TEMPLATE-BASED STATISTICAL SHAPE MODELLING ON DEFORMATION SPACE

Girum G. Demisse, Djamila Aouada, Bjorn Ottersten

Interdisciplinary Center for Security, Reliability and Trust
University of Luxembourg, 4, rue Alphonse Weicker, L-2721, Luxembourg
{girum.demisse, djamila.aouada, bjorn.ottersten} @uni.lu

ABSTRACT

A statistical model for shapes in R? or R? is proposed. Shape
modelling is a difficult problem mainly due to the non-linear
nature of its space. Our approach considers curves as shape
contours, and models their deformations with respect to a de-
formable template shape. Contours are uniformly sampled
into a discrete sequence of points. Hence, the deformation
of a shape is formulated as an action of transformation matri-
ces on each of these points. A parametrized stochastic model
based on Markov process is proposed to model shape variabil-
ity in the deformation space. The model’s parameters are esti-
mated from a labeled training dataset. Moreover, a similarity
metric based on the Mahalanobis distance is proposed. Sub-
sequently, the model has been successfully tested for shape
recognition, synthesis, and retrieval.

Index Terms— Statistical shape modelling, curves mod-
elling, deformable template, Markov process.

1. INTRODUCTION

Modelling the inter and intra variation of shapes is a difficult
problem mainly due to the non-linear nature of the shape
space. Despite the difficulty, several approaches have been
developed for representing and modelling shapes [1, 2, 3,

, 5]. Methods based on feature extraction are the popular
choice for shape recognition. A variety of descriptors have
been designed to extract features; similarity between shapes
is measured in the feature space [6]. Particularly, in [7], a
successful feature-based method was introduced leading to a
nearest-neighbour like classifier in the feature space. How-
ever, the space of all shapes is an infinite dimensional space.
Theoretically, there can never be a finite set of features that
is unique to a distinct shape [8]. Alternatively, approaches
that model the deformation of the shape instead of the shape
itself have also been proposed. Earlier in [9], template-based
shape modeling was presented as a method for image restora-
tion. However, the deformation of the template shape was not
learned from a training dataset, but based on an assumed prior
distribution. In [10], the deformation space of human body
shapes has been modelled as a direct product of transforma-
tion matrices, leading to shape analysis on the Lie algebra

of the deformation space. In this paper, we propose a data
driven probabilistic model of curves based on a deformable
template; by curve or shape we mean a self-intersection free
smooth 1-manifold embedded in R? or R3. Similarly to [9],
our approach aims to work on the deformation space rather
than the shape space. However, we learn the distribution of
the deformations from a labeled training dataset as opposed
to assuming a priori. The primary goal of the paper is to in-
troduce a simple, yet reasonably general modelling approach
for curved shapes. Indeed, such a model can be used to rec-
ognize and synthesize shapes with respect to a template, and
measure similarity between shapes of the same class.

The remainder of the paper is organized as follows: Sec-
tion 2 covers the necessary background. The proposed mod-
elling approach is described in Section 3. In Section 4, its
possible applications are detailed. Experimental results are
given in Section 5, followed by the conclusion in Section 6.

2. PROBLEM DEFINITION

A given deformable template shape S* is diffeomorphic to
a distinct shape S’ if the mapping between the two shapes
is smooth with a smooth inverse. The space of diffeomor-
phisms between S* and S’ is denoted by Diff(S*,S”). The
considered shapes are represented with an equal number n
of ordered points {p1,---,p,}. Hence, points representing
two shapes are assumed to correspond to each other accord-
ing to their order. Subsequently, the mapping of shape S*
to S’ is formulated as a sequence of transformation matrices
x = {x1, -+ ,x,} acting on each point. More accurately, a
mapping function x is defined as Diff(S*,5’) 3 x : §* >
p; — p, € S’. If a template shape S* is deformed to a
set of shapes S = {S1,---,5,}, our observation is a set of
mapping functions 7 = {x},--- ,xj;}, where the superscript
denotes the source shape while the subscript denotes the tar-
get shape. Moreover, if the shapes in S are labeled as simi-
lar, then learning the probability density function (pdf) of our
observation x from the dataset 7 should enable us to recog-
nize and synthesize shapes belonging to the same class as S
from the template shape S*. As a result, we will treat the
mapping function x as a random vector (RV) taking values
from [}, SE(3); where SE and [] denote the Special Eu-



clidean group and the direct product, respectively. SE(3) is
a Lie group which is also a differentiable manifold, alterna-
tively referred to as M hereafter. A differentiable manifold
can further be endowed with a smooth metric g, at the tan-
gent space T, M for every z € M. Thus, the realization of a
random element is a point on a Riemannian manifold (M, g).
Below we formalize our probability and observation space.

Definition 1. Ler (2, F,m) be a probability measure space
and (M;, B;)i—{1,... ny be measurable spaces where M; is a
Riemannian manifold, and B; is Borel-sigma algebra. An RV
X = 21, , Tn] is a set of random elements defined on the
same probability space, taking values from the set of measur-
able spaces: x; : ) — M,.

A random element' x induces a probability distribution
P on the observation space (M, B); P = m(x~(a)), a €
B. Alternatively, the induced distribution can be expressed
as P(z € R) = [, pdw, where p(-) is the pdf, and w(-) is
the Riemannian measure [11]. Thus, given a template shape
S* and a set of shapes S, labeled as similar, the problem of
shape modelling is defined as estimating the pdf of an RV x =
[x1,- -+, 2], where each random element ;1 ... ,} takes a
value from SE(3). Given a shape label [, the distribution of x
is described as follows

3. PROPOSED CURVE MODELLING

The conditioned joint distribution in (1) can best be estimated
if we consider the spatial relationship between the random el-
ements induced by points ordering [12]. In that regard, the
joint distribution can be seen as a Markov process. The distri-
bution of the RV x is, thus, reduced to the following simpler
equation,
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The Markov chain is formulated as Q; 1 = Q! x Q;, where
Qi+1,Q; € SE(3) are the realizations of two consecutive ran-
dom elements. The state difference Q“t! can be expressed,
without loss of generality, as Q' = Q1 x Q; . In gen-
eral, every time a template shape S* is deformed to a distinct
shape S’, the realization of the RV x can be factorized as
x = [Q1, Q% x Q1, Q2 x Q% x Q1,---]. In fact, our actual
observation is [Q1,Q?, - -, Q7]. Intuitively, the transforma-
tion matrix Q%*! can be seen as the deviation between Q; and
Qi+1. As a consequence, by taking p(Q1) = 1, we have,
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! Note that random elements take values from SE(3) and not R.

In essence, the thrust of the proposed probabilistic model is on
the deviations between two consecutive random elements. In
this work, we have chosen to estimate each term of (3) with
a unimodal density function, namely, multivariate Gaussian
distribution (MGD). MGD is characterized by two parame-
ters; mean j; and covariance matrix >; fort = 2,--- | n.

3.1. Computing the mean in SE(3)

The notion of distance is a central mathematical ingredient
in estimating the mean and the covariance of a distribution.
However, the observation space SE(3) is non-linear and the
usual Euclidean distance does not hold as a distance met-
ric. Alternatively, the distance between two points on a Rie-
mannian manifold is defined as the length of the shortest and
straightest curve connecting them, which is called a geodesic
distance [13]. Furthermore, if the topology of the manifold is
compact, the geodesic can be extended to R. Although SE(3)
is not a compact group, it is a semi-direct product of SO(3),
which is compact, and R3, i.e., it can be decomposed into a
rotation and a translation, respectively. In effect Q); € SE(3)
can be expressed as follows

Qi = (Ig 11) s, H; € S0(3), v; € R®.

In [14, 15], a geodesic curve between two rotation matrices is
given as follows
~(t) = Hi(Hy 'Ha)", 4

where Hy, Hy € SO(3) and ¢t € [0, 1]; note that (4) is not
always unique. Subsequently, the following equation is given
as a natural expression of distance.

d(Hy, ) = / VED AL, )

where ¥(t) € T, M, and (-, -) denotes the inner product
which is also the Riemannian metric. Moreover, (-, ) is left-
translation invariant. The following equation shows this prop-
erty,

(Hy, Ha)r,(m = (y(t) " Hy,y(8) " Ha)ryn,  (6)

where [ is used to denote the identity.
As a result, the distance between H; and H> can be written
using the associated Frobenius norm || - || 7 as follows,

dp(Hy, Hy) = || log(H| Ha)| r. (7

In [16], the Karcher mean is given as a generalization of the
arithmetic mean in a metric space. It is defined as a value

that minimizes the variation of a dataset {H,--- , Hy}; the
formulation is described as
_ 1 <& _
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280(3) denotes special orthogonal group.



Subsequently, the gradient of (8) is given in [14] as

V Ju(H) =" Hlog(HT ). ©)
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As a result, a geodesic curve ¢(-) between two matrices
Q1, Q2 € SE(3) can be defined, similar to (4), as follows,

(p(t) _ <H1(HBIH2)t U1 + (vi — Ul)t> ' (10)

The above curve parametrization is proven to be geodesic
in [17]. Thus, the distance between ()1 and Q)5 is

do(Q1, Q2) = (Nlog(HT Hy) |3 + lloa — val3)V/2. (1)

,Qq}, the

Equivalently to (8), given a dataset {Q1,- -
) is defined as a value that

H v
0 1
minimizes the following equation.

Karcher mean Q =

- 1 - 1
fo(Q) = 52 [log(H H)||7 + 52 17— il (12)
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Since R? is a linear space, minimizing the second term of (12)
for v is equivalent to finding the arithmetic mean of {v; }7_;.
In [18], several optimization approaches for matrix manifolds
are given. In our case, Algorithm 1 has proven to be suffi-
cient for computing the solution H. The initial guess Hy is
computed recursively as in [19]. Hence, the means p; of the
distribution of the random element x; (see Definition 1) are
estimated from g observations as in the estimation of ) with
the minimization of (12).

Algorithm 1: Estimation of the Karcher mean in SO(3)
Data: {H:l -+ Hg} C SO(3)
Result: I € SO(3)
initalzation: H = Hy, thre§h= valy, step = vala,
Vim =0 Hlog(HI H);
Whilg || vffHHF > thresh do
H = Hexp(—step X Vfu);
Ve = 23:1 HIOg(HiTH);
end

3.2. Computing the covariance matrix in SE(3)

The covariance matrix >2; of the distribution of x; can be cal-
culated at the tangent space of its mean p;. Alternatively, the
covariance matrix can be seen as a bilinear form at T),, M. If
{Q1,---,Q,} are g observations of z;, then considering the
curve ¢(-) defined in (10), with ¢(0) = p; and p(1) = Q;,
the image ¢(1); of Q; on the tangent space T},, M is,

T . T(y: —
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Matrices in SE(3) are highly redundant with only 6 degrees
of freedom. Consequently, we use principal component anal-
ysis (PCA) at T},, M to learn the most varying directions. The
principal directions P; are used to reduce the dimensionality
of the data to a smaller orthonormal basis; they are estimated
from {¢(1)1,- - ,¢(1)4}. The projection of each vectorized
¢(1); on the principal directions is denoted by (>(1). Subse-
quently, the covariance matrix is computed similarly to com-
puting the covariance for a centred dataset in Euclidean space.
Using E(+) as the expectation operator, the estimated covari-
ance matrix of the i random element from all the ¢ observa-
tions ¢(1)% = [p(1)f,- -+, ¢(1)7] is defined as,

2 = E[(@()) (1)) (14)

In summary, given a training dataset of RVs 7 = {x1,--- ,X,},
we estimate the mean p;, the principal directions P;, and the
covariance matrix ¥;, of every random element x; from the
training dataset 7. Hence, each class model is described by
(i, 25, Pi)i=1,... m-

4. SHAPE RECOGNITION, SYNTHESIS AND
SIMILARITY

The problem definition (1) describes the likelihood of an RV
x given the label . Consequently, the Maximum a posteriori
(MAP) decision framework can be described as,

[ = argmax P(l | x) ~ p(x | 1), (15)
lel

where [ is the estimated label, and L is the set of all possi-
ble labels; in compliance with frequentist statistics we do not
assume any priori. Conversely, the likelihood function can
be used to synthesize shapes. Algorithm 2 summarizes the
shape synthesis procedure; sample(-, -) is a function that sam-
ples from a centred MGD.

Algorithm 2: Sample random shape generator

Data: (‘LLZ, Zi, Pl)l:ln

Result: x = {25 -2, }

initalzation: 71 = Q1,1 =2, M =0;

while i < n do
Q% = p;exp(P; ! x sample(M, ¥;));
;= QL X xi_q;

end

The proposed probabilistic model can also be used to
measure similarity between shapes of the same class, and
therefore can be deployed for automatic shape retrieval. To
that end, we use the arithmetic mean of the Mahalanobis dis-
tance between each pair of matching random elements as a
similarity measure. The smaller the distance, the more similar
the shapes are. Let S; and S be two shapes from the same
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Fig. 1. Classification error versus number of points represent-
ing the shape for the fighter jets experiment.

class, and let us consider r} = ¢(1)7, and r? = ¢(1)7 as de-
rived from the realizations of random elements observed from
S1 and S5 deforming, respectively, see Section 3.2. Then, the
proposed similarity metric h(-, -) is given as follows,

S (0!

i=1

h(S1,Ss) = —)Tu e =) 6
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5. EXPERIMENTAL RESULTS

Classification: The described approach is tested for classi-
fication on the fighter jet dataset [21]. It contains contours
of seven fighter jets each with 30 example images; the inner
class variation is achieved by scaling and rotating the images.
We estimate the model (p;, 2;, P;);=1..., for each class with
20 training images and reserve the 10 remaining ones for test-
ing. Each shape is represented with n = 40 points. In this
particular experiment, the template shape S* is a straight line
represented with 40 ordered points. The number of points,
however, is a free parameter to be tuned. Overall, 70 images,
10 from each class, are reserved for testing. Subsequently,
the multi-class classification is done using (15). The model’s
error is measured as: error =1 — & Zz e ), where 1; is
a label indicator function and k = 70 The obtained overall
error is 0.01428, which is due to misclassifying a single im-
age. However, one must note the relationship between models
quality (error rate) and the number of points used to represent
the shapes when aiming for high performance, see Fig. 1.

Retrieval: Furthermore, the similarity metric is tested on 13
classes of shapes from MPEG-7 dataset [22]. Again, we train

erated with the left most shape being the mean shape.

a model for each of the 13 classes on the first 10 images and
compare the left out 10 images with every other image, ex-
cluding the training dataset; the comparison is done as de-
scribed in (16). Subsequently, the number of shapes from the
same class among the 10 most similar shapes are counted.
Thus, the highest score a class can achieve is 100. Con-
sequently, we compute the bull’s-eye score [23] where the
highest possible value is 10x10x13. Although, our method
is a supervised learning skim we compare our result with
[7, 20] on the same dataset excluding the training data, see
Table. 1. Moreover, it must be noted that we have not done
cross-validation due to the small size of the training dataset.
Hence, it is probable that the model overfits the dataset. Fur-
thermore, the quality of the preprocessing stage, to satisfy the
point correspondence assumption, contributes to the perfor-
mance significantly. In general, our result can be improved
by further investigating the effects of bias-variance dilemma.
Synthesis: Synthetic shape generation is shown in Fig. 2.

6. CONCLUSION

A deformable template-based modelling approach for curves
is presented. The central idea is the modelling of deforma-
tions with a stochastic process—Markov process is used to
simplify the estimation of the distribution. MGD is used
to model the deviation between consecutive Markov states.
Subsequently, parameters of MGD are estimated in SE(3).We
have shown the application of the model for recognition,
synthesis, and as a similarity measure. In future work, we
will address the dangling free parameter, number of points.
Although, subject to deeper investigation, we believe it is
task specific and should be estimated as part of the model’s
parameter. Additionally, the approach assumes the ordered
correspondence of the representing points.
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