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Abstract We characterize conservative median algebras and semilattices by means
of forbidden substructures and by providing their representation as chains. Moreover,
using a dual equivalence between median algebras and certain topological structures,
we obtain descriptions of the median-preserving mappings between products of finitely
many chains.

1 Introduction and preliminaries

In this paper we are interested in certain algebraic structures called median algebras.
A median algebra is a ternary algebra A = 〈A,m〉 that satisfies the following equations

m(x, x, y) = x,

m(x, y, z) = m(y, x, z) = m(y, z, x),

m(m(x, y, z), t, u) = m(x,m(y, t, u),m(z, t, u)).

Median algebras have been investigated by several authors (see [3,9] for early ref-
erences on median algebras and see [2,10] for some surveys). For instance, it is shown
in [14] that for each element a of a median algebra A, the relation ≤a defined on A by

x ≤a y ⇐⇒ m(a, x, y) = x

is a ∧-semilattice order with bottom element a. The associated operation ∧ is defined by
x∧ y = m(a, x, y). Semilattices constructed in this way are called median semilattices,
and can be characterized as follows.

Miguel Couceiro
LORIA (CNRS - Inria Nancy Grand Est - Université de Lorraine), Équipe Orpailleur,
Batiment B, Campus Scientifique, B.P. 239, F-54506 Vandoeuvre les Nancy. E-mail:
miguel.couceiro@inria.fr

Jean-Luc Marichal
Mathematics Research Unit, FSTC, University of Luxembourg 6, rue Coudenhove-Kalergi,
L-1359 Luxembourg, Luxembourg. E-mail: jean-luc.marichal@uni.lu

Bruno Teheux
Mathematics Research Unit, FSTC, University of Luxembourg 6, rue Coudenhove-Kalergi,
L-1359 Luxembourg, Luxembourg. E-mail: bruno.teheux@uni.lu



2 Miguel Couceiro et al.

Theorem 1 ((3.1) in [14]) A ∧-semilattice is a median semilattice if and only if
each of its principal ideal is a distributive lattice, and any three elements have a join
whenever each pair of them is bounded above.

In particular, any distributive lattice is a median semilattice. According to Theorem
1, we can define a ternary operation m≤ called the median operation of ≤ on every
median semilattice 〈A,≤〉 by setting

m≤(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (z ∧ y), (1.1)

for every x, y, z ∈ A. It can be proved [1, Lemma 3 (6)] that m = m≤a for every
median algebra A = 〈A,m〉, and every a ∈ A.

Here, we are particularly interested in median algebras A that are conservative,
i.e., that satisfy

m(x, y, z) ∈ {x, y, z}, x, y, z ∈ A. (1.2)

Although condition (1.2) appears in §11 of [13], to the best of the authors’ knowledge,
the present work constitutes the first attempt of a systematic study of conservative me-
dian algebras. A median semilattice 〈A,≤〉 whose median operation m≤ satisfies (1.2)
is called a conservative median semilattice. Note that a median algebra is conservative
if and only if each of its subsets is a median subalgebra. Moreover, if L is a chain, then
mL satisfies (1.2); however the converse is not true. This fact was observed in §11 of
[13], which presents the median operation of the four element Boolean algebra as a
counter-example.

In this paper, we investigate conservative median algebras and homomorphisms
between them, i.e., mappings f : A→ B that are solutions of the functional equation

f(m(x, y, z)) = m(f(x), f(y), f(z)). (1.3)

We describe such homomorphisms between conservative median algebras A and B.
To do so, we present a description of conservative median algebras and semilattices
in terms of forbidden substructures (in complete analogy with Birkhoff’s character-
ization of distributive lattices with M5 and N5 as forbidden substructures), and that
leads to a representation of conservative median algebras (with at least five elements)
as median algebras of chains. In fact, the only conservative median algebra that is not
representable as a chain is the median algebra of the four element Boolean algebra.

Throughout the paper we employ the following notation. For each positive integer
n, we set [n] = {1, . . . , n}. Algebras and topological structures are denoted by bold
roman capital letters A,B,X,Y, . . . and their universes by italic roman capital letters
A,B,X, Y, . . . To simplify our presentation, we will keep the introduction of background
to a minimum, and we will assume that the reader is familiar with the theory of lattices
and ordered sets. We refer the reader to [6,8] for further background.

2 Characterizations of conservative median algebras

According to Theorem 1, a semilattice can fail to be a conservative median semilattice
in tree different ways. First, it can contain a principal ideal which is not a distributive
lattice, as in Fig. 1(a) that depicts the bounded lattice N5 that is not distributive. Sec-
ond, it can contain three elements b, c, d that do not have a join even though every pair
of them is bounded above, such as in Fig. 1(e). Finally, it can be a median semilattice
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Fig. 1 Examples of ∧-semilattices that are not conservative.

that is not conservative, like A2 in Fig. 1(b) in which m≤(a, c, d) = b, and like in Fig.
1(c)–1(d) in which the semilattices contain a copy of A2. Hence, we have proved the
following lemma.

Lemma 1 The partially ordered sets A1, . . . ,A5 depicted in Fig. 1 are not conserva-
tive median semilattices.

The following theorem provides a description of conservative median algebras and
semilattices in terms of forbidden substructures.

Lemma 2 The variety of median algebras satisfies the following equations.

m(x, y, z) = m
(
m
(
m(x, y, z), x, t

)
,m

(
m(x, y, z), z, t

)
,m

(
m(x, y, z), y, t

))
. (2.1)

m(x, y,m(x, y, z)) = m(x, y, z), (2.2)

Proof Every median algebra is isomorphic to a subalgebra of a power of the median
algebra 2 = 〈{0, 1},m〉, where m is the majority ternary operation on {0, 1} (see [2,
Theorem 1.5]). Moreover, equations (2.2) and (2.1) are satisfied in 2.

Theorem 2 For every median algebra A, the following conditions are equivalent.

1. A is conservative.
2. A does not contain the median algebra A2 depicted in Fig. 1(b) as a subalgebra.
3. For every a ∈ A, the median semilattice 〈A,≤a〉 does not contain a copy of the

poset depicted in Fig. 1(b).

Proof First note that any median semilattice with at most four elements is conservative,
with the exception of the poset depicted in Fig. 1(b). Hence, we assume that |A| ≥ 5.

(2) ⇐⇒ (3): Follows directly from the definition of ≤a.
(1) =⇒ (3): Follows from Lemma 1.
(3) =⇒ (1): Suppose that A is not conservative, that is, there are a, b, c, d ∈ A

such that d := m(a, b, c) 6∈ {a, b, c}. Clearly, a, b and c must be pairwise distinct. By
(2.2), a and b are ≤c-incomparable, and d <c a and d <c b. Moreover, c <c d and thus
〈{a, b, c, d},≤c〉 is a copy of A2 in 〈A,≤c〉.
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Let C0 = 〈C0,≤0, c0〉 and C1 = 〈C1,≤1, c1〉 be chains with bottom elements c0
and c1. The ⊥-coalesced sum C0⊥C1 of C0 and C1 is the poset obtained by amalga-
mating c0 and c1 in the disjoint union of C0 and C1. Formally,

C0⊥C1 = 〈C0 t C1 /≡, ≤〉,

where t is the disjoint union, where ≡ is the equivalence generated by {(c0, c1)} and
where ≤ is defined by

x/≡ ≤ y/≡ ⇐⇒ (x ∈ {c0, c1} or x ≤0 y or x ≤1 y).

Theorem 3 below provides descriptions of conservative median algebras and semi-
lattices by means of representations by chains. Its proof requires the next technical
result.

Lemma 3 For every median algebra A with |A| ≥ 5, the following conditions are
equivalent.

1. A is conservative
2. There is an a ∈ A and lower bounded chains C0 and C1 such that 〈A,≤a〉 is

isomorphic to C0⊥C1.
3. For every a ∈ A, there are lower bounded chains C0 and C1 such that 〈A,≤a〉 is

isomorphic to C0⊥C1.

Proof (1) =⇒ (3): Let a ∈ A. First, suppose that for every b, c ∈ A \ {a} we have
m(b, c, a) 6= a. Since A is conservative, for every b, c ∈ A, either b ≤a c or c ≤a b.
Thus ≤a is a chain with bottom element a, and we can choose C1 = 〈A,≤a, a〉 and
C2 = 〈{a},≤a, a〉.

Suppose now that there are b, c ∈ A\{a} such that m(b, c, a) = a, that is, b∧c = a.
We show that for every a ∈ A,

d 6= a =⇒
(
m(b, d, a) 6= a or m(c, d, a) 6= a

)
. (2.3)

For the sake of a contradiction, suppose that m(b, d, a) = a and m(c, d, a) = a for
some d 6= a. By equation (2.1), we have

m(b, c, d) = m
(
m
(
m(b, c, d), b, a

)
,m

(
m(b, c, d), d, a

)
,m

(
m(b, c, d), c, a

))
. (2.4)

Assume that m(b, c, d) = b. Then (2.4) is equivalent to

b = m(b,m(b, d, a),m(b, c, a)) = a,

which yields the desired contradiction. By symmetry, we derive the same contradiction
in the case m(b, c, d) ∈ {c, d}.

We now prove that for every a ∈ A,

d 6= a =⇒
(
m(b, d, a) = a or m(c, d, a) = a

)
. (2.5)

For the sake of a contradiction, suppose that m(b, d, a) 6= a and m(c, d, a) 6= a for
some d 6= a. Since m(b, c, a) = a we have that d 6∈ {b, c}.

If m(b, d, a) = d and m(c, d, a) = c, then c ≤a d ≤a b which contradicts b ∧ c = a.
Similarly, if m(b, d, a) = d and m(c, d, a) = d, then d ≤a b and d ≤a c which also
contradicts b ∧ c = a. The case m(b, d, a) = b and m(c, d, a) = d leads to a similar
contradiction.
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Hence m(b, d, a) = b and m(c, d, a) = c, and the ≤a-median semilattice arising
from the subalgebra B = {a, b, c, d} of A is the median semilattice associated with
the four element Boolean algebra. Let d′ ∈ A \ {a, b, c, d}. By (2.3) and symmetry
we may assume that m(b, d′, a) ∈ {b, d′}. First, suppose that m(b, d′, a) = d′. Then
〈{a, b, c, d, d′},≤a〉 is N5 (Fig. 1(a)) which is not a median semilattice. Suppose then
that m(b, d′, a) = b. In this case, the restriction of ≤a to {a, b, c, d, d′} is depicted
in Fig. 1(c) or 1(d), which contradicts Proposition 1, and the proof of (2.5) is thus
complete.

Now, let C0 = {d ∈ A | (b, d, a) 6= a}, C1 = {d ∈ A | (c, d, a) 6= a} and let
C0 = 〈C0,≤a, a〉 and C1 = 〈C1,≤a, a〉. It follows from (2.3) and (2.5) that 〈A,≤a〉 is
isomorphic to C0⊥C1.

(3) =⇒ (2): Trivial.
(2) =⇒ (1): Let b, c, d ∈ C0⊥C1. If b, c, d ∈ Ci for some i ∈ {0, 1} thenm(b, c, d) ∈

{b, c, d}. Otherwise, if b, c ∈ Ci and d 6∈ Ci, then m(b, c, d) ∈ {b, c}.

Theorem 3 Let A = 〈A,m〉 be a median algebra with |A| ≥ 5. Then A is conservative
if and only if there is a total order ≤ on A such that m = m≤.

Consequently, if A is a conservative median algebra whose operation is not the
median operation of a totally ordered set, then A is isomorphic to 2× 2.

Proof We have already noted that if ≤ is a total order on A then 〈A,m≤〉 is conser-
vative. Now assume that A = 〈A,m〉 is a conservative median algebra with |A| ≥ 5.
Consider the universe of C0⊥C1 in condition (2) of Lemma 3 endowed with ≤ defined
by x ≤ y if x ∈ C1 and y ∈ C0 or x, y ∈ C0 and x ≤0 y or x, y ∈ C1 and y ≤1 x.
Clearly, ≤ is a total order and m≤ = m.

For the second part of the proof, note that the only conservative median algebra
with at most four elements whose median operation is not the median operation of a
totally ordered set is 2× 2.

3 Duality theory toolbox

In this section, we recall a dual equivalence between the category of median algebras
and a category of structured topological spaces. It was first exposed in [10] and was
stated in terms of homomorphisms into the median algebra 2. It was later on recognized
[15,7] as being an instance of a general scheme of dualities for finitely generated quasi-
varieties of algebras known as natural duality [5]. This general approach, as well as its
application to the variety of median algebras, is fully exposed in [5, Section 4.3].

Definition 1 ([2]) Let A = 〈A,m〉 be a median algebra. A subset C of A is convex
if m(c1, c2, a) ∈ C whenever c1, c2 ∈ C and a ∈ A. A convex subset C of A is prime
if its complement A \ C in A is also convex. We denote by Spec(A) the set of prime
convex subsets of the median algebra A.

Equivalently, C ⊆ A is a prime convex subset if it satisfies the following condition: for
every x, y, z ∈ A, the element m(x, y, z) belongs to C if and only if at least one of the
sets {x, y}, {x, z}, {y, z} is a subset of C.

Proposition 1 (Proposition 1.3 in [2]) If L is a bounded distributive lattice, then
the prime convex subsets of L are its prime filters and prime ideals.
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It is not difficult to check that in a median algebra A, prime convex subsets coincide
with the sets u−1(0) where u : A→ 2 is a median homomorphism. It is convenient to
use prime convex subsets instead of homomorphisms u : A→ 2 in the dual equivalence
we use in this paper. As noted in [10,15], the set Spec(A) can be equipped with a
topological structure that completely characterizes A. We recall this construction in
the remainder of this section. For a ∈ A we denote by ra the set {I ∈ Spec(A) | a 6∈ I}.

Definition 2 Let A be a median agebra. The dual A∗ of A is the topological struc-
ture A∗ = 〈Spec(A),⊆, ·c,∅, A, τ〉 where ·c is the set-complement in A and τ is the
topology with subbasis {ra | a ∈ A} ∪ {Spec(A) \ ra | a ∈ A}.

Furthermore, for a homomorphism f : A→ B between median algebras, let f∗ the
map defined on B∗ by f∗(I) = f−1(I). It is not difficult to check using the definitions
that f∗ is valued in A∗

Remark 1 By the Prime Convex Theorem [12, Theorem 13], it follows that {ra | a ∈
A} ∪ {Spec(A) \ ra | a ∈ A} is in fact a basis.

The class of duals of median algebras can be defined as follows.

Definition 3 ([5]) A bounded strongly complemented Priestley space is a topologi-
cal structure X = 〈X,≤, ·c, 0, 1, τ〉 where 〈X,≤, τ〉 is a Priestley space with 0 and 1
as bottom and top elements, and ·c is an order reversing homeomorphism that satisfies

x ≤ xc =⇒ x = 0 and xcc = x.

Bounded strongly complemented Priestley spaces are called bounded totally or-
dered disconnected compact spaces with an involution in [15].

Definition 4 A complete ideal W of a bounded strongly complemented Priestley
space X is a clopen downset that satisfies x ∈ W if and only if xc 6∈ W . With no
danger of ambiguity, we also denote the set of complete ideals of X by Spec(X). This
set is turned into the algebra X∗ = 〈Spec(X),m〉 where m is the restriction of m2X

to Spec(X). For a continuous structure-preserving map φ : X→ Y, we define φ∗ to be
the map on Y∗ given by φ∗(W ) = φ−1(W ).

The class X of bounded strongly complemented Priestley spaces can be thought
of as a category with continuous structure-preserving maps as arrows. Likewise, the
variety M of median algebras is thought of as a category with homomorphisms as
arrows. For X,Y ∈ X , we say that Y is a substructure of X if Y is a closed subset of
〈X, τ〉 and Y is induced by the restriction of X to Y . In that case, if ψ : Z→ Y is an
isomorphism, we say that ψ is an embedding of Z into X.

Proposition 2 ([5,10,15]) The functors ·∗ :M→ X and ·∗ : X →M define a dual
equivalence between the categoriesM and X .

Remark 2 The isomorphism between A and (A∗)∗ mentioned in Proposition 2 is given
by a 7→ ra.

We denote by X ⊕Y the coproduct of X,Y ∈ X . It is not difficult to check that
X⊕Y is realized in X by amalgamating 0 and 1 of X with 0 and 1 of Y, respectively,
in the disjoint union of X and Y.
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It is a general result of category theory that under a dual equivalence, products
in one category correspond to coproducts in the other category (for instance, see [5,
Chapter 1, Lemma 1.4]). In particular, we have

(A×B)∗ ∼= A∗ ⊕B∗,

for every A,B ∈M. Moreover, we have the following useful result.

Proposition 3 A homomorphism f : A → B between two median algebras A and B

is onto if and only if f∗ : B∗ → A∗ is an embedding.

Proof Stated in the language of Natural Duality, the dual equivalence of Proposition 2
is a strong duality (see [5, Chapter 4, Therorem 3.4]). Then, the proof is an application
of [5, Chapter 3, Lemma 2.6].

4 Homomorphisms between conservative median algebras

We now use the duality theory apparatus recalled in Section 3 to describe median
homomorphisms between (products of) conservative median algebras.

First, we characterize the duals of the conservative median algebras. Let P0 =
〈P0,≤0, 00, 10〉 and P1 = 〈P1,≤1, 01, 11〉 be two bounded posets. As in Section 2,
P0qP1 denotes the coalesced sum of P0 and P1, that is, the poset obtained from the
disjoint union of P0 and P1 by identifying 00 with 01, and 10 with 11. We denote by
iPk the natural embedding iPk : Pk → P0 qP1 for k ∈ {0, 1}. To simplify notation,
we often identify Pk with its copy iPk(Pk) in P0 qP1 for k ∈ {0, 1}.

If 〈C, τ ′〉 is a bounded Priestley chain (i.e., a bounded totally ordered Priestley
space, see, e.g., [6]), C qC∂ can be endowed with an operation ·c and a topology τ ,
so that 〈CqC∂ , ·c, τ〉 is a bounded strongly complemented Priestley space. Indeed,
it suffices to define

– τ as the final topology relative to iC and iC∂ (i.e., the finest topology that makes
iC and iC∂ continuous),

– ·c as the function that maps the bottom element 0 to the top element 1 and
conversely, and that maps each element ofC\{0, 1} to its copy inC∂ and conversely.

With no danger of ambiguity, we use CqC∂ to denote 〈CqC∂ , ·c, τ〉.
For X ∈ X and Y ⊆ X set Y c = {xc ∈ X | x ∈ Y }. Also, for a Priestley space

〈P, τ〉, let Cl0(〈P, τ〉) be the set of its nonempty proper clopen downsets ordered by
inclusion. Moreover, for a poset P, let 〈Up(P), τ〉 be the set of its upsets ordered by
inclusion and equipped with the topology τ which has {{I ∈ Up(P) | p 6∈ I} | p ∈
P} ∪ {{I ∈ Up(P) | p ∈ I} | p ∈ P} as subbasis. If P is a chain, then 〈Up(P), τ〉 is a
bounded Priestley space.

Proposition 4 Let A = 〈A,m〉 be a median algebra with |A| ≥ 5. The following
conditions are equivalent.

1. A is conservative.
2. There is a bounded Priestley chain 〈C, τ〉 such that A∗ is isomorphic to CqC∂ .
3. A is the median algebra of the nonempty proper clopen downsets of a bounded

Priestley chain 〈C, τ〉.
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Furthermore, if one of these conditions is satisfied and if C0 = 〈A,≤〉 is a chain
representation of A given by Theorem 3, then A∗ ∼= Up(C0)qUp(C0)

∂ and m is the
median operation of Cl0(Up(C0)).

Proof (1) =⇒ (2): According to Theorem 3, there is a totally ordered set C0 = 〈A,≤〉
such that A = 〈A,m≤〉. From Proposition 1, we know that the prime convex subsets
of 〈A,m≤〉 are the prime filters and prime ideals of C0, that is, the upsets of C0 and
the downsets of C0. Then A∗ is isomorphic to Up(C0)qUp(C0)

∂ .
(2) =⇒ (3): The median algebra A is isomorphic to (C q C∂)∗. If W is a

complete ideal of C q C∂ then ωW := W ∩ C belongs to Cl0(〈C, τ〉). Conversely, if
ω ∈ Cl0(〈C, τ〉) then Wω := ω ∪ (C∂ \ ωc) is a complete ideal of C q C∂ . It is not
difficult to check that the maps ω− : (CqC∂)∗ → Cl0(〈C, τ〉) andW− : Cl0(〈C, τ〉)→
(C qC∂)∗ are median homomorphisms such that one is the inverse of the other. We
conclude that up to isomorphism, m is the median operation of Cl0(〈C, τ〉).

(3) =⇒ (1): Follows straightforwardly since m is the median operation of a chain.
The proof of the first and the second claims of the last statement are given in the

proof of (1) =⇒ (2) and (2) =⇒ (3), respectively.

Corollary 1 Let A be a median algebra. If C and C′ are two chains such that A ∼=
〈C,mC〉 and A ∼= 〈C′,mC′〉, then C is order isomorphic or dual order isomorphic to
C′.

Given a conservative median algebra A = 〈A,m〉 (with |A| ≥ 5), Theorem 3
provides with a total order ≤A on A such that m = m≤A

. Corollary 1 states that
〈A,≤A〉 is unique up to isomorphisms and dual isomorphisms. We call ≤A the chain
ordering of A and we denote 〈A,≤A〉 by C(A) .

We use Proposition 4 to characterize median homomorphisms between conservative
median algebras. Recall that a map between two posets is monotone if it is isotone or
antitone.

Proposition 5 Let A and B be two conservative median algebras with at least five
elements. A map f : A→ B is a median homomorphism if and only if it is monotone
with respect to the chain orderings of A and B.

Proof (Necessity) We may assume that f is onto. According to Proposition 3, the map

f∗ : Up(C(B))qUp(C(B))∂ ↪→ Up(C(A))qUp(C(A))∂

is a X -embedding.
If the range of f∗ is equal to {0, 1}, then B is the one-element median algebra and

C(B) is the one-element chain, and the result follows trivially. Hence, we may assume
that there is a I ∈ Up(C(B)) such that f∗(I) 6∈ {0, 1}. If f∗(I) ∈ Up(C(A)), then
f∗(Up(C(B))) ⊆ Up(C(A)) since f∗ is isotone. We prove that f : C(A) → C(B) is
isotone. Suppose that a ≤ b for some a, b ∈ C(A). Then f∗

(
[f(a))

)
contains b since it

is an upset that contains a and a ≤ b. It means that f(a) ≤ f(b), which is the desired
result.

If f∗(I) ∈ Up(C(A))∂ , we conclude in a similar way that f : C(A) → C(B) is
antitone.

(Sufficiency) If f : C(A) → C(B) is isotone, then it maps upsets to upsets and
downsets to downsets. If it is antitone, it maps upsets to downsets and conversely. It
means that f∗ is valued in Up(C(A))qUp(C(A))∂ . It is then straightforwad to check
that f∗ is a X -morphism.
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Fig. 2 Examples for Remark 3.

Corollary 2 Let C and C′ be two chains. A map f : C→ C′ is a median homomor-
phism if and only if it is monotone.

Remark 3 Note that Corollary 2 only holds for chains. Indeed, Fig. 2(a) gives an ex-
ample of a monotone map that is not a median homomorphism, and Fig. 2(b) gives an
example of median homomorphism that is not monotone.

Since the class of conservative median algebras is closed under homomorphic im-
ages, we obtain the following corollary.

Corollary 3 Let A and B be two median algebras and f : A → B. If A is conser-
vative, and if |A|, |f(A)| ≥ 5, then f is a median homomorphism if and only if f(A)
is a conservative median subalgebra of B and f is monotone with respect to the chain
orderings of A and f(A).

The dual equivalence between M and X turns finite products into finite coprod-
ucts. This property can be used to characterize median homomorphisms between finite
products of chains. If fi : Ai → A′i (i ∈ [n]) is a family of maps, let (f1, . . . , fn) :
A1 × · · · ×An → A′1 × · · · ×A′n be defined by

(f1, . . . , fn)(x1, . . . , xn) := (f1(x1), . . . , fn(xn)).

The following proposition essentially states that median homomorphisms between
finite products of chains necessarily decompose componentwise.

Proposition 6 Let A = C1×· · ·×Ck and B = D1×· · ·×Dn be two finite products of
chains. Then f : A→ B is a median homomorphism if and only if there exist σ : [n]→
[k] and monotone maps fi : Cσ(i) → Di for i ∈ [n] such that f = (fσ(1), . . . , fσ(n)).

Proof The condition is clearly sufficient. To prove that it is necessary, letA, B and f be
as in the statement. The map f∗ = D∗1⊕· · ·⊕D∗n → C∗1⊕· · ·⊕C∗k is an X -morphism.
Let i ∈ [n]. Since D∗i is a X -substructure of B∗ ∼= D∗1⊕ · · ·⊕D∗n, the map f∗|D∗i is an
X -morphism from D∗i to A∗ ∼= C∗1 ⊕ · · · ⊕C∗k. Hence, there is a σ(i) ∈ [k] such that
f∗|D∗i is valued in C∗σ(i). It follows that the diagram in Fig. 3(a) commutes, and by
duality, so is the diagram in Fig. 3(b). Hence, it suffices to define fσi as (f∗|D∗i )

∗ to
conclude the proof.

If A = A1 × · · · ×An and i ∈ [n], then we denote the projection map from A onto
Ai by πAi , or simply by πi if there is no danger of ambiguity.
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D∗i

f∗|D∗
i //

� _

(πBi )∗

��

C∗
σ(i)
_�

(πAσ(i))
∗

��
B∗

f∗
// A∗

(a) Situation in X

Di Cσ(i)

(f∗|D∗
i
)∗

oo

B

πBi

OOOO

A
f

oo

πAσ(i)

OOOO

(b) Situation inM

Fig. 3 Proof of Proposition 6

Corollary 4 Let C1, . . . ,Cn and D be chains. A map f : C1 × · · · × Cn → D is a
median homomorphism if and only if there is a j ∈ [n] and a monotone map g : Cj → D

such that f = g ◦ πj .

In the particular case of Boolean algebras, Proposition 6 can be restated as in the
following corollary.

Corollary 5 Assume that f : 2n → 2m is a map between two finite Boolean algebras.
The map f is a median homomorphism if and only if there are σ : [m] → ([n] ∪ {⊥})
and ε : [m]→ {id,¬} such that

f : (x1, . . . , xn) 7→ (ε1xσ1 , . . . , εmxσm),

where x⊥ is defined as the constant map 0.

Corollary 6 1. The Boolean functions on 2n that are median homomorphisms are
exactly the constant functions, the projection maps π : 2n → 2 and the negations
of the projection maps.

2. A map f : 2n → 2n is a median isomorphism if and only if there is a permutation σ
of [n] and an element ε of {id,¬}n such that f(x1, . . . , xn) = (ε1xσ(1), . . . , εnxσ(n))
for any (x1, . . . , xn) in 2n.

Remark 4 As kindly noticed by the reviewer, Corollaries 5 and 6 follow from properties
of congruence distributive varieties generated by a finite simple algebra. For instance, it
can be shown that ifA is a finite simple algebra that generates a congruence distributive
variety and if f : An → An is an isomorphism, then there exist a permutation σ of [n]
and automorphisms ε1, . . . , εn of A such that f(x1, . . . , xn) = (ε1xσ(1), . . . , εnxσ(n))
for every (x1, . . . , xn) ∈ An. Since the variety of median algebras has a near-unanimity
term, it is congruence distributive (see [11, Theorem 2]) and hence Corollary 6.2 can
be obtained from the latter result.

5 Concluding remarks and further research directions

In this paper we have described conservative median algebras and semilattices with at
least five elements in terms of forbidden configurations and have given a representation
by chains. We have also characterized median homomorphisms between finite products
of these algebras, showing that they are essentially determined componentwise. The
next step in this line of research is to extend our results to larger classes of median
algebras and their ordered counterparts. The topological duality for the variety of
median algebras recalled in this paper may again turn out to be a valuable tool.
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Another research direction would be to turn the representation theorem stated in
Proposition 4 into a dual equivalence, and to use this equivalence to describe existen-
tially and algebraically closed elements in the category of conservative median algebras
by following the ideas developed in [5, Chapter 5].
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