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ABSTRACT: 

This paper investigates the dynamics of hedge fund returns and their behavior of persistence 

in a unified framework through the Markov Switching ARFIMA model of Härdle and Tsay 

(2009). Major results based on the CSFB/Tremont hedge fund indexes monthly data during 

the period 1994-2012, highlight the importance of the long memory parameter magnitude i.e 

shocks in shaping hedge fund return dynamics and show that the hedge fund dynamics are 

characterized by two levels of persistence: in the first one, associated to low-volatility regime, 

hedge fund returns are a stationary long memory process whereas in the second one, 

associated to high-volatility regime, returns exhibit higher parameter of fractional integration. 

More precisely, in high volatility regime i.e periods of turmoil, the process tends to be non-

stationary but still exhibits a mean-reverting behavior. The findings are interesting and enable 

us to establish a relationship between hedge fund return states and memory phenomenon. 
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It’s taking for granted that hedge fund industry has grown dramatically during past decades to 

constitute a global business at the forefront of investment innovation. According to Hedge 

Fund Research the industry peaked at $1.9 trillion in 2007. Despite this apparent success, 

recent crisis reveals the necessity to enhance our understanding of the hedge fund return 

dynamics.  

 

 One relevant fact of empirical studies dedicated to hedge funds is performance evaluation: 

Fung and Hsieh (1997, 2000) Ackerman, McEnally and Ravencraft (1999), Brown, Gotzmann 

and Ibboston (1999) and Adwards and Liew (1999), among others compared the returns 

earned on a hedge fund with other earned on standard assets. Earlier approaches consisted in 

using linear factor or non-parametric models. However, many authors have shown that hedge 

fund returns exhibit non-linear dynamics and asymmetry since managers try to obtain high 

performance using highly leveraged dynamics and complex instruments based on option or 

other nonlinear derivates: Fung and Hsieh (1997, 2000), Agarwal and Naik (2004) and Amenc 

et al. (2004). Fung and Hsieh (1997, 2000) mentioned that linear factor model can only 

explain a minor proportion of the observed nonlinearity of hedge funds returns. Consequently, 

taking into account such stylized facts observed on hedge fund returns require focusing on 

nonlinear modeling able to capture asymmetry and sudden changes in correlation. Intuitively, 

many authors propose a regime switching approach to model hedge fund returns: To establish 

a measure of systemic risk which takes into account market states, Chan, Getmansky, Haas 

and Lo (2005) applied a simple two state markov switching model to the CSFB/Tremont 

indexes. Using the same data, Billio, Getmansky and Pellizon (2006) investigated dynamic 

risk exposure of hedge funds using regime switching beta model. Their findings suggest that 

this modeling allow capturing time varying risk exposure for hedge funds conditional on 

different market states. The authors cite several reasons to fit hedge fund returns using regime 

switching models. Bruder, Koudiraty, Darolles and Roncalli (2010) consider regime switching 

models for hedge funds in the context of portofolio allocation. Recently, Jawadi and 

Khanniche (2012) have studied the adjustment dynamics of hedge fund returns and their 

exposure to risk factors using smooth transition regression (STR) model of Granger and 

Teäsvitra (1993). They showed that hedge funds asymmetry and non-linearity can be 

reproduced using STR model.  

 

Also, in the areas of hedge fund performance evaluation, one important question is 

performance persistence. At this stage, a distinction must be made between two approaches: 

relative persistence and pure persistence. In evaluating relative persistence, funds of the same 

strategies are classified as winners and losers depending on their performance relative to the 

median return over a given period. Evidence of persistence is found when winners and/or 

losers maintain classification for two subsequent periods. The majority of studies
4
 

investigated relative persistence in hedge fund returns: Park and Staum (1998), Agarwal and 

Naik (2000), Koh, Koh and Teo (2003), Agarwal et al (2007). According to Gehin (2005), 

these studies are heterogeneous and their results are mitigated since conclusion depends on 

                                                
4 Eling (2009) and Géhin (2005) for a detailed litterature revue. 
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certain factors (data, periods, procedures …). Chand and al. (2005) mentioned that persistence 

in performance is indirectly linked to serial correlation since it usually implies positively 

autorcorrelated returns. Obviously, this link is strengthened when dealing with pure 

persistence.  

 

While the relative persistence tests require a whole sample of funds, the pure persistence 

involves performance of a fund without considering other funds at the same time. The 

commonly used method to check the existence of pure persistence is the calculation of the 

Hurst exponent. De Souza and Gokcan (2004) use the Hurst exponent combined with a D-

statistic to study a relatively small sample of funds. They found that the funds exhibiting the 

strongest persistence of positive returns during in sample period (36 months) showed a better 

risk-adjusted profile in the out of sample period. Amenc, El Bied and Martellini (2003) 

calculated the Hurst exponent for the CSFB/Tremont hedge fund indexes to analyze the 

predictability of hedge fund returns and show evidence of persistence for eight of the nine 

studied series. The Hurst exponent can be considered as a useful tool to evaluate performance 

persistence. However this estimate is biased when long-range dependence is absent and 

its distribution is unknown so that we can’t test its statistical significance. This coefficient is 

related to the long memory parameter d by the equation 1/ 2d H . This equation offers a 

convenient link to reconcile the notion of long memory or fractional integration and hedge 

fund performance pure persistence. Moreover, regime switching modeling and further 

persistence in hedge fund returns through the calculation of the Hurst exponent prove that 

hedge fund return dynamic is very complicated. This  lead us to raise several questions 

concerning the hedge fund adjustment and whether the observed persistence is a true or a 

spurious one since fractionally integrated process are considered as a competing framework 

modeling against structural change and regime switching models. Here we bring a recent 

debate on long memory process to the area of hedge fund return modeling that will be 

discussed in next section. 

 

In this paper, we aim to enhance our understanding of hedge fund return dynamics and extend 

previous literature by combining the hedge fund return modeling and the performance 

persistence in a unified framework. Our approach differs from the previous work since we 

employ a univariate model of hedge fund returns which takes into account several features of 

financial time series such as regime switching and long memory. Several econometric tools 

will be used to achieve this goal. We address the performance of hedge funds in terms of pure 

persistence in a general way using the notion of long memory. In particular, we investigate the 

dynamics of hedge fund returns using the MS-ARFIMA model of Tsay and Härdle (2009). 

This model combines two important characteristics of economic and financial time series: 

long memory through fractional integration behavior and Markov regime switch since break 

points are selected endogenously. The rest of the paper is organized as follows: Section 2 

describes the methodology used and presents the econometric framework employed. Section 3 

introduces the MS-ARFIMA model. Section 4 presents the data and major results and Section 

5 concludes. 

2. Long memory versus regime shifts: 
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The notion of long memory or long range dependence appears in various empirical studies 

and in several areas of application, including hydrology, economics and finance. This concept 

presents a particular interesting case since it allows the intermediate case between the two 

alternatives of I(0) and I(1) process. The long memory process can be defined equivalently
5
 in 

time and frequency domain. In the time domain, a series exhibits long memory if the absolute 

values of the autocorrelations are not summable. More precisely, any stationary process tX is 

a long memory process if 
0

lim
n

n
j

k is not finite, where k the autocorrelation function 

of tX at lag k. However, there are alternative definitions. In particular, long memory can be 

defined by specifying a hyperbolic decay of the autocorrelations: any stationary process tX is 

a long memory process if 2 1

1( )d

k k L k as k , where 1(.)L denote a slowly varying 

function
6
. In the frequency domain, a series exhibits long memory it the spectral density is 

unbounded at frequency zero. Specially, any stationary process tX with spectral function 

( )f is a long memory process if
2 1

2( ) (1/ )
d

f L as 0 , where 2 .L denotes a 

slowly varying function. The real d is the so-called long memory parameter and it’s connected 

to the Hurst exponent by the equality 
1

2
d H . The two parameters display the long 

memory property of a series and its level of persistence. According to the values taken by the 

Hurst exponent and the parameter of fractional integration, three cases can be distinguished: 

 

 If 
1

0
2

H d  : Short memory  (no persistence). 

 If 
1 1

1 0
2 2

H d  : Long memory (persistance). 

 If 
1 1

0 0
2 2

H d  : Intermediate memory (Anti-persistence)  

 

During last decades, fractionally integrated process has evolved into a vital and important part 

of the time series analysis. Moreover, recent studies have shown that long memory 

phenomenon observed in some series may be generated by a nonstationary process with 

structural breaks. Indeed, time series with structural breaks can induce a strong persistence in 

the autocorrelation function and hence generate “spurious” long memory. Thus, there is a risk 

of confusion between long memory and structural break. Engle and Smith (1999), Dieblod 

and Inoue (2001), Gourieroux and Jasiak (2001), Granger and Hyung (2004) and Perron and 

Qu (2006) demonstrate this fact using analytic and simulation evidence. Lien and Yang 

(2009) showed that the adjustment of the break at the expense of the long memory hypothesis 

implies an improvement of hedging strategies for six pairs of exchange rates. In finite sample, 

                                                
5 These definitions are equivalent under certain conditions Beran (1994) Theorem 2.1 for more details. 
6 L x is said to be a slowly varying function if and only of for any c>0, /L cx L x converges to 1 as x 

tends to infinity 
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some process may exhibit a behavior similar to that of long memory process, both in terms of 

the autocorrelation function (slow decay) and in terms of the spectral density (pole at 

frequency zero). In the same context, some authors have proposed models that can generate 

spurious long memory: 

 

 Mean-plus-noise model : Diebold and Inoue (2001) and Granger and Hyung (2004) 

 

         t t tX , 1t t t ,  
0 :

:1
t

t

p

w p
.  where 20,t N  et 0,1tw N  

 

 STOPBREAK model : Engle and Smith (1999) 

 

        t t tX , 
2

1
1 12

1

t
t t t

t

, 0,1t N  

 

 Markov switching model : Diebold and Inoue (2001) 

 

   

20, 0,

1,0,1

t

t

t

N s
X

sN
    

0 0 0 0

1 1 1 1

1

1

p p
M

p p
 Transition probability matrix and ts  a         

first-order-markov process taking the value 0 or 1.  

 

Many papers highlighted the relationship between long memory and regime switching models 

by analyzing several cases where regime switching models may be described as an I(d) 

process. The main idea behind this finding is the following: as the number of regime 

switching decreases (i.e. as p11 and p22 approach unity in the Markov switching case), the 

process will closely resemble a fractionally integrated series. Moreover, the size of the 

parameter shifts will also be a factor to take into account because larger magnitudes of breaks 

will introduce more persistence in the series.  

 

On the other hand, several other studies have demonstrated the ability of long memory 

process to model economic and financial data highlighting their predictive power above that 

of ARMA, GARCH process and their extensions (Andersen et al. (2003) and Bharwaj and 

Swanson (2006)). Hsu (2005) reports that the U.S. inflation rates have strong dependence 

even after the breaks in the mean are allowed. Choi and Zivot (2005) estimate the d of an 

exchange rate forward discount series after adjusting for breaks in their mean. Choi and Zivot 

find that allowing for structural breaks reduces the persistence of the forward discount but 

there is still evidence of long memory. Parallel to this literature that highlights the risk of 

confusion long memory and structural breaks or shifts, we are now witnessing a new 

generation of tests which aim to separate the two phenomenon and to distinguish between the 

true and spurious long memory: Berkes et al. (2006), Giraitis et al. (2006), Shimotsu (2006), 

Mayoral (2006), Ohanissian et al. (2008), Qu (2008) and Perron and Qu (2010). A major 

results of these studies is that a pure I(d) process may not explain all of the persistence a time 

series, but the data do not support an extreme view that structural breaks account for all the 

observed persistence. 

3. MS-ARFIMA Model : 
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A well-known class of long memory process is the Autoregressive Fractionally Integrated 

Moving Average ARFIMA(p,d,q) model, introduced by Granger and Joyeux (1980) and 

Hosking (1981). Formally, the process tX  is said to be an ARFIMA(p,d,q) process with 

1 1
,

2 2
d  if it satisfies the following equation: 

 

( )(1 ) ( )d

t tL L X L  

 

Where (1 )dL is a fractional differencing operator defined by the binomial expansian: 

 

0

( )
(1 )

( ) ( 1)

d d k

k

k d
L L

d k  

                                                   

1( ) 1 ... p

pL L L  and 1( ) 1 ... q

qL L L  are the autoregressive and moving-

average operators of order p and q, respectively. 2(0, )t N . 

 

Let 
1

T

t t
s  be the latent path of N-state Markov chain. At each time ts  can assume only 

integer value of 1,2,…,N and its transition probability matrix is : 

11 21 1

12 22 2

1 2

. .

. .

. . . . .

. . . . .

. .

N

N

N N NN

p p p

p p p

M

p p p

 

Where 1/ij t tp P s j s i  and 
1

1
N

ij

j

p  i . 

Tsay and Hardle (2009) combine the defining feature of a Markov chain and that of an I(d) 

process. We keep authors notation, and refer the reader to the original paper for a more 

detailed exposition. tw  is said to be an MS-ARFIMA(p,d,q) model if : 

1 1 1St

t t

d

t S S tw I t L z I t
 

1 1(1 ) 1t tL z L  

Where .I is the indicator function and tz is a stationary process with mean zero and 

bounded positive spectral density and independent of tS  . Tsay and Härdle (2009) suggest the 

use of the Durbin-Levinson-Viterbi’s algorithm to perform estimation of the model. The MS-
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ARFIMA model combines two important characteristics of economic and financial time 

series: persistence through fractional integration behavior and Markov regime switch since 

break points are selected endogenously. 

4. Empirical study : 

Our methodology is motivated by the dynamics of Hedge Fund returns and their behavior of 

persistence. In this section, we will proceed as follow: first, we describe the data. We will 

check the stationarity of the CSFB/Tremont hedge fund indices and detect further existence of 

structural break. Long memory estimation procedure will be employed in order to test 

possible fractional integration. Besides, tests against spurious long memory will indicate 

whether the observed persistence is a true or spurious one. Estimations will be based on the 

Markov switching ARFIMA (MS-ARFIMA) model. 

 

Figure1.  CSFB/Tremont hedge fund indexes 1994-2012 

 

4.1. Data and unit root tests: 

The study considers monthly data of the CSFB/Tremont
7
 hedge fund indexes and covers the 

period starting January 1994 and ending January 2012 for a total of 217 observations. The last 

12 monthly returns are kept to the out of sample analysis while the first subset is reserved for 

the in-sample analysis. Our data consist of one hedge fund general index and ten strategy sub-

indexes: convertible arbitrage, dedicated short bias, emerging market, equity market neutral, 

                                                
7 Lhabitant (2001), Amenc, El Bied and Martellini (2003) mentioned the advantages that the CSFB/Tremont 

hedge fund indexes offer over their competitor.  
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even driven, fixed-income arbitrage, global macro, long-short equity, managed future and 

multi-strategy. This period includes several crises that happened in the last two decades i.e. 

the Mexican, Asian, Russian, LTCM crisis as well as the IT bubble in 2000 and the subprime 

crisis in 2008. The historical evolution of the 10 strategy indices and the general index are 

plotted in figure 1. It reveals that this last crisis has a huge impact on most hedge fund 

strategies. Table 1 reports the descriptive statistics of the ten CSFB/Tremont hedge fund 

indexes. All hedge funds exhibit positive mean, except dedicated short bias (-0.3 %), with the 

highest values for global macro (1%), even driven and long-short equity (0.8 %). Dedicated 

short bias, emerging market and managed future exhibit relatively high volatility, some other 

hedge funds have lower volatility such as even driven and fixed income arbitrage. Concerning 

the third and the fourth moment of the distribution, hedge funds are characterized by skewed 

returns and excess kurtosis. Leptukortic and asymmetrical effects are mainly illustrated 

through Convertible Arbitrage, Equity Market Neutral, Even Driven and Fixed Income 

Arbitrage. Consequently, the null hypothesis of normality of the Jarque-Bera test is rejected 

for all series except for managed future. This result is not surprising due to the occurrence of 

several extreme values in financial time series relatively to the standard normal distribution in 

addition to hedge fund characteristics such as illiquidity, leverage and short selling. 

 

Table 1 Descriptive statistics for the CSFB/Tremont hedge fund indexes, 1994-2011 

Series OBS Min(%) Mean(%) Max(%) SD(%) Skweness Kurtosis JB 

Hedge Fund Index 204 -7.8 0.7 8.2 2.2 -0.36 5.52 58.83 

Convertible Arbitrage 204 -13.5 0.6 5.6 2.1 -3.07 21.21 3157.4 

Dedicated Short Bias 204 -12 -0.3 20.5 4.8 0.49 3.80 14.01 

Emerging Markets 204 -26.2 0.7 15.2 4.4 -1.22 9.76 442.74 

Equity Market Neutral 204 -51.8 0.4 3.6 3.8 -12.59 172.57 2.51E+05 

Event Driven 204 -12.5 0.8 4.1 1.8 -2.69 18.34 2259.2 

Fixed Income Arbitrage 204 -15.1 0.4 4.2 1.8 -4.61 35.07 9516.3 

Global Macro 204 -12.3 1 10.1 2.9 -0.25 6.66 117.04 

Long Short Equity 204 -12.1 0.8 12.2 2.8 -0.23 6.46 104.72 

Managed Futures 204 -9.8 0.5 9.5 3.4 -0.09 3.03 0.295 

Multi-Strategy 204 -7.6 0.6 4.1 1.5 -1.89 9.82 521.3 

 

In order to check the stionarity of our series we call two classes of unit root tests. The first 

class includes three standard unit root tests (Augmented Dickey-Fuller test (1979, 1981), 

Philips-Perron test (1992) and the KPSS test (1992)). The second class includes a unit root 

test which takes into account further structural break (Zivot and Andrews (1992)). Table 2 and 

3 report the results for the four tests. According to the ADF and PP test statistics we reject the 

null hypothesis of a unit root at 1% significance level for all hedge funds indexes. The KPSS 

test statistics confirm the results of the ADF and PP test in acceptance of the hypothesis of 

stationarity at 1% significance level. However, these tests have low power when a break 

exists leading to a bias and this may affects the outcome of unit root tests. Leybourne and 

Newbold (2000) analyzed the effect of a break on a standard DF test and showed that size 

distortions can occur. Applying the procedure for testing the unit root hypothesis, which 
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allows for the possible presence of the structural break, offers several advantages. It prevents 

yielding a test result which is biased towards non-rejection, as mentioned by Perron (1989). 

Second, since this procedure can identify when the possible presence of structural break 

occurred, then it would provide valuable information for analyzing whether a structural break 

is associated with a particular government policy, economic crises, war, regime shifts or other 

factors.   

Table 2: Standard unit root tests 

Series  

ADF PP KPSS 

                    tZ           
tZ   

Hedge FundcIndex 

-

10.506*** -11.424*** -10.841*** -11.410*** 0.146 

Convertible Arbitrage -7.065*** -7.474*** -7.071*** -7.508*** 0.079 

Dedicated Short Bias 

-

12.838*** -12.856*** -12.766*** -12.789*** 0.117 

Emerging Markets 

-

10.314*** -10.422*** -10.328*** -10.461*** 0.052 

Equity Market Neutral 
-

13.308*** -13.431*** -13.441*** -13.531*** 0.394* 

Event Driven -6.102*** -9.778*** -9.070*** -10.019*** 0.076 

Fixed Incom Arbitrage -7.643*** -7.915*** -7.603*** -7.934*** 0.086 

Global Macro -3.895*** -12.938*** -12.185*** -12.943*** 0.107 

Long Short Equity 

-

10.868*** -11.537*** -11.006*** -11.564*** 0.171 

Managed Futures 
-

13.399*** -13.678*** -13.409*** -14.085*** 0.039 

Multi-Strategie -8.850*** -9.957*** -9.354*** -10.205*** 0.086 

Note:  (resp. tZ ) and  (resp. 
tZ ) are the ADF (resp. PP) test statistics for the models without constant. is the statistics of 

KPSS test. ***, ** and * denote significance at 1%, 5% and 10% level respectively. 

  

Therefore, we apply Zivot and Andrews (1992) unit root test which allows endogenous single 

structural break. This test is a sequential test which utilizes the full sample and uses a different 

dummy variable for each possible break date. The break date is selected where the t-statistic 

from the ADF test of unit root is at a minimum (most negative). Consequently a break date 

will be chosen where the evidence is least favorable for the unit root null. The results for 

model C and A of Zivot-Andrews unit root test are presented in table 3. These results suggest 

that we can reject the null hypothesis of unit root for all hedge funds indexes at 1% 

significance level. At the same time, the test identifies endogenously the point of the single 

most significant structural break in every time series examined in this paper. Table 3 indicates 

the estimated break date for each series: one relevant outcome is the coincidence between 

estimated break point and some historical facts, financial crisis precisely. The year 2008 may 

be considered as the most suitable candidate for a structural break in the CSFB/Tremont 

hedge fund indexes since it represents the subprime crisis. The result based on model A show 

that only four of the ten series studied bear witness of the presence of a structural break in this 

year: Convertible arbitrage ( September 2008), equity market neutral (January 2008), fixed- 
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Table 3: Zivot-Andrews (1992) unit root test 

Series 
ˆ
b

T  k̂  ˆ  ˆ  
ˆ  ˆ  ˆ  

Modèle C : 
*

1

1

k

C C C C C C

t tt t j t j t

j

y DU t DT y c y  

  Hedge FundcIndex 
1996 : 01 0 

-0.0194    

 (-2.16) 

-0.0236    

 (-2.61) 

0.0022     

 (3.39) 

-0.0022    

 (-3.44) 

-0.8371 

 (-12.15)*** 

Convertible Arbitrage 
2008 :10 0 

0.0065    

 (2.45) 

0.0241     

 (3.09) 

0.0000     

(-1.91) 

-0.0008     

(-1.69) 

-0.5039 

(-8.31)*** 

Dedicated Short Bias 
  2009 : 2 0 

-0.0025    

 (-0.35) 

-0.0394    

 (-1.78) 

0.0000     

 (0.38) 

0.0010   

  (0.65) 

-0.9270 

(-13.16)*** 

Emerging Markets 
1997 : 06 6 

-0.0152    

 (-1.06) 

-0.0399    

 (-2.55) 

0.0014      

(2.10) 

-0.0014     

(-1.97) 

-0.7875 

 (-5.40)*** 

Equity Market Neutral 
2007 : 12 0 

0.0091    
 (1.55) 

-0.0428     
(-3.00) 

0.0000    
 (-0.20) 

0.0012  
   (2.02) 

-1.0046 
(-14.21)*** 

Event Driven 
2007 : 09 0 

0.0051   

   (1.96) 

-0.0191    

 (-3.14) 

0.0000     

 (0.58) 

0.0006   

   (2.71) 

-0.6887 

(-10.42)*** 

Fixed Income Arbitrage 
1998 : 09 0 

0.0057     

 (1.4) 

0.0078   

   (1.67) 

-0.0002    

 (-1.30) 

0.0001    

  (1.03) 

-0.4778 

 (-7.95)*** 

Global Macro 
1998 : 06 5 

0.0103   

   (1.30) 

-0.0285    

 (-2.93) 

0.0004      

(1.54) 

-0.0004     

(-1.35) 

-1.0306 

 (-6.33)*** 

Long Short Equity 
2000 : 07 4 

0.0058   

  (0.90) 

-0.0269    

 (-3.12) 

0.0003      

(1.98) 

-0.0002     

(-1.49) 

-1.1557 

(-8.01)*** 

Managed Futures 
1995 : 12 8 

0.0160   

  (0.89) 

0.0375   

   (2.12) 

-0.0025    

(-1.42) 

0.0025  

   (1.41) 

-1.5751 

 (-5.28)*** 

Multi-Strategy   0.0061 -0.0725 0.0000 0.0004 -0.7105 

 2008 : 4 0 (2.80) (-4.8) (-0.60) (1.32) (-10.9) 

Modèle A : 
1

1

k

A A A A A

tt t j t j t

j

y DU t y c y  

  Hedge FundcIndex 
2000 : 01 0 

0.0077   

   (2.47) 

-0.0097   

  (-1.7112) 

0.0000    

 (0.95)  

-0.7998   

 (-11.60)*** 

Convertible Arbitrage 
2008 : 09 0 

0.0070    

  (2.67) 

0.0157    

  (3.5974) 

-0.0001   

  (-2.35)  

-0.4699    

 (-8.17)*** 

Dedicated Short Bias 
2009 : 01 0 

-0.0027   

  (-0.37) 

-0.0278    

 (-2.1581) 

0.0000   

   (0.41)  

-0.9267    

(-13.17)*** 

Emerging Markets 
1999 : 01 6 

0.0008    

  (0.12) 

0.0181  

    (1.6907) 

-0.0001   

  (-1.10)  

-0.7330    

 (-5.09)*** 

Equity Market Neutral 
2008 : 01 0 

0.0079   
   (1.35) 

-0.0220   
  (-2.3435) 

0.0000   
   (0.00)  

-0.9912   
 (-14.00)*** 

Event Driven 
2009 : 02 0 

0.0076    

  (2.92) 

0.0083    

  (1.8514) 

0.0000    

 (-1.30)  

-0.6598     

(-9.98)*** 

Fixed Income Arbitrage 
2008 : 12 1 

0.0067    

  (2.87) 

0.0131  

    (3.1829) 

-0.0001    

 (-2.43)  

-0.6037    

(-8.48)*** 

Global Macro 
1998 : 06 5 

0.0187    

  (3.85) 

-0.0195    

(-2.7490) 

0.0001  

    (1.20)  

-0.9666     

(-6.19)*** 

Long Short Equity 
2000 : 01 5 

0.0132    

  (3.07) 

-0.0232    

 (-3.1742) 

0.0001     

 (1.76)  

-0.9557    

 (-6.32)*** 

Managed Futures 
2000 : 09 8 

0.0063 

(1.24) 

0.0169 

(1.8007) 

-0.0001 

(-1.23)  

-1.4879 

(-5.19)*** 

Multi-Strategy   0.0058 0.0021 0.0000  -0.6867 
 2008 : 04 0 (2.65) (0.58) (-0.49)  (-11.02)*** 

Note: The student’s t-statistics are in parentheses. The t-statistics for ˆ
j

is for  testing 1
j

. The critical values at the 10%, 5% and 1% 

significance level for model C (resp. model A) are: -4.82 , -5.08 and -5.34  ( -4.11 , -4.42 and -4.58). *, ** and *** denote significance at the 

10%, 5% and 1% levels. 

 

 

income arbitrage (December 2008) and multi-strategy (April 2008). The break point occurs 

few months later for dedicated short bias (January 2009) and even driven (February 2009). 
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Contrary to prevailing perception, the year 2000 emerges for three series also: hedge fund 

index (January 2000), long-short equity (February 2000) and managed futures (September 

2000). The IT bubble in 2000 may be considered as the most suitable fact for these breaks. 

The break date for the global macro strategy may be attributed to the Russian crisis of 1998. 

The estimated break points from model A and C suggest that the CSFB/Tremont hedge fund 

indexes are subject to more than one structural break. 

 

4.2. Fractional integration : 

We propose to estimate the level of persistence for each series using several methods. We 

employ the Hurst exponent estimated using the rescaled range statistic (R/S) introduced by 

Hurst (1951) and wavelet-based estimator of Abry and Veitch (1998). According to Koh et al. 

(2005), A Hurst exponent between 0 and 0.5 means that a manager’s return are “anti-

persistent” and will tend to fluctuate randomly, but converge to a stable value over time. With 

a Hurst exponent of about 0.5, a hedge fund manager’s track performance will be regarded 

as random, so that returns in one period will not be affected by returns in another period. 

Such hedge funds are deemed to be risky because any stellar short-term gains may be 

accompanied by substantial losses in another time period. A Hurst coeficient between 0.5 and 

1 describes returns that are persistent. These fund managers have “hot” hands.  

 
Table 4. Estimates of the long memory parameters for the CSFB/Tremont hedge fund indexes. 

Series Ĥ  
ˆ

AVH  ˆ
GPHd  ˆ

GSPd  ˆ
MLd  

Hedge FundcIndex 0.571 0,378: 0,815

0,597     
0,0337

0,19 **     
0,0017

0,19 ***     
0,0000

0, 22 *** 

Convertible Arbitrage 0.628 [0,730: 1,167]

0,948      
0,0000

0,39 ***     
0,0000

0, 42 ***     
0,0000

0, 45 *** 

Dedicated Short Bias 0.482 0,477: 0,913

0,695  
[0,3859]

0,08  
0,5971

0,03  
0,6940

0,03  

Emerging Markets 0.522 0,444: 0,881

0,662  
0,2526

0,10      
0,0073

0,16 ***     
0,0000

0, 23 *** 

Equity Market Neutral 0.550 0,101: 0,251

0,075  
0,3849

0,08  
0,2691

0,07  
0.1200

0,08  

Event Driven 0.560 0,686: 1,085

0,885      
0,0019

0, 28 ***     
0,0000

0,31 ***    
0,0000

0,33 *** 

Fixed Income Arbitrage 0.602 0,458: 0,894

0,676      
0,0002

0,33 ***    
0,0000

0,32 ***   
0,0000

0, 42 *** 

Global Macro 0.575 0,437: 0,874

0,656    
0,0111

0,23 **    
0,0098

0,15 ***   
0,0000

0,16 *** 

Long Short Equity 0.609 0,482: 0,918

0,7  
0,1228

0,14    
0,0436

0,12 **   
0,0000

0,19 *** 

Managed Futures 0.426 0,412: 0,764

0,588  

 

  
[0,029]

0, 22 **    
0,0027

0,18 *** 
0,8620

0,01  

      

Multi-Strategy 0.597 0.676:1.029
0.853      

0.0002
0.36 ***      

0.0000
0.33 ***      

0.000
0.30 *** 

Note: The p-values are indicated between brackets. ***, ** and * denote significance at 1%, 5% and 10% level 

respectively.  
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The estimated Hurst exponent based on the R/S method, reported in table 4, shows that nine 

of the 11 CSFB/Tremont hedge fund indexes are persistent. Two series (Dedicated Short Bias 

and Managed Futures) exhibit anti-persistence behavior. Their estimated Hurst coefficients 

are less than 0.5. These results confirm those of Amenc et al (2003) for all investment style. 

The Hurst exponent is a useful tool to evaluate performance persistence. However this 

estimate is biased when long-range dependence is absent and its distribution is unknown so 

that we can’t test its statistical significance. Therefore, we consider the wavelet-based 

estimator of Abry and Veitch (1998) using Daubechies2 wavelet. Abry and Veitch (1998) 

showed that the waveled-based estimator is consistent and allow the detection of deterministic 

trends in order to avoid their adverse effects on the estimation of H. Wavelet-based estimators 

confirm latter results since most coefficients are greater than 0.5 and significant except for 

equity market neutral (0.075) where zero lies within the confidence interval.  

Hurst exponent is related to the long memory parameter d i.e. fractional integration parameter 

by the equation 1/ 2d H . Henceforth, we employ three methods to estimate d: the 

maximum likelihood method, the log-periodogram regression method of Geweke and Porter-

Hudak (1983) and the Gaussian semiparametric estimator of Robinson (1995). Concerning the 

estimation of the long memory parameter, semiparametric estimates require the determination 

of bandwidths i.e number of frequency to include in regression: for GPH (1983) we chose 
0.6T  and for Robinson (1995) we chose 0.7T : ˆ

GPHd  ranges from -0.22 to 0.39 and ˆ
GSPd ranges 

from -0.18 to 0.42. The results, also reported in table 4, show evidence that a long memory 

component is present in all series except dedicated short bias and equity market neutral. The 

fractional parameters estimated by the maximum likelihood method confirm the fractional 

behavior of the studied series since ˆ
MLd  ranges from 0.01 to 0.42. However, the estimated 

parameters for dedicated short bias and equity market neutral are not significant.  

In general, six of the studied series show clear evidence of fractional integration: Hedge Fund 

Index, Convertible Arbitrage, Event Driven, Fixed Income Arbitrage, Global Macro and 

Multi-Strategy. The other results are mitigated and depend on the method employed to 

estimate the parameter. Combining these results with those of unit root tests with structural 

break, lead us to raise several questions concerning break inference and whether the observed 

long memory component is a true or spurious one. 

 

4.3. Long memory validation: 

A slow regime switching models or structural breaks can generate a strong persistence in the 

autocorrelation function and generate “spurious long memory” (Diebold and Inoue (2001), 

Granger and Hyung (2004)). This means that the observed long memory characteristics can be 

confused with structural breaks. In order to distinguish between the two phenomenons and to 

detect the influence of structural breaks on fractional parameters, we will employ two recent 

tests of Shimotsu (2006). Shimotsu (2006) proposes two tests of true versus spurious long 

memory. The first test is based on the fact that if a time series is fractionally integrated i.e I(d) 

process, then each subsample of the time series is also fractionally integrated with the same 

value of d. In the first stage, we split each series into b subsamples
8
, we estimate d using two 

                                                
8
 So that each sample has n/b observations and assuming n/b is integer. 
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step feasible exact local whittle estimator (FELW) of Shimotsu (2006), and we compare them 

with the estimate of d from the full sample: 

0 0 0,1 0,: ... bH d d d  

Where 0,ad is the true value of d from the ath subsample. For spurious I(d) models, the 

averaged estimates from subsamples tend to differ from the full sample estimate, and their 

difference increases as the degree of sample splitting increases. Formally, Shimotsu 

introduces the adjusted Wald statistic for testing true I(d) versus spurious I(d) : 

/
ˆ ˆ4 ( / ( / ))c m b b bW m c m b Ad A A Ad  

Where 2

1

m

m j

j

c ,
1

1
log log

m

j

j

j j
m

. 

Shimotsu showed also that 2, ( 1)c dW W b  as n . 

The second test of Shimotsu is based on the fact that, if a time series follows an I(d) process, 

then its dth differenced series follow an I(0) process: we estimate d on the whole sample and 

we use the estimate to take the dth difference of the sample : 

1
ˆ

0

ˆ( )ˆ ˆˆ ˆ ˆ(1 ) ( ( )) ( ( ))
ˆ( ) !

t
d

t t t k

k

d k
u L X d X d

d k
 

After regression, we apply the KPSS test and PP unit root tests to the differenced data and its 

partial sum. 

Table 5. Estimation and test results of Shimotsu (2006) 

Series 
ˆ

felwd  
d  cW  

tZ  ˆ  b=2 b=3 b=2 b=3 

Hedge FundcIndex 0.213 0.278 0.295 2.201 1.729 -2.601 0.059 

Convertible Arbitrage 0.450 0.558 0.596 2.053 1.825 -3.312* 0.029 

Dedicated Short Bias -0.011 -0.008 0.047 0.333 1.790 -3.061* 0.118 

Emerging Markets 0.205 0.261 0.277 0.714 0.558 -3.093* 0.035 

Equity Market Neutral 0.126 0.222 0.288 2.082 2.249 -1.645 0.239 

Event Driven 0.372 0.397 0.412 0.354 0.605 -3.493* 0.027 

Fixed Income Arbitrage 0.319 0.338 0.219 0.084 8.847* -2.997 0.033 

Global Macro 0.135 0.152 0.220 0.130 0.064 -2.609 0.066 

Long Short Equity 0.194 0.235 0.253 0.834 0.687 -2.337 0.072 

Managed Futures -0.180 -0.216 -0.133 3.180 3.951 -2.756 0.051 

Multi-Strategy 0.379 0.335 0.311  5.377* 5.701 -3.392* 0.0297 

Note :* indicates rejection of the null hypothesis at the 5% level. 0 ,95 0 ,95

2 2
(1) 3,84, (2) 5,99.  

 

Table 5 reports the estimates of d̂  using the two step feasible exact local whittle method of 

Shimotsu and Philips (2005, 2010), d , cW , tZ and ˆ  for the CSFBT/Tremont hedge fund 

indices for 60m  and 2,3b .The estimated values of d̂  and d are close to each other, 
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and the cW test rejects the null of constancy of d for Multi-Strategy for b = 2 and for Fixed 

Income Arbitrage for b = 3. ˆ statistic do not reject the null of ˆI d  in most cases. However, 

tZ statistic rejects the null hypothesis for four series (Convertible Arbitrage, Dedicated Short 

Bias, Emerging Markets and Event Driven). This suggests a possibility of a Markov switching 

model. According to Shimotsu (2006), tZ test has very strong power against the Markov 

switching model. We employed several tests to distinguish between true and spurious long 

memory. The results in table 5 do not reveal strong evidence against true I(d), even though 

shifts and or structural breaks are present. These results confirm those of Granger and Hyung 

(2004), Zivot and Choi (2005) and Shimotsu (2006) in a sense that a pure I(d) process may 

not explain all of the persistence of a time series, but the data do not support an extreme view 

that structural breaks account for all the observed persistence. However, as mentioned by 

Levancier et al. (2013) Shimotsu’s test may be employed to detect non-constant long memory 

parameter. In this approach, the rejection of the null may be due to a change in the level of 

persistence. In view of this evidence, we employ the MS-ARFIMA formulation which 

combines both Markov Switching models and long memory in each state to explore the 

dynamics of the CSFBT/Tremont hedge fund indices. 

 

4.4. MS-ARFIMA Model 

The MS-ARFIMA(p,d,q) model of Tsay and Härdle (2009) takes into account two important 

characteristics of financial time series: long memory and persistence through the fractional 

integration parameters and shifts through Markov regime switch. Formally, we consider that 

the CSFB/Tremont hedge funds indexes can me modelled using two state MS-

ARFIMA(1,d,1) model across different specifications: 

 

1 1 1St

t t

d

t S S tw I t L z I t  

1 1(1 ) 1t tL z L  

Table 7 shows the estimated parameters generated from the Durbin-Levinson-Viterbi (DLV) 

algorithm developed by Tsay and Härdle (2009): long memory parameters ( 1d  and 2d ) for 

each regime, the probability of remaining in the current regime, knowing that this regime was 

in place in the immediately previous period ( 11p  and 22p ), standard deviations of hedge fund 

returns ( 1  and 2 ) and their associated means ( 1  and 2 ). It also includes autoregressive 

and moving average parameters which depend on the specification chosen for each series. 

Most estimated parameters are statistically significant at 5% level and their values reveal that 

the CSFB/Tremont hedge fund indexes yields evidence of asymmetrical and time varying 

adjustment. 

 The estimates of 1  and 2  in Table 7 show that the volatility of hedge fund returns in the 

first regime is higher than the volatility of second regime. In what follows, we consider the 

markovian chain S = 1 as the high-volatility regime and S = 2 as the low-volatility regime. 
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The mean ( 1 ) associated to high volatility regime is negative and significant for most of the 

studied series (Convertible Arbitrage, Emerging Markets, Equity Market Neutral, Equity 

Market Neutral and Multi-Strategy) and when its estimated value is positive, statistically, it’s 

not different from zero. Mean levels ( 2 ) are positive and statistically significant. Except of 

Hedge Fund general Index which present different characteristics from other series, and 

compared to the second regime, the first one yields lower mean levels ( 1 < 2 ). In summary, 

we found that 1 > 2  and 1 < 2 . We also observe that that the value of 22p  is larger than the 

value of 11p which means that the probability to stay in the second regime is higher than that 

of the first regime.  

 

 
Table 7. Estimates of MS-ARFIMA(p,d,q) model for the CSFB/Tremont hedge fund indexes. 

  

Hedge 

FundcIndex 

Convertible 

Arbitrage 

Emerging 

Markets 

Equity 

Market 

Neutral 

Event 

Driven 

Fixed 

Income 

Arbitrage 

Global 

Macro 

Long 

Short 

Equity 

Managed 

Futures 

Multi-

Strategy 

1d  0.1650** 0.6723*** 0.2776** 0.5548*** 0.3212** 0.8013*** 

 

0.4520 0.1696 

 

-0.159*** 

 

0.3183** 

  (0.0355) (0.0000) (0.0136) (0.0001) (0.0437) (0.0000) (0.0000) (0.2378) (0.0063) (0.0675) 

2d  0.1867* 0.2527*** 0.0664 0.2571*** 0.1407** 0.4166*** 

 

0.4922 0.1112*   

 

0.3001*** 

 

0.1836*** 

  (0.0934) (0.0065) (0.3537) (0.0000) (0.0226) (0.0000) (0.0000) (0.0756) (0.0000) (0.0039) 

11p  0.9941 0.7025 0.9833 0.8144 0.8308 0.8104 

 

0.5118 0.9543 

 

0.8217 

 

0.8515 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

22p  0.9840 0.9737 0.9868 0.9899 0.9783 0.9669 

 

0.9003 0.9885 

 

0.4266 

 

0.9847 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

1  2.6633 3.8953 5.9812 16.7764 2.9119 3.8337 

 

3.5423 4.6890 

 

2.6268 

 

3.3676 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

2  0.9467 0.9046 2.3228 0.8078 1.1072 0.6225 

 

1.6781 1.8953 

 

1.0863 

 

1.0380 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

1  0.8438 -7.4053 -0.4058 -7.9815 -2.8595 0.4106 

 

-6.227 1.2092 

 

-0.4870 

 

-3.8337 

  (0.0596) (0.0462) (0.7991) (0.0015) (0.0141) (0.7890) (0.0001) (0.2938) (0.0000) (0.0049) 

2  0.7123 0.5605 1.2424 0.5925 1.1792 0.8812 
 

0.3309 0.7236 
 

5.1596 
 

0.8744 

  (0.0076) (0.0846) (0.0000) (0.0040) (0.0000) (0.0000) (0.7779) (0.0046) (0.0000) 0(.0000) 

1  - 0.3086 - - - 0.4532 

 

-0.041 - 

 

- 

 

   (0.0066)    (0.0071) (0.6816)     

1  - - - - - -0.7108 

 

- 

 

- 

 

   -    (0.0000)      

JB 5.4232 5.6277 20.880 13.245 0.95373 16.260 5.6607 4.2973 3.5140 3.6030 

Q(10) 4.89539 7.51774 10.3701 8.41968  5.40550 4.76801 9.87390 8.15749  12.4794 2.86082 

Q²(10) 5.33091 12.1464 5.14996 50.6711 13.6068 10.3951 22.5238 6.53228 4.28204 13.7409 

Note: The p-values are indicated between parentheses. ***, ** and * denote significance at 1%, 5% and 10% 

level respectively.  
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Henceforth, our methodology is not only motivated by the markovian dynamics of hedge fund 

returns but also by their related memory and fractional integration behavior. The estimates of 

1d  and 2d  show that the CSFB/Tremont indexes are also characterized by two levels of 

persistence.  In general, (Except for Hedge Fund Index, Global Macro and Managed Futures), 

we found that 1d > 2d which implies that the memory and shock persistence is stronger in 

high-volatility regime. The fractional integration parameters for high-volatility regime range 

from -0.159 to 0.8013, while those of low volatility regime range from 0.0664 to 0.4166. In 

low-volatility state, hedge fund returns exhibit high persistence and their associated dynamics 

is governed by a long memory component. This means that shock effects on returns will 

persist for a long time and that they converge slowly to a steady state. Concerning the high-

volatility regime, result interpretation is quite different and varies with the considered 

strategy. For Managed Futures, estimated fractional integration parameter is equal to -0.159 

indicating that in high volatility regime this strategy exhibits an intermediate memory or anti-

persistence. Three of the considered series (Convertible Arbitrage, Equity Market Neutral and 

Fixed Income Arbitrage) display a non-stationary but mean-reverting behavior since their 

estimated long memory parameter ranges from 0.55 to 0.8. In this case, this implies even 

though remote shocks affect the present value of the series, this will tend to the value of its 

mean in the long run.  

Table 8. Memory behavior of CSFB/Tremont hedge fund indexes under the low and high-volatility 

regimes 

Indices 

  

High-volatility regime Low-volatility regime 

1  1  1d  2   2  2d  

Convertible Arbitrage 
-7,41 3,90 0,67 0,56 0,90 0,25 

Emerging Markets 
-0,41 5,98 0,27 1,24 2,32 0,07 

Equity Market Neutral 
-7,98 16,78 0,55 0,59 0,81 0,26 

Event Driven 
-2,86 2,91 0,32 1,18 1,11 0,14 

Fixed Income Arbitrage 
0,41*** 3,83 0,8 0,88 0,62 0,42 

Global Macro 
-6.227 3.54 0.45 0.33*** 1.67 0.49 

Long Short Equity 
1,21*** 4,69 0,17 0,72 1,90 0,11 

Managed Futures 
-0.48 2.62 -0.15 5.15 2.62 0.30 

Multi-Strategy 
-3.83 3.36 0.31 0.87 1.03 0.18 

Note: *** statistically not different from zero at 1% level. 

 

Table 8 summarizes the characteristics of each regime and figure 2a to 2j display the path of 

the estimated long memory parameters for each series. Not surprisingly, we find coincidence 

between transition dates and structural break detected in previous section; also, the high 

volatility states of the CSFB/Tremont indexes are associated with crisis periods. However, 

most impressively, the magnitude of d shows the effect of memory and shock persistence on 

the considered series: greater is the long memory parameter, stronger is the memory and 
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shock persistence. The high-volatility regime exhibits higher parameter of fractional 

integration than those of the low-volatility regime. More precisely, the process tends to be 

non-stationary and exhibits a mean-reverting behavior in periods of turmoil. The latter result 

proves the importance of persistence and memory phenomenon associated with hedge fund 

adjustments. The MSARFIMA model adjusts well hedge fund return dynamics by taking into 

account time varying parameter, asymmetry and memory phenomenon. Table 7 presents also 

results for the Jarque-Bera normality tests. It asserts that normality is accepted for 7 out of 10 

series. This finding reveals the importance of introducing fractional integration inside each 

regime and indicates that the MSARFIMA modeling can supplant traditional hedge fund 

returns modeling.  

4.5 Forecasting analysis 

 

At this stage, we evaluate the performance of the Markov Switching, ARFIMA and MS-

ARFIMA models to forecast in-sample and out-of-sample hedge fund returns. In the out-of-

sample analysis, we consider the period starting February 2011 and ending January 2012 for a 

total of 12 months. In the case of the standard MS model we consider Monte Carlo 

simulation. Following Davidson (2004, 2005), we perform 1000 replications and extract the 

median estimate of return forecasts. Forecasts from the MS-ARFIMA model are expressed as 

the sum of the conditional forecasts, i.e forecast from the two different ARFIMA specification 

inside each regime, weighted by the probability of being in that state.  

 

Table 9 reports the root mean squared errors (RMSE) for each series. Concerning in-sample 

analysis, the RMSE of the MS-ARFIMA model are lower than that of the MS and the 

ARFIMA models. This result highlights the ability of the combined model to fit the dynamics 

of hedge fund returns. In addition, differences between the actual and the fitted series show 

that the RMSE of the MS model are marginally lower than the ARFIMA model. MS models 

are also successful specification to approximate the characteristics of hedge fund returns. 

Concerning the out-of-sample analysis, table 9 indicates that allowing for long memory leads 

to better forecasts. Forecasts generated from the MSARFIMA and ARFIMA model are almost 

superior to those of the MS model since these models presents the lowest RMSE. Henceforth, 

according to Bawens and Sucarrat (2010) the use of the RMSE can be considered as weakness 

since it’s a “pure” precision measures, in the sense that the evaluation is based solely on the 

discrepancy between the forecast and the actual value.  

 

In order to check the predictive power of the MSARFIMA model against the two other 

models, we employ Hansen’s (2005) superior predictive ability test (SPA test). In this test, 

forecasts are evaluated using a pre-specified loss function, and the forecast model that 

generates the smallest expected loss is regarded to be the best-performing one. It compares the 

forecasting performance of a benchmark model against its m competitors. Under the null 

hypothesis, the benchmark model is not outperformed by competing model k, for 1,..., .k m  

Following Hansen (2005) notation, let ,k td  denotes the performance of model k relative to the 

benchmark at time t: 
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, 0, ,, ,k t t t h t k t hd L L  

 

Where .,.L a loss function a function of two variables: t  is a random variable that 

represents the aspects of the decision problem that are unknown at the time that the decision 

is made, and ,k t h   represents a possible decision rule which is made h periods in advance. 

The SPA studentized test statistic is given by: 

1/2

1...
max max ,0

ˆ

SPA k
n

k m
k

n d
T  

 

Where kd is the k-th element of 1

1

n

tt
d n d and 2ˆ

k  is a consistent estimator of 

2 1/2var .k kn d  

We conduct the SPA test using 10000 bootstraps and dependence parameter q equal to 0.5. 

We specify the mean squared error (MSE) as loss function for models evaluation while 

considering the MSARFIMA model as a benchmark. Table 9 reports the p-values of the tests 

for SPA. A high p-value indicates evidence in support of the hypothesis that the benchmark 

model is superior to one or more of the rival models. As the p-value of the test is higher than 

0.1 for all series, it appears that there is evidence supporting the hypothesis that the 

forecasting ability of the MSARFIMA model is superior to its two other competitors.  

 

 
Table 9. In and Out-of-sample specification tests 

 
In-Sample Out-of-Sample   

  MS ARFIMA MSARFIMA MS ARFIMA MSARFIMA SPA 

Hedge FundcIndex 2.2021 2.1747 0.99756 1.8750 1.7424 1.6994 0.5111 
Convertible Arbitrage 1.9140 1.7861 0.997556 1.5008 1.6166 1.4523 0.5983 
Dedicated Short Bias 3.6797 4.8535 

 
5.0686 5.0801 

  Emerging Markets 4.3569 4.3137 0.997555 3.3937 3.2133 3.3087 0.1457 
Equity Market Neutral 2.8460 3.8080 0.997556 1.4984 1.4922 1.4781 0.6076 
Event Driven 1.4051 1.6810 0.998079 2.9959 2.9658 2.9524 0.7655 
Fixed Income Arbitrage 1.5343 1.5666 0.997555 0.4837 0.6285 0.4649 0.6466 
Global Macro 2.8624 2.8907 0.997559 1.1695 1.1619 1.1339 0.5703 
Long Short Equity 2.8469 2.8245 0.997553 3.0446 2.9248 3.0327 0.9203 
Managed Futures 2.7369 3.4178 1.015817 3.2131 3.1330 3.2113 0.3775 

Multi-Strategy 1.3770 1.4895 0.999951 1.5293 1.4793 1.5570 0.1512 
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5. Conclusion: 

 

Several studies have demonstrated the time varying properties of hedge fund return dynamics. 

However, limited literature has focused on hedge fund dynamics and persistence phenomenon 

in a unified framework. Our contribution to the current literature consists on establishing a 

relationship between memory phenomenon (persistence) and time varying properties of hedge 

fund dynamics.  

 

Empirically, we examine the dynamics of the CSFB/Tremont hedge fund indexes monthly 

data starting January 1994 and ending January 2012 and their associated behavior of 

persistence in a unified framework through the MS-ARFIMA model of Härdle and Tsay 

(2009). This model accommodates both persistence through fractional integration and regime 

switching. Major results show that The CSFB/Tremont hedge funds indexes are characterized 

by two levels of persistence: we identify a first regime in which the volatility is relatively low. 

In this regime, the studied series display positive returns and exhibit persistence. Concerning 

the second regime, the volatility is relatively high. Mean returns associated to this regime are 

either negative or stastically not different from zero. 

 

 Most impressively, our findings enable us to establish a relationship between hedge fund 

states and memory phenomenon. In general, the high-volatility regime exhibits higher 

parameter of fractional integration than those of the low-volatility regime. More precisely, the 

process tends to be non-stationary and exhibits a mean-reverting behavior in periods of 

turmoil. This result proves the importance of persistence and memory phenomenon associated 

with hedge fund adjustments. We also find that the identified regimes are clearly aligned with 

financial events. Our results show that the two-state MS-ARFIMA model is better than Markov 

switching and ARFIMA models, when employed separately, in fitting the dynamics of the ex post 

hedge fund returns since normality is accepted for 7 out of 10 modeled series.  

 

Finally, we evaluate in-sample and out-of-sample forecasting performances of the MS-ARFIMA, 

Markov Switching and ARFIMA models. Results show that the MS-ARFIMA model supplants 

the two other models since it presents the lower RMSE. Main results from Hanse (2005) SPA test 

shows that the MSARFIMA model outperforms the markov switching one as well as the pure 

long memory process 

 

The extension of the Markov Switching to the MS-ARFIMA model by introducing fractional 

integration in each regime has important implications. Our results could bring significant 

improvement in the area of asset allocation and risk hedging seen the recurrent application of 

regime switching models in hedge fund literature. More broadly we suggest that 

understanding the interaction between hedge funds and standard asset markets should be 

based on the characteristics of each regime. An extension of this work to a multivariate 

framework could come up with some answers concerning the dependence structure between 

hedge funds themselves and hedge funds and stock markets. 
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Figure 2a-2j:  Estimated 
tsd for the CSFB/Tremont hedge funds indexes. 

 

    Figure 2a. Hedge FundcIndex                                                     Figure 2b. Convertible Arbitrage 

 

 

    Figure 2c. Emerging Markets                                                                Figure 2d. Equity Market Neutral 

 

    Figure 2e. Event Driven                                                                        Figure 2f. Fixed Income Arbitrage 
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    Figure 2g. Global Macro                                                                       Figure 2h. Long Short Equity 

 

 

 

    Figure 2i. Managed Futures                                                                  Figure 2j. Multi-Strategy 
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