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We study coherent transport through a double quantum dot. Its two electronic leads induce elec-
tronic matter and energy transport and a phonon reservoir contributes further energy exchanges.
By treating the system-lead couplings perturbatively, whereas the coupling to vibrations is treated
non-perturbatively in a polaron-transformed frame, we derive a thermodynamic consistent low-
dimensional master equation. When the number of phonon modes is finite, a Markovian description
is only possible when these couple symmetrically to both quantum dots. For a continuum of phonon
modes however, also asymmetric couplings can be described with a Markovian master equation.
We compute the electronic current and dephasing rate. The electronic current enables transport
spectroscopy of the phonon frequency and displays signatures of Franck-Condon blockade. For
infinite external bias but finite tunneling bandwidths, we find oscillations in the current as a function
of the internal bias due to the electron-phonon coupling. Furthermore, we derive the full fluctuation
theorem and show its identity to the entropy production in the system. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4916359]

I. INTRODUCTION

Electronic transport through low-dimensional systems,
e.g., quantum dots or molecular junctions, has been a vivid
research field over the last years. In part, this has been triggered
by the fact that single molecules or quantum dot configurations
are promising candidates for a variety of applications such as,
e.g., charge1 and spin2 qubits or single photon emitters which
are, for example, realized in semiconductor nanowires.3,4 For
efficient device performance, a detailed understanding of elec-
tronic interplay with its environment, e.g., optical modes,5

is important. In particular, the interaction with vibrational
modes has been studied in order to reveal quantum phenom-
ena such as additional decoherence.6–9 Moreover, phonon
spectroscopy10–13 can be used to visualize quantum effects
in transport characteristics such as Franck-Condon blockade
and giant Fano factors.14–21 It was also proposed to use bias-
controlled electronic transport to selectively excite vibrational
modes.22 Furthermore, also from a more classical perspective,
the study of thermo-electric effects in phonon-coupled nano-
junctions23–27– e.g., the conversion of heat to work28–31 or local
cooling32–34–leads to interesting new questions.

A crucial parameter for understanding many of these ef-
fects is the coupling strength between electronic transport and
phonon modes. Therefore, weak35,36 and strong37–41 coupling
regimes have been studied with different methods. Recently,
the possibility to tune the coupling strength in the experiment
has been suggested.42

Even though most authors consider simplified models
consisting of a few-level-system coupled to either a single
(Anderson-Holstein model)43–46 or multiple47 phonon modes,
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the inclusion of the vibration dynamics in the system leads
to an infinite-dimensional Hilbert space and therefore large
computational complexity. This problem has triggered the
development of many different methods, such as master equa-
tions,27,48 full counting statistics approaches,49–51 Lindblad ki-
netic equations,52 Greens functions,37,53 or higher-order
methods.54 For time-dependent studies, often the multilayer
multiconfiguration time-dependent Hartree method55–57 or
real-time path integral approaches are applied.58–60 Additional
complexity arises if intrinsic tunneling between multiple sys-
tem states and their coupling to phonon modes is taken into
account. Among the conceptually simple master equation
approaches, the polaron-transformed master equation61 often
allows a simple diagonalization of the system Hamiltonian,
which has renewed interest in the phonon master equation
in the finite-bias regime.62,63 As long as the phonons are
contained within the system, this leads to thermodynamic
consistency but does not solve the curse of dimensionality.

When, in contrast, within a strong electron-phonon-
coupling scenario the vibrations are treated as part of a reser-
voir, thermodynamic consistency is non-trivial even for a
single electronic level.64 Here, the proof of the fluctuation
theorem65 offers a well known tool because it directly con-
firms the second law of thermodynamics.66–68 In particular,
in this paper we discuss the derivation of a phonon master
equation for a double quantum dot model, introduced in Sec. II,
coupled to macroscopic electronic leads and either a discrete or
continuous phonon reservoir. Even in absence of phonons, we
explicitly allow for electronic tunneling within the system. We
treat the phonons as part of a non-standard reservoir yielding a
finite system Hilbert space and, thus, a low dimensional master
equation with minimized computational requirements making
the method applicable for the study of even larger systems. We
put emphasis on the polaron transformation and its effect on
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the model Hamiltonian in terms of thermodynamic consis-
tency. Staying in the polaron picture, we present a detailed
derivation of the quantum master equation, see Sec. III, and
prove its thermodynamic consistency by deriving the fluc-
tuation theorem in Sec. IV. Finally, in Sec. V, we analyze
electronic current and dephasing rate for particular physical
situations showing a Franck-Condon-like suppression in both
quantities. We also investigate the possibility of phonon spec-
troscopy experiments. In addition, we discuss the performance
of the model system as a thermoelectric generator converting
a temperature gradient into useful power.

II. MODEL

A. Hamiltonian

We consider a system made of a double quantum dot
(DQD) in contact with multiple reservoirs H = HS +HB
+HSB. The reservoirs HB = Hel

B +Hph
B and the system-bath

coupling HSB = Hel
SB +Hph

SB contain electronic and phonon
contributions, respectively. The DQD Hamiltonian reads

HS ≡ εLd†LdL + εRd†RdR + Tc(dLd†R + dRd†L)
+Ud†LdLd†RdR, (1)

where dσ(d†σ) annihilates (creates) an electron in dot σ with
on-site energy εσ (σ ∈ {L,R} throughout this paper), Tc is the
internal electronic tunneling amplitude, and U is the Coulomb
repulsion energy. The system is connected to two electronic
leads, left and right, held at thermal equilibrium

Hel
B ≡


k



σ∈{L,R}
εk,σc†

k,σ
ck,σ. (2)

Here, the fermionic operator ck,σ(c†k,σ) annihilates (creates)
electrons in mode k with energy εk,σ. Note that we do not
distinguish between the electronic spins, which implicitly as-
sumes that, e.g., the leads are completely polarized. Electronic
transport through the system is enabled by the dot-lead inter-
action Hamiltonian

Hel
SB ≡



k,σ∈{L,R}
(tk,σdσc†

k,σ
+ h.c.), (3)

with the tunneling amplitudes tk,σ (which we will treat pertur-
batively to second order later-on).

Additionally, the system is coupled to a bosonic reservoir

Hph
B ≡


q

ωqa†qaq, (4)

with phonon operator aq(a†q) annihilating (creating) a phonon
in mode q with frequencyωq. The electronic occupation of the
system induces vibrations in the phonon bath via the electron-
phonon interaction Hamiltonian

Hph
SB ≡



q



σ∈{L,R}
(hq,σaq + h.c.)d†σdσ, (5)

with the phononic absorption/emission amplitudes hq,σ (which
we want to treat non-perturbatively later-on).

B. Polaron transformation

In order to investigate the impact of strong electron-
phonon coupling on electronic transport we perform the uni-
tary Lang-Firsov (polaron) transformation,69,70 H̄ = U HU†,
with the unitary operator U = edLd

†
LBL+dRd

†
RBR. The anti-

Hermitian operator Bσ is defined as

Bσ ≡


q

(h∗q,σa†q − hq,σaq)/ωq. (6)

The details of the polaron transformation are shown in Ap-
pendix A. After the polaron transformation, the Hamiltonian
admits a new decomposition into system, interaction, and
reservoir contributions. It is important to note, however, that
in general such decompositions are not unique: for example,
for a system Hamiltonian HS and an interaction Hamilto-
nian of the general form HI =


α Aα ⊗ Bα with system and

reservoir operators Aα and Bα, respectively, it is straightfor-
ward to see that the transformation HS→ HS +


α καAα and

HI→ α Aα ⊗ (Bα − κα1) with numbers κα leaves the total
Hamiltonian invariant.

We resolve this ambiguity by demanding that all thermal
equilibrium expectation values of linear bath coupling opera-
tors should vanish. We have observed that without imposing
this requirement, one would arrive at a thermodynamic incon-
sistent master equations (e.g., predicting non-vanishing cur-
rents at global equilibrium). Consequently, we fix the numbers
κα as

κα = ⟨Bα⟩ , (7)

where the expectation value has to be taken with respect to a
thermal equilibrium state of the reservoir corresponding to Bα.

With this convention, the total Hamiltonian can then be
written as H̄ = H̄S + H̄B + H̄SB.

Most simple, the reservoir part of the Hamiltonian remains
invariant

H̄B ≡


k



σ∈{L,R}
εk,σc†

k,σ
ck,σ +



q

ωqa†qaq. (8)

The system contribution to the Hamiltonian now experi-
ences modified parameters

H̄S = ε̄Ld†LdL + ε̄Rd†RdR + Ūd†LdLd†RdR

+ (T̄ce−2iΦdLd†R + T̄∗c e+2iΦdRd†L), (9)

with renormalized on-site energy levels71

ε̄σ ≡ εσ −


q


hq,σ

2
ωq

(10)

and renormalized Coulomb repulsion72

Ū ≡U −


q

h∗q,Lhq,R + hq,Lh∗q,R
ωq

. (11)

We note that in the strong-coupling limit, attractive Coulomb
interactions (Ū < 0) are in principle possible.73,74 Further-
more, we observe that also the internal tunneling amplitude
is renormalized

T̄c ≡ Tcκ, (12)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
132.239.1.231 On: Sat, 04 Apr 2015 21:55:12

Max



134106-3 Krause et al. J. Chem. Phys. 142, 134106 (2015)

where the complex-valued κ is defined by κ ≡
e−BLeBR


. As-

suming that the phonon reservoir in the polaron-transformed
frame is in thermal equilibrium, it (see Appendix B) explicitly
evaluates to

κ = e
−q

|hq,L−hq,R|2
ω2
q

[ 1
2+n(ωq)]

e+iΦ, (13)

containing the Bose-distribution nB(ω) = [eβphω − 1]−1 with
the inverse phonon bath temperature βph. Here, the phase Φ
is defined via

iΦ ≡ [BL,BR] /2 =


q

h∗q,Rhq,L − hq,Rh∗q,L
2ω2

q

. (14)

Finally, the interaction Hamiltonian H̄SB ≡ H̄V + H̄T is
made of two parts. The first describes electronic transitions
between system and leads

H̄V ≡


k

(tk,LdLe−d
†
RdRiΦe−BLc†

k,L + h.c.)

+


k

(tk,RdRe+d
†
LdLiΦe−BRc†

k,R + h.c.), (15)

which are now accompanied by multiple phonon emissions or
absorptions. The second part describes transitions between left
and right dots

H̄T ≡ Tce−2iΦdLd†R

e−BLe+BR − κ


+Tce+2iΦdRd†L


e−BRe+BL − κ∗


, (16)

which are also dressed by multiple phonon excitations, see
Eq. (6).

The effect of the polaron transformation is visualized in
Fig. 1. The coupling to the phonon modes is no longer linear
in the annihilation and creation operators anymore, as can
be seen by expanding the exponentials e±Bσ. Comparing the
system Hamiltonians before and after the polaron transforma-
tion, we see that apart from the renormalized on-site energies
and Coulomb repulsion the electron-phonon interaction also
renormalizes the internal tunneling term. Consequently, the
energy eigenbasis of H̄S is now influenced by the system-
reservoir interaction strength in the original frame.

C. Phonon treatment

We note that when the internal electronic tunneling ampli-
tude was initially absent (Tc = 0), it would be straightfor-
ward to keep the phonons as part of the system: electron-
phonon interactions would only arise from the electronic jumps
to and from the leads, such that diagonalizing the system
Hamiltonian would be straightforward. In this case, the result-
ing thermodynamics would be that of a two-terminal system
exchanging matter and energy with the two electronic leads.
For finite Tc however, keeping the phonons as part of the sys-
tem would—to obtain a thermodynamically consistent mas-
ter equation—require to diagonalize an interacting infinite-
dimensional Hamiltonian (such that the polaron transforma-
tion would be of no use). Therefore, we will proceed differently
here and consider the phonons as part of the reservoir. When we
enforce the phonons in the polaron frame in a thermal equilib-
rium state ∝ e−βphH̄ph

B , this does in the original frame actually

FIG. 1. Sketch of the model before (top) and after (below) the polaron trans-
formation. The double quantum dot system in serial configuration is coupled
to electronic leads, left and right, each following Fermi-Dirac statistics with
Fermi functions fL and fR, respectively. If either temperatures or chemical
potentials are chosen differently, a non-equilibrium situation is created which
enables the exchange of matter and energy between those baths. The tunnel-
ing between system and leads is described by the tunneling rates ΓL and ΓR.
The quantum tunneling between left and right dot is modulated by the internal
tunneling rateTc. Before the polaron transformation (with S =


σd†σdσBσ),

the phonon bath with Bose distribution nB couples directly to the occupation
of the quantum dots left and right. Due to the polaron transformation, the
coupling is shifted to the electronic jumps which now occur with multiple
phonon emission or absorption processes. Another feature of the model in
the polaron picture is the renormalization of on-site energies and Coulomb
repulsion which now depend on the phonon coupling strength as well as the
phonon mode frequency.

correspond to a thermal phonon state that is conditioned on
the electronic occupation of the dots, see Appendix C. A
similar behaviour would be observed with phonons treated
as part of the system, but additionally strongly coupled to
another thermal reservoir that imposes fast equilibration of the
phonons dependent on the electronic occupation.15,58,60 We are
aiming at a thermodynamically consistent description of this
extreme limit, where the phonons immediately equilibrate in
an electron-dependent thermal state.

III. MASTER EQUATION IN THE STRONG
ELECTRON-PHONON COUPLING LIMIT

A. Pointer basis

We do now follow the standard derivation of a master
equation,75,76 starting from the general decomposition of the
interaction Hamiltonian into system (Aα) and bath (Bα) oper-
ators (here in the Schrödinger picture),

HSB =


α

Aα ⊗ Bα. (17)

We note that such a tensor product decomposition is possible
also for fermionic tunneling terms since one can map the
fermionic operators to system and lead fermions via a
Jordan-Wigner transform.77 Ordering system and bath oper-
ators according to Eq. (17), respectively, we obtain 6 coupling
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operators for system

A1= dL = (A2)†, A3 = dR = (A4)†,
A5= e−2iΦdLd†R = (A6)†,

(18)

and reservoir

B1=


k

tk,Lc†
k,Le−BL = B†2,

B3=


k

tk,Rc†
k,Re−BR = B†4,

B5= e−BLe+BR − κ = B†6.

(19)

The expectation value of two bath operators defines the bath
correlation function

Cαβ(τ) ≡

Bα(τ)Bβ(0)


, (20)

where bold symbols denote the interaction picture Bα(τ)
= e+iH̄BτBαe−iH̄Bτ and where the reservoir ρB = ρL

B ⊗ ρR
B ⊗ ρ

ph
B

is a tensor product of thermalized states of left and right elec-
tronic leads and the phonon reservoir, respectively. This sim-
ple tensor-product approximation in the polaron-transformed
frame does not hold in the original frame, where one obtains
a displaced thermal phonon state depending on the electronic
occupations, which is explicitly shown in Appendix C.

When the electronic reservoirs are weakly coupled and
sufficiently Markovian (formalized by the condition
βαΓα ≪ 1), perturbation theory in the electron-lead tunneling
amplitudes tkσ and in Tc(κ − 1), i.e., either in the asymmetry of
the electron-phonon coupling or in Tc itself (for a continuum
of phonon modes we just require a perturbative treatment in
the tkσ), leads to a Lindblad master equation, which appears
particularly simple in the system energy eigenbasis. We la-
bel the eigenvectors of H̄S as |a⟩ ∈ {|0⟩ , |−⟩ , |+⟩ , |2⟩}, with
system eigenenergies

ε0 ≡ 0, (21)

ε− ≡ 1
2

(
ε̄L + ε̄R −


(ε̄L − ε̄R)2 + 4


T̄c
2)

,

ε+ ≡ 1
2

(
ε̄L + ε̄R +


(ε̄L − ε̄R)2 + 4


T̄c
2)

,

ε2 ≡ ε̄L + ε̄R + Ū . (22)

When the system spectrum is non-degenerate (more precisely,
when the splitting ε+ − ε− in H̄S is much larger than the elec-
tronic tunneling amplitudes in the Hamiltonian), this will lead
to a rate equation for the populations in the system energy
eigenbasis

ρ̇aa = +


b

γab,abρbb −



b

γba,ba

 ρaa, (23)

where the positive rates76

γab,ab =


αβ

γαβ(ϵb − ϵa) ⟨a| Aβ |b⟩ ⟨a| A†α |b⟩∗ (24)

are given by matrix elements of the system coupling operators
in the energy eigenbasis and the Fourier transform of the reser-
voir correlation functions

γαβ(ω) =


dt e+iωtCαβ(t). (25)

The coherences evolve independently from the populations. In
particular, since in our model only coherences between states
with the same charge may exist, we have

ρ̇−+ = −i (E− − E+ + σ−− − σ++) ρ−+
+

γ−−,++ − γ0−,0− + γ0+,0+ + γ2−,2− + γ2+,2+

2

− γ−+,−+ + γ+−,+−
2


ρ−+, (26)

where σ−−,σ++ ∈ R describe a level-renormalization (Lamb-
shift). We note that the rates γab,ab in Eq. (26) which describe
electronic tunneling with phononic excitation between system
and leads can be decomposed into interaction with left (L) and
right (R) bath

γab,ab ≡ ΓabL + Γ
ab
R , (27)

whereas the internal electronic transitions γ−+,−+ and γ+−,+−
describing the relaxation from + to − or the excitation from
− to +, respectively, only involve phonons

γ−+,−+ ≡ Γ−+ph , γ+−,+− ≡ Γ+−ph . (28)

Furthermore, the matrix elements in the rates describing back-
ward and forward processes triggered by the same reservoir are
identical, such that local detailed balance is only induced by
a corresponding Kubo-Martin-Schwinger (KMS)-type condi-
tion of the correlation functions. We discuss these for our
system in Secs. III B and III C.

As a distinctive feature in comparison to a single quantum
dot64 or to models without internal phonon-independent elec-
tronic tunneling, one now obtains phonon-modified internal
transitions, and the corresponding rates between energy eigen-
states |−⟩ and |+⟩ can be written as a quadratic form

Γ−+ph =

A+−5 , (A−+5 )∗ γ(ε+ − ε−)

(A+−5 )∗
A−+5

 ,
Γ+−ph =


A−+5 , (A+−5 )∗ γ(ε− − ε+)

(A−+5 )∗
A+−5

 ,
(29)

with the matrix γ(ω) being given by

γ(ω) =
γ56(ω) γ55(ω)
γ66(ω) γ65(ω)

 . (30)

It can be shown that this matrix is Hermitian and positive
definite, such that we obtain true rates Γ−+ph ≥ 0 and Γ+−ph ≥ 0.
Furthermore, we note that since the correlation functions
contained in the matrix (30) obey KMS relations of the form
γαβ(−ω) = γβα(+ω)e−βphω with inverse phonon reservoir
temperature βph (compare Sec. III C), this implies for the ratio

of rates
Γ+−ph
Γ−+ph
= e−βph(ε+−ε−).

B. Lead-phonon correlation function

From Eq. (20), it follows that the four non-vanishing
contributions associated with electronic jumps into or out of
the system can be written in a product form of electronic and
phononic contributions64

Cαβ(τ) = C el
αβ(τ)C ph

αβ(τ), (31)
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with the electronic parts being given by

C el
12(τ)=



k

|tkL|2 fL(εkL)e+iεkLτ,

C el
21(τ)=



k

|tkL|2[1 − fL(εkL)]e−iεkLτ,

C el
34(τ)=



k

|tkR|2 fR(εkR)e+iεkRτ,

C el
43(τ)=



k

|tkR|2[1 − fR(εkR)]e−iεkRτ.

(32)

Here, we have introduced the Fermi function
fσ(ω) ≡ [eβσ(ω−µσ) + 1]−1 of lead σ with inverse temper-
ature βσ and chemical potential µσ. The tunneling
amplitudes tkσ lead to effective tunneling rates Γσ(ω)
≡ 2π


k |tkσ |2δ(ω − εkσ), which can be used to convert

the above summations into integrals. Later-on, we will
parametrize them with a Lorentzian distribution78

Γσ(ω) ≡ Γσδ
2
σ

ω2 + δ2
σ

, (33)

yielding a representation in terms of hypergeometric functions
for Cel

αβ(τ), which we omit here for brevity. For completeness,
we note that the separate Fourier transforms of the electronic
parts γel

αβ(ω) =


C el
αβ(τ)e+iωτdτ,

γel
12(ω)= ΓL(−ω) fL(−ω),

γel
21(ω)= ΓL(+ω)[1 − fL(+ω)],

γel
34(ω)= ΓR(−ω) fR(−ω),

γel
43(ω)= ΓR(+ω)[1 − fR(+ω)],

(34)

obey—since fσ(ω) = e−βσ(ω−µσ)[1 − fσ(ω)]–the KMS-type
relations

γel
12(−ω)= e−βL(ω−µL)γel

21(+ω),
γel

34(−ω)= e−βR(ω−µR)γel
43(+ω).

(35)

The phonon contribution to the correlation function de-
pends only on the terminal across which the electron jumps
but not on the jump direction, i.e., we have C ph

12(τ) = C ph
21(τ)

≡ C ph
L (τ) and C ph

34(τ) = C ph
43(τ) ≡ C ph

R (τ). Using the Baker-
Campbell-Hausdorff (BCH) formula, the phonon contribution
explicitly computes to (see Appendix D 1),

C ph
σ (τ) = e−Kσ(0)+Kσ(τ), (36)

with the abbreviation in the exponent

Kσ(τ) =


q


hqσ

2
ω2

q

×
nB(ωq)e+iωqτ + [nB(ωq) + 1]e−iωqτ


.

(37)

It is easy to show that Kσ(τ) = Kσ(−τ − iβph) holds, which
transfers to the KMS condition for the phonon contribution to
the correlation function

C ph
σ (τ) = C ph

σ (−τ − iβph). (38)

The nature of the phonon contributions can now be quite
distinct depending on whether one has a discrete (e.g., just
a single mode) or continuous spectrum of phonon frequen-
cies. In the continuum case, we can convert the sum in the

exponent into an integral. Then, the phonon absorption emis-
sion amplitudes enter the corresponding rate as Jσ(ω)
≡ q


hqσ

2
δ(ω − ωq), where JL(ω) and JR(ω)will be param-

etrized by a continuous function. For example, using the
super-ohmic parameterization with exponential infrared cutoff
at ωσ

c (we choose a super-ohmic representation to enable a
Markovian description of the internal jumps in Sec. III C) and
coupling strength Jσ, i.e.,

Jσ(ω) ≡ Jσω3e
− ω
ωσ

c , (39)

we obtain for the integrals in the exponent

Kσ(τ) =
∞

0

Jσ(ω)
ω2


nB(ω)e+iωτ + [1 + nB(ω)]e−iωτ


dω

=
2Jσ
β2 ℜ


Ψ′
(

1 + iτωσ
c

βphω
σ
c

)
− Jσ(ωσ

c )2
(1 − iτωσ

c )2
, (40)

whereΨ′(x) denotes the derivative of the polygamma function
Ψ(x) = Γ′(x)/Γ(x). With the same super-ohmic spectral den-
sity, the renormalized on-site energies and Coulomb shift read
explicitly

ε̄σ = εσ − 2Jσ(ωσ
c )3,

Ū =U +


q


hqL − hqR

2 − hqL
2 − hqR

2
ωq

=U + 2J0(ω0
c)3 − 2JL(ωL

c )3 − 2JR(ωR
c )3. (41)

We note here that since Kσ(τ) in Eq. (40) decays to zero for
large τ, the phonon correlation function Cph

σ (τ) may remain
finite for large τ. Thanks to the influence of the electronic
contributions the total correlation function will still decay,
such that a Markovian approach is applicable. In this case, we
technically define separate Fourier transforms of the phonon
contributions by

γ
ph
σ (ω) =

 
C ph
σ (τ) − C ph

σ (∞)


e+iωτdτ

+ 2πC ph
σ (∞)δ(ω). (42)

Since the dressed correlation functions are given by prod-
ucts of electronic and phononic contributions in the time
domain, the separate KMS relations (35) and (38) do not
directly transfer in non-equilibrium setups. However, we can
use our previous result (see appendix of Ref. 64) that these
correlation functions can be written conditioned upon the net
number n = (n1, . . . ,nQ) of emitted phonons into the different
reservoir modes (nq < 0 implies absorption from the phonon
reservoir). Formally, one has γαβ(ω) =


n γαβ,n(ω), where the

separate contributions are given by (Ω = (ω1, . . . ,ωQ)),

γαβ,n(ω)= γel
αβ(ω − n ·Ω)



q

e
− |hq |

2

ω2
q

(1+2nq
B) ×

1 + nq
B

nq
B


nq/2

×Jnq
2


hq

2
ω2
q


nq

B(1 + nq
B) , (43)

with Jn(x) ≡ ∞k=0{(−1)k/k!Γ[k + n + 1]}(x/2)2k+n being the
modified Bessel function of the first kind and Γ[x] ≡  ∞

0 tx−1e−t

dt being the Gamma-function. We note that when the elec-
tronic Fourier transforms are flat γel

αβ(ω − n ·Ω)→ γ̄el
αβ, the
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normalization of the phonon contribution implies that the
Fourier transform of the combined correlation function is also
flat,


n γαβ,n(ω)→ γ̄el
αβ. This implies that in the electronic

wide-band (δσ → ∞) plus the infinite bias ( fL(ω)→ 1 and
fR(ω)→ 0) limits the phonons will have no effect on the dot-
lead correlation functions.

Importantly, we note that even for different temperatures,
these obey the KMS-type relation

γ12,+nL(−ω) = e−βL(ω−µL+nL·Ω)e+βphnL·Ω

× γ21,−nL(+ω),
γ34,+nR(−ω) = e−βR(ω−µR+nR·Ω)e+βphnR·Ω

× γ43,−nR(+ω). (44)

We see that the conventional KMS relation is reproduced when
phonon and electronic temperatures are equal.

C. Interdot-phonon correlation function

To evaluate the transitions between the states |−⟩↔ |+⟩,
we have to evaluate the correlation functions

C55(τ)=

e−BL(τ)e+BR(τ)e−BLe+BR


− κ2,

C66(τ)=

e−BR(τ)e+BL(τ)e−BRe+BL


− (κ∗)2,

C56(τ)=

e−BL(τ)e+BR(τ)e−BRe+BL


− |κ |2,

C65(τ)=

e−BR(τ)e+BL(τ)e−BLe+BR


− |κ |2,

(45)

where we have used that κ =

e−BLe+BR


=

e−BL(τ)e+BR(τ)


is inert with respect to transformations into the interaction
picture. For the first bath correlation functions we obtain (see
Appendix D 2),

C55(τ) = κ2

e−K (τ) − 1


, (46)

where—in analogy to Eq. (37)—we have

K(τ) =


q


hqL − hqR

2
ω2

q

×
nB(ωq)e+iωqτ + [nB(ωq) + 1]e−iωqτ


. (47)

We note that for large times the correlation function vanishes
for a continuum of phonon modes, facilitating a Markovian
description. Two further correlation functions can be similarly
evaluated

C66(τ) = (κ∗)2

e−K (τ) − 1


= C∗55(−τ), (48)

where the latter equality can be easily seen by direct compar-
ison. For the third correlation function, we find

C56(τ) = |κ |2

eK (τ) − 1


. (49)

It can be easily seen that C56(t)=̂C65(t). Furthermore, we note
that

κ2 = e−K (0)e+2iΦ, (κ∗)2 = e−K (0)e−2iΦ,

|κ |2 = e−K (0).
(50)

From K(−τ) = K∗(+τ) we conclude that the Fourier transform
matrix of these correlation functions (30) is Hermitian. It can
be expressed by the two real-valued functions

γ±(ω) =
 (

e±K (τ) − 1
)

e+iωτdτ (51)

and will be positive definite at frequency ω when γ−(ω)
< γ+(ω) or, equivalently, when γ2

+(ω) − γ2
−(ω) = [γ+(ω)

− γ−(ω)][γ+(ω) + γ−(ω)] > 0. The interdot phonon correlation
functions obey KMS relations of the type (for α, β ∈ {5,6}),

Cαβ(τ) = Cβα(−τ − iβph), (52)

which follow from the definition of K(τ). For their Fourier
transforms this implies γαβ(−ω) = γβα(+ω)e−βω.

Finally, we note that this approach is valid for coupling
to a continuum of phonon modes. A finite number of phonon
modes would in general not lead to a decay of the inter-
dot correlation functions C55(τ), C56(τ), C65(τ), and C66(τ),
thus prohibiting a Markovian description. Furthermore, the
electronic tunneling Hamiltonian H̄V and the inter-dot tunnel-
ing Hamiltonian H̄T must be small in the polaron frame.
The first condition is consistent with a perturbative treatment
of electron-lead tunneling amplitudes, whereas the second
condition can be fulfilled by choosing either nearly symmetric
electron-phonon couplings left and right, i.e., hqL ≈ hq ≈ hqR
or by treating Tc also perturbatively. If the electron-phonon
coupling is exactly symmetric, also finite phonon modes can
be treated with the approach.

D. Numerical phonon correlation function

In case of a continuous phonon spectrum, the Fourier
transforms of the phonon correlation functions associated
with external—compare Eq. (36)—and internal—compare
Eqs. (46), (48), and (49)—electronic jumps cannot be obtained
analytically in closed form. This complicates the calculation
of the full transition rates whenever one is also interested in
the heat exchanged with the phonon reservoir, as this requires
evaluation of a convolution integral, where the phonon contri-
bution to the integrand is itself a numerical Fourier integral.
Here, we therefore aim to represent the Fourier-transform of
the phonon contribution in a semi-exact fashion, respecting
the thermodynamic KMS relations. For this, we note that the
Gaussian

γfit
ph(ω) = ae−

(ω−βphb/4)2
b (53)

obeys for all fit parameters a and b and frequenciesω; the KMS

relation
γfit

ph(+ω)
γfit

ph(−ω) = eβphω, where βph denotes the inverse phonon

temperature. Naturally, by fitting the phonon correlation func-
tions, e.g., with multiple such Gaussian functions, one would
obtain a thermodynamic correct representation of the phonon
correlation function. Here, however, we are rather interested
in thermodynamic principles and just use a single Gaussian
function, where we fix the fit parameters by crudely matching
Cfit

ph(0) and


Cfit
ph(τ)dτ with the true values of the correlation

function. We note that both Cph(0) and


Cph(τ)dτ are always
real-valued, such that the Fourier transform of the Gaussian
approximation does not only obey the KMS condition but is
also always positive.
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IV. SYMMETRIES IN THE FULL COUNTING
STATISTICS

To deduce the counting statistics not only of electrons
but also of the phonons, it would be necessary to identify
the phonons emitted or absorbed with every electronic jump.
However, here we are rather interested in the energy that by
such processes is emitted into or absorbed from the phonon
reservoir. For internal electronic transitions, the energy ex-
change follows directly from the change in the system state. In
contrast, for transitions involving an electronic jump across the
left or right terminal, one has to identify the separate phononic
contributions to correctly partition the electronic and phononic
contributions to the exchanged energy.

To identify a minimal set of transitions that has to be
monitored for energy and particle exchange, we first consider
the entropy production Ṡi in the system, which at steady state
must be balanced by the entropy flow Ṡe from the electronic
and phononic terminals68

Ṡi = −Ṡe = −


ν

βνQ̇ν

= −βL(IL
E − µLIL

M) − βR(IR
E − µRIR

M) − βphIph
E , (54)

where IνE, IνM, and Q̇ν denote the energy, matter, and heat
currents from terminal ν into the system, respectively. Using
the conservation laws for energy and matter

IL
E + IR

E + Iph
E = 0, IL

M + IR
M = 0, (55)

we can eliminate two currents.
We choose to monitor the number of electrons entering

the system from the left lead I (L)M , the energy that is transferred
from the left lead into the system I (L)E , and the energy that is
transferred from the phonon reservoir into the system I (ph)

E . In
terms of these quantities, the entropy production becomes

Ṡi = (βR − βL)IL
E + (βLµL − βRµR)IL

M + (βR − βph)Iph
E ,

(56)

which is decomposable into affinities and fluxes. When we
further assume that the electronic temperatures of both leads
are the same βL = βR = βel, the entropy production can even
be expressed with only two affinities and two fluxes

Ṡi = βel(µL − µR)IL
M + (βel − βph)Iph

E . (57)

Formally, the statistics of energy and matter transfers can be
extracted by complementing the off-diagonal entries in the
Liouvillian that describe the individual jump processes with
counting fields. For the electronic hopping this is fairly stan-
dard and straightforward to do. It becomes a bit more involved,
however, when one is interested in the statistics of energy
exchanges: for the internal jumps—see Eq. (28)—the energy
counting field φ is multiplied by the complete energy that is
exchanged with the phonon reservoir

Γ−+ph → Γ−+ph e−iφ(ε+−ε−),

Γ+−ph → Γ+−ph e+iφ(ε+−ε−). (58)

For the electronic jumps between system and both leads we
however have to partition the emitted or absorbed energy
into contributions from the electronic and phononic reser-
voirs, which first requires to decompose the transitions into
different phonon contributions. Assuming, for example, a
discrete phonon spectrum, we have

Γabσ =


n
Γab,nσ , (59)

where Γab,nσ describes a transition from energy eigenstate j to
i together with the emission of n phonons into the different
phonon reservoir modes and an electronic jump to or from
lead σ ∈ {L,R}–see Eq. (27). For a continuous phonon spec-
trum (which we will not discuss explicitly) we could use
the convolution theorem to arrive at a similar decomposition,
Γabσ =


Γabσ (ω)dω, where Γabσ (ω) describes a transition from

energy eigenstate b to a together with the emission of energyω
into the phonon reservoir and an electronic jump to or from lead
σ ∈ {L,R}. This then implies the counting field replacements
for the off-diagonal matrix elements in the Liouvillian

Γab,nL → Γab,nL e+iχ(na−nb)e+iξ(ϵa−ϵb+n·Ω)e−iφn·Ω,
Γ
i j,n
R → Γab,nR e−iφn·Ω,

(60)

where na ∈ {0,1,2} denotes the number of electrons in energy
eigenstate a. Thus, the Liouvillian is now dependent on the
particle counting field χ, the electronic energy counting field
ξ, and the phonon energy counting field φ, which we may
for brevity combine in a vector χ = (χ, ξ,φ). The character-
istic polynomial D(χ) = |L(χ) − λ1| of the now counting-field
dependent Liouvillian formally equates to

D = [L11 − λ][L22 − λ][L33 − λ][L44 − λ] − [L11 − λ][L22 − λ]L34L43 − [L11 − λ][L33 − λ]L24L42

− [L11 − λ][L44 − λ]L23L32 − [L22 − λ][L44 − λ]L13L31 − [L33 − λ][L44 − λ]L12L21

+ [L11 − λ] [L23L34L42 + L24L43L32] + [L44 − λ] [L12L23L31 + L13L32L21] + L12L21L34L43 + L13L31L24L42

−L12L24L43L31 − L13L34L42L21, (61)

where it should be kept in mind that the counting fields only occur in the off-diagonal (Li j) contributions. With the relations
(σ ∈ {L,R}),

Γ−+ph

Γ+−ph
= e+βph(ε+−ε−),

Γ0−,−n
σ

Γ−0,+n
σ

= e+βσ(ε−−ε0−µσ+n·Ω)e−βphn·Ω,
Γ0+,−n
σ

Γ+0,+n
σ

= e+βσ(ε+−ε0−µσ+n·Ω)e−βphn·Ω,

Γ−2,−n
σ

Γ2−,+n
σ

= e+βσ(ε2−ε−−µσ+n·Ω)e−βphn·Ω,
Γ+2,−n
σ

Γ2+,+n
σ

= e+βσ(ε2−ε+−µσ+n·Ω)e−βphn·Ω, (62)
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one can show (compare Appendix E) that the characteristic
polynomial stays invariant under the replacements

− χ→ +χ + i(βLµL − βRµR),
− ξ → +ξ + i(βR − βL), (63)
−φ → +φ + i(βR − βph),

where we recover the affinities in Eq. (56). This symmetry
transfers to the long-term cumulant-generating function, and
thus, the steady state fluctuation theorem for entropy produc-
tion reads

lim
t→∞

P+nL,+eL,+eph(t)
P−nL,−eL,−eph(t)

= en∆, (64)

with n ≡ (nL,eL,eph)T and ∆ = (βLµL − βRµR, βR − βL, βR
− βph)T. Due to the similar three-terminal setup, the same
fluctuation theorem can be obtained for the single electron
transistor.64

V. RESULTS

The implications of the resulting master equation are of
course manifold. Below, we present a selection of the most
interesting phonon-induced features. For simplicity, we will
discuss the case of symmetric couplings hqL = hqR here.

A. Electronic current versus internal bias

We compute the electronic matter current for coupling to
a single phonon mode at frequency Ω and also for coupling
to a continuum of phonons. Figure 2 shows the electronic cur-
rent at infinite external bias ( fL→ 1, fR→ 0) but finite band-
widths as a function of the internal bias ∆ε ≡ εL − εR, which
we define symmetrically with εL ≡ +∆ε/2 and εR ≡ −∆ε/2. We
note that due to the finite Tc, the system spectrum remains
in the non-degenerate regime also when εL = εR. The study
of such currents is very common in theoretical79–82 studies
as they reveal many internal details of the transport setup.
In Fig. 2, the black curve shows the pure electronic current
without phonons (hqL = hqR = 0) far away from the wide-band
limit (δL/Ω = δL/Ω = 0.1). Here, two electronic resonances at
±(ε2 − ε−)/Ω = ±10 become visible. The Lorentzian shape of
the graph is characteristic for such models and stems from the
matrix elements in front of the rates. For the colored curves,
we increase the electron-phonon coupling (hqL = hqR = hq) at
large phonon bath temperature βphΩ = 0.1 (due to the infinite-
bias assumption, the electronic temperature does not enter).
Due to the coupling to a single phonon mode, we see additional
side peaks appearing at ∆ε = 2nΩwith integer n (see solid red
and blue curves), and these completely dominate the electronic
peaks in the strong-coupling limit (solid blue). For smaller
phonon bath temperatures, the resonances would be more pro-
nounced for positive ∆ε, since phonon emission into the bath
is more likely (not shown). Phonon induced oscillations in the
electronic current as a function of the level detuning have been
seen in experiments with InAs and graphene double quantum
dots.12 When we couple electronic transport to a continuum of
phonon modes, these detailed oscillations cannot be resolved
anymore (dashed curves in the background, see also the figure
caption).

FIG. 2. Electron current in units of ΓL= ΓR= Γ versus the internal bias
∆ε= εL−εR in units of Ω. All graphs are evaluated far from the electronic
wideband limit δL/Ω= δR/Ω= δ/Ω= 0.1. The electron-phonon couplings,
left and right, are chosen equal hqL/Ω= hqR/Ω= h/Ω. The black line shows
pure electronic transport decoupled from the phonon bath, h/Ω= 0. Due to
the sharp Lorentzian shaped electronic tunneling rates observe two prominent
electronic resonances. When adding coupling to a single phonon mode (solid
curves), we see that additional resonances appear. Caused by the on-site
level configuration and large phonon bath temperatures (βphΩ= 0.1) the res-
onances approximately symmetric in ∆ε. At strong electron-phonon coupling,
resonances appear over the whole internal bias range (blue line). This is
different for coupling to a continuum phonon reservoir (dashed curves in the
background), where no additional resonances are found. Other parameters
are chosen as, Γ/Ω= 0.01,U/Ω= 5.0,Tc/Ω= 1.0,Φ= 0, βel= βph (implying
Γβel= 10−3 and ε+−ε− ≥ 2 |Tc|). Continuum parameters have been adjusted
such that

 ∞
0 Jσ(ω)dω = |h |2 and

 ∞
0 Jσ(ω)/ωdω = |h |2/Ω.

B. Current/dephasing rate versus external bias

Typically, the current as a function of the external bias
can be used to obtain internal system parameters via transport
spectroscopy: transition frequencies of the system entering the
transport window will—at sufficiently small temperatures—
induce steps in the current. In Fig. 3 we display the elec-
tronic matter current for different electron-phonon coupl-
ing strengths. Whereas—as a consequence of the phonon
presence—the single-mode version (solid curves) displays
now many additional plateaus that allow, e.g., for spectroscopy
of the phonon frequency, the continuous phonon versions
(dashed and dotted) only display a suppression of the current
for small bias. This phenomenon—termed Franck-Condon
blockade83—is also observed when the phonons are taken into
account dynamically.

Computing the dynamics of the coherences ⟨−| ρS(t) |+⟩
= (⟨+| ρS(t) |−⟩)∗ yields a simple time evolution ρ̇−+(t)
= −γρ−+(t), see Eq. (26). This implies that the absolute
square of ρ−+(t) decays exponentially with |ρ−+(t)|2
= e−2ℜ(γ)t |ρ−+(0)|2, where this dephasing is induced by both
electronic and phononic reservoirs. The dephasing rate 2ℜ(γ)
is a measure for the decay of the superposition of the states |−⟩
and |+⟩ to a classical mixture. When we neglect the asymmetry
of the coupling hqL = hqR, the phonon correlation functions
for the internal jumps vanish, and in consequence also the
internal transition rates γ−+,−+ and γ+−,+− in Eq. (26) vanish.
Since, furthermore, diagonal matrix elements of the first four
system coupling operators (such as, e.g., ⟨−| dL |−⟩) vanish
throughout, it also follows that γ−−,++ = 0, and we obtain for
the dephasing rate
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FIG. 3. Plot of the electronic current versus the external bias voltage
for different electron-phonon coupling strengths. With increasing coupling
strength, the steps corresponding to the bare electronic transitions (black
curve) become supplemented by additional plateaus, accounting for an
increasing number of phonons involved in the transport process. The
width of these smaller steps allows to determine the phonon frequency.
Consistently, the continuum phonon reservoir (dashed curves in back-
ground) does not exhibit these smaller steps. Other parameters are chosen
as, Γ/Ω= 0.01,Tc/Ω= 1.0, βLΩ= βRΩ= βphΩ= 20.0,δL/Ω= δR/Ω→∞,
εL/Ω=−εR/Ω= 0.5,U/Ω= 5.0,Φ= 0.0 (implying Γβel= 0.2 and ε+−ε−
=
√

5 |Tc|). Continuum parameters were adjusted such that
 ∞

0 Jσ(ω)dω
= |h |2 and

 ∞
0 Jσ(ω)/ωdω = |h |2/Ω (dashed curves). Further approximating

the continuum phonon correlation function with a single Gaussian as describ-
ed in Sec. III D yields for small bias quite analogous results (dotted curves).

R = [Γ0−
L + Γ

0−
R + Γ

0+
L + Γ

0+
R + Γ

2−
L + Γ

2−
R + Γ

2+
L + Γ

2+
R ],

(65)

where we have used the abbreviations defined in Eq. (27). The
phonon plateaus are also very well visible in the dephasing rate,
see Fig. 4. Counter-intuitively, when we increase the electron-
phonon coupling, the dephasing rate first decreases before it
increases again (compare orange curves in the inset). This
suppression occurs in the current blockade regime. Interest-
ingly, the dephasing rate becomes much smaller than the equi-
librium dephasing rate observed without phonons. Thus, we
find that while increasing the coupling strength to the phonon
reservoir, the model effectively shows a decrease of the dephas-
ing rate which is in stark contrast to general expectations. We
attribute this behaviour to the conditioned state of the phonon
reservoir. A more intuitive explanation is that the Franck-
Condon blockade prevents transport through the charge qubit
and thereby also transport-associated decoherence.

C. Thermoelectric generator

Multi-terminal nanostructures may serve as nanomachines
converting, e.g., temperature gradients into electric power.
Here, we consider the case where a hot phonon bath and cold
electronic reservoirs may induce an electronic current at van-
ishing bias—or even a current against a finite bias generating
useful power. We note that whereas for a single-electron tran-
sistor (with its always-symmetric electron-phonon coupling)
one would require non-flat electronic tunneling rates to see
such an effect, this is different in the present model when we
apply it to the case of a continuous phonon spectrum. Formally,
we consider in Eq. (57) a situation where the matter current

FIG. 4. Dephasing rate R in units of ΓL= ΓR= Γ versus the external bias
voltage V in units of Ω. The black reference curve shows the dephasing
rate for pure electronic transport, hqL= hqR= h = 0.0. Without phonon cou-
pling, the dephasing rate where transport is dominated by the transitions
|0⟩→ |−⟩, |+⟩ lies on the same level as the equilibrium dephasing rate,
such that no step is visible. If we increase the electron-phonon coupling
hqL= hqR we see a severe modulation of the curves. In the Franck-Condon
regime around V = 0.0 (vertical orange lines mark maximum and minimum
dephasing rates in the interval h/Ω ∈ [0,2]), the dephasing rate becomes
suppressed for intermediate electron-phonon coupling strengths (see the inset
for the dephasing rate at V ∈ {−Ω,0,+Ω}). Other parameters are chosen
as, Γ/Ω= 0.01,Tc/Ω= 1.0, βLΩ= βRΩ= βphΩ= 20.0,δL/Ω= δR/Ω→∞,
εL/Ω=−εR/Ω= 0.5,U/Ω= 5.0,Φ= 0.0 (implying Γβel= 0.2 and ε+−ε−
=
√

5 |Tc|). Continuum parameters were adjusted such that
 ∞

0 Jσ(ω)dω
= |h |2 and

 ∞
0 Jσ(ω)/ωdω = |h |2/Ω.

IM = IL
M from left to right is negative although µL < µR. This

is for βel < βph only possible when heat flows out of the hot
phonon reservoir, with use of Eq. (57) more precisely when
Iph
E ≥ − βel

βel−βph
(µL − µR)IL

M > 0. To quantify the performance
of such a device, it is instructive to relate the power output
Pout = −IL

M(µL − µR) = −IMV to the heat entering from the
hot phonon reservoir Q = Iph

E . Positivity of entropy produc-
tion (57) then grants that the efficiency of this process

η =
Pout

Q
= − IMV

Iph
E

≤ 1 − Tel

Tph
= ηCa (66)

is upper-bounded by Carnot efficiency. In general however,
the efficiency can be significantly smaller, as is illustrated in
Fig. 5. In fact, the inset shows that Carnot efficiency is not even
reached at the new equilibrium, where the electronic matter
current vanishes. Formally, this is due to the fact that—in
contrast to previous weak-coupling models76,84—the total en-
tropy production does not vanish at this point. This is somewhat
expected, since due to the presence of phonons, our model does
not obey the tight-coupling condition.85

VI. SUMMARY

We have investigated coherent electronic transport strongly
coupled to vibrations. To obtain a thermodynamically consis-
tent master equation, the secular-approximation has to be
performed in the new system basis that arises after the polaron
transform. The method presented here yields a low dimen-
sional master equation in Lindblad form which accounts for
thermodynamic consistency, although in the original frame
the phonons are in a displaced thermal state. Thermodynamic
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FIG. 5. Plot of the matter and energy currents for a hot phonon and cold elec-
tronic reservoirs versus electronic bias voltage. In the lower right quadrant,
the electronic matter current (bold black) runs against a potential gradient,
thereby generating power Pout=−IMV . The first law manifests in the fact that
all energy currents add up to zero. Parameters have been chosen such that the
internal phonon-assisted transitions between eigenstates |−⟩ and |+⟩ dominate
the phonon heat flow (solid blue versus dashed curves for external jumps).
Relating the power output with the heat input from the phonon reservoir
Q =+(I ph,L

E + I
ph,R
E + I

ph,M
E ), we see that the efficiency of this process (inset,

for positive bias voltage only) remains significantly below Carnot efficiency.
Other parameters, ΓL= ΓR= Γ= 0.01Tc, JLT

2
c = JRT

2
c = 0.001, J0T

2
c = 1.0,

wL
c = w

R
c = wc= 1.0Tc, εL=+0.5Tc=−εR, U = 5.0Tc, βLTc= βRTc= 10.0,

βphTc= 1.0 (implying βelΓ= 0.1 and ε+−ε−=
√

5 |Tc|).

consistency has been demonstrated by an analytic proof of the
fluctuation theorem for entropy production.

Using the full counting statistics, we computed the elec-
tronic current versus internal and external bias and reproduced
electron-phonon-induced features such as oscillations versus
the internal bias and signatures of Franck-Condon blockade.
We stress that the description of this rich dynamics required
only the four states of the double quantum dot to be taken into
account dynamically.

We have found that the dephasing rate of coherences in the
pointer basis behaves in some regimes counter-intuitively as a
function of the electron-phonon coupling strength. A simple
intuitive explanation for this behaviour is that the Franck-
Condon blockade stabilizes coherences, thereby also blocking
transport through the DQD circuit.

The analysis of the entropy production in the polaron
master equation has allowed us to study the performance of the
system when viewed as a thermoelectric generator converting
a temperature gradient into electric power. We have found that
in the strong-coupling regime, the system deviates strongly
from tight-coupling between energy and matter current, and
consequently, the efficiency for this process was found to be
significantly below Carnot efficiency.

Finally,wewant tomention thatourmethodcanbegeneral-
ized to more complex systems and thus allows applications in a
varietyof transportsetupsinvolvingphononssuchasmolecules.
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APPENDIX A: POLARON TRANSFORMATION

We consider the polaron transformation

U = ed
†
LdLBL+d

†
RdRBR, (A1)

with the fermionic annihilation operators dσ and the bosonic
operators

Bσ =


q

( h∗q,σ
ωq

a†q −
hq,σ

ωq
aq

)
(A2)

with bosonic annihilation operators aq. To calculate the trans-
formation rules, we recall the BCH relation

eXY e−X =
∞

n=0

1
n!
[X,Y ]n, (A3)

with the short-hand notation [X,Y ]n+1 = [X, [X,Y ]n] and
[X,Y ]0 = Y . We first note that the exponential in the polaron
transformation can be written in a separated fashion

U = ed
†
LdLBLed

†
RdRBRe−d

†
LdLd

†
RdR[BL,BR]/2

≡ ULURULR,

ULR = ed
†
LdLd

†
RdRiΦ,

iΦ ≡ [BR,BL] /2,

(A4)

where it is easy to show thatΦ∗ = Φ. Consequently, the adjoint
operator is given by

U† = U†LRU†RU†L, (A5)

and we note that [ULR,UL] = [ULR,UR] = 0. Alternatively, we
can also split the unitary transformation according to

U = URULU†LR, U† = ULRU†LU†R, (A6)

where again

ULR,U

†
L


=


ULR,U

†
R


= 0 holds.

1. Left mode operators

We consider the action of the Polaron transformation on
the left fermionic annihilation operator

UdLU† =ULURULRdLU†LRU†RU†L = ULULRdLU†LRU†L

=ULdLe−d
†
RdRiΦU†L = ULdLU†Le−d

†
RdRiΦ

= dLe−BLe−d
†
RdRiΦ. (A7)

The left fermionic creation operator then transforms according
to

Ud†LU† = d†Le+BLe+d
†
RdRiΦ. (A8)

2. Right mode operators

In a similar fashion, we evaluate the transformation of the
right fermionic annihilation operator

UdRU† =URULU†LRdRULRU†LU†R = URU†LRdRULRU†R
=URdRe+d

†
LdLiΦU†R = URdRU†Re+d

†
LdLiΦ

= dRe−BRe+d
†
LdLiΦ, (A9)

and the adjoint operator becomes
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Ud†RU† = d†Re+BRe−d
†
LdLiΦ. (A10)

3. Bosonic operators

For the bosonic annihilation operator, we obtain

UaqU† =ULURULRaqU†LRU†RU†L = ULURdLU†RU†L

=UL

aq −
h∗q,R
ωq

d†RdR

 U†L

=ULaqU†L −
h∗q,R
ωq

d†RdR

= aq −
h∗q,L
ωq

d†LdL −
h∗q,R
ωq

d†RdR (A11)

and similarly for the creation operator

Ua†qU† = a†q −
hq,L

ωq
d†LdL −

hq,R

ωq
d†RdR. (A12)

4. Polaron transformation of the DQD Hamiltonian

The total Hamiltonian of the DQD is given by

H =


kσ

εkσc†
kσ

ckσ +


q

ωqa†qaq

+ εLd†LdL + εRd†RdR +Ud†LdLd†RdR

+Tc(dLd†R + dRd†L) +


kσ

(
tkσdσc†

kσ
+ h.c.

)

+


qσ

(
hqσaq + h∗qσa†q

)
d†σdσ. (A13)

Applying the polaron transformation to the total Hamiltonian
H̄ = U HU† implies that some parts of the Hamiltonian will
change. In particular, we have for the free bosonic Hamiltonian

H ′ph =


q

ωq

(
a†q −

hqL

ωq
d†LdL −

hqR

ωq
d†RdR

)

× aq −
h∗qL

ωq
d†LdL −

h∗qR

ωq
d†RdR , (A14)

for the electronic inter-dot tunneling Hamiltonian

H ′T = TcdLe−(d
†
LdL+d

†
RdR)iΦd†Re−BLe+BR

+TcdRe+(d
†
LdL+d

†
RdR)iΦd†Le−BRe+BL

= Tce−2iΦdLd†Re−BLe+BR

+Tce+2iΦdRd†Le−BRe+BL, (A15)

for the electron-lead tunneling Hamiltonian

H ′V =


k

(
tkLdLe−d

†
RdRiΦe−BLc†

kL
+ h.c.

)

+


k

(
tkRdRe+d

†
LdLiΦe−BRc†

kR
+ h.c.

)
, (A16)

and for the electron-phonon interaction

H ′e−ph =


qσ

(
hqσaq + h∗qσa†q

)
d†σdσ

−


qσ

hqσ


h∗qL

ωq
d†LdL +

h∗qR

ωq
d†RdR d†σdσ

−


qσ

h∗qσ

(
hqL

ωq
d†LdL +

hqR

ωq
d†RdR

)
d†σdσ.

(A17)

For the sum of the free phonon and the electron-phonon
interaction Hamiltonians, we obtain

H ′ph + H ′e−ph =


q

ωqa†qaq

−


q



hqL

2
ωq

d†LdL +


hqR

2
ωq

d†RdR
−


q

h∗qLhqR + hqLh∗qR

ωq
d†LdLd†RdR.

(A18)

Therefore, the total Hamiltonian after the polaron transforma-
tion reads

H =


kσ

εkσc†
kσ

ckσ +


q

ωqa†qaq + ε̄Ld†LdL + ε̄Rd†RdR + Ūd†LdLd†RdR + Tce−2iΦdLd†Re−BLe+BR

+Tce+2iΦdRd†Le−BRe+BL +


k

(
tkLdLe−d

†
RdRiΦe−BLc†

kL
+ h.c.

)
+


k

(
tkRdRe+d

†
LdLiΦe−BRc†

kR
+ h.c.

)
, (A19)

with renormalized on-site energies (10) and the Coulomb inter-
action (11). When furthermore one demands that all expecta-
tion values of reservoir coupling operators should vanish (see
below), one arrives at the splitting into system, reservoir, and
interaction parts used in the paper.

APPENDIX B: SHIFT FACTOR
We use that for a thermal state ρ ∝ e−β


qωqa

†
qaq, one has

for all complex-valued numbers αq,

e−

q(αqa

†
q−α∗qaq)


= e−


q |αq |2[nB(ωq)+1/2] (B1)
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with the Bose-distribution nB(ωq) = [eβωq − 1]−1. Applying
that to the shift factor κ, for generality in the interaction picture,
we obtain

κ =

e−BL(τ)e+BR(τ)


=

e−BL(τ)+BR(τ)


eiΦ

=


e

q

h∗
q,R−h

∗
q,L

ωq
a†qe+iωqτ− hq,R−hq,L

ωq
aqe

−iωqτ


e+iΦ

= e
−q

|hq,R−hq,L|2
ω2
q

[nB(ωq)+1/2]
e+iΦ, (B2)

and see that κ is independent of τ. Therefore, we can already
in the Schrödinger picture write the Hamiltonian in a way
that is suitable for the derivation of a master equation with
splitting into system, reservoir, and interaction parts given
by Eqs. (9), (8), and (15) and (16) in the paper, respectively.

APPENDIX C: INVERSE POLARON TRANSFORM

To apply the inverse polaron transformation, it is useful to
write it conditioned on the electronic occupation

U = 1 + d†LdL

eBL − 1


+ d†RdR


eBR − 1


+ d†LdLd†RdR


eBL+BR − eBL − eBR + 1


= P01 + PLeBL + PReBR + P2eBL+BR, (C1)

where with the projectors P0 = (1 − d†LdL)(1 − d†RdR), P2 = d†L
dLd†RdR, PL = d†LdL(1 − d†RdR), and PR = (1 − d†LdL)d†RdR, it
becomes visible that—depending on the system state in the
localized basis—different unitary operations are applied on the
reservoir. For the phonon reservoir state this implies

U†ρph
B U = P0 ⊗ ρ

ph
B + P2 ⊗ e−(BL+BR)ρph

B e+(BL+BR)

+ PL ⊗ e−BLρ
ph
B e+BL + PR ⊗ e−BRρ

ph
B e+BR. (C2)

Considering that these unitary operations displace the phonons

e−Bσa†qaqe+Bσ =

(
a†q +

hqσ

ωq

) (
aq +

h∗qσ
ωq

)
,

e−BL−BRa†qaqe+BL+BR =

(
a†q +

hqL + hqR

ωq

)

× aq +
h∗qL + h∗qR

ωq

 , (C3)

the reservoir state becomes the displaced thermal state–
conditioned on the electronic occupation of the system.

Specifically, when in the localized basis, the system den-
sity matrix is written as

ρS = ρ0P0 + ρ2P2 + ρLPL + ρRPR

+ ρLRPLR + ρRLPRL (C4)

with PLR = |L⟩ ⟨R| and PRL = |R⟩ ⟨L|, it transforms according
to

U†ρSU = ρ0P0 + ρ2P2 + ρLPL + ρRPR + ρLRPLPLRPR

× e−BLe+BR + ρRLPRPRLPLe−BRe+BL. (C5)
This implies that the total system-phonon density matrix in the
original frame is given by

ρ̃ =U†ρS ⊗ 1UU†1 ⊗ ρ
ph
B U

= ρ0P0 ⊗ ρ
ph
B + ρ2P2 ⊗ e−(BL+BR)ρph

B e+(BL+BR)

+ ρLPL ⊗ e−BLρ
ph
B e+BL + ρRPR ⊗ e−BRρ

ph
B e+BR

+ ρLRPLR ⊗ e−BLρ
ph
B e+BR + ρRLPRL ⊗ e−BRρ

ph
B e+BL.

(C6)

APPENDIX D: BATH CORRELATION FUNCTIONS
1. Phonon BCF

We compute the expectation value of the phononic contribution in the lead-phonon bath correlation functions, cf. Sec. III B,
given by

Cσ
ph =

e−Bσ(τ)e+Bσ


=

e−Bσ(τ)+Bσ


e−[Bσ(τ),Bσ]/2 =


e

q


h∗q,σ
ωq

(1−e+iωqτ)a†q−
hq,σ
ωq

(1−e−iωqτ)aq


× e
−i

q
|hq,σ |2

ω2
q

sin(ωqτ)
= e
−q

 hq,σωq
(1−e−iωqτ)

2
[nB(ωq)+1/2]

e
−i

q
|hq,σ |2

ω2
q

sin(ωqτ)

= e
−q

|hqσ |2
ω2
q

[2nB(ωq)+1]
e

q
|hqσ |2
ω2
q


nB(ωq)e+iωqτ+[nB(ωq)+1]e−iωqτ


. (D1)

And noting that it is invariant under the transformation hq,σ → −hq,σ, we conclude

C12(τ) = C L
ph(τ)



k


tk,L

2 fL(εk,L)e+iεk,Lτ,C21(τ) = C L
ph(τ)



k


tk,L

2[1 − fL(εk,L)]e−iεk,Lτ,

C34(τ) = C R
ph(τ)



k


tk,R

2 fR(εk,R)e+iεk,Rτ,C43(τ) = C R
ph(τ)



k


tk,R

2[1 − fR(εk,R)]e−iεk,Rτ. (D2)
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2. Inter-dot BCF

We show explicitly that C55(τ) is given by Eq. (46),

C55(τ) =

eBR(τ)−BL(τ)+BR−BL


e+2iΦe+[BR(τ)−BL(τ),BR−BL]/2 − κ2 =


e

q
λ∗q
ωq

(1+e+iωqτ)a†q−
λq
ωq

(1+e−iωqτ)aq


e+2iΦ

× e
i

q
|λq |2
ω2
q

sin(ωqτ) − κ2 = e+2iΦe
−q

|λq |2
ω2
q

(1+nB(ωq))e−iωqτ+nB(ωq)e+iωqτ

e
−q

|λq |2
ω2
q
(1+2nB(ωq)) − κ2

= κ2


e
−q

|λq |2
ω2
q

(1+nB(ωq))e−iωqτ+nB(ωq)e+iωqτ

− 1


,

(D3)

where λq = hqL − hqR. The bath correction function C66(τ) can
be obtained via C66(τ)=̂C∗55(−τ). We show explicitly that C56(τ)
is given by Eq. (49),

C56(τ) =

eBR(τ)−BL(τ)−(BR−BL)



× e−[BR(τ)−BL(τ),BR−BL]/2 − |κ |2

=


e

q
λ∗q
ωq

(e+iωqτ−1)a†q−
λq
ωq

(e−iωqτ−1)aq


× e
−i

q
|λq |2
ω2
q

sin(ωqτ) − |κ |2

= |κ |2

e
+

q
|λq |2
ω2
q

(1+nB(ωq))e−iωqτ+nB(ωq)e+iωqτ

− 1


.

(D4)

The bath correction function C65(τ) can be obtained via the
KMS-condition, yielding C56(τ)=̂C65(τ).

APPENDIX E: SYMMETRIES IN THE CHARACTERISTIC
POLYNOMIALS

To show these symmetries, we show separate symmetries
of the terms in the characteristic polynomial.

First, we note that trivially, the combination L23L32 does
not depend on counting fields and is thus, by construction, inert
to symmetry transformations of type (63).

Second, one can directly show that terms of the form
L12L21, L13L31, L24L42, and L34L43 are also invariant under
such transformations. We only show this explicitly for the first
combination (the proof is analogous for the other terms), where
we have

L12 =


n

(
Γ0−,−n

L e−iχe−iξ(ε−−ε0+n·Ω)e+iφn·Ω + Γ0−,−n
R e+iφn·Ω) ,

L21 =


n

(
Γ−0,+n

L e+iχe+iξ(ε−−ε0+n·Ω)e−iφn·Ω + Γ−0,+n
R e−iφn·Ω) .

(E1)

We can use the detailed balance relations (62) to rewrite, e.g.,
the first matrix element as (now keeping the counting fields
explicitly),

L12(χ, ξ,φ) =


n

(
Γ−0,+n

L e−iχe−iξ(ε−−ε0+n·Ω)e+iφn·Ωe+βL(ε−−ε0−µL+n·Ω)e−βphn·Ω + Γ−0,+n
R e+βR(ε−−ε0−µR+n·Ω)e−βphn·Ω)

= eβR(ε−−ε0−µR)L21(−χ + i(βLµL − βRµR),−ξ + i(βR − βL),−φ + i(βR − βph)). (E2)

With the short-hand notation L−i j = Li j(−χ) and L̄i j

= Li j(χ + i∆) where ∆ = (βLµL − βRµR, βR − βL, βR − βph),
we can summarize the relations

L−12 = e+βR(ε−−ε0−µR)L̄21,

L−21 = e−βR(ε−−ε0−µR)L̄12,

L−13 = e+βR(ε+−ε0−µR)L̄31,

L−31 = e−βR(ε+−ε0−µR)L̄13, (E3)

L−24 = e+βR(ε2−ε−−µR)L̄42,

L−42 = e−βR(ε2−ε−−µR)L̄24,

L−34 = e+βR(ε2−ε+−µR)L̄43,

L−43 = e−βR(ε2−ε+−µR)L̄34,

such that, e.g., products of the form L12L21 are invariant under
the transformations (63), i.e., L−12L−21 = L̄12L̄21.

Third, we consider combinations of three off-diagonal
matrix elements by noting the additional symmetry

L−23 = e+βR(ε+−ε−)L̄32,

L−32 = e−βR(ε+−ε−)L̄23, (E4)

which together with the symmetries in Eq. (E4) can be used
to show that in the characteristic polynomial (61) the terms
with three off-diagonal matrix elements are also inert under the
transformations (63), i.e.,

L−23L−34L−42 + L−24L−43L−32 = L̄23L̄34L̄42 + L̄24L̄43L̄32,

L−12L−23L−31 + L−13L−32L−21 = L̄12L̄23L̄31 + L̄13L̄32L̄21. (E5)
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Finally, we note that the terms L12L21L34L43 and
L13L31L24L42 can be treated similarly to the terms with just
two off-diagonal matrix elements, and that the last two terms
in the characteristic polynomial (61) obey

L−12L−24L−43L−31 + L−13L−34L−42L−21

= L̄12L̄24L̄43L̄31 + L̄13L̄34L̄42L̄21 (E6)

which can be shown with Eqs. (E3).
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