximal leakage corresponds to the x string being all zeros or all ones and that
the minimum leakage corresponds to the alternating x strings. We also derive
closed form expressions for the maximum leakage (minimal entropy) in terms of
n and k for the measures of entropy introduced in Section 2.

3.1 Cardinality of the Uncertainty Set

Theorem 1. For given n and k the cardinality of Υn,x is independent of the
exact x string. Furthermore, |Υn,x| is given by:

|Υn,x| =
n∑
r=k

(
n

r

)
(8)

Proof. γn,k satisfies the following recursion:

γn,k = γn−1,k + γn−1,k−1 (9)

with base cases: γn,n = 1 and γn,0 = 2n.
The base cases are immediate. To see how the recursion arises, consider the

following cases:

– Partition the y strings into those that have a mask overlapping the first bit
of y and those that do not.

6 This is a copy of the author preprint. The final authenticated version is available online at:

https://doi.org/10.1007/978-3-319-26096-9_33

https://doi.org/10.1007/978-3-319-26096-9_33


A. Atashpendar et al.

– For the former, we can enumerate them simply as the number of y strings
of length n− 1 with ≥ 1 projections to the tail of x, i.e. x∗, i.e. γn−1,k−1.

– For the latter, the number is just that of the set of y strings of length n− 1
with ≥ 1 projection to x, which has length k, i.e. γn−1,k.

The solution to this recursion with the given base cases is:

γn,k =

n∑
r=k

(
n

r

)
(10)

This is most simply seen by observing that the recursion is independent of
the exact x, hence we can choose the x string comprising k 0s. Now we see that
|Υn,x| is simply the number of distinct y strings with at least k 0s, and the result
follows immediately.

If the conditional distribution over Υn,x given the observation of x were flat,
we would be done: we could compute the entropy immediately. However, it turns
out the distribution is far from flat, and indeed its shape depends on the exact x
string. This is due to the fact that given an observed x, the probability that a y
gave rise to it is proportional to the weight of y, i.e. the number of ways that y
could project to x, i.e. |{S|Mask(y, S) = x}|. This can vary between 1 and

(
n
k

)
.

3.2 Shannon Entropy

Here we will assume that the leakage is measured as the drop in the Shannon
entropy of the space of possible y strings. Clearly, before any observation the
entropy is n bits. We observe that the maximal leakage occurs when x is either
the all 0 or the all 1 string and we derive an expression for the corresponding
entropy of Υn,x.

3.3 Minimal Shannon Entropy

Assuming that the maximal leakage occurs for the all zero (or all one) x string
we derive the formula for the maximal leakage (minimum entropy of Υn,x) as
follows: observe that the number of elements of Υn,k with j 1’s is

(
n
j

)
. Note

further that for given j the number of ways that a y string with j 1’s can yield
x is

(
n−j
k

)
. Consequently, the probability that y was a given string with j 1’s

given the observation of x is:

P (yj |x) =

(
n−j
k

)
µn,k

(11)

Where µn,k is the normalization, i.e. the total number of configurations that
could give rise to a given x:

µn,k =

(
n

k

)
× 2n−k
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Now, inserting these terms into the formula for the Shannon entropy given
in Eq. 5, we get:

Hn,k = −
n−k∑
j=0

(
n

j

)
×
(
n−j
k

)
µn,k

× log2

((
n−j
k

)
µn,k

)
(12)

For the original cryptographic motivation of this problem, more specifically
in the context of privacy amplification, it is arguably an upper bound on the
maximum leakage or the amount of information that Eve has gained that we
are after [25]. However, it is also interesting to better understand the mean and
range of the entropy for given n and k, but coming up with analytic forms for
these appears to be much harder. We switch therefore to simulations to give us
a better feel for these functions.

3.4 Minimal Rényi Entropy

The expression provided here is also based on the empirical results that conjec-
ture that the minimal Rényi entropy is attained by 0k or 1k.

Inserting the derived expression given in Eq. 11 corresponding to the maximal
leakage into the formula of the second-order Rényi entropy given in Eq. 4, we
obtain the following expression for the minimal Rényi entropy:

R(X) = H2(X) := −log2

n−k∑
j=0

(
n

j

)
·
((

n−j
k

)
µn,k

)2

(13)

The derived expression agrees with the experiments driven by the numerical
computation presented in Section 5.

3.5 Min-Entropy

The most conservative measure of information in the Rényi family is the min-
entropy, and this is of interest when it comes to privacy amplification.

This turns out to be more tractable than the Shannon entropy. In particular
it is immediate that the smallest Min-Entropy is attained by the all zero or all
one x strings: the largest weight of a y string, and hence probability, is

(
n
k

)
and

this is attained by x = 0k and y = 0n. Thus we can derive an analytic form for
the minimum Min-Entropy H∞(X) by inserting the derived term for maximal
probability given in Eq. 11 into Eq. 6, and thus we get:

Min(H∞(X)) := −log2

( (
n
k

)
µn,k

)
(14)

and this immediately simplifies to:

Min(H∞(X)) := n− k (15)
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It is clear that this indeed corresponds to the most pessimistic bound of the
leakage and can be thought of as assuming that the adversary gets to know the
exact positions of the leaked bits.

The Min-Entropy, H∞(X), is based on the most likely event of a random
variable X. Therefore, this term sets an upper bound on the number of leaked
bits, which can be then used in the parameterization of the compression function
used in privacy amplification as described in [22].

Using Eq. 7 and the analytic forms given above for the lower bound on the
Shannon entropy as well as the min-entropy, we can effectively set loose upper
and lower bounds on the Rényi entropy.

3.6 Maximum Entropy

Another observation derived from empirical results obtained by simulation is
that it also appears that the minimal leakage (max H) occurs when x comprises
alternating 0s and 1s, e.g. x = 101010..., as shown in Fig. 3. We have seen that
for a given n and k, the total number of masks and the number of compatible y
strings are constant for all x strings. Therefore, the change in entropy of the Υ
space for different x strings is solely dictated by how the masks are distributed
among the compatible y strings, i.e. the contribution of each y ∈ Υn,x to the
total number of masks.

4 Privacy Amplification and Alternative Approaches

This section gives a brief overview of the context to which this study applies
and also analyzes the presented problem from a Kolmogorov complexity point
of view. We then propose an approach for estimating the expected leakage, and
finally we point out a duality between our findings and similar results in the
literature.

4.1 Privacy Amplification

PA involves a setting in which Alice and Bob start out by having a partially secret
key denoted by the random variable W , e.g. a random n-bit string, about which
Eve gains some partial information, denoted by a correlated random variable V .
This leakage can be in the form of some bits or parities of blocks of bits of W
or some function of W [22]. Provided that Eve’s knowledge is at most t < n bits
of information about W , i.e. R(W |V = v) ≥ n− t, with R denoting the second-
order Rényi entropy, Alice and Bob can distill a secret key of length r = n− t−s
with s being a security parameter such that s < n − t. The security parameter
s can be used to reduce Eve’s knowledge to an arbitrarily small amount, e.g. in
the context of universal hash functions, it can be used to adjust the reduction
size of the chosen compression function g : {0, 1}n 7→ {0, 1}r.

The function g is publicly chosen by Alice and Bob at random from a family of
universal hash functions, here denoted by the random variable G, to obtain K =
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g(W ), such that Eve’s partial information on W and her complete information
on g give her arbitrarily little information about K. The resulting secret key K
is uniformly distributed given all her information. It is also shown by Bennett
et al. in [22] that H(K|G,V = v) ≥ r − 2−s/ln 2, provided only that R(W |V =
v) ≥ n − t. The value of s can be considered a fixed value and comparatively
small, typically not larger than 30, as the key length increases.

It is worth noting that the measure of information used in privacy amplifica-
tion for defining the bound on leakage or the minimum length of the secret key
that can be extracted, may vary depending on criteria such as the algorithms
used in the amplification scheme and the channel being authenticated or not.
For instance, as shown in [17], when randomness extractors are used instead of
universal hash functions, the bound for secure PA against an active adversary is
defined by the adversary’s min-entropy about W . Various schemes for perform-
ing PA over authenticated and non-authenticated channels have been extensively
studied in [17],[21],[26].

In QKD, privacy amplification constitutes the last sub-protocol that is run in
a session and thus it takes place after the information reconciliation phase. The
leakage studied in this paper deals with reduced entropy before the information
reconciliation phase. However, this simply means that the leakage quantified here
would in fact contribute to the t bits leaked to Eve.

4.2 Kolmogorov-Chaitin Complexity

From a purely information theoretical point of view, quantifying the amount of
information leakage in terms of various measures of entropy such as the Shannon
entropy is arguably what interests us. However, from a cryptographic stand-
point, a complexity analysis of exploring the search space by considering the
Kolmogorov complexity, provides another perspective in terms of the amount of
resources needed for describing an algorithm that reproduces a given string.

In such a context, what matters for an attacker is how efficiently a program
can enumerate the elements of the search space. In other words, whether it
can enumerate the space in the optimal way, to minimize the expected time to
terminate successfully. To illustrate this point, consider the case of the all 0 x
string for which we can start with the all 0 y string, then move to y strings with
one 1, then two 1s, and so on and so forth. For other generic x strings, carrying
out this procedure in an efficient manner becomes more involved.

4.3 Estimating Expected Leakage

Our primary goal was to compute the leakage for a given x and the maximum
leakage for given n and k, however, estimating the average leakage might also
be of some interest. Since an exact computation depends on a rigorous under-
standing of the Υ space and its governing probability distribution, we suggest
an approach that moves the problem from the space of supersequences to that
of subsequences such that further developments in the latter can enable a more
fine-grained estimation of the expected leakage.
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Let Y be the random variable denoting the original random sequence of n bits
and X the random variable denoting the k bits of leakage from Y . The average
leakage can be expressed in terms of the entropy of Y minus the conditional
entropy of Y conditioned on the knowledge of X, i.e. H(Y ) − H(Y |X). While
H(Y |X) may seem hard to compute without the joint probability mass function
of X and Y , we can use Bayes’ rule for conditional entropy [27] to reformulate
the expression as follows.

H(Y )−H(Y |X) = H(X)−H(X|Y )

With random Y , X is a uniformly distributed k-bit string and thus we have
H(X) = k. This leaves us with H(X|Y ), and this reformulation allows us to
define the entropy space in terms of projection weights, ωx(y), assigned to the
subsequences of each Y = y. Currently, as shown in [3], we only know the
expected number of distinct subsequences given an n and t:

Et(n) =

t∑
i=0

(
n− t− 1 + i

i

)
λi.

with t being the number of deleted bits from the n-long y string, i.e. t = n−k, and
λ = 1− 1

|Σ| , which in the binary case,Σ = {0, 1}, would simply be λ = 1− 1
2 . With

this measure, we can get a rough estimate on the expected weight, which can
then be used to estimate the average entropy, but this only gives us a very coarse-
grained estimation of the expected leakage. Therefore, a better understanding
of the exact number of distinct subsequences would lead to a more fine-grained
estimation of the expected leakage.

4.4 Duality: Subsequences vs. Supersequences

An interesting observation resulting from our findings is that the two x strings of
interest in the space of supersequences, i.e. the all zero or all one strings (single
run) 0+|1+, denoted here by σ and the alternating x strings: (ε|1)(01)+(ε|0),
denoted here by α also represent the most interesting strings in the space of
distinct subsequences.

More precisely, in our study we observe that single run sequences σ lead
to the least uniform distribution of masks over the compatible supersequences,
whereas the alternating sequences α yield the distribution of masks closest to
the uniform distribution. Similarly, in the space of subsequences, σ lead to the
minimum number of k-long distinct subsequences and α generate the maximum
number of k-long distinct subsequences.

5 Simulations

In this section we first give a brief description of how our simulator [28] carries
out the numerical experiments and then we discuss the obtained results with the
help of a few plots that are aimed at describing the structure of the Υ spaces.
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We will refrain from elaborating on all the functionalities of the simulator as
this would be beyond the scope of this paper. Instead, we focus on a select few
sets of empirical results that were obtained from our experiments. We refer to
[28] for more information and details.

The main motivation behind the numerical approach driven by simulations
lies in the rather complicated structure of the Υ spaces. As deriving analytic
forms for describing the entire space seems to be hard, we rely on simulating the
spaces of interest in order to explore their structure.

5.1 Methodology

The simulator relies on parallel computations for generating, sampling and ex-
ploring the search spaces. The numerical experiments are carried out in two
phases: First the simulator generates the Υ spaces that have various structures
satisfying predefined constraints and then it proceeds to performing computa-
tions on the generated data sets.

The pseudo-code given in Alg. 1 provides an example that illustrates one of
the main tasks accomplished by the simulator: Given an n and an x string, we
generate the corresponding Υ space containing the compatible y strings, compute
the projection count ωx(y) of its members, and compute its exact entropy.

Algorithm 1 Compute Hα(Υn,x)

1: function computeUpsilonEntropy(n, x)
2: SN ← Generate the space of bit strings of length n
3: Υn,x ← Filter SN and reduce it to {y||y| = n,∃S •Mask(y, S) = x}
4: probArray ← []
5: for yi in Υn,x do
6: ωx(yi)← computeProjectionCount(yi, x)
7: probArray[i]← ωx(yi)/N

8: Hα ← computeHα(probArray)
9: return Hα

5.2 Results Discussion

In this section, we present and discuss a select subset of our results with the
help of plots generated by the simulator that provide a better insight into the
structure of the Υ spaces.

As mentioned before, one of the main observations resulting from numerical
simulations is that the shape of the probability distributions leading to the en-
tropy values of x strings for a given n and k, is mainly determined by how evenly
the number of projecting y strings are distributed across the possible projection
counts for a given n and k. This observation is illustrated in Fig. 1.
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Fig. 1. Distinct count of y strings admitting the same ωx(y) for n = 12 and k = 4.

Following from Theorem 1, for a given n and k, the observables computed
and plotted in Fig. 1 for any x string satisfy the following

g(n,x)∑
i=1

ci = |Υn,k| (16)

Furthermore, the sum of the product of ci and ωx(yi) is equal to a constant
for all x strings:

g(n,x)∑
i=1

ci · ωx(yi) = ηn,k (17)

With c denoting the values on the y-axis, i.e. the count of y strings projecting
ωx(y) times, and with ωx(y) denoting the number of distinct ways that y can
project onto x, and finally with ηn,k being a constant for any given n and k
and g(n, x) being a function of n and x that denotes the number of data points
corresponding to the distinct count of y strings that have the same ωx(y).

This means that for a given n and k, the total number of projection counts
in the corresponding Υ space is independent of the x strings. We can see that for
the x strings yielding the maximum amount of leakage, i.e. x = 1k|0k, the lower
number of data points is compensated by larger values for the distinct number of
y strings admitting larger projection count values, hence showing a much more
biased structure in the distribution with respect to generic x strings. Conversely,
the distributions for the remainder of the x strings are considerably dampened
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and noticeably closer to a flat distribution and are thus less biased compared
to x = 1k|0k strings, which in part explains the correspondingly higher entropy
values. In particular, the alternating ones and zeros string admits the highest
degree of dispersion in terms of the distribution of the masks and thus yields the
lowest entropy.

The resulting probability distributions leading to the computed entropy val-
ues are illustrated in Fig. 2. An immediate observation is that the distribution of
the projecting y strings for the 0k or 1k strings has the largest outliers. However,
this alone does not capture the role of the shape of the probability distribution.
Therefore, one could argue that the probability distribution that admits the
largest Kullback-Leibler distance from the uniform distribution, i.e. the most
biased distribution, yields the lowest entropy, and the conjecture that we put
forth is that this distribution is given by the all 0 or all 1 x strings.

The plot shown in Fig. 3, illustrates three measures of entropy, namely the
Shannon entropy (H), the second-order Rényi entropy (R) and the min-entropy
(H∞) as a function of n and k for all the 2k x strings for n = 8 and k = 5. The
presented empirical results validate our conjecture that the all zero or the all
one strings yield the minimum entropy and that the alternating zeros and ones
string gives the maximum entropy.

6 Conclusions

We have described an information theory problem that arose from some inves-
tigations into quantum key establishment protocols. As far as we are aware, the
problem, despite its seeming to be very natural and simple to state, has not been
investigated in the mathematical literature. We have shown that the maximum
leakage, measured in terms of the drop in the entropy of the space of compatible
y strings, corresponds to the all zero or all one observed strings.

We have presented analytic forms for the Shannon entropy, the second-order
Rényi entropy, and the min-entropy for these cases. Moreover, we have discussed
the relevance of these measures specifically in the context of privacy amplification
in QKD protocols. We have also noted that the simulations suggest that the
minimal leakage corresponds to the x strings comprising alternating zeros and
ones. Moreover, we pointed out an interesting duality between our results and
existing results in the literature for the space of subsequences.

We have also described a simulation program to explore these results. This
is available at [28].
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