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Abstract. Social networks have sprung up and become a hot issue of
current society. In spite of the fact that these networks provide users with
a variety of attractive features, much to users’ dismay, however, they are
likely to expose users private information (unintentionally).
In this paper, we propose an approach which is intended for addressing
the problem of collaboratively deciding privacy policies for, but not lim-
ited to, shared photos. Our proposed algorithm utilizes trust relations in
social networks and combines it with the Condorcet preferential voting
scheme. An optimization is developed to improve its efficiency. Exper-
imental results show that our trust-augmented voting scheme performs
well. An inference technique is introduced to infer a best privacy policy
for a user based on his voting history.

1 Introduction

Social networking is one of the greatest inventions on the Internet during the last
ten years. Social network sites provide users platforms to socialize both in the
digital world and in the real world, for making friends, information exchange and
retrieval, and entertainment. Some of the largest ones, such as Facebook [1] and
MySpace [2], provide services to hundreds of millions of registered users. How-
ever, partly due to the intention to attract as many users as possible for their
commercial success, social networks tend to intentionally or unintentionally ex-
pose private information of existing users. Privacy is becoming an important and
crucial research topic in social networks. A number of scholars have studied it
from different viewpoints, e.g. [3–7]. Moreover, the excessively expanded num-
ber of users also bring difficulties into the management of these sites, so that
designing effective mechanisms to coordinate users’ opinions over their privacy
becomes an emerging issue.

As a shared platform, resources in a social network may be co-owned by a
number of users. For instance, documents can be co-authored and several users
may appear in a same photo. Such co-ownership might cause breach of privacy.
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For example, suppose user Alice wishes to publish on her personal page a picture
which contains Bob’s image, this action may cause exposure of Bob’s privacy,
regardless of Bob’s personal will. In response to this issue, most of the social
network sites choose to place the burden of privacy setting solely on the owners
of the resources, to which we hold a different stance. We believe it might be more
desirable to let all co-owners participate in the privacy setting. In this paper, we
mainly focus on the particular problem of how to merge privacy opinions from
co-owners of shared resources.

Voting is a natural choice to build a mechanism which takes individual’s pref-
erences on their privacy policies into a joint decision reflecting the “general will”
of the group of people who are sharing a piece of data. Siquicciarini et al. [8] pro-
pose a game theoretical method based on the Clarke-Tax mechanism [9], which
can maximize the social utility function by encouraging truthfulness among peo-
ple in the group. This induces a nice property that the final decision cannot be
manipulated by individuals, as users express their true opinions about the pri-
vacy preference. However, their method is not as simple as it is claimed to be,
as it requires each user to compute a value for each different preference and the
user-input values are essential for their method to derive a joint decision. We
argue that this requirement is not realistic and it makes users less interested in
participating collaborative privacy control.

Instead, in this paper we propose a different but novel solution, by combining
trust in social networks with a well-known preferential voting scheme. The trust
relations are inherent in social networks and can be easily derived among users,
for example, by comparing user profiles or computing the distance of users in a
social network. We believe that trust should play an important role especially
when users cooperate to decide the privacy policy on a shared resource. In a
preferential voting scheme users are required to give an order of their privacy
preferences rather than only select a single choice. This allows users to express
their opinions on different privacy policies in a more comprehensive way. More-
over, users are not required to associate values to preferences. Comparing to
the method of Siquicciarini et al. [8], ours is simple to use. The above discus-
sion reflects the two design rationales expressiveness and simplicity of use in
our mind – these considerations lead us to a method for collaborative privacy
control which is as simple as possible without losing expressive power.

The rest of the paper is organized as follows. Sect. 2 introduces notions of
trust in social networks and Condorcet’s preferential voting scheme. In Sect. 3 we
propose a new algorithm that enhances traditional Condorcet’s voting scheme
by taking the trust relation into account. We also propose a heuristic to improve
the performance of this new algorithm. Sect. 4 presents experimental data on
comparing the algorithms previously introduced, which also justifies the cor-
rectness of our heuristic approach. Sect. 5 provides an inference technique to
automatically recommend a default vote for a user based on his profile setting
and voting history. We conclude the paper in Sect. 6.



2 Preliminaries

2.1 Trust in Social Networks

Literature shows that social life is simply not possible without trust [10, 11].
In particular, trust relations are central to cooperation, i.e., the social process
aiming at the increase or preservation of the partners’ power, wealth, etc. Online
social networks reflect human social relations in the Internet, allowing users to
connect to people they know, to share data (e.g., video, photos, text), and to
have group activities (e.g., games, events). A number of social structures have
been introduced in social networks, such as friendship, group membership and
virtual family. The notion of trust is naturally present in social networks, and
moreover, in contrast to real life, it can be quantified and made explicit.

Trust has been defined in several different ways. The definition of trust
adopted here, first formulated by Gambetta [12], is often referred to as “reli-
ability trust”. Thus, we define trust as the belief or subjective probability of
the trustor that the trustee will adequately perform a certain action on which
the trustor’s welfare depends. Trust is hence a quantifiable relation between two
agents. There are mainly two approaches to trust quantification, namely by the
evaluation of the similarity, or by an analysis of relevant past events (stored in
a history) between two entities.

The similarity between two entities is a distance function that can take vari-
ous attributes into account, such as social (e.g., gender, location, company, etc.),
and behavioral (e.g., the way one ranks or buys) attributes. Intuitively, the closer
the two entities are w.r.t. an attribute (i.e., the distance is small), the more likely
the trust relation will be strong. In practice, a social network like Facebook im-
plements a social similarity mechanism in order to suggest to the user people
that she might consider as friends. For instance, if Alice and Bob both have
Clare and Danny in their friend list but Bob also has Elisabeth as a friend, then
Elisabeth might be suggested to Alice.

In the second approach, a sequence of past events concerning a specific action
can be analyzed to predict the likelihood that the same action will be correctly
performed if requested. This analysis can consist in checking a property over
the history [13, 14], or the computation of a probability (e.g., Hidden Markov
Models [15]). Moreover, trust transitivity can be used when an entity wants to
evaluate the trust in an unacquainted entity, e.g., when the trustor does not have
access to the trustee’s profile, or has never interacted with her. Trust transitivity
is defined as the possibility for the trustor to use trust information from other
entities in order to infer a trust evaluation towards the trustee, i.e., derive a trust
value from a trust graph. In social networks, we can use the trust over friendship
relations as transitive relations. Computational models for trust transitivity can
be found in the literature [16–19], and can be applied to social networks.

Our main motivation to incorporating trust in collective privacy management
is that people’s opinion in a social network can be evaluated by taking trust re-
lations into account. For instance, when Alice rates a video that is made by
Bob, Clare evaluates this data item through the trust she has assigned to Alice



(as a referee) and Bob (as a film-maker). Similarly, combining users’ opinions
is usually required to decide privacy policies of shared contents, which leads us
to a trust-augmented voting scheme. In the following sections, we define trust
as a function that assigns a value in [0, 1] to every (ordered) pair of users, and
assume that trust values among users can be efficiently computed in social net-
works by using the approaches as discussed above. The meaning of a value 0 is
that a trustor fully distrusts a trustee such that his opinion will be completely
disregarded, while 1 means that a trustor fully trusts a trustee.

2.2 Privacy Policies

In this paper, we simply refer to privacy polices as the set of users who are
allowed access to shared resources. For instance, for a co-owner picture, the
available policies are (i) visible only to the owner (P1), (ii) visible only to those
tagged, also called co-owners, in the picture (P2), (iii) visible to friends of the
tagged users (P3) and (iv) available to everyone (P4). Throughout the paper, we
use P1, P2, . . . , Pn to range over such policies.

2.3 Condorcet’s Preferential Voting Scheme

There exist a number of voting systems in the literature. In single candidate
systems each vote refers to a single choice, which sometimes may not be able to
encode more comprehensive opinions. For example, a voter cannot express that
he is initially willing to vote for Alice, but in case that Alice fails to be elected,
he will vote for Bob among the rest of the candidates. In such a situation prefer-
ential systems can be applied to express more precise and more comprehensive
ideas from the voters. In this paper we present a prefential voting scheme which
is extended from a system that is originally developed by Condorcet in late eigh-
teenth century. For a complete description of Condorcet’s voting system we refer
to [20], which also explains why in a certain sense Condorcet’s scheme may be
regarded as ‘optimal’.

In a preferential voting system, a ballot consists of a (preferential) list of
all candidates. For every pair of candidates appearing in the list, say C1 and
C2, their relative positions reflect the voter’s preference, e.g., the case that C1

precedes C2 in the list indicates that the voter prefers C1 to C2. Such a list
implies a total order on the set of candidates expressing the complete opinion
from the particular voter. A voting profile is a collection (or a multi-set) of all
the cast ballots.

A voting profile may also be described as a weighted matrix of size |C| × |C|,
where C is the set of candidates. A cell in a weighted matrix with row C1 and
column C2 is filled with w(C1, C2), which is the number of votes that prefer
C1 to C2. We further define a Condorcet directed graph G = (V,E, W ) such
that V = C is the set of vertices, and E is the set of edges, which is defined as
the set {(C1, C2) ∈ V × V : w(C1, C2) ≥ w(C2, C1)}. The function W : E → N,
determines the labelings of the edges and is defined by W (C1, C2) = w(C1, C2)−
w(C2, C1), i.e., the difference between the votes preferring C1 to C2 and the



votes that prefer C2 to C1. At the end of a voting procedure, a voting profile
(or equivalently, a weighted matrix) needs to be evaluated in a certain way, in
order to get a final result. There is a famous criterion applied in the calculation
of a final winner as originally advocated by Condorcet.

Principle 1 (Condorcet Winner) If there is a candidate that beats every other
candidate in one-to-one comparison, that candidate should be the winner.

Plainly, a Condorcet winner is a vertex in the Condorcet directed graph with
out-degree |C| − 1. We adopt Condorcet’s method in the following example.

Example 1. Suppose there are three users Alice (C), Bob (B) and Clare (C)
tagged in a picture owned by Alice. Alice wants to publish the picture on her
personal page in the network, therefore she needs to negotiate with Bob and
Clare to reach an agreement on the privacy policy associated to the picture.
Suppose the available policies are defined in Sect. 2.2. A (preferential) voting
form is made for Alice, Bob and Clare in which they fill in their preferential list
on the available policies, as shown in the voting profile on the left of Fig. 1.

Voter \ Policy P1 P2 P3 P4

A 1 2 3 4

B 2 3 1 4

C 3 1 2 4

P1 P2 P3 P4

P1 − 2 1 3

P2 1 − 2 3

P3 2 1 − 3

P4 0 0 0 −
p1

p3

p2 p41

1

1

3

3

3

Fig. 1. A Condorcet voting example: the voting profile (left), the weighted matrix
(middle), and the Condorcet directed graph (right).

The weighted matrix and the Condorcet directed graph are also sketched in
Fig. 1. As one can see, P4 is the least preferred by all users. However, there
exists a general tie between policies P1, P2 and P3. This situation is referred to
as the Condorcet paradox, meaning that the generated Condorcet directed graph
is cyclic on its top vertices, and unfortunately, as we will show, the traditional
method of Condorcet is unable to break such tie in this example.

Condorcet’s method adopts what is known as maximum likelihood estima-
tion. A philosophical assumption is that there exists an invisible total ranking,
reflecting the true capabilities of all the candidates in an election. In this paper
we adopt such mechanism on selecting optimal privacy policies. For every pair
of policies P1 and P2, such that P1 procedes P2 on the (invisible) ranking list,
a user is more likely to vote for P1 than P2. As Condorcet assumes, each user
will choose a better option (P1 in this case) with some fixed probability p, where
1
2 < p < 1. Taking Example 1, the likelihood of the total order P1P2P3P4 to be



the same as the true invisible ranking order, denoted by L(P1P2P3P4), is calcu-
lated by combining the likelihood of every Pi beating Pj with i < j (note that
there are six preferential pairs in this case). If “P1P2P3P4” is the true ordering
on the candidates, then the chance that we get the current voting profile can be
calculated as

L(P1P2P3P4) = L(P1P2) · L(P2P3) · L(P1P3) · L(P1P4) · L(P2P4) · L(P3P4)
=
(
3
2

) (
p2(1− p)1

)
·
(
3
2

) (
p2(1− p)1

)
·
(
3
1

) (
p1(1− p)2

)
·(

3
3

) (
p3(1− p)0

)
·
(
3
3

) (
p3(1− p)0

)
·
(
3
3

) (
p3(1− p)0

)
where

(
m
n

)
= m!

n!(m−n)! for non-negative m ≥ n. The expression for L(P1P2), for
example, follows from the fact that 2 out of 3 voters ranked policy P1 higher
than P2, and thus voted in accordance with the hypothetical true ranking order
L(P1P2P3P4).

It has been pointed out that in practice when comparing the likelihood of
two possible orderings, the combinatoric coefficients can be safely ignored [20],
given the same voting profile. The only part that needs to be taken into ac-
count consists of the exponents over p (note that 1

2 < p < 1). In the case of
L(P1P2P3P4), the power over p is 14. One may also find that the power over
p for L(P4P3P2P1) is 4, thus P1P2P3P4 is more likely to be the true order-
ing over the privacy policies than P4P3P2P1 by Condorcet’s method. As we
have mentioned above, in this example we can compute the likelihood for ev-
ery sequence that is a permutation of the set {P1, P2, P3, P4}. In fact, we have
L(P1P2P3P4) = L(P2P3P1P4) = L(P3P1P2P4) and it is larger than the liki-
hood of any other sequence. This means that Condorcet’s method might select
multiple winners, as P1, P2 and P3 are all selected in Example 1.

Condorcet voting algorithm. The Condorcet voting algorithm is detailed as in
Alg. 1. The algorithm takes a voting profile as input and produces a set of winners
as output. Function getCondorcetWeightedMatrix translates a voting profile into
a weighted matrix, and then in the next step function getCondorcetDirectedGraph
converts the weighted matrix into a Condorcet directed graph.4 For example, as
shown in Fig. 1, the algorithm translates the voting profile on the left part into
the weighted matrix in the middle, and then into the Condorcet directed graph
on the right. The rest of the algorithm focuses on how to select a set of top
vertices in the Condorcet directed graph. By definition, the set of Condorcet
winners are vertices that have an outgoing edge to every other vertex, although
in the real world such sets are singletons in most cases. Such set will be returned
by function getWinners. If getWinners returns an empty set, i.e., no Condorcet
winners exist, the algorithm will compute the likelihood of all possible sequences
and maintain the set of those with the maximal likelihood, and return their first
elements as winners.

4 We represent directed graphs as two-dimensional arrays. For example, if there is
a directed edge from i to j with weight n ≥ 0, then cdg[i][j] has value n, and
cdg[j][k] = −1 means that there is no edge from j to k.



Algorithm 1 The Condorcet voting algorithm.
input : votingprofile : VotingProfile;
output : winners : set 〈string〉;
var cwm : int[ ][ ] init null

cdg : int[ ][ ] init null
tlv : int[ ] init null
sql : int init 0
ml : int init 0
ms : set 〈string〉init ∅

begin
cwm := getCondorcetWeightedMatrix(votingprofile);
cdg := getCondorcetDirectedGraph(cwm);
winners := getWinners(cdg);
if winners = ∅ then

tlv := findTopLevelVertices(cdg);
for each sequence sq which is a permutation of tlv do

sql := computeSequenceLikelihood(sq, cwm);
if sql > ml then

ml := sql;
ms := {sq};

else if sql = ml then
ms := ms ∪ {sq};

end if
end for
winners := getFirstElements(ms);

end if
end

In the above algorithm, not all sequences are required to be involved in the
comparison of likelihoods. As a Condorcet directed graph imposes a topological
order, the top level vertices compose a subgraph which is a strongly connected
component (SCC) in the original graph. Function findTopLevelSCC returns the
set of vertices that form the SCC. One may easily find that the set of winners can
only come from the SCC, thus we only need to compute the sequences initialized
by permutations of vertices in the SCC.5 As in Example 1, only six three-element
sequences need to be taken into account: P1P2P3, P1P3P2, P2P1P3, P2P3P1,
P3P1P2 and P3P2P1, as P4 can only be the least preferred. The algorithm will
pick up three (total) sequences, P1P2P3P4, P2P3P1P4 and P3P1P2P4, which are
with the most likelihood, and produce the winner set {P1, P2, P3} by taking the
first elements (by the function getFirstElements). The restriction to the top-level
SCC effectively narrows the range of winners we need to consider, which greatly
improves the performance of the selection procedure. It is easy to see that the

5 There is no need to compute a whole sequence containing elements not in the SCC,
as Condorcet’s methods is locally stable [20], the particular order of less preferred
candidates would not influence the final voting result.



running time of the algorithm has an upper bound in O(|V |!), due to checking
the likelihood of all possible sequences of nodes in the SCC.

3 A Trust-Augmented Voting Scheme

3.1 Incorporating Trust as Weighted Votes

In some situations not all voters are equal. Typical examples include decision-
makings in a shareholder’s meeting where the weight of each voter corresponds
to his volume of share. Likewise in social networks, users’ opinions on deciding a
privacy policy do not necessarily carry the same weight. For example, Alice has
a picture in which there are Bob, Clare, Danny and Elisabeth, and she wants to
publish that picture in her album. She is willing to give right to the co-owners
of the picture, i.e. Bob, Clare, Danny and Elisabeth, on deciding whether the
privacy level of that picture is P1 or P2 (see their definitions in Sect. 2.2). Here
we suppose that Bob is a friend of Alice and Clare is a friend of Bob but not a
direct friend of Alice, i.e., Clare is a friend of a friend of Alice. Similarly, Danny
is a friend of Alice and Elisabeth is a friend of a friend of Alice. In this case
it seems more reasonable to give Bob’s and Danny’s opinion more weight than
Clare’s and Elisabeth’s. In this section we propose an extension of Condorcet’s
voting system for weighted votes. The weight of each vote reflects the trust level
of the owner of the shared resource having on the co-owners in their votes for
setting a privacy policy for publishing the resource.

Voter \ Policy P1 P2

A 1 2

B 2 1

C 1 2

D 2 1

E 1 2

Voter(trust) \ Policy P1 P2

A (1.0) 1 2

B (0.9) 2 1

C (0.2) 1 2

D (0.8) 2 1

E (0.3) 1 2

Fig. 2. An example: The effect of trust in collaborative privacy management.

We sketch the voting results from this scenario in Fig. 2, and it is easy to find
that P1 is the winner according to the left table, as it receives three votes while
P2 only receives two. However, if weights (interpreted as the trust level of Alice
in the co-owners to make the right decision on privacy preferences) are associated
to votes, then P2 is the winner, as it is supported by 1.7 weighted votes while P1

supported only by 1.5. This example clearly shows that trust relations in social
networks, if carefully incorporated into decision making procedures, can affect
the results in collaborative privacy management.

In the original Condorcet voting system all votes carry the same weight,
and the preferential orders can be compared by only looking at the (integer)
exponents of p regarding to their likelihoods. In this paper we measure the



likelihoods of these orders by allowing discounted votes to reflect the degree of
trust of a user by the owner of a resource, so that each vote carries a real valued
weight in [0, 1] instead of always being an integer 1.

Algorithm 2 A trust-augmented Condorcet voting algorithm.
input : trustvotingprofile : VotingProfile;
output : winners : set 〈string〉;
var cwm : double[ ][ ] init null

cdg : int[ ][ ] init null
tlv : int[ ] init null
sql : double init 0.0
ml : double init 0.0
ms : set 〈string〉 init ∅

begin
cwm := getCondorcetWeightedMatrix(trustvotingprofile);
cdg := getCondorcetDirectedGraph(cwm);
winners := getWinners(cdg);
(* the rest is the same as Alg. 1 *)
end

Trust-augmented Condorcet voting algorithm. The trust-augmented Condorcet
voting algorithm is detailed as in Alg. 2. The whole procedure of calculation is
exactly the same as that of Alg. 1, except that now the sequence likelihood (sql)
and maximal likelihood (ml) are of real valued type instead of integer type, as
shown above. A trust-based voting profile, which includes the preference lists
and trust level for each participant, is taken as input by the algorithm (e.g., left
part of Fig. 3), while the output, a set of winders, remains unchanged. In Fig. 3,
we assume that A, as the owner of the picture, fully trusts himself, i.e., his trust
value is 1.0. The trust of A in other participants (0.8 for B and 0.6 for C) is also
shown in the table. From the trust-based voting profile, the revised Condorcet
weighted matrix is obtained (e.g., middle part of Fig. 3). The weighted matrix is
slightly different from that in Example 1 in the way that simply counted (integer)
votes are replaced by accumulated trust values throughout the table. From the
Condorcet directed graph in the right part of Fig. 3, we can find a unique winner
P1, after computing the likelihood of all sequences of nodes in the top level SCC
(containing P1, P2 and P3). This can be easily verified since the likelihood of the
sequence P1P2P3P4, as calculated as follows, is greater than the likelihood of
every other sequence. Note that here we replace the number of votes as integer
exponents over “p” and “1− p” by their corresponding sums of trust values.

L(P1P2P3P4) = L(P1P2) · L(P2P3) · L(P1P3) · L(P1P4) · L(P2P4) · L(P3P4)
=
(
3
2

) (
p1.8(1− p)0.6

)
·
(
3
2

) (
p1.6(1− p)0.8

)
·
(
3
1

) (
p1.0(1− p)1.4

)
·(

3
3

) (
p2.4(1− p)0

)
·
(
3
3

) (
p2.4(1− p)0

)
·
(
3
3

) (
p2.4(1− p)0

)



It is easy to see that this algorithm has the same time complexity upper bound
O(|V |!) as Alg. 1.

Voter\policy P1 P2 P3 P4

A (1.0) 1 2 3 4

B (0.8) 2 3 1 4

C (0.6) 3 1 2 4

P1 P2 P3 P4

P1 − 1.8 1.0 2.4

P2 0.6 − 1.6 2.4

P3 1.4 0.8 − 2.4

P4 0.0 0.0 0.0 −
p1

p3

p2 p40.4

1.2

0.8

2.4

2.4

2.4

Fig. 3. A trust-augmented Condorcet voting example: the voting profile (left), the
weighted matrix (middle), and the Condorcet directed graph (right).

As we have seen so far, the trust level indeed has an impact on collaborative
privacy management. Moreover adding trust makes the algorithm better adopted
in social networks, since in the real life, advices from different friends affect one’s
decision differently, depending on the social relationship between the person and
his friends. Introducing a trust relation also expands the value space to avoid
clashes, as we are going to show experimentally later. In Alg. 2 it is less likely
to have unsolved cases as well as multiple winner cases than in Alg. 1. Similar
to Alg. 1, the algorithm always selects Condorcet winners whenever they exist.
However, in order to decide winners, both Alg. 1 and Alg. 2 may require a
calculation of likelihoods for all permutations from the top-level SCC, which
potentially takes running time exponential to the number of policies. This fact
leads us to the search of more applicable algorithms.

3.2 A Heuristic Algorithm

The algorithm presented in this section provides another way to resolve gen-
eral ties in the top-level SCC, as well as to reduce the computational time. A
comparison between all the algorithms is conducted in Sect. 4.

Taking a Condorcet directed graph, first we have the following arguments.
Suppose w(Pi, Pj) is close to 0, it is very likely to be the case that the voters
are relatively indifferent with respect to the two policies Pi and Pj . Therefore,
regarding to Condorcet’s assumption, Pi does not have a significant chance to
precede Pj in the underlying invisible order. This justifies our choice in the
following algorithm to weaken such difference by adding another (reversing)
edge in the graph from Pj to Pi. By doing this, we equalize the votes between
policies Pi and Pj . Technically, we only apply this operation within the top-level
SCC, gradually by starting from the pairs (Pi, Pj) with least w(Pi, Pj), then
the pairs with second least weight, and so on. Each time we add new edges it
is required to check whether a set of Condorcet winners have been generated
in the new graph. The running time of the algorithm has an upper bound of



O(|V |2), where V is the set of vertices of the Condorcet directed graph, which is
much faster than Alg. 2. Nevertheless, the experimental results in Sect. 4 reveal
strong similarity with respect to the results of Alg. 3 and Alg. 2, which provides
a concrete support to the applicability of Alg. 3.

Algorithm 3 Optimized trust-augmented Condorcet voting algorithm.
input : trustvotingprofile: VotingProfile;
output : winners : set 〈string〉;
var cwm : int[ ][ ] init null

cdg : int[ ][ ] init null
tls : int[ ][ ] init null
lwes : set 〈string〉init ∅
nodes : set 〈string〉init ∅

begin
cwm := getCondorcetWeightedMmatrix(trustvotingprofile);
cdg := getCondorcetDirectedGraph(cwm);
winners := getWinners(cdg);
if winners = ∅ then

tls := findTopLevelSCC(cdg);
while true do

lwes := findLowestWeightEdges(tls);
addReverseEdges(lwes, cdg);
nodes := findNodeN-1OutDegree(cdg);
if nodes ! = ∅ then

winners := nodes;
return

end if
end while

end if
end

Optimized trust-augmented Condorcet voting algorithm. Similar to Alg. 2, Alg. 3
takes a voting profile as input and produces a set of winning privacy policies. The
first part of the algorithm is exactly the same as in the above two algorithms.
However, if Alg. 3 cannot find Condorcet winners, it will extract the whole top-
level SCC into a subgraph tls. Then starting from the lowest weighted edges, it
adds reverse edges into the original Condorcet directed graph cdg, and searches
for Condorcet winners in the modified graph. This will repeat until Condorcet
winners are found in cdg. The algorithm is guaranteed to terminate before every
pair of vertices in the top-level SCC has two connecting edges pointing to each
other. Therefore it is bounded by O(|V |2) where V is the set of vertices in cdg.
An application of Alg. 3 on Example 1 with additional trust values (as data
shown in Fig. 3) has been depicted in Fig. 4.



p2

p1

p3

0.4

0.8

1.2

Fig. 4. An example: adding a reverse edge.

4 Experimental Results

We have implemented a program to test the three algorithms. In our test, the
voting profiles and the trust levels are randomly generated.6 The experimental
results are obtained from 10,000 cases. We set the policy number in the range of
[3, 10], while the number of voters ranging in [3, 100]. The optimized algorithm
(Alg. 3) can perform well even in the case of a large number of policies due to
its improved time complexity.

From Fig. 5, we can find that the number of cases where we cannot find a
Condorcet winner in Alg. 2 and Alg. 3 is much less (12%) than that in Alg. 1.
This is due to the incorporation of trust. Based on this we can conclude that
trust can have a big impact on the voting results. It is also clear that the cases
with multiple winners as output is on a steady decrease (15%), which means
that the adoption of a trust relation, to a large extent, can effectively increase
the possibility of having a unique winner. Moreover, we only see a slight increase
in the number of cases with multiple winners for Alg. 3 compared to Alg. 2.
Besides, we measured the similarity among the outputs of Alg. 3 and Alg. 2.
In 9,519 out of 10,000 cases (i.e., > 95%) they produce the same results. Since
theoretically Alg. 2 always generates the best privacy policy, we can conclude
that our optimization (Alg. 3) can also produce the best privacy policy for most
cases in practice.

Next, we have built a different set of experiments to compare the perfor-
mance of Alg. 2 and Alg. 3. For each number of policies [5, . . . , 10], we test the
two algorithms on 1,000 randomly generated voting profiles. We calculated the
average CPU time for each algorithm to produce an output. From Table 1, it is
clear that our optimized algorithm greatly improves the efficiency of Alg. 2 – the
performance of Alg. 2 degrades largely when the number of policies increases.
All experiments are conducted on a Dell laptop with Intel Core(TM) 2 Duo CPU
(2.26GHz) and 1.95GB of RAM.

5 Inference of Privacy Policies

When setting collective privacy management issues among users, each user is
required to feed input into the social network system, as complete voting profiles
6 Alg. 1 does not take the trust levels into account.
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Fig. 5. Case analysis on outputs of the algorithms

Algorithm/#Policy 5 6 7 8 9 10

Alg. 2 100 304 2, 289 54, 361 334, 260 7, 597, 046

Alg. 3 75 77 80 82 84 91

Table 1. Average CPU time consumption (ms) w.r.t. policy numbers.

are necessary for the algorithms. This may quickly become a cumbersome job of
users over time, as the number of co-owned resources increases rapidly. In this
section, we introduce an inference technique to automatically suggest suitable
preferential votes to the users, which thus relieves the burden of tedious manual
inputs. This algorithm only provides a default vote for a user, and if he disagrees,
it is possible for the user to specify his preferred vote.

In social networks there always exists an initial privacy setting as specified
by each user. The proposed inference technique compares a user’s initial setting
with his history votes, trying to guess his future votes by picking up a vote
from the history with the most similarity to the initial privacy setting. Let a
user profile’s privacy preferential list be a vector

−→
P = 〈p1, p2, . . . , pn〉, and the

privacy preference of a co-owned resource be
−→
C = 〈c1, c2, . . . , cn〉. Our inference

technique picks up an element from a collection of preferences {
−→
C1, . . . ,

−→
Cm}

that has the most similarity to
−→
P . First, we calculate the cosine similarity [21]

between the privacy preference
−→
P of a user’s profile setting and every

−→
Ci in his

history votes

si := cos(
−→
P ,
−→
Ci) =

∑n
k=1 pk · cik√

(
∑n

k=1 p2
k) · (

∑n
k=1 c2

ik)

We use s to denote the average similarity s = 1
m

∑m
k=1 si. Then the default vote

is set as
−→
Ci with |si − s | being the smallest.

Example 2. Suppose there are three users, Alice (A), Bob (B) and Clare (C),
each of which has three co-owned pictures. Their profile settings and history
decisions are shown in Fig. 6. Here we apply the inference technique on user



Alice. The cosine similarity between
−→
P (〈1, 2, 3, 4〉) and A’s historical decisions

−→
C1 (〈2, 4, 3, 1〉),

−→
C2 (〈1, 2, 3, 4〉) and

−→
C3 (〈3, 1, 4, 2〉) can be calculated as 23/30,

1 and 25/30, respectively. The average similarity is 26/30, to which
−→
C3 is the

closest and thus is recommended to Alice. We can perform a similar calculation
for Bob and Clare.

Voter/Preference P C1 C2 C3

A 〈1, 2, 3, 4〉 〈2, 4, 3, 1〉 〈1, 2, 3, 4〉 〈3,1,4,2〉
B 〈2, 3, 1, 4〉 〈1, 3, 2, 4〉 〈4,1,2,3〉 〈2, 4, 3, 1〉
C 〈4, 3, 2, 1〉 〈4,2,1,3〉 〈3, 4, 1, 2〉 〈1, 2, 3, 4〉

Fig. 6. An example of the inference of policy preferences.

6 Discussion and Conclusion

Privacy in social networks is a rather complicated issue [22], it has many faces and
emerges as a hot research issue in different areas like economics, social science,
computer science, and law. In this paper, we have proposed a trust-augmented
voting algorithm to solve the particular problem of collective privacy manage-
ment for shared contents in social networks. Our main idea is to incorporate
trust relations among users in social networks as vote weights in the Condorcet
preferential voting algorithm. The motivation comes from the facts that trust is
naturally inherent in social networks and that a preferential voting scheme is an
expressive but simple way for users to formulate their privacy concerns on shared
contents. To make the algorithm both efficient and effective, we have developed
an optimization for the algorithm to deal with the case when the number of
privacy policies is large. An inference technique is used to relieve the users from
the burden of manually inputing their privacy preference for each picture.

The algorithms in this paper have been developed mainly from a technical
point of view and one can reasonably argue that voting is not the ideal approach
to collective privacy management. In the end, the owner of a picture will have to
decide for herself whether and how she wants to publish a picture, possibly tak-
ing into account the interests of concerned people. We believe that heuristic and
algorithmic support to this process will result in a more transparent and hope-
fully more fair decision process. In the future, we want to build an application
as a proof-of-concept for our proposal.
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