

PhD-FSTC-2014-44
The Faculty of Sciences, Technology and
Communication

Department of Informatics

DISSERTATION

Defense held on 17/12/2014 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG
EN INFORMATIQUE

AND

Ph.D. AT UNIVERSIDADE FEDERAL DO PARANÁ

IN COMPUTER SCIENCE

by

Jorge Augusto MEIRA
Born on 9 December 1983 in Ponta Grossa (Brazil)

MODEL-BASED STRESS TESTING FOR DATABASE

SYSTEMS

Dissertation defense committee
Dr. Yves Le Traon, dissertation supervisor
Professor, Université du Luxembourg

Dr. Eduardo Cunha de Almeida, dissertation 2nd supervisor
A-Professor, Universidade Federal do Paraná

Dr-Ing. Stefanie Scherzinger
Professor, Ostbayerische Technische Hochschule Regensburg

Dr Marcos Sfair Sunye, Chairman
Professor, Universidade Federal do Paraná

Dr Gerson Sunyé
A-Professor, Université de Nantes

Dr Jacques Klein, Vice Chairman
Adjoint de Recherche, Université du Luxembourg

“Freedom is just another word for nothing left to lose”

Kris Kristofferson

Model-based Stress Testing for Database Systems

by

Jorge Augusto Meira

Abstract

Database Management Systems (DBMS) have been successful at processing transac-
tion workloads over decades. But contemporary systems, including Cloud computing,
Internet-based systems, and sensors (i.e., Internet of Things (IoT)), are challenging
the architecture of the DBMS with burgeoning transaction workloads. The direct
consequence is that the development agenda of the DBMS is now heavily concerned
about meeting non-functional requirements, such as performance, robustness and
scalability [84]. Otherwise, any stressing workload will make the DBMS lose control
of simple functional requirements, such as responding to a transaction request [60].
While traditional DBMS, including DB2, Oracle, and PostgreSQL, require embedding
new features to meet non-functional requirements, the contemporary DBMS called
as NewSQL [54, 96, 63] present a completely new architecture.

What is still lacking in the development agenda is a proper testing approach
coupled with burgeoning transaction workloads for validating the DBMS with non-
functional requirements in mind. The typical non-functional validation is carried out
by performance benchmarks. However, they focus on metrics comparison instead of
finding defects.

In this thesis, we address this lack by presenting different contributions for the
domain of DBMS stress testing. These contributions fit different testing objectives
to challenge each specific architecture of traditional and contemporary DBMS. For
instance, testing the earlier DBMS (e.g., DB2, Oracle) require incremental perfor-
mance tuning (i.e., from simple setup to complex one), while testing the latter
DBMS (e.g., VoltDB, NuoDB) require driving it into different performance states
due to its self-tuning capabilities [84]. Overall, this thesis makes the following con-
tributions: 1) Stress TEsting Methodology (STEM): A methodology to capture
performance degradation and expose system defects in the internal code due to the
combination of a stress workload and mistuning; 2) Model-based Database Stress
Testing (MoDaST): An approach to test NewSQL database systems. Supported
by a Database State Machine (DSM), MoDaST infers internal states of the database
based on performance observations under different workload levels; 3) Under Pressure
Benchmark (UPB): A benchmark to assess the impact of availability mechanisms in
NewSQL database systems.

We validate our contributions with several popular DBMS. Among the outcomes,
we highlight that our methodologies succeed in driving the DBMS up to stress state
conditions and expose several related defects, including a new major defect in a
popular NewSQL.

5

Resumo

Sistemas de Gerenciamento de Bando de Dados (SGBD) têm sido bem sucedidos no
processamento de cargas de trabalho transacionais ao longo de décadas. No entanto,
sistemas atuais, incluindo Cloud computing, sistemas baseados na Internet, e os sen-
sores (ou seja, Internet of Things (IoT)), estão desafiando a arquitetura dos SGBD
com crescentes cargas de trabalho. A conseqüência direta é que a agenda de de-
senvolvimento de SGBD está agora fortemente preocupada em atender requisitos não
funcionais, tais como desempenho, robustez e escalabilidade [84]. Caso contrário, uma
simples carga de trabalho de estresse pode fazer com que os SGBD não atendam req-
uisitos funcionais simples, como responder a um pedido de transação [60]. Enquanto
SGBD tradicionais exigem a incorporação de novos recursos para atender tais requi-
sitos não-funcionais, os SGBD contemporâneos conhecidos como NewSQL [54, 96, 63]
apresentam uma arquitetura completamente nova.

O que ainda falta na agenda do desenvolvimento é uma abordagem de teste ade-
quada que leve em conta requisitos não-funcionais. A validação não-funcional típica
para SGBD é realizada por benchmarks. No entanto, eles se concentram na compara-
ção baseada em métricas em vez de encontrar defeitos.

Nesta tese, abordamos essa deficiência na agenda de desenvolvimento, apresen-
tando contribuições diferentes para o domínio de testes de estresse para SGBD. Estas
contribuições atendem diferentes objetivos de teste que desafiam arquiteturas especí-
fica de SGBD tradicionais e contemporâneos. No geral, esta tese faz as seguintes
contribuições: 1) Stress TEsting Methodology (STEM): Uma metodologia para cap-
turar a degradação do desempenho e expor os defeitos do sistema no código interno
devido a combinação de uma carga de trabalho de estresse e problemas de configu-
ração; 2) Model-based Database Stress Testing (MoDaST): Uma abordagem para
testar sistemas de banco de dados NewSQL. Apoiado por uma máquina de estado de
banco de dados (DSM), MoDaST infere estados internos do banco de dados com base
em observações de desempenho sob diferentes níveis de carga de trabalho; 3) Under
Pressure Benchmark (UPB): Um benchmark para avaliar o impacto dos mecanismos
de disponibilidade em sistemas de banco de dados NewSQL.

Nós validamos nossas contribuições com vários SGBD populares. Entre os resulta-
dos, destaca-se em nossas metodologias o sucesso em conduzir o SGBD para condições
de estresse e expor defeitos relacionados, incluindo um novo major bug em um SGBD
NewSQL popular.

7

Acknowledgements

My first and greatest thanks are for my family, especially for my mum Sueli and my
dad Orlando. Thank you for your endless support and for teaching me at my young
age that “studying is the most important thing in the world”. I might have taken it
too seriously!

I also thank my brother – the one that inspired me to follow this path. Joel, you
are my role model Doctor!

My deep gratitude goes to my thesis advisors, Eduardo Cunha de Almeida and
Yves Le Traon. Defending my thesis without your inspiring guidance, lessons, advices,
conversation and support would have been impossible.

I thank the members of the jury: Stefanie Scherzinger, Mark Sfair Sunye, Gerson
Sunye and Jacques Klein for their review and valuable comments. I also thank “Fonds
National de la Recherche Luxembourg” (project 902399), for the financial support.

My colleague and friend Edson Ramiro Lucas Filho here deserves a special men-
tion. Ramiro, thank you for your time spent helping me run countless experiments
and for helping me understand the results. Those late working nights were not in
vain. Thank you, man!

For the friendship and all the time invested in correcting my English, I warmly
thank Irma Hadzalic. You’re an amazing person and it is my pleasure to know you.
You know how special you are to me.

Last but not least, I would like to thank all my other friends who supported me
and believed in me even when I didn’t believe in myself. For those in Brazil - thank
you for Skype conversations and for those in Luxembourg - thank you for beers we
shared. You were all essential to me in going through this period of my life. If I had
to mention all your names, the “acknowledgments” page would be meters long and
I would probably forget one or two. Therefore, I am certain you all know I refer to
you.

Versão brasileira
Primeiramente, eu gostaria de agradecer minha família, especialmente meus pais:

minha Mãe Sueli e meu Pai Orlando. Obrigado por todo apoio que sempre me deram
e por sempre me incentivarem, lembro desde meus primeiros anos de vida quando
vocês diziam que estudar era o mais importante, e acho que levei isso um pouco a
sério demais!

Agradeço também ao meu irmão Joel. Você é a pessoa que me inspirou a seguir
esse caminho, você é o Doutor que eu sempre tive como espelho!

Obrigado também aos meus orientadores, Eduardo Cunha de Almeida e Yves

9

LeTraon, por todo apoio e tempo que dedicaram na arte que é orientar. Sem dúvida
eu não teria defendido minha tese sem todos os ensinamentos, conselhos, conversas e
apoio que vocês me deram em toda essa jornada.

Agradeço aos membros do júri: Stefanie Scherzinger, Marcos Sfair Sunye, Gerson
Sunyé e Jacques Klein, pela revisão e valiosos comentários sobre minha tese. Agradeço
igualmente ao “Fonds National de la Recherche Luxembourg” (projeto 902399), pelo
apoio financeiro.

Não posso deixar de citar aqui o meu colega/amigo Edson Ramiro Lucas Filho.
Ramiro, muito obrigado por todo o tempo que você dedicou para me ajudar a executar
tantos experimentos e a entendê-los! Aquelas madrugadas trabalhando não foram em
vão, meu muito obrigado.

Agradeço de coração a amizade e o tempo investido na correção gramatical da
minha tese por essa pessoa fantástica que tive o prazer de conhecer, obrigado Irma
Hadzalic, você sabe o quanto você é especial pra mim.

Por último, mas não menos importante, todos os amigos que estiveram comigo,
me apoiaram e fizeram eu acreditar que era possível, quando muitas vezes nem eu
acreditava mais. Obrigado pelas conversas via skype para aqueles que estavam no
Brasil e todas a cervejas que tomamos no bares para aqueles que estavam em Luxem-
burgo. Vocês foram imprescindíveis para que eu vencesse mais essa etapa da minha
vida! Sem Dúvida Gostaria de citar o nome de todos vocês, mas não o faço por
dois motivos: Primeiro porque essa seção de agredecimento ficaria deveras extensa
e segundo porque eu provavelmente esqueceria alguém, e realmente não poderia ser
injusto com nenhum de vocês. No entanto, tenho certeza que vocês saberão que aqui
me refiro a cada um de vocês.

Jorge

10

Contents

Resumo Estendido 19

1 Introduction 33

1.1 Motivation . 35

1.2 Contribution . 37

1.2.1 Stress TEsting Methodology (STEM) 38

1.2.2 Model-based Database Stress Testing (MoDaST) 38

1.2.3 Under Pressure Benchmark (UPB) 39

1.3 Outline . 39

2 State of the art 41

2.1 Introduction . 41

2.2 Traditional Database Management Systems 41

2.2.1 The Tuning Knobs . 45

2.3 NewSQL . 45

2.3.1 Partitioning . 47

2.3.2 Multiple single-threaded transaction processing scheme 48

2.3.3 The “No Knobs” Tuning Operation 49

2.4 Software testing . 50

2.4.1 Functional and non-functional requirements 50

2.4.2 Stress Testing . 52

2.4.3 DBMS testing . 53

2.5 Model-based Testing . 57

11

2.5.1 The elements of MBT . 57

2.5.2 The MBT approaches . 58

2.6 Conclusion . 62

3 Stress Testing Methodology 63

3.1 Introduction . 63

3.2 Stress Testing for DBMS . 64

3.3 STEM . 65

3.3.1 Dependable Variables . 66

3.3.2 Execution Sequence . 67

3.3.3 Database Specification . 68

3.3.4 Testing Architecture . 69

3.4 Experimental Evaluation . 70

3.4.1 Cluster configuration . 70

3.4.2 Incremental testing . 71

3.4.2.1 Step 1 . 72

3.4.2.2 Step 2 . 72

3.4.2.3 Step 3 . 74

3.4.2.4 Step 4 . 75

3.4.2.5 Step 5 . 77

3.4.3 Influence of Experimental Variables 78

3.4.4 Discussion . 79

3.5 Conclusion . 81

4 Model-based Database Stress Testing 83

4.1 Introduction . 83

4.2 MoDaST . 84

4.2.1 The Database State Machine (DSM) 84

4.2.1.1 Performance Inputs 85

4.2.1.2 States . 87

4.2.1.3 State Transitions . 89

12

4.2.2 Predicting the thrashing state 90

4.2.3 Test Driver . 90

4.3 Research Questions . 93

4.4 Subjects . 94

4.5 Experimental evaluation . 95

4.5.1 Comparative Study . 96

4.6 Results . 96

4.6.1 Performance Results . 97

4.6.2 Code Coverage . 99

4.6.3 Defects . 99

4.6.4 Thrashing Prediction . 102

4.7 Conclusion . 102

5 Under Pressure Benchmark 105

5.1 Introduction . 105

5.2 UPB . 106

5.2.1 Defining the availability scenarios 106

5.2.2 Executing the scenarios . 108

5.3 Overall Metrics . 110

5.4 The Environment Outline . 111

5.5 Architecture . 111

5.5.1 Clients . 111

5.5.2 Fault tolerance . 113

5.5.3 Workload . 113

5.6 Experimental evaluation . 114

5.6.1 Experimental Setup . 114

5.6.2 Step 1 . 116

5.6.2.1 Parameters definition 116

5.6.2.2 Cluster Performance with K=0 and F=0 117

5.6.3 Step 2 . 118

13

5.6.4 Step 3 . 119

5.7 Final Comparison and Discussion . 120

5.8 Conclusion . 121

6 Conclusion and Future Work 123

6.1 Issues on DBMS testing . 123

6.2 Current DBMS testing approaches . 124

6.3 Contribution . 124

6.4 Future work . 126

14

List of Figures

1-1 Conceptual execution paths under normal and stress conditions. . . . 36

1-2 Example of defect in DBMS that can be identified only under stress

conditions. More details of this defect is described in Chapter 4. . . . 37

1-3 Example of inherent limitations of the existing techniques 38

2-1 Schema diagram for the university database [78]. 42

2-2 Transaction schedules: lock example 44

2-3 VoltDB architecture . 46

2-4 VoltDB: stored procedure . 47

2-5 VoltDB partitioning . 48

2-6 VoltDB transaction processing . 49

2-7 Example of functional testing . 51

2-8 MBT elements . 58

3-1 Number of Different Connections vs. Elapsed Time in Degradation

Baseline Test (Step 2). 72

3-2 Number of Different Connections vs. Elapsed Time Under Robustness

Test (Step 4). 75

3-3 Number of Different Connections vs. Elapsed Time Under Stress Test

(Step 5). 77

3-4 PostgreSQL’s Resource Consumption at Each Step. 78

3-5 PostgreSQL’s Code Coverage. 80

4-1 Overview of MoDaST (Model-based Database Stress Testing) approach. 84

15

4-2 The Database State Machine (DSM). This model represents observable

states of a DUT with respect to performance behaviors. 84

4-3 DSM and its performance inputs. The X-axis is time in seconds and

the Y-axis represents transactions per second. This shows relationships

between performance inputs and states in DSM. 87

4-4 H-Tester Test Driver based on the PeerUnit testing framework [24]. . 91

4-5 Performance results of PostgreSQL. 97

4-6 Performance results of VoltDB. 98

4-7 Code coverage results of PostgreSQL. This focuses on three major mod-

ules: Free Space, Page, and Manager. 100

4-8 Code coverage results of VoltDB. This focuses on org.voltdb and

org.voltdb.sysprocs packages. These packages are related to the

concurrency control and server management. 101

5-1 UPB architecture . 112

5-2 Database schema . 115

5-3 Read operation . 115

16

List of Tables

1 Cenários . 29

2.1 Comparing DBMS testing requisites 56

2.2 Comparing Model-based testing techniques 61

3.1 Workload setup parameters. 66

3.2 STEM’s Execution Sequence. 67

3.3 PostgreSQL’s Result Overview. 71

3.4 DBMS-X’s Result Overview. 71

4.1 Threshold values for state transitions. 89

4.2 Workload cases for the test driver. Workload case #1 creates a high

workload in terms of connections; Workload case #2 focuses on trans-

action flooding. 93

4.3 DBMS used in our experiments. “Size” represents the lines of code in

thousands (KLOC). “Versions” is the version of DBMS selected in the

experiments. “Feature” represents the storage strategy of each DBMS. 95

4.4 Threshold values for the state transitions. VoltDB does not need val-

ues for the warm-up and thrashing states since this DBMS does not

experience these states. 96

5.1 Scenarios . 107

5.2 Overall Metrics . 110

5.3 NuoDB configuration . 116

5.4 Defining the workload limit per client (𝐿𝑐) 117

17

5.5 VoltDB runs to determine 𝑇0,0 (No fault tolerance (𝐾 = 0), no failures

(𝐹 = 0)) . 117

5.6 Parameters defined for each DBMS 118

5.7 The performance degradation using fault tolerance mechanism. 118

5.8 DBMS performance in a faulty environment - The degradation is based

on non-fault cluster. 119

5.9 This summarizes the performance degradation results in a faulty envi-

ronment. 119

5.10 Overall metrics - This summarizes the partial metrics. 𝐷𝑇 is the aver-

age of performance degradation metric (with fault tolerance), over the

K index. 𝐷𝐹 is the average of performance degradation metric (during

failures), over the K index. 120

18

Resumo Estendido

Introdução

Processamento escalonável e de alto desempenho transacional é um dos aspectos fun-

damentais para um processamento de dados bem-sucedido, uma vez que o volume de

transações está ficando maior na maioria das áreas de aplicação. Ao longo dos últimos

40 anos os Sistemas de Gerenciamento de Banco de Dados (SGBD) tradicionas, como

DB2, Oracle, PostgreSQL, foram bem sucedidos em processamento de transações. No

entanto, o recente crescimento da carga de trabalho transacional (por exemplo, Inter-

net, computação em nuvem, BigData) está pressionando esses SGBD para além das

suas capacidades de desempenho exigindo uma profunda revisão em suas arquiteturas

[84]. A conseqüência direta é que agora o desenvolvimento do SGBD precisa cuidar

de vários requisitos não-funcionais, tais como desempenho, robustez e escalabilidade.

Caso contrário, qualquer carga de trabalho de estresse fará com que o SGBD não

cumpra requisitos funcionais simples, como responder um pedido de transação [60].

Enquanto estes SGBD tradicionais exigem a incorporação sistemática de novos recur-

sos, a fim de se adequar às exigências não funcionais, SGBD contemporâneos, como

NewSQL [54, 96, 63], apresentam uma arquitetura completamente nova.

Por um lado, SGBD tradicionais enfrentam parcialmente vários requisitos não-

funcionais com esquemas de replicação e particionamento de banco de dados em uma

arquitetura orientada a disco. Por outro lado, NewSQL aparece como uma alternativa

mais proeminente para fornecer processamento de transacções de alto desempenho.

NewSQL tem uma arquitetura diferente para abordar requisitos não-funcionais, man-

tendo bancos de dados inteiros na memória e processamento de transações através

19

de um esquema de múltiplo single-threaded. Comparado ao SGBD tradicionais, a

arquitetura de memória não requer configurações de parâmetros complexas [84].

No contexto de processamento de alto desempenho transacional, os SGBD são im-

plantados em ambientes distribuídos e serem expostos a um conjunto de vários níveis

de carga de trabalho, incluindo deslocamentos de carga de trabalho transitórios ou

picos repentinos, que podem resultar em um número de diferentes defeitos. Por ex-

emplo, existem muitos padrões de carga de trabalho anormais: planos de consulta

de desempenho fracos [80], backpressure1, escalonamento de bloqueio (para o modelo

baseado em locks) [16], estimativas de desempenho fracas [50], modo degradado de-

sempenho [85]. No entanto, a causa raiz para esses defeitos não são fáceis de detectar e

podem “iludir a bugcatcher por anos de execução”, conhecidos como “Heisenbugs” [43].

Infelizmente, técnicas de teste existentes para SGBD só são apropriados para os

requisitos funcionais [100, 29] e não podem ser aplicados neste contexto.

Considerando requisitos não funcionais, SGBD são historicamente avaliados por

benchmarks, tais como TPC2 e Yahoo Nuvem Servir Benchmarks (YCSB). No en-

tanto, eles se concentram apenas em métricas para comparação e não em encontrar

defeitos. Portanto, eles são incapazes de identificar ou prever defeitos de desempenho,

como gargalos ou thrashing de desempenho em várias situações [80, ?].

É necessário estabelecer uma abordagem de teste adequada para desafiar SGBD

de alto desempenho, enviando sistematicamente volumes crescentes de transações até

condições de estresse.

Neste contexto, o teste de estresse é uma escolha natural. Testes de estresse

são amplamente aplicados em diferentes áreas (por exemplo, Medicina, Engenharia,

Economia). Na ciência da computação, mais precisamente em engenharia de software,

testes de estresse são importantes para avaliar o software sob cargas de trabalho de

estresse com o objetivo de determinar os limites do desempenho e expor defeitos

potenciais.

1https://voltdb.com/docs/UsingVoltDB/DesignAppErrHandling.php
2http://www.tpc.org

20

Motivação

Enquanto os benchmarks transacionais impõem um volume limitado de operações

para avaliação de desempenho, testes de estresse dão vários níveis de carga de tra-

balho para fins de detecção de defeitos. Os diferentes níveis de carga de trabalho

podem ajudar a alcançar caminhos do código-fonte que não são normalmente explo-

radas pelas cargas de trabalho de benchmarks atuais [2]. Isto indica que o SGBD

usa módulos de código adicionais para cada nível de carga de trabalho e é esper-

ado aumento da cobertura de código. Embora a cobertura de código superior não

garanta necessariamente a detecção de defeitos de software, aumenta a probabilidade

de revelá-los, especialmente nos módulos relacionados com requisitos não-funcionais,

que é o nosso objetivo.

Neste contexto, testes de estresse são fundamentais para explorar diferentes com-

portamentos de um banco de dados em teste (DUT). Em geral, ao aplicar testes de

software podemos testar vários caminhos de execução de um programa manipulando

os valores de entrada. Figura 1-1 mostra uma diferença conceitual entre uma condição

estável e uma de estresse. Além disso, mostra os possíveis diferentes caminhos de ex-

ecução. Como a maioria dos SGBD estão sendo expostos a condições de estresse nos

dias de hoje, eles têm várias funções para lidar com diferentes níveis de carga de tra-

balho. Uma simples alteração dos valores de entrada não são suficientes para explorar

as funções desenvolvidas para lidar com condições de estresse. Se essas funções não

forem testadas adequadamente, não podemos detectar defeitos potenciais relaciona-

dos. Isto inclui defeitos funcionais e não-funcionais. Por exemplo, uma violação de

acesso a memória pode ser listada como um defeito funcional. Defeitos não-funcionais

em um SGBD são expostos por fragmentos de código que são funcionalmente corretos

mas que podem, por exemplo, degradar drasticamente o desempenho.

Figura 1-2 descreve o fragmento de código de um defeito descoberto por uma

das nossas contribuições e acatado pelos desenvolvedores do VoltDB 3. O branch a

partir da Linha 426 é executado somente quando o número de conexões concorrentes

é igual ou superior ao número máximo predefinido de conexões (ou seja, o número
3https://issues.voltdb.com/browse/ENG-6881

21

especificado na Linha 253). O defeito pode ser destacado na declaração de condição

da Linha 426.

A variável m_numConnections é acessado por vários threads e o seu valor

pode alcançar um número maior do que MAX_CONNECTIONS. No entanto, o branch

a partir da Linha 426 só deve deve ser executado se m_numConnections ≥

Max_CONNECTIONS. Caso contrário, o DUT não pode rejeitar novas conexões e

um eventual consumo excessivo de memória pode levar os SGBD para um estado de

thrashing.

A Figura 1-3 mostra a cobertura de código dos testes de estresse e do benchmark

TPC-B4 executado no PostgreSQL (ver Capítulo 4 para mais detalhes). O eixo X

é o tempo decorrido em segundos, e o eixo Y à esquerda representa a proporção de

linhas cobertas por cada caso de teste. O eixo Y representa a taxa de transferência

do DUT em transações por segundo. Enquanto TPC-B contempla poucos níveis de

carga de trabalho (sem pressão ou stress), um teste de estresse leva diferentes níveis

de carga de trabalho para testar vários comportamentos do DUT. Isto aumenta a

probabilidade de encontrar defeitos.

Contribuição

Nesta tese, apresentamos contribuições diferentes para o domínio ds teste de estresse

para SGBD. Estas contribuições atendem diferentes objetivos de teste para desafiar

arquiteturas específicas de SGBD, tais como, tradicionais e contemporâneos. Por ex-

emplo, enquanto SGBD tradicionais requerem extensa configuração de parâmetros,

SGBD contemporâneos considerado “sem botões” [84]. Esta diferença muda drasti-

camente suas arquiteturas internas e requer metodologias de teste de diferentes. No

geral, esta tese faz as seguintes contribuições:

∙ Stress Testing Methodology (STEM): Uma metodologia para capturar a

degradação do desempenho e expor defeitos do sistema devido à combinação de

uma carga de trabalho de estresse e erros de configuração;

4http://www.tpc.org/tpcb/

22

∙ Model-based Database Stress Testing (MoDaST): Uma abordagem para

testar sistemas de banco de dados NewSQL. Apoiado por uma Database State

Machine (DSM), MoDaST infere estados internos do banco de dados com base

em observações de desempenho sob diferentes níveis de carga de trabalho;

∙ Under Pressure Benchmark (UPB): Um benchmark para avaliar o impacto

dos mecanismos de disponibilidade em sistemas de banco de dados NewSQL.

Embora UPB seja concebido como um benchmark, suas métricas avaliam a

perda de desempenho do SGBD ao ativar seus mecanismos de disponibilidade,

tais como, replicação.

Questões abertas em teste para SGBD

Teste de SGBD podem ser classificados em duas categorias: funcionais e não-funcional.

Por um lado, o teste funcional certifica a capacidade do sistema em reproduzir uma

saída adequada para uma entrada específica. Por outro lado, o teste não-funcional

considera requisitos não-funcionais relativos à qualidade do sistema, tais como de-

sempenho, robustez, segurança, escalabilidade.

Ao longo dos últimos anos, testes não-funcionais tornaram-se críticos devido ao

recente crescimento da carga de trabalho que impacta diretamente sobre o desenvolvi-

mento SGBD. Enquanto SGBD tradicionais exigem a incorporação sistematicamente

novos recursos, a fim de se ajustar a esses requisitos, SGBD contemporâneos apre-

sentam uma arquitetura completamente nova.

O principal desafio em testes de SGBD é estabelecer uma metodologia adequada,

enviando sistematicamente volumes crescentes de transações afim de recriar cargas

de trabalho de produção.

Abordagens atuais de teste para SGBD

Validação de SGBD é comumente realizada através de benchmarks Abordagens difer-

entes de benchmarks foram propostas ao longo das últimas décadas, mas com foco

em métricas de comparação (por exemplo, o tempo de resposta, taxa de tranferência,

23

e consumo de recursos) [51] como: Débito/Crédito [34], AS3AP [92], TPC-like [2],

SetQuery [65], YCSB [19]. Benchmarks atuais não buscam revelar defeitos do SGBD

ou não se concentrar em todos os novos recursos dos SGBD contemporâneos, tais

como disponibilidade (por exemplo, replicação).

Ferramentas de teste de desempenho, tais como Hammerora5, Oracle Applica-

tion Testing Suite6, e AppPerfect7, fornecem um piloto de testes para submeter as

operações com base em benchmarks do tipo TPC. Concentrando-se em avaliações

funcionais, a ferramenta Agenda [30] fornece uma metodologia de testes para validar

as propriedades ACID do SGBD.

Em relação a testes baseados em modelo, várias abordagens são focadas nas ne-

cessidades de avaliação de desempenho. Na verdade, em cenários específicos, eles são

capazes de analisar requisitos funcionais, bem como requisitos não-funcionais, tais

como, segurança [69, 32, 73], confiabilidade [39] e eficiência [58, 39, 76], mas nenhum

deles específicos para SGBD.

Stress Testing Methodology (STEM)

O objetivo da STEM é capturar a degradação do desempenho e expor os defeitos do

sistema no código interno, devido à combinação de uma carga de trabalho estresse

e erros de configuração. Um defeito difere de uma degradação do desempenho no

sentido de que o sistema não fornece o serviço esperado, conforme especificado (ou

seja, os pedidos de transação não são aceitos, enquanto deviam ser). STEM segue

uma abordagem incremental. A seqüência de execução consiste de muitos passos para

conduzir o SGBD de uma condição inicial até uma condição de estresse. A abordagem

tem 33 combinações de configuração de work_mem, max_conn e carga de trabalho.

Usamos pairwise testing8 para limitar o número de combinações. O número final

de combinações foi definido para 5 (ver Tabela 3.2) e formam a base das medidas

5http://hammerora.sourceforge.net/
6http://www.oracle.com/technetwork/oem/app-test/index.html
7http://www.appperfect.com/
8“pairwise testing é um método combinatório em que todos os possíveis pares de valores dos

parâmetros são cobertos por pelo menos um teste [55].”

24

tomadas por STEM, que são:

1. Setup inicial SGDB com carga de trabalho inicial;

2. Ajuste do buffer pool com carga de trabalho de estresse;

3. Ajuste do SGBD com carga de trabalho mínima;

4. Ajuste do SGBD com carga de trabalho de estresse, até o limite de configuração

de desempenho do SGBD;

5. Ajuste do SGBD com carga de trabalho de estresse além do limite configurado

(até a degradação de desempenho);

A primeira etapa visa buscar por defeitos relativos à qualquer funcionalidade

SGBD, defeitos de instalação e configuração incorreta. O objetivo do segundo passo

é estabelecer a linha base de degradação da SGBD. A terceira etapa tem como ob-

jetivo validar aspectos funcionais após uma fase de ajuste. O propósito do quarto

passo é procurar defeitos relativos ao limite de desempenho SGBD. A meta do quinto

passo é empurrar os SGBD para além do seu limite de desempenho, reproduzindo as

condições de estresse.

Podemos tirar muitas conclusões interessantes a partir dos resultados experimen-

tais após a aplicação STEM. Em primeiro lugar, os testes de estresse requerem uma

abordagem de teste distribuído, no qual testadores distribuídos são implantados para

reproduzir um grande número de transações. Abordagens centralizadas, utilizadas

nos trabalhos relacionados, limita o tamanho da carga, conduzindo assim a um teste

funcional clássico. A execução de STEM é simples, mas em contraste com trabalhos

relacionados, requer muitas máquinas para executar. Na verdade, um teste funcional

clássico só iria descobrir o defeito do PostgreSQL encontrado em uma etapa inicial

da STEM sem qualquer traço de um número limite inferior/superior de transações

aceitas ou rejeitadas. O defeito destacado pela STEM ocorre devido a uma limitação

de tamanho de uma vetor interno que é responsável por gerenciar os processos de

25

back-end. Com o grande número de pedidos simultâneos, a matriz enche-se rapida-

mente, impedindo assim o tratamento de novos processos (incluindo novas solicitações

de transacção).

Model-based Database Stress Testing (MoDaST)

Nossa abordagem baseada em modelo (MoDaST) visa revelar defeitos não-funcionais

potenciais no DUT, especialmente NewSQL. MoDaST se concentra no desempenho

de testes do DUT com alterações dinâmicas dos níveis de carga de trabalho. MoDaST

utiliza uma máquina de estado de banco de dados (DSM), a fim de simular cargas de

trabalho de diferentes níveis. A DSM impulsiona o DUT em cinco estados observáveis:

Warm-up, Estável, Sub-pressão, Estresse e Thrashing. Figura mostra a DSM e a

Definição 1 define formalmente a DSM e seus estados correspondentes.

figure[h]
𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

Definition 1. A máquina de estados de banco de dados denotada como T, é uma

5-tupla (𝒮, 𝑠1,ℱ , 𝛽, 𝜏) na qual:

∙ 𝒮 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5} é o donjunto de estados,

∙ 𝑠1 ∈ 𝒮 é o estado inicial,

∙ ℱ ⊂ 𝒮 é o conjunto de estados finais, onde ℱ = {𝑠5} na DSM,

∙ 𝛽 é o conjunto de entrada de desempenho definidos em Definição 2,

∙ 𝜏 é a função de transição de estados.

DSM tem três entradas diferentes de desempenho (𝛽): 1) variação de desempenho,

2) rendimento da transação, e 3) tendência de desempenho, conforme descrito na

Definição 2.

26

Definition 2. A Entradas de Desempenho, denotada por 𝛽, é uma 3-tupla: 𝛽 =<

∆, 𝛿, 𝜙 >, onde ∆ é a variação de desempenho , 𝛿 é a taxa de transferência de

transações, e 𝜙 é a tendência de desempenho.

A principal diferença do STEM para MoDaST é que os foco da STEM é so-

bre a relação entre as cargas de trabalho e ajuste do sistema, enquanto a MoDaST

concentra-se em dirigir através de estados de desempenho. NewSQL se baseia princi-

palmente na abordagem “sem botões”, o que significa menos interferência humana no

ajuste do sistema. Portanto, STEM não pode ser aplicado neste caso, assim MoDaST

apresenta uma abordagem de teste mais apropriado para NewSQL.

Embora a meta para MoDaST seja originalmente testar NewSQL, nós também

testamos PostgreSQL, com ajustes em sua configuração básica. Os resultados que

MoDaST pode inferir o estado interno do DUT com base no modelo de estados. Além

disso, descobrimos que a apresentação de uma alta carga de trabalho pode levar para

uma cobertura de código superior. Consequentemente, identificamos novos defeitos

em ambos os banco de dados. Em particular, um dos defeitos já está confirmado e

corrigido pelos desenvolvedores do VoltDB.

Para os engenheiros de teste, MoDaST se apresenta como uma ferramente con-

veniente para avaliar requisitos não-funcionais, incluindo, performance, estabilidade,

e/ou escalabilidade. Os engenheiros de teste podem também constatar que a MoDaST

aumenta a cobertura de código na tarefa de encontrar defeitos. Embora uma cober-

tura de código superior não garanta necessariamente a detecção de defeitos, pode

apoiar a configuração de perfis de desempenho. Por exemplo, a maioria dos SGBD

tem partes de código específicos para o tratamento de condições de estresse que só

são executadas em determinada condições. MoDaST pode ajudar a exercitar essas

partes de código.

Para DBAs, MoDaST pode ser uma ferramenta poderosa para previsão de estados

de estresse e Thrashing em um monitoramento dinâmico. Essa previsão é particular-

mente útil para identificar limitações de configuração do DUT.

27

Under Pressure Benchmark (UPB)

UPB foca nos requisitos de disponibilidade, avaliando a perda de desempenho devido à

replicação do banco de dados. Enquanto a replicação de dados está em funcionamento,

o impacto sobre o desempenho pode variar dependendo tanto do ambiente de avaliação

como da implementação de diferentes SGBD. A UPB avalia os impactos de replicação

no desempenho com configurações diferentes (ou seja, o fator de replicação e com a

injeção de falhas) e cargas de trabalho. O benchmark UPB é composto por duas

tarefas: 1) definir os cenários de disponibilidade e 2) executar os cenários.

Nós definimos cenários que representam o conjunto de estados possíveis de disponi-

bilidade. Os cenários são escolhidos com base na combinação dos valores de duas

variáveis, como descrito abaixo:

1. Índice de tolerância a falhas (𝐾): quantidade de falhas sem interrupção do

serviço. Valores possíveis para 𝐾 são:

∙ 𝑘 = 0 (sem tolerância a falhas): o SGBD pára na presença de qualquer

falha.

∙ 𝐾 = 1, 2, ..., 𝑁
2
: 𝑁 representa número de máquinas que compõem o SGBD.

Neste caso, o SGBD suporta falhas em 𝐾 nós.

2. Número de nós falhos (𝐹).

∙ 𝐹 = 0: cluster sem falhas.

∙ 𝐹 = 1, 2, ..., 𝐾: cluster com 𝐹 falhas. Os valores estão entre 1 e 𝐾.

No entanto, não é necessário ter um cenário para todas as combinações de valores,

uma vez que alguns cenários não pode ocorrer na prática. Tabela 1 mostra possíveis

valores das variáveis, uma breve explicação e a relevância de cada combinação. Uma

vez que alguns valores dependem do cenário,

Após a análise das combinações, três cenários são aplicados pela UPB:

∙ Cenário (1) - Combinação 1: Sem tolerância a falhas (𝐾 = 0), sem falhas

(𝐹 = 0);

28

Table 1: Cenários

Combinação K F Relevância comentário
hline 1 0 0 Yes Base de comparação

2 0 Y Inviável 𝐹 > 𝐾
3 X 0 Yes Impacto do mecanismo de tolerância a falhas
4 X Y Yes Impacto da injeção de falhas

∙ Cenário (2) - Combinação 3: Com tolerância a falhas (𝐾 > 0), sem falhas

(𝐹 = 0);

∙ Cenário (3) - Combinação 4: Com tolerância a falhas (𝐾 > 0), com falhas

(0 < 𝐹 𝐹𝑙𝑒𝑞𝐾).

UPB difere do STEM e MoDaST, principalmente em seu foco. UPB é projetado

para ser um benchmark, não um teste. No contexto de benchmarking, UPB também

difere dos trabalhos relacionados ao nosso conhecimento.

Embora o desempenho medidas trabalho relacionado para encontrar a melhor afi-

nação para uma determinada carga de trabalho, UPB mede a perda de desempenho

ao SGBD ativar os mecanismos de disponibilização de replicação. A UPB fornece

uma referência focado para lidar com uma questão central relacionada com a disponi-

bilidade SGBD. Acreditamos que a UPB se encaixa nos requisitos para a avaliação

NewSQL sobre situações críticas, como cargas pesadas e fracassos. Além disso, a

UPB fornece uma boa base para os administradores de banco de dados para tomar

uma decisão sobre índices de replicação, com base no impacto do desempenho.

Nós validamos a UPB através de experimentos e avaliações de dois SGBD NewSQL:

VoltDB e NuoDB. Verificamos que a replicação de dados tem um grande impacto no

desempenho, como um efeito colateral da disponibilidade. O impacto pode ser con-

siderado positivo ou negativo, dependendo o SGBD. Isto é mais evidente quando o

SGBD está sob pressão.

29

Conclusão e Trabalhos Futuros

Neste capítulo, apresentamos as conclusões gerais desta tese. Primeiro apresentamos

o resumo das nossas contribuições e em seguida apontamos as direções para trabalhos

futuros.

Contribuição

Nesta tese, apresentamos três contribuições para atender diferentes necessidades em

avaliação e validação de SGBD: 1) Nossa metodologia de testes de estresse para SGBD

tradicionais para expor defeitos relativos à combinação de uma carga de trabalho de

estresse e problemas de configuração; 2) Uma abordagem teste de estresse com base

em modelo para NewSQL, que infere estados internos de desempenho do SGBD e ex-

põe defeitos relacionados a esses estados.; 3) Um Benchmark para avaliar mecanismos

de disponibilidade em SGBD NewSQL.

1. Stress Testing Methodology (STEM): STEM revelou defeitos relacionados

com a combinação de cargas de trabalho de estresse e problemas de configu-

ração de SGBD tradicionais. Podemos tirar muitas conclusões interessantes a

partir dos resultados. Em primeiro lugar, os testes de estresse requerem uma

abordagem de teste distribuído para não limitar a geração da carga de trabalho.

A abordagem incremental foi capaz de expor defeitos diferentes do SGBD. As-

sim, a STEM pode ser considerada uma ferramenta importante para avaliar a

limitação de desempenho de SGBD tradicionais sob condições de estresse.

2. Model-based Database Stress Testing (MoDaST): Nossa abordagem baseada

em modelo (MoDaST) visa revelar defeitos não-funcionais potenciais no DUT,

especialmente NewSQL. MoDaST habilitado para identificar as condições de

perda de performance, uma técnica para prever estados debulhando que po-

dem danificar o sistema de execução Os resultados experimentais mostraram

que MoDaST consegue inferir estados internos do DUT com base na máquina

de estado de banco de dados (DSM) que propomos. Além disso, descobrimos

30

que, conforme o SGBD visita os estado de performance em direção ao estado

de thrashing, a cobertura de código aumenta. Por conseguinte, a probabilidade

de defeitos descobertas aumentar do mesmo modo.

3. Under Pressure Benchmark (UPB): UPB avaliou o desempenho de SGBD

NewSQL considerando mecanismos de disponibilidade. Acreditamos que a UPB

se encaixa nos requisitos de avaliação de SGBD em condições críticas, como

as cargas de trabalho sob pressão e falhas. Além disso, a UPB fornece uma

boa base para os administradores de banco de dados tomarem decisões sobre

índices de replicação, com base no impacto do desempenho. Verificamos que

a replicação de dados tem um grande impacto no desempenho, tanto negativo

como positivo, como um efeito colateral da disponibilidade.

Trabalhos Futuros

Focamos nosso trabalho futuro na MoDaST. Esta abordagem provou ser a mais ade-

quado para representar o SGBD e revelar defeitos relacionados. Até agora, MoDaST

pode ser aplicada de diferentes maneiras. Para os engenheiros de teste, MoDaST

oferece um driver conveniente para avaliar os requisitos não-funcionais, incluindo,

performance, estabilidade, ou escalabilidade. Enquanto nossos experimentos focam

em desempenho, engenheiros de teste podem facilmente estender o caso de teste para

outras avaliações.

A nossa abordagem pode ser conectada a qualquer DUT, incluindo sistemas de

código fechado open-source e devido à sua natureza de caixa-preta. Engenheiros de

teste também podem usar o fato de que nossa abordagem aumenta a cobertura de

código, facilitando encontrar defeitos. Embora uma maior cobertura de código não

garanta necessariamente a detecção de defeitos, os engenheiros podem de beneficiar da

maior cobertura para criação de perfis de desempenho e configuração. Por exemplo,

a maioria dos SGBD têm funções específicas para condições de estresse (por exemplo,

controle de acesso)

Para DBAs, MoDaST pode ser uma ferramenta poderosa para previsão e moni-

31

torament dinâmico de estados de “Stress” e “Thrashing”.

Para trabalhos futuros, pretendemos aplicar MoDaST cloud hypervisors, a fim de

monitorar os sistemas de database-as-a-service (DBaaS). Para isso, estados adicionais

podem ser criados, tal como um estado alto estresse entre estresse e thrashing, ou um

estado ocioso caso o sistema esteja alocando mais recursos do que o necessário.

32

Chapter 1

Introduction

Scalable and high performance transaction processing is one of the key aspects for

a successful data business processing, once the volume of incoming transactions is

getting bigger in most application areas. Over the last 40 years traditional Database

Management Systems (DBMS), such as DB2, Oracle, PostgreSQL, have been suc-

cessful at processing transactions. But the recent growth of the transaction workload

(e.g., Internet, Cloud computing, BigData) is challenging these DBMS beyond their

performance capabilities requiring a thorough revision in their architectures [84]. The

direct consequence is that now the development of the DBMS needs to look after sev-

eral non-functional requirements, such as performance, robustness and scalability.

Otherwise, any stressing workload will make the DBMS lose control on simple func-

tional requirements, such as responding to a transaction request [60]. While these

traditional DBMS require systematically embedding new features in order to fit non-

functional requirements, contemporary DBMS, such as NewSQL [54, 96, 63], present

a completely new architecture.

On the one hand, traditional DBMS partially tackle several non-functional re-

quirements with replication and database partitioning schemes in a disk-oriented ar-

chitecture. This architecture is strongly based on three main features: (1) complex

multi-threaded transaction processing schedules, (2) distributed database consistency

protocols, and (3) extensive performance tuning to make the DBMS delivering high

transaction throughputs. On the other hand, NewSQL appears as the most prominent

33

alternative to deliver high performance transaction processing. NewSQL takes a dif-

ferent architecture to tackle non-functional requirements by keeping entire databases

in-memory and processing transactions through a multiple single-threaded scheme.

Compared to traditional DBMS, the in-memory architecture does not require exten-

sive tuning [84].

In the context of high performance transaction processing, the DBMS are supposed

to be deployed in distributed environments and to experience a various set of workload

levels including transient workload shifts or sudden spikes, which can result in a

number of different defects. For example, there are many abnormal workload patterns:

poor performance query plans [80], backpressure1, lock escalation (for lock-based

mode) [16], poor performance estimations [50], performance degraded mode and load

shedding [?]. However, the root cause for these defects are not easy to detect and may

“elude the bugcatcher for years of execution”, which is also called “Heisenbugs” [43].

Unfortunately, existing testing techniques for DBMS are only appropriate for func-

tional requirements [100, 29] and cannot be applied here. With non-functional re-

quirements in mind, DBMS are historically evaluated by benchmarks, such as TPC2

and Yahoo Cloud Serving Benchmarks (YCSB). However, they only focus on metrics

comparison rather than finding defects. Therefore, they are unable to identify or

predict performance defects, such as bottlenecks or performance thrashing in various

situations [80, ?].

It is necessary to establish a proper testing approach to challenge the high perfor-

mance DBMS by systematically submitting increasing volumes of transactions until

stress conditions. In this context, stress testing is a natural choice. Stress testing is

widely applied in different areas (e.g., Medicine, Engineering, Economics). In com-

puter science, more precisely in software engineering, stress testing is important to

evaluate the software upon stress workloads with the objective of determining the

boundaries of performance and expose potential defects.

1https://voltdb.com/docs/UsingVoltDB/DesignAppErrHandling.php
2http://www.tpc.org

34

1.1 Motivation

While the transactional TPC-like benchmarks impose a limited volume of transactions

for performance assessment, stress testing gives several different workload levels for

defect finding purposes. The difference can be spotted internally to the DBMS. With

stress testing, the different workload levels can help reaching paths of the source code

that are not usually explored by the current workloads of the TPC-like benchmarks.

This indicates that the DBMS invokes additional code modules for each workload level

and the increase of code coverage is expected. Although a higher code coverage does

not necessarily guarantee the detection of software defects, it increases the probability

to reveal them, specially in the modules related to non-functional requirements that

is our goal.

In this context, stress testing is critical to explore different behaviors of a Database

Under Test (DUT). In general software testing, we may test several execution paths

in a program by manipulating input values of the program. Figure 1-1 shows a

conceptual difference between a stable and a stress condition; moreover, it shows,

why both conditions can result in different execution paths. Since most of the DBMS

are being exposed to stress conditions nowadays, they have several functions to deal

with different levels of workload. Simply changing input values may not explore the

functions for a high workload condition. If we do not test those functions properly, we

cannot detect potential defects. These defects include non-functional and functional

defects as shown. For instance, memory access violation (e.g., index out of bound or

null pointer access) and type errors (e.g., wrong class casting) are listed as functional

defects. Non-functional defects in a DBMS are exposed by code fragments that are

functionally correct but that dramatically degrade performance.

Figure 1-2 depicts the code fragment of a major defect spotted by one of our

contributions and reported by the VoltDB developers 3. The branch starting from

Line 426 can be executed only when the current number of connections is equal to

the predefined maximum number of allowed connections (i.e., the number specified

3MoDaST spotted a major defect in VoltDB, details at: https://issues.voltdb.com/browse/ENG-
6881

35

So
ur

ce
 C

od
e

foreach(cache[N].get()) {

}

Functional bug

if(conn==max) {
 reject(conn);

else {

Non-functional bug

Normal
condition

Stress
condition

This can throw
NullPointerException.

Excessive connections
cannot be rejected due to
a wrong predicate in the above
if statement (conn==max).

Figure 1-1: Conceptual execution paths under normal and stress conditions.

in Line 253). The defect can be spotted in the condition statement at Line 426.

The variable m_numConnections can be accessed by several threads and its

value can be larger than MAX_CONNECTIONS. However, the branch starting from

Line 426 should be executed if m_numConnections ≥ MAX_CONNECTIONS. Oth-

erwise, the DUT cannot reject new connections and the eventual excessive memory

consumption may lead the DBMS to a thrashing state.

Figure 1-3 shows the code coverage of stress testing and the TPC-B benchmark4

executed on PostgreSQL (see Chapter 4 for details). The X-axis is the time elapsed in

seconds and the Y-axis on the left edge represents the proportion of covered lines by

each testing case. The Y-axis represents the throughput of the DUT in transactions

per second. While TPC-B commits few number of workload levels (without pressure

or stress), a stress testing drives different workload levels to test various behaviors of

the DUT. This increases the probability to find a potential defect.

4http://www.tpc.org/tpcb/

36

...

253 private final AtomicInteger MAX_CONNECTIONS
= new AtomicInteger(800);

...

426 if (m_numConnections.get() == MAX_CONNECTIONS.get()) {
427 networkLog.warn(’’Rejected connection from ’’ +
428 socket.socket().getRemoteSocketAddress() +
429 ’’ because the connection limit of ’’ +

MAX_CONNECTIONS + " has been reached");
430 try {
431 /*
432 * Send rejection message with reason code
433 */
434 final ByteBuffer b = ByteBuffer.allocate(1);
435 b.put(MAX_CONNECTIONS_LIMIT_ERROR);

Figure 1-2: Example of defect in DBMS that can be identified only under stress
conditions. More details of this defect is described in Chapter 4.

1.2 Contribution

In this thesis, we present different contributions for the domain of DBMS stress test-

ing. These contributions fit different testing objectives to challenge each specific

architecture of traditional and contemporary DBMS. For instance, while the earlier

DBMS requires extensive tuning, the latter is said to be “no knobs” [84]. This differ-

ence dramatically changes their internal architectures and requires presenting different

testing methodologies as well. Overall, this thesis makes the following contributions:

∙ Stress Testing Methodology (STEM): A methodology to capture perfor-

mance degradation and expose system defects in the internal code due to the

combination of a stress workload and mistuning;

∙ Model-based Database Stress Testing (MoDaST): An approach to test

NewSQL database systems. Supported by a Database State Machine (DSM),

MoDaST infers internal states of the database based on performance observa-

tions under different workload levels;

∙ Under Pressure Benchmark (UPB): A benchmark to assess the impact of

availability mechanisms in NewSQL database systems. Although UPB is de-

37

0"

10"

20"

30"

40"

50"

60"

 C
ov

er
ag

e
(%

)!

States!

Throughput!
Transactions per second!

DUT throughput!MoDaST!
TPC-B!

Time (seconds)!

200!

400!

600!

800!

1000!

1200!

1400!

0!

Stress

Figure 1-3: Example of inherent limitations of the existing techniques

signed as a benchmark, its metrics assess performance loss when DBMS activate

their availability mechanisms, such as, replication.

1.2.1 Stress TEsting Methodology (STEM)

The STEM claims that mistuning is crucial for detecting defects in traditional DBMS.

Therefore, the goal of STEM is to capture the performance degradation and expose

system defects in the internal code due to the combination of a stress workload and

mistuning. A defect differs from a performance degradation in the sense that the

system does not provide the expected service as specified (i.e., transaction requests

are not accepted while they should be). STEM follows an incremental approach: the

DUT is configured from its simplest setup to the most complex one, which is done by

tuning the setup gradually.

1.2.2 Model-based Database Stress Testing (MoDaST)

A novel model-based approach to reveal potential non-functional defects in DUT,

specially NewSQL. MoDaST focuses on testing performance of the DUT with dy-

namically changing workload levels. MoDaST leverages a Database State Machine

(DSM) model in order to mimic different workload levels. The DSM drives the DUT

38

across five observable states: Warm-up, Steady, Under-Pressure, Stress, and Thrash-

ing. The advantage compared to other testing tools is that the model allows users to

infer and explore internal states of a DUT even if only black-box testing is available.

In addition, users may change the workload levels in order to challenge the DUT for

different test objectives.

The main difference from STEM to MoDaST is that the earlier focuses on the

relationship between workloads and system tuning, while the latter focuses on driving

the system to particular performance states. NewSQL is mostly based on the “no

knobs” approach, which means less human interference in system tuning. Therefore,

STEM can not be applied here and MoDaST appears then as the most appropriated

testing approach for NewSQL.

1.2.3 Under Pressure Benchmark (UPB)

In the UPB we focus on availability requirements by assessing performance loss due

to database replication. While data replication is up and running, the impact on

performance may vary depending both on the evaluation environment and the proper

implementation that differs on different DBMS. The UPB assesses the impacts of

replication on performance with different configurations (i.e., replication factor and

failed nodes) and workloads. The workload varies up to under pressure conditions, in

terms of failures and bulk load.

UPB differs from STEM and MoDaST, mainly on its focus. UPB is designed to be

a benchmark. In the benchmarking context, UPB also differs from the related work

to our knowledge. While the related work measures performance for finding the best

tuning for a given workload, UPB measures performance loss when DBMS activate

the availability mechanisms of replication.

1.3 Outline

The remainder of this thesis is organized as follows. In Chapter 2, we introduce basic

concepts of DBMS and software testing to establish our context. We also present a

39

survey of the current testing techniques for DBMS and model-based approaches by

comparing them and showing why they do not fit stress testing for DBMS.

In Chapter 3, we first introduce our stress testing hypotheses and the protocols to

carry on testing. Second, we present the STEM testing methodology. Third, we de-

scribe our validation through experimentation. In Chapter 4, we present MoDaST in

three parts. First, we present the Database State Machine, its states and transitions.

Second, we present the test driver used to proceed the evaluation. Third, we present

experimental results in a popular NewSQL. In Chapter 5, we present the UPB and its

evaluation methodology. Then, we present the experiments and discuss the results.

In Chapter 6, we conclude this thesis and propose future work.

40

Chapter 2

State of the art

2.1 Introduction

In this chapter we start presenting an overview of Database Management Systems

(DBMS) to contextualize our work. Then, we introduce software testing concepts

and the different approaches for testing DBMS. Next, we survey model-based ap-

proaches for general testing purposes. Finally, we compare these techniques and

discuss inherent weaknesses.

2.2 Traditional Database Management Systems

The concerns about storage and digital data management has started as soon the

digital data have been created. Early 1960s, the first general purpose Database Man-

agement System (DBMS) has been launched and its name was Integrated Data Store.

The Integrated Data Store has influenced database systems through the 1960s and

strongly influenced the network data model for databases. In the same decade the In-

formation Management System (IMS), by IBM, was developed. The IMS introduced

an alternative data representation called hierarchical data model.

Later, in the early 1970s the IBM’s research laboratory proposed the first Rela-

tional DBMS, based on a relational data model representation, the System R. This

model was consolidated as dominant position in the 1980s [72] and was responsible

41

Figure 2-1: Schema diagram for the university database [78].

for a race in the industry for developing several DBMS based in the same model.

In the relational model the relationship between the data is represented by a

collection of tables [78]. The relational model provides a high level abstraction of

the low-level details of data storage. Basically, this model is composed by relations,

tuples and attributes. The term relation refers to a table, the term tuple refers to a

row and the term attribute refers to the columns of a table. The logical design of a

relation is called schema (see Firgure 5-2).

The stored data is handled by query languages (e.g., SQL), which allows the user

to proceed different operations, such as insert, update, remove and select. From

the point of view of the database user, a set of operations may be part of a single

unit database manipulation. For instance, when a customer from a bank uses an

automatic teller machine to check his account, deposit an amount of money and

then transfer it. This single unit database operation is referred to as transaction. A

transaction is a group of SQL statements, which must be committed or rolled back

(aborted) depending on its execution. If the transaction is executed without errors in

any statement, the modified data is recorded on the database. If any statement that

composes the transaction is not successfully executed, the transaction must be rolled

42

back and any change undone, in order to guarantee the ACID properties [38]:

∙ Atomicity: Each operation that composes a transaction must be executed

successfully (i.e., commit), or none operation action is executed (i.e., rollback).

∙ Consistency: The execution of a transaction must keep the database consis-

tency, which means the transaction do not violate any defined rule.

∙ Isolation: Concurrent transactions must not influence on the results from each

other.

∙ Durability: Once a transaction is successfully committed, its changes on the

database are permanent.

Once the data may be accessed by more than one transaction at the same time,

the DBMS must use some mechanism to ensure Isolation. The general mechanism

for concurrency control is based on data locks [78]. Locks are implemented in two

levels: 1) Shared lock, in which the transaction have the rights to read the data, but

cannot write; 2) Exclusive lock, in which the transaction can both, read and write.

Internally to the DBMS, the management of locks is implemented within the

concurrency control subsystem. The concurrency control is responsible to ensure

that concurrent transactions will produce the same results as if they were executing

one-at-a-time (i.e., the concept of Serializability). For that, it is necessary a scheduler

for synchronizing access to the database. Trivially, it is clear that shared locks cannot

cause any concurrency problems in the DBMS as it is meant for read only operations

in the database. However, once more than one transaction require an exclusive lock

for concurrent write operations in the same datum, the scheduler plays an important

role in order to ensure Isolation and thus a consistent database [68]. Figure 2-2

shows an example of “serializable” and “not serializable” schedules. The loop means a

“not serializable” schedule and must be avoided, for example, by delaying one of the

conflicting transaction.

The high-concurrency has special impacts on Online Transaction Processing (OLTP)

applications. OLTP transactions require “fast commit processing” for supporting high

43

Schedule S1 Schedule S2

T1:r(x), T2:r(x), T2:w(x), T1:w(x) T3:r(x), T3:r(y), T4:r(x), T3:w(x)

T1 T3 T4T2

not serializable serializable

Figure 2-2: Transaction schedules: lock example

throughputs on data updates [78, 84]. It becomes especially critical nowadays, with

the constantly increasing of connected devices.

Over more than 40 years the efforts to increase transaction throughput lie on

amendments of ancient mechanisms proposed in early 70s. In [84], Michael Stone-

braker alerts about the data tsunami and shows to the community the necessity of

rewriting the traditional DBMS architectures. Across the recent years traditional and

contemporary DBMS are systematically making improvements and embedding new

features in order to fit non-functional requirements, such as, performance, scalabil-

ity, and robustness (the proper definition for non-functional requirements is given at

Section 2.4.1).

On the one hand, traditional DBMS partially tackle several non-functional re-

quirements with replication and database partitioning schemes in a disk-oriented ar-

chitecture. This architecture is strongly based in three main features: (1) complex

multi-threaded transaction processing schedules, (2) distributed database consistency

protocols, and (3) extensive performance tuning (i.e., manual tuning knobs) to make

the DBMS delivering high transaction throughputs. On the other hand, NewSQL ap-

pears as the most prominent alternative to deliver high throughputs on transaction

processing yet enforcing strong database consistency through the ACID properties.

NewSQL presents a totally new architecture described later in Section 2.3.

44

2.2.1 The Tuning Knobs

Traditional DBMS were developed in a time when computing resources were expen-

sive, making the tuning process specially important and supported by highly special-

ized professionals. Back to that time, the cost of human resources (HR) was cheap

and computational resources were expensive. Nowadays, it is the other way around

and HR is the major expense in the IT market [84].

Another striking problem is related to carrying out manual performance tuning.

In major DBMS there are hundreds of tuning knobs1,2 and finding the optimal con-

figuration is a tedious and error-prone task. Small companies cannot afford hiring

experts; for large companies, not even an expert can always figure out the optimal

tuning [91]. In order to mitigate these problems, several approaches for DBMS self-

tuning were proposed over the years [91, 99, 86].

In [99], the authors claim that specialized configuration of tuning knobs can avoid

inconvenient outages during peak loads. More than that [86], there is no single

configuration of the system to adequately handle every possible workload.

In this context, testing can be useful to validate whether a tuning setup reflects

in boosting or spoiling performance for a given workload.

2.3 NewSQL

The NewSQL is a distributed in-memory database management system, which pre-

serves the ACID properties and supports SQL language. In this thesis, we stick to the

architecture of VoltDB [96], since it is similar to the other NewSQL, such as H-Store

[54], NuoDB [63], MemSQL [61].

The VoltDB architecture (see Figure 2-33) is composed by two components. The

“compile time component” is all related to the database setup, such as configura-

1A list of tuning knobs for PostgreSQL can be found here:
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server

2A list of tuning knobs for Oracle can be found here:
http://www.oracle.com/us/products/applications/aia-11g-performance-tuning-1915233.pdf

3This Figure is based on the VoltDB documentation -
http://docs.voltdb.com/UsingVoltDB/IntroHowVoltDBWorks.php

45

Compile Time Runtime Time

Main Memory
Storage Manager

VoltDB API

OLTP Applications
Database
Schema

Cluster
Information

Stored
Procedures

Database Designer

Query Planner/Optimizer

Compiled Stored
Procedures

Query Plans Physical
Layout

Deployment framework

Transaction Manager

Transaction Initiator

Stored Procedure Executor

Query Execution Engine

System Catalogs

Figure 2-3: VoltDB architecture

tion files, schema definition, available resources, stored procedures’ compilation. The

“runtime time component” looks after the operating activities, such as, transaction

management, resources management, data storage, data manipulation, and concur-

rency control.

Briefly, NewSQL takes a different architecture to tackle non-functional require-

ments by keeping entire databases in-memory and processing transactions through

a multiple single-threaded scheme in distributed database partitions. Compared to

traditional DBMS, another crucial point is its self-tuning capabilities [84].

In VoltDB, the concept of transaction is implemented as stored procedures. The

stored procedures combine SQL statements and the features of a programing language.

Figure 2-4 shows an example of stored procedure implemented in Java to proceed

a flight reservation. First, the flight reservation procedure ensures that the flight

number is valid to then execute and commit in the database. If the number is not

valid, the transaction is aborted and data is rollbacked to the last consistent state.

By using stored procedure, VoltDB guarantees the consistency of the database. From

now on, we will refer to stored procedure as transaction.

46

final String getflight = "SELECT FlightID FROM Flight WHERE FlightID=?;";
final String makeres = "INSERT INTO Reservation (?,?,?,?,?,?);";

...

public VoltTable[] run(int servenum, int flightnum, int customernum)
throws VoltAbortException {

// Verify flight exists
voltQueueSQL(getflightsql, flightnum);
VoltTable[] queryresults = voltExecuteSQL();

// If there is no matching record, rollback
if (queryresults[0].getRowCount() == 0) throw new VoltAbortException();

// Make reservation
voltQueueSQL(makeressql, reservnum, flightnum, customernum,0,0);
return voltExecuteSQL();

}

Figure 2-4: VoltDB: stored procedure

2.3.1 Partitioning

Partitioning techniques can improve performance by promoting I/O parallelism on

disk operations. According to [78] “In its simplest form, I/O parallelism refers to

reducing the time required to retrieve relations from disk by partitioning the relations

over multiple disks.”

Although NewSQL is not a disk-oriented DBMS, partitioning also plays an im-

portant role for high transaction throughput. Instead of promoting I/O parallelism,

the goal of partitioning in NewSQL is to span transactions across distributed machine

nodes.

According to [52] “The challenge becomes dividing the application’s data so that

each transaction only access one partition ... the TPC-C OLTP benchmark can be

partitioned by warehouse so an average of 89% of the transactions access a single

partition.”.

For instance, in VoltDB relations are horizontally partitioned (see Figure 2-53)

and allocated in different machine nodes. These partitions are automatically defined

by VoltDB or by the database administrator (DBA), who identifies data dependencies

and creates the partitions. With partitions allocated separately, the burden of trans-

action processing is balanced across the distributed machine nodes and the system

is less prone to generate locks or CPU latches. In the next section, we describe how

47

Table
A

Table
B Table

C

A’ A’’ A’’’B’ C’ B’’ C’’ B’’’ C’’’

Server
X

Server
Y

Server
Z

Database Schema

Run-Time Partitioning

Figure 2-5: VoltDB partitioning

NewSQL DBMS accesses the partitions.

2.3.2 Multiple single-threaded transaction processing scheme

Single-Threaded Transaction Processing schemes are also used to avoid serialization

protocols, locking and CPU latches [97], which represent together 96% of performance

overhead in OLTP (i.e., only 4% of useful work!) [53]. This scheme is based on

an execution queue to host incoming transactions and consume them one-at-a-time.

Figure 2-6 shows the transaction queue.

In order to improve transaction throughput, NewSQL embraces the multi single-

threaded transaction processing. This means that the execution queue dispatches

transactions to be processed at different machine nodes (assuming a distributed run-

ning environment). Every machine node is allocated as a single-threaded process.

However, one transaction can be divided into fragments whether each fragment

updates different partitions. In this case, transaction processing can span across

multiple machines. For that, NewSQL presents two transaction processing modes [52]:

“Single Partition Transactions” (SPT) and “Multi-Partition Transactions” (MPT).

As said in [52] “... an average of 89% of the transactions access a single parti-

tion”. The SPT processing looks after consistency for such “89%” of the transactions.

Transactions are single-threaded processed in an individual node. Therefore, no has-

48

Figure 2-6: VoltDB transaction processing

sles with locking or CPU latches. Moreover, the rest of the machine nodes are free to

receive other transaction requests.

The MPT processing mode looks after the remaining “11%” of the transactions. In

this mode, one machine node acts as the transaction coordinator and piggybacks the

two-phase commit protocol (2PC). As in the disk-oriented DBMS, the 2PC requires

a first phase of spanning transaction fragments across the slave nodes and acknowl-

edging their response. The second phase starts when the coordinator receives all the

responses. Then, it spans commit messages and waits for the final result.

2.3.3 The “No Knobs” Tuning Operation

As we presented in Section 2.2.1, the traditional DBMS are based on a huge number of

complex tuning knobs. The DBMS vendors and the research community are investing

efforts to provide mechanisms for self-tuning in order to minimize human intervention.

In [84], the authors claim that the self-tuning proposed by the DBMS vendors do not

produce results anywhere near compared to skilled DBA. They propose to rethink

the tuning process by creating DBMS with no visible knobs.

The idea of “No knobs” operation is not new and described as a major goal for con-

temporary DBMS: “ ... databases must be self-tuning. There can be no human-settable

49

parameters, and the database system must be able to adapt as conditions change. We

call this no knobs operation.”[12]. In order to achieve this type of operation, VoltDB

implements a new database design mechanism which automatically specifies parti-

tioning, replication and indexed fields. The goal is to maximize single-partitioned

transactions.

The partitions are spread across the cluster based on the primary key of the main

table and assigning tuples of other tables to nodes based on the tuples of the main

table they descend from. The horizontal partitioning and indexing options might also

be specified by the DBA.

In addition, DBA no longer need to tweak tuning parameters as traditionally car-

ried out in DBMS, such as PostgreSQL and Oracle. For instance, in PostgreSQL the

maximum allowed concurrent connections is set by the knob MAX_CONNECTIONS.

Instead, VoltDB links the number of concurrent connections to the available resources

of the operating system.

2.4 Software testing

Software testing consists of verifying whether the system behaves as expected in a

given situation [40]. Software testing can also be defined as the exercise of finding de-

fects in a software system, never the absence of them [13]. This task can be performed

manually, but the main objective relies on an automated approach to implement a

specific test design. In this sense an abstract model plays an important rule in or-

der to provide repeatable means to generate a test suite. The exercise of software

testing may investigate two main requirements: functional and non-functional. The

requirements are related to the behavior aspects of a system [59].

2.4.1 Functional and non-functional requirements

According to the IEEE glossary [88], a functional requirement is “A requirement that

specifies a function that a system or system component must be able to perform”.

We can generalize this definition as the capability of a system to provide the correct

50

insert into names ("Jorge");

commit;

select name from names where name = "Jorge";

Figure 2-7: Example of functional testing

output for a given input. Thus, functional testing targets whether the System Under

Testing (SUT) implements the functionality for a specific requirement. Lets consider

a database composed by only one table “names” with two attributes: “identification”

(auto incremented integer) and name (string). A simple functional test to ensure the

data durability might be proceeded by inserting a new “name” on this table and then

trying to recover the same data. In this case a defect is characterized by a wrong

answer or a empty field as result.

There is no consensus regarding to the definition of non-functional requirements,

though [42, 9]. Several authors proposed different definitions along the last two

decades [74, 62, 79]. Basically, non-functional requirements are related to “property,

quality, aspect or constraints" with which the system must meet, such as perfor-

mance, reliability, robustness, scalability, compatibility, usability, resilience, recov-

ery [9]. Moreover, non-functional requirements are highly influenced by the environ-

ment where the system is allocated [41]. For instance, response time may increase

fast during peak loads, impacting on the quality of service.

As an example, lets consider a DBMS configuration file, which allows tuning the

system for a given workload. Lets take into consideration an hypothetical tuning knob

in this file related to the maximum number of concurrent connections “𝑚𝑎𝑥_𝑐𝑜𝑛𝑛”.

This knob ensures the maximum number of concurrent transactions treated by the

DBMS4. A simple non-functional testing consists in set up this knob and then submit

concurrent connections to and beyond the set limit (see Chapter 3). Once the system

is not able to ensure the pre-set maximum number of concurrent connections it is

considered a defect. This kind of defect has significant impacts on the quality of

service, such as gradual performance loss. In our context, non-functional testing has

4We simplified the configuration for concurrent connections for the sake of the example, but the
proper configuration relies on more than one knob (see Chapter 3)

51

an essential role to evaluate the SUT behavior under stress conditions.

2.4.2 Stress Testing

Stress testing is a specific non-functional testing widely applied, not only in soft-

ware engineering, but in several different fields of knowledge, for instance: medicine,

engineering and economics:

Medicine [71]: "... preferred stress modality in patients who are able to exercise

to an adequate workload (at least 85% of age-adjusted maximal predicted heart rate

and five metabolic equivalents) ...".

Engineering5: "... We define a stress testing as a targeted reassessment of the

safety margins of nuclear power plants in the light of the events which occurred at

Fukushima: extreme natural events challenging the plant safety functions and leading

to a severe accident ...".

Economics [14]: "... Stress testing did not originate in finance, but in engineer-

ing. In its broadest sense, stress testing is a technique to test the stability of an entity

or system. In finance, it was originally used to test the performance of individual

portfolios or the stability of individual institutions under especially adverse conditions

(micro stress tests). More recently, similar techniques have been employed to test the

stability of groups of financial institutions that, taken together, can have an impact

on the economy as a whole (macro stress tests) ...".

It is possible to highlight similarities between these examples with a stress testing

in software engineering context.

In [98], the authors present a step-up and step down methodology. The goal is

to compare the effectiveness of these different approaches in a accelerated life tests

(ALT) for components and materials. ALT is used to expose the system under extreme

conditions in order to find failures in a short amount of time. The step-up stress ALT,

is a special kind of ALT in which the "material limit" is reached step-by-step over

time (up to the highest stress). Alternatively, the step-down stress ALT, the highest

stress is used at first moment, then it is decreased step-by-step over time to the lowest
5“Stress tests” specifications - http://www.wenra.org/

52

level. In our context the system life time is not reachable in fact, such as in a material

(i.e., electronic components), but it is possible to enforce the system thrashing.

In [64], the authors present a study of the prognostic value of exercise stress

test variables in elderly patients with coronary atherosclerosis and exercise-induced

ischemia. The American Heart Association recommends the exercise stress test for

sedentary elderly people before beginning a rigorous physical activity in order to

identify coronary atherosclerosis (i.e., hardening of the arteries). The exercise stress

test consists of five stages of progressive inclination each with a three minute duration

and a speed of 3.6 km/h. For the next five stages, the speed was increased to 4.8

km/h. The objective is to attest the patient capacity to practice physical activities.

In our testing context, a step-up stress approach applied in software engineering can

validate the“system” capacity during heavy workload.

In economics [67], the authors describe the stress test as "... a technique that

measures the vulnerability of a portfolio, an institution, or an entire financial system

under different hypothetical events or scenarios". The stress test is used to evaluate

two different aspects of financial institutions: solvency and liquidity. Basically, it is

a "what if" exercise. The evaluation is based on the financial institution response in

delicate situations, such as "If a large amount of deposits is withdrawn suddenly or

funding markets (such as repos and commercial paper) freeze, the bank might face

a liquidity shortage even if it is otherwise solvent". In our context, the similarity is

related to answer unexpected situations, such as workload spikes.

In software engineering, stress testing is designed to impose a heavy workload to

ensure the reliability of the system. For instance, submit a large number of HTTP

requests or database transactions concurrently, to check for defects, related to the

workload, which impact on performance stability. Normally, the workload must go

far beyond the system limits [40].

2.4.3 DBMS testing

In DBMS, performance testing validates the system from different angles. Com-

monly, validation is executed through a benchmark pattern to reproduce a produc-

53

tion environment. Different benchmark approaches were presented along the last

decades, but focusing on providing comparison metrics (e.g., response time, through-

put, and resource consumption) [51] rather than software testing, such as: Debit /

Credit [34], AS3AP [92], TPC-like [2], SetQuery [65], the cloud data service bench-

mark YCSB [19], and a data-analysis benchmark for parallel DBMS [70].

The TPC-B benchmark is a stress benchmark approach proposed by TPC for

traditional DBMSs. It is presented as a stress approach in the sense that they aim

to validate the integrity of transactions upon significant disk processing (i.e., I/O

operations). The execution turns around after the SUT reaches its steady conditions,

which is the performance boundary of TPC-B.

Designed for large-scale databases, the YSCB benchmarks three main non-functional

requirements of distributed database stores: (1) Performance; (2) Scalability; (3)

Availability. The YSCB includes a load generator to allow benchmarking different

database stores, including relational and key-value. However, the load generator does

not include fault-injection nor stress workloads. As well as TPC-Like benchmark, it

relies in constraints of performance to ensure measurements in stable condition.

The R-cubed [104] benchmark was designed to assess availability of computational

systems in general that was further extended to a benchmark suite called the System

Recovery Benchmark (SRB). The suite bundles five different benchmarks: (1) Cluster

- SRB-X; (2) Application - SRB-D; (3) Databases - SRB-C; (4) Hard disk (RAID) -

SRB-B; (5) Operating system - SRB-A. However, just two of them were implemented

to date (i.e., SRB-X and SRB-A).

DBench-OLTP [95] benchmark was also designed to assess availability of trans-

actional systems. It broadly uses the TPC-C specification with two main extensions

in order to mimic real system problems: fault-loads and measures related to system

dependability (e.g., mean time to detect errors).

Several recent storage systems were developed and tested through similarly ap-

proaches. In [21, 82, 81, 23], validation is performed by the TPC-Like benchmarks.

In [18], the authors present PNUTS, a massively parallel and geographically dis-

tributed database system for Yahoo!?s web applications. They provide their own

54

performance testing methodology focused on latency metrics with a very simple own

workload supported by a centralized architecture.

Performance testing tools such as Hammerora [1], Oracle Application Testing Suite

[6], and AppPerfect [7], provide a test driver to submit operations also based on a

TPC-like benchmark. Their goal is to allow engineers writing test cases to mimic

load conditions. The drawback is that the test cases are way too specific and cannot

reflect a far more aggressive real-world production environment with workload spikes

and shifts after a while in steady condition state [80, ?].

Focusing on functional assessments, the Agenda [30] tool provides a testing method-

ology to validate ACID properties of the DBMS. Therefore, Agenda does not generate

test cases to tackle non-functional requirements.

Taking into consideration database applications, deadlock situations are explored

in [46, 47]. Deadlocks are characterized as the situation when more than one instance

of execution try to lock and use the same resource, causing loops in the transaction

schedules [17]. The authors propose an approach modeled by a lock graph that

detects the potential loops. Once detected, a delaying mechanism is applied to break

the deadlocks.

We also mention testing frameworks developed to ensure functional requirements,

which may be applied in different systems, including Database Systems. Peerunit

[?] is a framework to test distributed systems supported by a distributed testing

architecture. Peerunit aims to test the system behavior, in terms of functionality,

under different conditions of volatility. On the other hand, JUnit6 uses a centralized

architecture to carry out Java unit tests. Junit is widely used to perform functional

testing.

Table 2.1 summarizes the DBMS testing approaches. We take into consideration

four characteristics of each approach: The workload regime used, the targeted system

requirement, the testing architecture and the requirement type. The limitations of

the related approaches are presented in the section 2.6.

6http://junit.org/

55

A
p
p
roach

W
orkload

regim
e

T
arget

T
estin

g
arch

itectu
re

R
equ

irem
ent

D
as

et
.

al.
[23]

Y
C

SB
P
erform

ance
-

*
N

on-functional
Soundararajan

et.
al

[82]
T

P
C

-like
P
erform

ance
C

entralized
N

on-functional
C

urino
et.

al.
[21]

T
P

C
-like

P
erform

ance
-

*
N

on-functional
P

N
U

T
S

O
w

n
m

ixed
w

orkload
P
erform

ance
C

entralized
N

on-functional
D

B
ench-O

LT
P

T
P

C
-like

P
erform

ance
C

entralized
N

on-functional
H

am
m

erD
B

T
P

C
-like

P
erform

ance
C

entralized
N

on-functional
A

ppP
erfect

T
P

C
-like

P
erform

ance
C

entralized
N

on-functional
A

genda
T

P
C

-like
A

C
ID

properties
C

entralized
Functional

O
racle

A
pplication

T
esting

Suite
T

P
C

-like
P
erform

ance
C

entralized
N

on-functional
P
eerunit

K
ey-value

data-m
anipulation

D
istributed

Functional
JU

nit
-

System
specifications

C
entralized

Functional

Table
2.1:

C
om

paring
D

B
M

S
testing

requisites
*It

is
not

clear
w

hether
used

a
centralized

or
distributed

architecture.

56

2.5 Model-based Testing

Model-Based Testing (MBT) is a technique to automate the test case generation

based on behavior models. The behaviors of a system, according to IEEE standards

association [88][49], are related to the requirements and defined as following:

∙ a condition or capability needed by a user to solve a problem or achieve an

objective.

∙ a condition or capability that must be met or possessed by a system, system

component, product, or service to satisfy an agreement, standard, specification,

or other formally imposed documents.

∙ a documented representation of a condition or capability as in 1 or 2.

∙ a condition or capability that must be met or possessed by a system, product,

service, result, or component to satisfy a contract, standard, specification, or

other formally imposed document. Requirements include the quantified and

documented needs, wants, and expectations of the sponsor, customer, and other

stakeholders.

2.5.1 The elements of MBT

According to [22], there are three key elements in MBT approaches: the model’s

notation, test generation algorithm and the testbed. Figure 2-8 illustrates these

elements7.

The model’s notation can be supported by several different languages, graph,

mathematical model, etc. The most popular notations used by model-based ap-

proaches are: UML and FSM. On the one hand, UML is a graphical modeling lan-

guage composed by a set of diagrams, such as statechart diagram, class diagram,

sequence diagram, test case diagram, etc. This language become a de-facto standard

for object-oriented software design [36] as well as a widely used notation for model-

based testing. On the other hand, the FSM is a mathematical model used to model
7Figure based on [22]

57

Requirements

Data Model

Inputs Expected outputs

SUT & testbed

Actual outputs Failures

Figure 2-8: MBT elements

systems in several areas [56], such as communication protocols [101], sequential cir-

cuits [48], pattern matching [94], etc. A deterministic FSM is described as a quintuple

composed by an alphabet (i.e., inputs), a finite set of states, an initial state, a set of

state-transitions and a set of final states.

2.5.2 The MBT approaches

MBT approaches are widely applied in software testing to validate functional as well

as non-functional requirements of the SUT [31]. In [?, 32, 73] we have examples

of approaches focusing on security requirements for reactive systems based on the

environment description as a model. Efficiency requirements are explored in [58, 76].

These approaches are respectively based on TRIO specification and UML model to

attest real time and object-oriented software. Examples of approaches focused on

functional requirements are treated in [83, 37, 5, 8], all of them using FSM as behavior

model.

The following approaches are presented with more details. They address non-

functional requirements, more specifically, performance.

Garousi et al. [39] proposed a stress testing approach based on a UML model

58

to identify performance properties when data traffic on a network is maximal. By

using the specification of a real-world distributed system, this approach can help to

increase the probability of exhibiting network traffic-related faults in distributed sys-

tems. The authors argue that the proposed approach is more effective when compared

with approaches based on operational profiles, in the matter that the probabilities of

exhibiting network traffic-related faults are increased.

In [33], an “Automatic Performance Testing Method Based on a Formal Model

for Communicating Systems” is presented. The goal is to check two performance

requirements: throughput (in terms of number of users attended) and response time

(requests to be processed within a second). The authors argue for a stress testing, in

the sense that the throughput is raised to the maximum number of requests that the

system is configured to deal, at the same time.

Shams et. al. [77] proposed “A Model-Based Approach for Testing the Perfor-

mance of Web Applications”. The authors use a FSM to model a set request se-

quences and then be able to create synthetic workloads with specific characteristics.

They consider the impact of inter-dependent requests by the same user, this means,

requests that depends the response of previous requests. They claim as the major

benefit is the ability to create several specialized workloads that reflects the typical

interactions of users with web applications.

In [103], the authors proposed a stress testing to analyze the modules dependencies

of the SUT. Using an initial input, a FSM models the interaction of the modules of

certain system. By manipulating the input and the interaction of the states of the

FSM, the approach aims to model the best stress state representation for a given

input.

The “Stress Test Model of Cascading Failures in Power Grids” [57] describes a

model-based testing for power systems. Mainly, the approach force security con-

straints by applying stress conditions. The stress conditions are related to a sequence

of failures (i.e., outages). The idea is to test the operating limits of power systems.

Barna et. al. [10, 11] proposes a “Autonomic Load-Testing Framework” for per-

formance testing in components of software and hardware. By using a Layered queu-

59

ing model, the approach triggers bottlenecks related to processing capacity limits of

resources. These bottlenecks are specially noticeable in components which queued

requests, for instance web based application limited by a fixed number of threads for

new connection requests. As soon as the queue reaches this limit, the queue becomes

a bottleneck.

The “WALTy: A User Behavior Tailored Tool for Evaluating Web Application

Performance” [75] uses a Customer Behavior Model Graph (CBMG) to generate spe-

cific workloads based on user profiles. The CBMG is created using log files, The tool

is composed by two modules: First, the Builder Module which extract the informa-

tion from the CBMG; Second, the Traffic module, responsible for traffic generation.

The authors falsify the tool as a web mining workload generator.

In [3], the “MBPeT: A Model-Based Performance Testing Tool” is presented. This

tool evaluates system performance based on loads generated in real-time execution.

By monitoring different performance indicators and using a Probabilistic Timed Au-

tomata (PTA) as model, the authors seek for performance indicators for given work-

load, such as response time.

TestOptimal [87] is a commercial tool developed to provide a model-based testing

on top different behavior models (i.e., UML, FSM, Extended FSM, Control Flow

Graphs) and covers functional as well as non-functional testing (Performance testing).

The developers argue a test case generation and test automation tool.

The main issues in the presented approaches are related to the limitations in

expose the system to stress conditions gradually and represent the system based

on its performance behaviors. Most of them may be applied for DBMS to assess

quite specific points related to performance or functional requirements. For instance,

create specific workloads to reach the exact amount of resources set by the tuning

knobs [33]. However, it cannot reproduce stress without exceeding the limits imposed

by the knobs.

Table 2.1 summarizes the MBT approaches. The comparison is based on 3 char-

acteristics: The testing requirement assessed by the approach, the system under test

and the behavior model used to generate the test cases.

60

Ta
bl

e
2.

2:
C

om
pa

ri
ng

M
od

el
-b

as
ed

te
st

in
g

te
ch

ni
qu

es

A
p
p
ro

ac
h

R
eq

u
ir

em
en

t
T
ar

ge
t

S
ys

te
m

B
eh

av
io

r
M

od
el

G
ar

ou
si

et
al

.[3
9]

P
er

fo
rm

an
ce

(S
tr

es
s)

D
is

tr
ib

ut
ed

sy
st

em
U

M
L

B
ar

na
et

.
al

.
[1

0]
P
er

fo
rm

an
ce

So
ft

w
ar

e/
H

ar
dw

ar
e

co
m

po
ne

nt
s

La
ye

re
d

qu
eu

in
g

Li
ao

et
.

al
.

[5
7]

P
er

fo
rm

an
ce

(S
tr

es
s)

P
ow

er
sy

st
em

s
U

M
L

Y
an

g
et

.
al

.
[1

03
]

P
er

fo
rm

an
ce

(S
tr

es
s)

Sy
st

em
m

od
ul

es
in

te
ra

ct
io

n
F
SM

Sh
am

s
et

.
al

.
[7

7]
P
er

fo
rm

an
ce

W
eb

A
pp

lic
at

io
ns

F
SM

E
ro

s
et

.
al

.
[3

3]
P
er

fo
rm

an
ce

(S
tr

es
s)

C
om

m
un

ic
at

in
g

Sy
st

em
s

F
SM

W
A

LT
y

[7
5]

P
er

fo
rm

an
ce

W
eb

M
in

in
g

G
ra

ph
s

M
B

P
eT

[3
]

P
er

fo
rm

an
ce

W
eb

A
pp

lic
at

io
ns

P
ro

ba
bi

lis
ti

c
T

im
ed

A
ut

om
at

a
(P

TA
)

Te
st

O
pt

im
al

Fu
nc

ti
on

al
/N

on
-F

un
ct

io
na

l
A

ny
U

M
L,

F
SM

,G
ra

ph
s

61

2.6 Conclusion

Concerning to the DBMS testing approaches, we can enumerate three limitations that

avoid carrying out stress testing of DBMS, with special attention to NewSQL. The

limitations are:

1. Centralized architecture: Centralized architectures present two problems: First,

the testing scalability is limited by the resources of the testing machine; Second,

the testing machine interferes on performance [60].

2. TPC-like workload regime: Most of the approaches focus on performance com-

parison based on the TPC-like workload regime, which imposes constraints of

performance to ensure stable conditions. This creates limitations to exercise

the system under stress workloads and find defects.

3. Model-based approach: There is no approach to test non-functional require-

ments of the DBMS supported by a system model. It hinders the testing re-

peatability and the comprehension of the different behaviors presented by the

DUT.

Moreover, we claim that the presented model-based testing approaches do not fo-

cus on performance requirements and defects related to stress workloads of real-world

environments. Mainly, we argue they are not able to conduce the system to its perfor-

mance limits in face of high concurrency environment. Mostly, the related approaches

focus on specific test cases to ensure performance requirements. The approaches fo-

cused on stress testing are specifically designed to conditions not related to increasing

workloads and performance loss, but special test cases to simulate punctual crashes

[57] or peak loads [39].

Thus, to our best knowledge, the existing testing approaches can not deal with the

challenges raised up by the high concurrency workloads and the new high-throughput

databases, such as boundaries of performance and the specific behaviors in stress

conditions. There are many aspects missing so far. An appropriate approach must

be able to relate potential defects and performance loss to specific system behaviors.

62

Chapter 3

Stress Testing Methodology

3.1 Introduction

In this Chapter, we present STEM, a Stress Testing Methodology for exposing workload-

related defects in traditional DBMS. In the specific case of workload-related defects,

we claim that the defects can only be revealed from the combination of stressing

workloads to performance mistuning (e.g., insufficient admission control). In STEM,

we progressively increase the transaction workload along with several tuning adjust-

ments (a type of step-stress testing [102]). In addition, STEM takes into account the

various biases that may affect the test results, including the influence of the operating

system and the testing coordination.

Besides, STEM leverages distributed testing techniques in order to generate stress-

ing workloads and coordinate the stress testing campaign. This distributed architec-

ture allows increasing the workload by several orders of magnitude up to stress con-

ditions. We validate our methodology with empirical studies on two popular DBMS

(one proprietary, one open-source) and detail defects that have been found.

The rest of the Chapter is structured as follows. Section 3.2 presents our research

questions. Section 3.3 presents our stress testing methodology. Section 3.4 describes

our validation through experimentation. Section 3.5 concludes this chapter.

63

3.2 Stress Testing for DBMS

Our methodology for stress testing DBMS is systematically and empirically evaluated,

taking into consideration following research questions:

RQ0: Does the incremental methodology exercise distinct parts of the code?

∙ By presenting evidence that more source-code parts are exercised compared

to the state of the art in functional testing, through code-coverage or log file

analysis. The evidence can be presented in terms of blocks of code ignored by

functional testing (e.g., loops, exceptions or conditions).

Stress testing requires an incremental test approach that drives the DBMS from an

initial configuration setup towards a production setup in order to test the functional-

ities related to transactional workloads. Therefore, we require to gradually increment

the workload up to a stress condition, which is beyond the DBMS’s state of usage in

a real workload environment. The objective is to search for defects related to differ-

ent scales of concurrent transactions. Suppose that a DBMS is directly tested upon

stressing load conditions instead of using an incremental test approach. The results

will not show whether the defect appears at smaller scales. In fact, different types of

defects appear while a system treats different workloads, because different parts of

the source-code are exercised [27]. We can verify that different parts of the code are

exercised either by code coverage analysis or by analyzing the message entries from

the log files. The earlier is straightforward by executing the DBMS with its code

instrumented by some coverage tool (e.g., GNU/gcov, EMMA). The latter treats the

DBMS as a black box and requires to monitor both the response time on transactions

and the entries from the log files. Indeed, a higher response time is expected, since

the DBMS deals with more transactions and rejects the ones that overtake its config-

ured capacity. Then, the DBMS issues more log entries informing rejected requests

or errors that can be analyzed to prove that more functionalities were exercised, for

instance, comparing the entries issued from different test steps.

RQ1: Does the OS impact on test results?

64

∙ The answer can be provided in two ways: (i) analyzing the resource consumption

of the OS, providing evidences that such consumption works as expected (e.g.,

the consumption remains steady along testing); (ii) comparing the test results

on different OSs (e.g., Linux, BSD, Windows) and providing evidences that the

detected defect is the same in all of them.

Beyond the test driver, other software parts are not supposed to interfere with

the test results, especially the OS. We make two assumptions when the same defect

is exposed on different OS: (i) the OS is robust, and (ii) the OS is correct. These

assumptions demand to continually monitor the OS health (i.e., CPU, memory, I/O,

swapping, and networking). The main objective is to ensure that the OS responds to

any possible request to the DBMS until the test ends.

RQ2: Does the DBMS use all the allocated resources upon stress workload?

∙ By comparing the inconsistencies between the declared DBMS setup and the

effective usage of the DBMS resources.

This last research question is related to the DBMS defects exposed by the stress

workload. Since we assume the OS to be robust and the DBMS to be tuned, the

defects are the major cause for preventing the DBMS from allocating all the available

resources. This also requires to monitor the health of both the DBMS and the OS.

3.3 STEM

In this section, we describe STEM, our methodology for stress testing transactional

DBMS. STEM is based on the joint increment of two variables, concerning the DBMS

knobs on one hand and the workload on the other hand. The DBMS knobs correspond

to the setup parameters to be tuned for a workload. The workload corresponds to

the number of submitted transactions and how they are submitted. The variation of

these dependable variables is necessary for testing the SUT under different angles in

order to find defects related to different workload levels and more specifically, defects

related to the performance degradation boundaries.

65

3.3.1 Dependable Variables

The number of knobs both in the DBMS and OS is rather large. We only focus

on the DBMS knobs since we assume that the OS has been completely tuned up to

the hardware capacity. In fact, we pay special attention to the knobs that are im-

pacted the most by transactional load spikes, including the buffer pool management

(work_mem), and the admission control (max_conn). Other knobs can also be ex-

plored, including group commit, and log flushing, however, we do not focus on them

due to space constraints.

The DBMS knobs can accept a large domain of values, from their minimum up to

maximum capacity. For the sake of clarity, we assume that each knob can only have

three values related to the DBMS capacity: min, med, max.1 To setup these values, we

follow the rules of thumb from the DBMS documentation. Once the DBMS is tuned,

the workload is created based on its capacity. Moreover, the workload is related to

the way the tests are executed. To mimic real distributed clients and reproduce a

stress workload, it is required to deploy many distributed testers, denoted by 𝑇 , for

submitting a large number of transactions. The number of distributed testers depends

on the size of the workload (see Table 3.1).

Workload Condition
Min if equal to declared max_conn, with |𝑇 | = 1
Med if equal to |𝑇 |* max_conn, with 1 < |𝑇 | ≤ 10
Max if equal to |𝑇 |2* max_conn, with 1 < |𝑇 | ≤ 10

Table 3.1: Workload setup parameters.

The minimum size workload (min) is set equally to the max_conn configuration

and executed by one tester, denoted by 𝑡 ∈ 𝑇 . The objective is to establish the

performance baseline due to low concurrency. The medium size workload (med) is

set to |𝑇 |* max_conn to increase the degree of concurrency. The objective is to

evaluate the robustness of the DBMS. The maximum size workload (max) is set

1The process of identifying the variables and then decomposing their input domains into equiva-
lent classes (from a testing perspective) is called "category-partition testing" in the software testing
community [66].

66

Setup Work_mem Max_conn Workload Test Objective
1 Min Min Min Installation
2 Max Min Max Degradation baseline
3 Max Max Min Tuning
4 Max Max Med Robustness
5 Max Max Max Stress

Table 3.2: STEM’s Execution Sequence.

to |𝑇 |2* max_conn to stress the DBMS. In addition, the DBMS server and the

tester machines must be separated from each other to avoid any interference on the

performance results.

3.3.2 Execution Sequence

The execution sequence consists of many steps to drive the DBMS from an initial

state up to the stress state (i.e., the incremental test approach). The steps are linked

to many setup combinations for each knob. This consists of running the DBMS with

all values assigned to dependable variables, which leads to 33 setup combinations

of work_mem, max_conn, and workload. We used pairwise testing2 to narrow the

number of variations to 9 combinations. Moreover, we verified whether some of these

combinations are considered useless, for instance, a DBMS must be started with a

sufficient amount of memory to handle a large number of concurrent connections.

That is, we cannot set work_mem= min and max_conn=max. As such, the final

number of combinations was set to 5 (see Table 3.2) and form the basis of the steps

taken by STEM, which are:

1. Initial DBMS setup upon initial workload;

2. Tuned buffer pool size upon stress workload;

3. Tuned DBMS upon a minimal amount of transactions;
2“Pairwise testing is a combinatorial method in which all possible pairs of parameter values are

covered by at least one test [55].”

67

4. Tuned DBMS upon stress workload up to the DBMS performance limit;

5. Tuned DBMS upon stress workload beyond the DBMS performance limit (up

to the performance degradation);

The first step aims at seeking for defects related to any DBMS functionality, instal-

lation defects, and misconfiguration, not necessarily related to the DBMS installation

package. The goal of the second step is to establish the degradation baseline for

the DBMS, which is done by setting the admission control to its minimum. The

third step aims at validating functional aspects after a tuning phase. For instance,

to validate whether the observed value along testing corresponds to the one expected

after tuning. The purpose of the fourth step is to search for defects related to the

DBMS performance limit (not yet the stress condition). To establish the DBMS per-

formance limit, we monitor the health of the DBMS and compare the results with

the performance baseline established in the second step. The objective is to avoid

pushing the DBMS beyond such limit that defines the boundary of the medium size

workload. The goal of the fifth step is to push the DBMS beyond its performance

limit, reproducing stress load conditions.

The second, fourth, and fifth steps must be executed in a distributed manner to

reproduce a large-scale environment. In this context, the test driver cannot have any

scalability issue for managing a large number of transactions without perturbing the

test execution [25].

3.3.3 Database Specification

In STEM, the database schema and the transaction specification follow the TPC-C

benchmark. TPC-C provides 9 tables that implement a wholesale supplier applica-

tion and 5 types of transactions including: entering and delivering orders, recording

payments, checking the status of orders, and monitoring the level of stock at the ware-

houses. Transactions are submitted by emulated users and the results are displayed at

Remote Terminal Emulators (RTE). TPC-C also specifies the pacing of transactions

by the emulated users.

68

We couple our test driver with a distributed implementation of the TPC-C bench-

mark [28]. We chose this specific implementation, since it was implemented on top of

peer-to-peer technology. Therefore, our test driver is allowed to scale-up the number

of the emulated users.

3.3.4 Testing Architecture

The general distributed test driver architecture is composed of a test controller and

distributed testers. The role of the controller is to synchronize the execution of test

cases across the distributed testers (i.e., test drivers). The role of the testers is to

invoke the instructions described within the test cases at the interface of the SUT.

The instructions are typically calls to the SUT interface wrapped up in test case

actions (e.g., transactions).

Testing a distributed system in realistic conditions requires the distribution of the

testers. Therefore, the ability to distribute and coordinate a large number of testers

multiplies the potential load we can generate to progressively push a system out of

its boundaries. This is an important feature that we exploit with this methodology.

In STEM, the execution of the tests is based on the Peerunit3 testing architec-

ture [25, 27] for reproducing large-scale workloads. Peerunit is deployed on a set of

nodes containing one controller and a set of distributed testers. In our implemen-

tation, a tester reproduces an emulated user submitting transactions to the DBMS

interface. The controller synchronizes the execution of the transactions through a

distributed message exchange algorithm deployed across multiple testers.

In Peerunit, test cases are implemented in Java and deployed on all available

testers. Each test case is implemented as a class with a set of actions implemented as

annotated methods, i.e., methods adorned with a particular metatag, or annotation,

which provides coordination information. During a test, the DBMS is exercised by

a sequence of actions. Usually, an action has an input data set and generates an

output data set, which can be both stored in text files or in a database. For instance,

inserting data into the database and then retrieving such data.
3http://peerunit.gforge.inria.fr/

69

3.4 Experimental Evaluation

In this section, we present an experimental evaluation of STEM. Our objective is

twofold: (i) validate STEM with two popular DBMS, and (ii) answer our research

questions. In the experiments, we used a leading commercial DBMS, denoted by

DBMS-X, and PostgreSQL version 8.3.

We chose an older version of PostgreSQL to validate if STEM is able to reveal

defects undetected in an established bug-list.

PostgresSQL is studied first for two main reasons: (i) the source code is accessible

making it easier for us to play with it; (ii) the DBMS serves as the storage system

of a number of cloud computing solutions where load peaks are expected. Some of

these solutions include: Greenplum, EnterpriseDB Cloud Database, and “vPostgres”.

During the PostgreSQL tests, we couple the experiments with the GNU/gcov

code-coverage tool, to understand the consequences of each step on the execution

of the DBMS. The coverage is important to demonstrate that an incremental test

methodology helps reaching portions of the code that are usually not exercised with

functional tests. The coverage analyzes three main packages: (i) Freespace that

implements the seek for free space in disk pages; (ii) Page that initializes pages

in the buffer pool; and (iii) Manager that implements the shared-row-lock.

This section is organized as follows. The next subsection describes our imple-

mentation in a cluster. Section 3.4.2 describes our experiments based on incremental

testing. Section 3.4.3 discusses the influence of experimental variables with the couple

PostgreSQL/FreeBSD. Section 3.4.4 discusses the experimental results.

3.4.1 Cluster configuration

All of our experiments were conducted on a cluster machine of the Grid5000 platform4.

We used 11 “Sun Fire X2200 M2” machines connected by Gigabit Ethernet, where

each node was configured with 2 duo-core AMD Opteron 2218 at 2.613GHz and 8GB

4http://www.grid5000.fr

70

Step Number of Completed Rejected Execution Response Linux CPU Linux Memory
Transact. Transact. Transact. Time (sec) Time (sec) Usage (%) Usage (MB)

1 100 100 0 1 ≈ 0.5 25 100
2 10,000 585 9,415 8 ≈ 1 57 100
3 2,000 1,404 596 2 ≈ 1 55 300
4 20,000 2,199 17,801 15 ≈ 2 87 450
5 200,000 5,583 194,417 51 ≈ 5 90 500

Table 3.3: PostgreSQL’s Result Overview.

Step Number of Completed Rejected Execution Response Linux CPU Linux Memory
Transact. Transact. Transact. Time (sec) Time (sec) Usage (%) Usage (MB)

1 100 100 0 1 ≈ 0.2 50 515
2 10,000 957 9,043 6 ≈ 0.8 80 1,000
3 2,000 2,000 0 2 ≈ 0.6 70 825
4 20,000 13,479 6,521 8 ≈ 1 80 1,000
5 200,000 30,784 169,252 20 ≈ 1.1 80 1,000

Table 3.4: DBMS-X’s Result Overview.

of main memory. We used one node to run exclusively the DBMS server and ten

nodes to run the clients, where each client is managed by a Peerunit tester5. To avoid

performance interference, the clients and the server were executed on separate nodes,

even for the smaller experimentations. To evaluate a possible interference of the OS

on the results (Research Question RQ1), the server node ran the experiments with

two different OS: GNU/Linux Debian 5.0.9 and FreeBSD 8.2. All client nodes ran

GNU/Linux Debian 5.0.9. In all experiments reported, each tester was configured

to run in its own Java Virtual Machine (JVM). The cost of test coordination was

negligible (see [25] for a complete discussion on test coordination overhead).

3.4.2 Incremental testing

We conduct the experimentation through the 5 steps of STEM for searching load-

related defects. Before every step execution, the database is recreated and reloaded to

ensure independence between test executions and to be in compliance with repeatable

automated testing. Tables 3.3 and 3.4 summarize the results presenting the workload,

the number of completed and rejected transactions, the testing execution time, the

average response time for a single transaction and the resource consumption of the

GNU/Linux OS. Both tables present only the GNU/Linux’s results, since DBMS-X

5The implementation is available for download at: http://web.inf.ufpr.br/ealmeida/research/tpc-
c-c3sl

71

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8

C
o

n
n

e
c
ti
o

n
s

Seconds

Step 2 - PostgreSQL

Accepted Finished Rejected

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6

C
o

n
n

e
c
ti
o

n
s

Seconds

Step 2 - DBMS-X

Accepted Finished Rejected

Figure 3-1: Number of Different Connections vs. Elapsed Time in Degradation Base-
line Test (Step 2).

presented a steady resource consumption during testing.

3.4.2.1 Step 1

Objective: Ensure correctness of the installation.

Parameters: |𝑇 | = 1; 𝑀𝑎𝑥_𝑐𝑜𝑛𝑛 = 100 (default); 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 100;

The objective of this step is to ensure the proper installation of the DBMS, which

remains with its default values. In addition, we test the DBMS functionalities related

to the transactional workload (i.e., the classical functional test). The expected result

for this test step is the DBMS accepting and completing all the requested transactions.

In PostgreSQL, the default values for Maximum Connections and Workload pa-

rameters are both set to 100, with a similar configuration for DBMS-X. Both DBMS

pass this first test step in which 100 transactions are submitted and all of them are

accepted and completed successfully, with an average response time of 0.5 seconds for

PostgreSQL and 0.2 seconds for DBMS-X.

3.4.2.2 Step 2

Objective: Establish the degradation baseline.

Parameters: |𝑇 | = 10; 𝑀𝑎𝑥_𝑐𝑜𝑛𝑛 = 100 (default); 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 10, 000;

72

In the second step, we allocate a larger amount of memory and workload for

searching the performance boundary and the response time degradation. The ex-

pected result is the DBMS accepting the concurrent requests up to their setup values

and refusing the exceeding ones, occasionally issuing a default error message6.

In this step, PostgreSQL takes approximately 8 seconds to execute while DBMS-X

takes 6 seconds. This execution time relates the execution of the entire test step: the

submission of all the requests and the retrieval of all the responses from the DBMS,

which can be either a transaction commit/abort or a connection rejection.

During the test, ten testers (|𝑇 | = 10) submit a number of 10,000 transaction

requests. The DBMS were configured to accept at most 100 concurrent requests.

Figure 3-1 shows that both DBMS correctly accept a number of requests within their

setup value, as expected. In spite of the high concurrency, no accepted transaction is

aborted.

In PostgreSQL, we observe that the workload has a direct impact on the code

coverage (see Figure 3-5). Indeed, as the workload increases, the code coverage of

three packages also increases. First, in the “freespace” package, when the load in-

creases, we observe that PostgreSQL takes more time to find free space. Second, in

the “page” package, which initializes more pages. Third, in the “transaction manager”

package, where the increase of code coverage is expected due to the larger number of

concurrent transactions waiting for the tuples to be unlocked.

In both DBMS, we do not observe any performance degradation. All transactions

finish in less than one second. This behavior is also expected, since the raise of

the load is not sufficient to overtake any resource of the system, as we will see in

Section 3.4.3. Since this is the initial phase of STEM and the DBMS behave as

expected, the computed response time becomes the baseline time for the subsequent

steps.

6In PostgreSQL, when the number of requests exceeds the configured value, it issues the following
message: “Sorry too many clients already”.

73

3.4.2.3 Step 3

Objective: Ensure the correctness of the tuning knob.

Parameters: |𝑇 | = 1; 𝑀𝑎𝑥_𝑐𝑜𝑛𝑛 = 2, 000; 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 2, 000;

In the third step, the objective is to ensure that the tuning knobs are correct,

based on the results of the previous step. Tuning consists of setting the DBMS knobs

to their maximum values, in function of the available resources.

In DBMS-X, little intervention was required to tune CPU, memory and storage.

In fact, all the major commercial DBMS provide automatic resource management

features to minimize human intervention [4]. A required intervention was tuning the

Maximum Connections knob to cope with 2, 000 concurrent requests. The results

show that DBMS-X passes the test accepting and committing all transactions with

low response time degradation.

In the case of PostgreSQL, the Maximum Connections knob was fixed in 2,000

concurrent connections, which is the expected value for this test. In fact, the setup

value of this knob depends on some of the Buffer Pool variables, which correspond to

the size of the shared buffers used by each new connection. We set the shared buffers

parameter with respect to the rules of thumb of the DBMS.

From this third step on, we set the shared buffers parameter to the maximum

value of 32,768. Every time this parameter is set, we require to evaluate the corre-

lated kernel parameter SHMMAX. This kernel parameter specifies the largest shared

memory segment size for both OS, Linux and FreeBSD. According to the PostgreSQL

documentation, the following formula is recommended to calculate this value:

𝑆𝐻𝑀𝑀𝐴𝑋 = (250𝑘𝐵 + 8.2𝑘𝐵 * 𝑠ℎ𝑎𝑟𝑒𝑑_𝑏𝑢𝑓𝑓𝑒𝑟𝑠 + 14.2𝑘𝐵 *𝑚𝑎𝑥_𝑐𝑜𝑛𝑛)

In this third step, PostgreSQL took 2 seconds to treat all the 2,000 submitted

transactions, preserving the same response time observed at step 2. However, it

generated an important number of 596 error messages during the execution: 231 in

74

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o

n
n

e
c
ti
o

n
s

Seconds

Step 4 - PostgreSQL

Accepted Finished Rejected

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8

C
o

n
n

e
c
ti
o

n
s

Seconds

Step 4 - DBMS-X

Accepted Finished Rejected

Figure 3-2: Number of Different Connections vs. Elapsed Time Under Robustness
Test (Step 4).

the first second and 365 in the second one. We do not observe any degradation on

the OS resource consumption. From the functional point of view, this is considered

as a defect, since the observed number of connections differs from the expected one.

Indeed, we observe an increasing number of new backend processes created by

each new transaction request. To create a backend process, besides getting a piece

of shared-memory, PostgreSQL manages the state of each process within an array.

When it takes a large number of requests, due to the Maximum Connection setup, the

backend processes fill out the array and eventually overtake its limit. Consequently,

the new backend processes are dropped and the objective of Maximum Connections

= 2,000 is never reached (Research Question RQ2).

Another important result is the test boundary established in this step. When |𝑇 | =

1, the submitted load is bounded by the resources of the lone tester machine, which can

only submit 1,000 requests per second without compromising its performance. While

we could increase the 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑, the results of PostgreSQL would not be different

from the ones presented here. To effectively reach a larger number of 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑

requests and reach a stress load, a distributed test approach is necessary.

3.4.2.4 Step 4

Objective: Robustness Test.

Parameters: |𝑇 | = 10; 𝑀𝑎𝑥_𝑐𝑜𝑛𝑛 = 2, 000; 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 20, 000;

75

In this step, we explore the robustness of the DBMS upon a stress load with

Maximum Connections = 2,000. As for the second step, the expected result is the

DBMS finishing all the accepted transactions with the remaining average response

time around 1 second.

From the previous results, we conclude that PostgreSQL cannot handle 2, 000

concurrent transactions. The entire test ran during 15 seconds and the submission

of requests lasts up to 11 seconds. Figure 3-2 shows a nonlinear behavior of Post-

greSQL, which initially accepts around 200 requests and takes 3 seconds to treat

them. PostgreSQL accepts almost 500 requests and treats them in the following sec-

onds. Analyzing the OS health, we diagnosed that the system becomes CPU-bound

while handling the submitted load. However, the memory usage remains low, since

the accepted requests never reach the expected Maximum Connections. At the end,

the average response time is twice as much as the baseline time (Step 2).

We also diagnosed that the accepted requests produce more modifications in disk

pages. When some request performs a modification, PostgreSQL grants an exclusive

lock. Then, the backend process, which is responsible for such request, requires to

lock other backends, trying to extend the disk pages concurrently. This process is

executed at every locking attempt, causing an important number of context swaps,

one for each request.7 From the presented slopes, the number of accepted requests are

not too different from Step 2. However, the behavior of PostgreSQL becomes chaotic

without any stability in the response time. From the testing point of view, this is

a defect : PostgreSQL should have a similar behavior as the one observed at Step 2,

rejecting the exceeding requests and taking care of the accepted ones.

In DBMS-X, the entire test run in 8 seconds with a stable response time for

transactions. DBMS-X finishes all the accepted transactions within an average re-

sponse time of 1 second (in Figure 3-2 the behavior of the “Finished” slope follows the

“Accepted” one). However, DBMS-X only accepts 67.39% of the concurrent requests,

never reaching the expected Maximum Connections, even with the same resource con-

sumption of the earlier steps. When DBMS-X gets closer to the expected Maximum

7The requests are managed into the buffer manager.

76

 0

 1000

 2000

 3000

 4000

 5000

 5 10 15 20 25 30 35 40 45 50

C
o

n
n

e
c
ti
o

n
s

Seconds

Step 5 - PostgreSQL

Accepted Finished Rejected

 0

 1000

 2000

 3000

 4000

 5000

 5 10 15 20

C
o

n
n

e
c
ti
o

n
s

Seconds

Step 5 - DBMS-X

Accepted Finished Rejected

Figure 3-3: Number of Different Connections vs. Elapsed Time Under Stress Test
(Step 5).

Connections, it starts issuing a network error message. In DBMS-X’s documentation,

this message is due to two main reasons: a network misconfiguration (e.g., wrong SQL

URL, port, or IP address) or a network backend process issue (e.g., offline process,

network port is closed, network or hardware failure). In earlier steps this message is

never issued, therefore from a functional point of view, such inability of reaching the

expected Maximum Connections is a defect.

3.4.2.5 Step 5

Objective: Stress Test.

Parameters: |𝑇 | = 10; 𝑀𝑎𝑥_𝑐𝑜𝑛𝑛 = 2, 000; 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 200, 000;

Figure 3-3 illustrate the elapsed times for the experiments. In PostgreSQL, sim-

ilarly to Steps 2 and 4, we observe that the number of accepted and finished trans-

actions were much smaller than the rejected ones (2.79% accepted/finished with an

average response time of 5 seconds). We notice that it accepts and finishes a uniform

number of transactions until the 14th second when a thrashing state begins (i.e. in

this state, a large amount of computer resources is used to do a minimal amount of

work, with the system in a continual state of resource contention).

In addition, we observe at the 35th second that PostgreSQL enters a failure state

and refuses any new connection attempt. From code coverage analysis, we notice

that two particular code parts are more exercised compared to Step 4: the free space

77

 0

 20

 40

 60

 80

 100

1 2 3 4 5

U
sa

g
e

ra
ti

o
 (

%
)

Step

GNU/Linux FreeBSD

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 3 4 5

U
sa

g
e

(M
B

)

Step

GNU/Linux FreeBSD

Figure 3-4: PostgreSQL’s Resource Consumption at Each Step.

check on pages and the buffer page code. When a transaction is about to update

the database, PostgreSQL tries to find free space in data files either by seeking pages

with enough free space or extending the data file itself with more pages. At stressing

stages, PostgreSQL is not capable of managing a large number of requests for finding

such free space. Hence, it starts issuing “InvalidBuffer” messages. This behavior

is considered as a defect, since the disk has available space with low throughput of

18M of writing operations, which is not too different compared to Step 3 with 14M of

writing throughput. Furthermore, this result validates our claim that STEM is helpful

to push the SUT to its performance limit and reveal load-related defects (Research

Question RQ0).

In DBMS-X, we observe a similar response time compared to Step 4 of 1.1 seconds,

even accepting only 15.39% of the requests. DBMS-X shows the same behavior as Step

4 rejecting new requests. It also does not reach the expected Maximum Connections

of 2,000, but provides a low response time for transactions and never switches to a

thrashing state.

3.4.3 Influence of Experimental Variables

Along with the experimentation, we analyze the health of the OS as well as the net-

work traffic to evaluate whether they influence the testing results (Research Question

RQ1). We use the “dstat”, “slabtop”, and “netstat” tools to provide complete infor-

mation about CPU, memory (including kernel cache information), network, and disk

78

consumption. In the DBMS-X tests, we observe a steady resource consumption, es-

pecially at Steps 2, 4, and 5 that provide heavier workloads. Therefore, we consider

they did not interfere in the test results.

In the PostgreSQL tests, we execute it on top of two different OS (GNU/Linux

and FreeBSD), since we do not observe a steady resource consumption. Both OS are

known to be robust upon heavy load conditions. Table 3.3 shows that the system

becomes CPU-bound only upon peak conditions at Steps 4 and 5, with PostgreSQL

rejecting a large number of requests and delaying the response time. Figure 3-4 shows

that the CPU consumption increases from Step 1 to 5, 360% on GNU/Linux and 308%

on FreeBSD. This growth is not only due to admission control, but also to manage

a larger number of accepted transactions. PostgreSQL uses a multiprocess model to

handle transaction requests. Naturally, the more requests it receives, the more CPU

it consumes.

We investigate whether some other OS resources are contributing to the faulty

behavior. In fact, the memory consumption increases at different steps (see Figure 3-

4), but the overall consumption is not high compared to DBMS-X. Actually, the

CPU was the only resource affected by the incremental workload due to context

switches in transaction management, while the consumption of the other resources

remained constant during the tests. In addition, networking results present a small

deviation with only a small impact of received and sent packages. For instance, the

amount of sent packages from Steps 3 to 5 increases from 250K to 320K. The I/O

throughput does not increase too much as well, with writing operations ranging from

14M at Step 3 to 18M at Step 5. With memory essentially free, low I/O throughput

and networking, we observe the testing results are not influenced when STEM is

incremented.

3.4.4 Discussion

Our experiments answered the Research Question RQ0, which states that we can

analyze the test results through log files (DBMS-X) or code coverage (PostgreSQL).

Through log files, we treat the DBMS as a black-box by analyzing its output traces

79

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5

C
o
v
er

ag
e

ra
ti

o
(%

)
Step

Page
Free Space

Trans. Manager

Figure 3-5: PostgreSQL’s Code Coverage.

with respect to the documentation. In addition, we analyze the expected performance

metrics compared to the observed one at different steps. In this way, we identified

the DBMS-X’s defect on the network backend process.

The code-coverage approach provides a fine grained manner to reach and under-

stand the source of the defect. We also use it for validating that STEM exercises parts

of the system that would never be covered otherwise. As illustrated by Figure 3-5,

code-coverage increases mainly at Steps 4, and 5 where a large number of transactions

were submitted. In particular, STEM allows to force many robustness mechanisms to

be exercised and tested. These limit cases are precisely those that may occur under

real large-scale conditions.

STEM presents three advantages compared with the current testing approaches

that are similar to Steps 1 to 3 executed directly and without an incremental approach.

First, the methodology for implementing and executing the tests is simple. Second,

we can diagnose the root of the defects, and under which precise execution conditions

the defect can be reproduced. The isolation of the execution conditions that may

provoke a defect is especially crucial for diagnosing a problem and fixing it. Third,

the incremental approach was able to expose different defects at each step.

Research Question 1 considers that different workloads exercise different parts of

the code. This question is verified for PostgreSQL along with all test steps in two

ways, one with the original source-code and another with an instrumented source-

code, which generated code coverage information. After analysis, this information

80

revealed that the more the workload increases, the more code is exercised. In DBMS-

X, we analyzed whether different log file entries appear. Our results show that the

network backend process only issues error entries when treating large workloads.

Research Question 2 considers that, if the DBMS manifests an unexpected be-

havior on different OS or the OS resource consumption remains steady, then the OS

has no effect on the test results. This question is verified for PostgreSQL, which had

similar behavior on Linux and BSD. Moreover, system monitoring tools revealed a

steady resource consumption for network, disk I/O, and memory. One could argue

that Linux and BSD share part of their code, specially network, and a same defect

could be present on both OS. Whether this could be possible, it is rather unlikely,

since the PostgreSQL unexpected behavior revealed in Step 4 is not reproduced by

DBMS-X.

Research Question 3 considers that the DBMS under test should not use all al-

located resources. The rationale behind this question is that we should not stress

the OS, otherwise identifying the source of an abnormal behavior would be complex.

This question is verified at the stress test (Step 5), where 200,000 transactions are

sent. Monitoring tools reveal that both DBMS never reach their configuration limits,

whereas the OS performance presents low impact on the overall results.

3.5 Conclusion

In this chapter, we presented STEM, a stress testing methodology for traditional

DBMS. We can draw many interesting findings from the experimental results after

applying STEM. First, stress testing requires a distributed testing approach, where

multiple test drivers are deployed across a cluster machine to submit a large number

of transactions. The single driver approach, used in the related work, bounds the

size of the load, thus leading to a classical functional test. The execution of STEM is

straightforward, but in contrast to related work, requires many machines to execute.

Actually, a classical functional test would only discover the PostgreSQL’s defect found

at an early step of STEM without any trace of a lower/upper bound number of

81

accepted or rejected transactions. The defect happens due to a size limitation of an

internal array that is responsible for managing backend processes. Upon concurrent

requests, the array fills out quickly, thus preventing the treatment of new processes

(including new transaction requests). A better approach would bound the size of

such array by a related DBMS configuration parameter as expected from the DBMS

documentation.

Second, traditional DBMS are tightly coupled with performance tuning in or-

der to boost performance. STEM looks after this matter by its incremental testing

approach. That is, STEM combines incremental tuning to address burgeoning trans-

action workloads.

Finally, the incremental approach was able to expose different defects in Post-

greSQL at each step and a defect within the network backend process of a leading

commercial DBMS. When DBMS-X gets closer to the expected maximum number of

concurrent connections, it starts issuing an unexpected network error message. From

its documentation, such message is due to network misconfiguration (e.g., wrong SQL

URL, port, or IP address) or a network backend process issue (e.g., offline process,

network port is closed, network or hardware failure).

82

Chapter 4

Model-based Database Stress Testing

4.1 Introduction

In this chapter we present MoDaST (Model-based Database Stress Testing), a novel

model-based approach to reveal potential non-functional defects in DBMS, specially

NewSQL. MoDaST focuses on testing performance of DBMS with dynamically chang-

ing workload levels. MoDaST leverages a state machine model in order to mimic

different workload levels. This model drives a database system across five observable

states: Warm-up, Steady, Under-Pressure, Stress, and Thrashing. The advantage

compared to other testing tools is that the state machine model allows users to infer

and explore internal states of a DUT even if only black-box testing is available. In

addition, users may change the workload levels in order to challenge the DUT for dif-

ferent test objectives. For instance, pinpoint performance loss conditions or thrashing

states.

The main difference from STEM to MoDaST is that the earlier focuses on the

relationship between workloads and system tuning, while the latter focuses on driving

the system to particular performance states. NewSQL is mostly based on the “no

knobs” approach, which means less human interference in system tuning.

The remainder of this Chapter is organized as follows. Section 4.2 describes our

model-based approach to database stress testing. Section 4.6, we report the results

of the experiments. Section 4.7 concludes with future directions.

83

4.2 MoDaST

MoDaST consists of the database state machine (DSM) and a test driver. DSM

represents a set of observable states of a DBMS and its transition function (Figure 4-

1 shows an overview). The test driver defines workload models of each state and

commences performance testing by giving a specific amount of workload to a DUT.

Database
State Machine

Database
Under Test

Test Driver

Workload
Model

Performance
Inputs

Workload

Results

Figure 4-1: Overview of MoDaST (Model-based Database Stress Testing) approach.

Then, the driver observes the current performance data of the DUT and figures out

state transitions by giving the data to DSM. The remainder of this section describes

the details of DSM, test driver, and performance degradation prediction.

4.2.1 The Database State Machine (DSM)

The Database State Machine (DSM) models how a DUT behaves at given workload

levels. In particular, DSM focuses on representing observable states of a DUT with

respect to performance (i.e., performance behaviors). The behaviors of a DUT can be

represented by the following five states: Warm-up (𝑠1), Steady (𝑠2), Under Pressure

(𝑠3), Stress (𝑠4), Thrashing (𝑠5). Figure 4-2 shows DSM and Definition 3 formally

defines of DSM and its corresponding states.

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

Figure 4-2: The Database State Machine (DSM). This model represents observable
states of a DUT with respect to performance behaviors.

Definition 3. The Database State Machine (DSM) denoted as T, is a 5-tuple (𝒮, 𝑠1,ℱ , 𝛽, 𝜏)

where:

84

∙ 𝒮 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5} is a set of states,

∙ 𝑠1 ∈ 𝒮 is the initial state,

∙ ℱ ⊂ 𝒮 is the set of final states, where ℱ = {𝑠5} in DSM,

∙ 𝛽 is the set of performance inputs defined in Definition 4,

∙ 𝜏 a state transition function defined by Definition 8.

The detailed information about every state is available in Section 4.2.1.2. To

describe each state in detail, it is necessary to define the performance inputs, 𝛽, of

DSM. Based on the performance inputs, DSM determines state transitions, 𝜏 , in a

DUT. 𝛽 (performance inputs) and 𝜏 (transition function) are defined in Definitions 4

and 8, respectively.

4.2.1.1 Performance Inputs

DSM takes three different performance inputs from a DUT to infer its current internal

state. The inputs, 𝛽, is the set of 1) performance variation, 2) transaction throughput,

and 3) performance trend as described in Definition 4.

Definition 4. The Performance Inputs, denoted by 𝛽, is a tuple of three per-

formance variables: 𝛽 =< ∆, 𝛿, 𝜙 >, where ∆ is the performance variation (Defini-

tion 5), 𝛿 is the transaction throughput (Definition 6), and 𝜙 is the performance trend

(Definition 7), respectively.

Performance variation, denoted by ∆, represents the stability of the SUT.

MoDaST makes 𝑛 observations and computes the dispersion of the number of trans-

actions treated per second for each observation (see 𝑦-axis in Figure ??). For example,

if ∆ → 0 after 𝑛 observations, the DUT is processing a steady number of incoming

transactions.

85

Definition 5. Performance variation, ∆, is the dispersion of the number of treated

transactions per second and formally defined as:

∆ =

⎯⎸⎸⎷ 1

𝑛− 1

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝜇)2, (4.1)

where 𝜇 = 1
𝑛

∑︀𝑛
𝑖=1(𝑦𝑖)

Transaction throughput, denoted by 𝛿, is the proportion between the number

of transactions treated and requested per second. This metric defines the upper bound

number of transactions in concurrent execution with steady behavior. For example, if

𝛿 → 1 across a number of performance observations, the DUT is successfully treating

most of the requested transactions.

Definition 6. Transaction throughput, denoted by 𝛿, is the proportion of the trans-

actions treated per second (𝑦) by the number of transactions requested (𝑧):

𝛿 =
𝑦

𝑧
(4.2)

Performance trend, denoted by 𝜙, is a metric explaining the expected perfor-

mance slope of the DUT within a certain timeframe (i.e., implemented by a sliding

window). To compute the performance slope, we use the least square method to

approximate the running time (𝑥-axis) and the throughput (𝑦-axis). As shown in

Figure 4-3, 𝜙 is the distance between the current observation timestamp and the

expected timestamp when the DUT’s throughput converges to 0 (i.e., 𝛿 = 𝑦/𝑧 = 0,

where 𝑧 ̸= 0). Section 4.2.2 describes how to compute the distance in detail.

Definition 7. Performance trend is a function defined as

𝜙 = 𝑥′ − 𝑥 (4.3)

where 𝑥 is the current time and 𝑥′ represents the point that the tangent line crosses

86

X	
 X’	

ϕ	

Submitted	

Treated	

Trend	

States	

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd

(T
PS

)	

	

Performance slope 	

Least	

Square 	

Sliding 	

Window	

	

∆	
 <	
 tw	
 	

	

	
 δ	
 >	
 ts	
 	
 	
 	
 	
 	
 	
 ¬(δ	
 >	
 ts)	
 	
 	
 	
 	
 	
 	
 ∆	
 <	
 tst	
 	

	
 	

¬(∆	
 <	
 tw)	
 	

Time (seconds)	

Figure 4-3: DSM and its performance inputs. The X-axis is time in seconds and the
Y-axis represents transactions per second. This shows relationships between perfor-
mance inputs and states in DSM.

the time axis.

4.2.1.2 States

DSM has five states as shown in Definition 3. These states represent internal perfor-

mance behaviors of a DUT. The following paragraphs describe each state in detail.

Different DBMS may assume different values for each threshold.

State 1 — Warm-up: This state is the startup process1 of the DUT. In this

state, the DUT initializes internal services such as transaction management service.

Although some transactions can be treated during the state, its performance is not

stable since the DUT focuses on initialization and filling memory caches. DSM defines

the Warm-up state by using performance variations (∆ in Definition 5) since it reflects

the internal memory status of a DUT.

DSM assumes that a DUT is in the Warm-up state if ∆ is not converging to 0

after the startup of the DUT. In other words, ¬(∆ < 𝑡𝑤), where 𝑡𝑤 is the warm-up

1Microsoft SQL Server - Buffer Management, http://technet.microsoft.com/

87

threshold value. Otherwise (i.e., ∆ < 𝑡𝑤 holds), the transition to the next state (i.e.,

Steady) is triggered. Section 4.5 explains how to determine the value.

State 2 — Steady: a DUT goes to this state if its performance variation, ∆, is

converging to 0. Once the DUT is in this state, it never comes back to the Warm-up

state again since all the internal services are already initialized and running. In ad-

dition, the memory cache of the DUT is filled to provide an expected performance,

which indicates that the DUT can correctly treat most of incoming transaction re-

quested by clients in time. Specifically, this can be represented as 𝛿 > 𝑡𝑠, where 𝑡𝑠 is

the steady threshold value.

State 3 — Under Pressure: This state implies that a DUT is on the limit of

performance. The DUT goes to the state if 𝛿 approaches to zero, which means that

a set of unexpected workload is coming to the DUT. The unexpected workload in-

cludes workload shifts and sudden spikes (e.g., Black Friday or Christmas) that affect

performance [80, ?, 35]. In this state, the DUT can still deal with the similar amount

of transactions processed in the previous state (Steady). However, it cannot properly

treat a certain amount of transactions in time since the total amount requested by

clients is beyond the limit of the DUT. Although this situation can be transient, it

might need an external help from the DB administrator (DBA) to go back to Steady.

For example, DBA can scale up the DUT’s capability or reject a certain amount of

the incoming transactions until the workload decreases to an acceptable amount (i.e.,

𝑧 → 𝑦 and 𝛿 > 𝑡𝑠).

State 4 — Stress: a DUT goes into this state when the number of transactions

requested by clients is beyond the performance limit. This state is different from the

Under Pressure state since the performance variation (i.e., ∆) increases. The DUT in

this state is highly vulnerable to crash if no external help is available. For example,

DBA should consider additional solutions such as adopting database replica, adding

more cluster machines, or killing long running transactions (normally triggered by

bulk loads). If an appropriate solution is performed, the DUT can go back to the

Under Pressure state and ∆ < 𝑡𝑠𝑡, where 𝑡𝑠𝑡 is the stress threshold value.

State 5 — Thrashing: This state represents that a DUT uses a large amount of

88

Table 4.1: Threshold values for state transitions.

Target State
States 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑠1 ¬(∆ < 𝑡𝑤) ∆ < 𝑡𝑤 - - -
𝑠2 - 𝛿 > 𝑡𝑠 ¬(𝛿 > 𝑡𝑠) - -
𝑠3 - 𝛿 > 𝑡𝑠 ¬(𝛿 > 𝑡𝑠) ∆ > 𝑡𝑠𝑡 -
𝑠4 - - ¬(∆ > 𝑡𝑠𝑡) ∆ > 𝑡𝑠𝑡 𝜙 < 𝑡𝑡ℎ
𝑠5 - - - - 𝜙 = 0

computing resources for a minimum number of transactions. The DUT experiences

resource contention and cannot deal with any new transaction in this state. Once a

DUT goes to this state, it is not possible to come back to the previous state since any

external intervention is useless. DSM detects the transition to the Thrashing state if

𝜙 < 𝑡𝑡ℎ, where 𝑡𝑡ℎ is the thrashing threshold value. Predicting the thrashing state is

explained in Section 4.2.2.

4.2.1.3 State Transitions

The state transition function, 𝜏 , determines whether a DUT changes its internal

state based on observed performance data. This function takes performance input

𝛽 =(< ∆, 𝛿, 𝜙 >) from the test driver and returns the next state 𝑠 ∈ 𝑆 as described

in Definition 8.

Definition 8. The state transition function, 𝜏 , is defined as:

𝜏 : 𝒮 × 𝛽 → 𝒮 (4.4)

where ∀𝑠 ∈ 𝒮,∃𝑝 ∈ 𝛽 and ∃𝑠′ ∈ 𝒮|(𝑠, 𝑝) → (𝑠′).

In each state, the DSM examines the current values of performance inputs and

compares the values with the threshold values2 (i.e., 𝑡𝑤, 𝑡𝑠 and 𝑡𝑠𝑡). Table 4.1 sum-

marizes the performance constraints for state transitions.

2The values used in the experiments are specified in the GUI since it is variable depending on
the DUT.

89

4.2.2 Predicting the thrashing state

In addition to performance testing, MoDaST allows predicting thrashing states, be-

fore the DUT crash. This indicates the time remaining until the DBMS out-of-service

while allows DBA taking precautions to avoid the service crash. Another advantage

is to forecast resource contention or over-consumption, since DBMS may waste com-

puting resources in the thrashing state.

The first step to predict the Thrashing state is computing the performance slope.

MoDaST uses the Least Squares method [15] that approximates the relationship be-

tween independent (𝑥) and dependent variables (𝑦) in the form of 𝑦 = 𝑓(𝑥). 𝑥 is the

time each second and 𝑦 denotes the corresponding throughput at time 𝑥. It allows the

computation of the three required coefficients (i.e., 𝑎0, 𝑎1 and 𝑎2) for the quadratic

function (see Equation 4.5). Our approach computes the coefficients by using recent

𝑝 observations3 of (𝑥, 𝑦) (i.e., sliding window). Once we have the quadratic function,

it is possible to estimate the performance slope as shown in Figure 4-3.

𝑓(𝑥) = 𝑎0𝑥
2 + 𝑎1𝑥 + 𝑎2 (4.5)

Once the performance slope is identified, it is possible to determine the tangent

line. The tangent line can be computed by applying the derivative 𝑓 ′(𝑥) considering

the current observation 𝑥𝑖. Using the tangent projection in the axis 𝑥, MoDaST

can estimate the performance trend, 𝜙, according to Definition 7. If the value is

converging to the thrashing threshold (𝑡𝑡ℎ), we can assume that DUT may crash at

any moment (i.e., transition from the stress to thrashing state).

4.2.3 Test Driver

The Test Driver (TD) is built on top of the PeerUnit distributed testing frame-

work [24]. PeerUnit allows building and executing distributed test cases, which are key

features for stress testing. Figure 4-4 presents the internals of PeerUnit and the stub

for implementing the TD test case. Basically, a test case is a Java TestingClass

3𝑝 is defined by the least squares correlation coefficient [15]

90

1..*

TestingClass

1..*
+execute(MethodDescription)
+kill()

<<interface>>
Tester

+setTester(Tester)
+getTesterName(): Integer

<<interface>>
TestCase

+put(Integer, Object)
+get(Integer) : Object
+kill()

TestCaseImpl

-bootCentralized(Registry)
-bootBTree(Registry)

TestRunner

Figure 4-4: H-Tester Test Driver based on the PeerUnit testing framework [24].

class that is executed by distributed nodes (called Testers) and coordinated by dis-

tributed test harness algorithms [26, ?]. Locally at each “Tester”, the TestRunner

class is the execution engine for reading and invoking code statements from the test

cases. A Tester can be accessed by the Tester interface when a test case extends

the TestCaseImpl class. The TestCaseImpl class provides a set of generic op-

erations to take advantage of the features provided by PeerUnit. For instance, it

provides an interface for exchanging messages among Testers (i.e., put(k,v) and

get(k)) or dropping DUT nodes (i.e., kill()). This interface is particularly conve-

nient for gathering performance metrics from both the DUT nodes and the running

Testers. TD also offers log traces for “post-mortem” analysis, such as: exceptions and

memory leak traces.

Listing 4.1: TestingClass code snippet of MoDaST

1 public class DSM extends TestCaseImpl{

2 /* Controls the workload with the workload distribution

3 and provides access to the DUT*/

4 Distribution dist = new DistributionFactory(’zipf’);

5 Statistics stats;

6 Stack<Threshold> succ, pred;

7 /*Set a timeout for the test*/

8 Integer testTerm = gui.getTestTerm();

9

10 @BeforeClass(...)

11 public void startUp() {

12 /*Start gathering statistics*/

13 stats.start();

14 ...

91

15 /*Create the states stacks and inform the thresholds given by the GUI*/

16 succ = new Stack<Threshold>();

17 succ.addAll(gui.getThresholds());

18 pred = new Stack<Threshold>();

19 /*In this call we start the DUT and the workload submission*/

20 dist.run();

21 }

22

23 @TestStep(timeout = testTerm, ...)

24 public void transitionMonitor() {

25 Threshold actual=succ.pop();

26 while(!succ.empty())

27 /*Check the statistics if the actual state overtakes any threshold */

28 if(isStateTransition(actual, stats)){

29 /* If moving to the next state, store the actual state

30 otherwise retrieve former states*/

31 if (moveForward()){

32 pred.push(actual);

33 }else{

34 succ.push(actual);

35 succ.push(pred.pop());

36 }

37 actual=succ.pop();

38 }

39 ... // sleep a while

40 }

41 assert.Fail();

42 ...

Listing 4.1 presents the code snippet for the TD TestingClass. The method

startUp() is meant to initiate the internal services, the DUT and the workload

submission. At each iteration, a given workload is submitted to the DUT (Line 20)

and bounded by the performance constraints.

The method transitionMonitor() reads monitoring information from the

DUT and the underlying OS to check the performance constraints. Once the DUT

cannot hold one of the constraints any longer (Line 28), TD considers that a state

transition has happened. TD controls the state transitions by pushing and popping

state labels into two stacks Stack<Threshold>: one for the transited states and

another for the upcoming states (Lines 31 to 37). For instance, coming back from

Under pressure to Steady state requires popping the state label from the prev stack

92

Table 4.2: Workload cases for the test driver. Workload case #1 creates a high
workload in terms of connections; Workload case #2 focuses on transaction flooding.

Workload Case #1 Workload Case #2
step conn trans tps conn trans tps
1 10 1 10 10 10 100
2 20 1 20 10 20 200
...

...
...

...
...

...
...

n c 1 c * 1 10 x 10 * x

and pushing to the succ stack.

The test driver generates two different types of workload as shown in Table 4.2.

Since the performance of a database system can be affected by both the number of con-

nections and transactions, it is necessary to test both the connection and transaction

management modules. cases: connection and transaction. The goal of the workload

cases is to determine the different workload levels that the DUT can deal with. From

the database point of view, the connection module is responsible for handling the

incoming database connections. It limits the number of concurrent connections that

the DBMS can treat. On the other hand, the throughput is a consequence of how the

transaction module deals with the incoming transactions. We designed the following

two workload cases in order to test these two modules.

4.3 Research Questions

We established the following research questions to systematically evaluate the effec-

tiveness of our approach.

∙ RQ0: Does DSM properly reflect performance behaviors of a DUT?

∙ RQ1: How much does our approach cover the source code of a DUT (i.e., code

coverage)?

∙ RQ2: Does our approach find defects?

∙ RQ3: Can our approach predict performance degradation (e.g., the thrashing

state)?

93

RQ0 is a baseline question since our approach assumes that a DUT follows DSM

described in Section 4.2.1. If the DUT does not follow DSM, the subsequent research

questions may not remain effective. In particular, DSM affects both 1) exploring the

code coverage of each state and 2) predicting the thrashing state up front.

RQ1 is selected since our motivation described in Section 1.1 assumes that some

execution paths in DBMS source code can be explored only when a certain amount

of workload is requested. In addition, it is necessary to examine the code coverage

of each module since it is important to figure out which module has functionality for

stress conditions.

RQ2 is correlated to RQ1; if our approach can explore more lines of a DUT’s

source code by submitting different levels of workload, we may find new defects lo-

cated in functions dealing with stress conditions. The defects may include both

non-functional and functional.

RQ3 examines whether our approach can predict the thrashing state before a

DUT crashes. This RQ is necessary because performance prediction is one of the

advantages when using MoDaST. If the prediction is available, DBA can apply several

solutions for preventing DBMS crashes.

4.4 Subjects

Table 4.3 lists the subjects used in our experiments presented in Section 4.5. We

applied our approach to two DBMS; VoltDB and PostgreSQL. MoDaST is specially

designed to assess non-functional requirements of NewSQL, however it can also be

applied in traditional DBMS without taking into consideration the tuning knobs.

Section 4.5 shows that is possible to infers the DBMS states in both cases, with

interesting findings related to the fact that traditional DBMS is easily pushed to the

performance limits without any tuning process.

94

Table 4.3: DBMS used in our experiments. “Size” represents the lines of code in
thousands (KLOC). “Versions” is the version of DBMS selected in the experiments.
“Feature” represents the storage strategy of each DBMS.

Subject Size (KLOC) Versions Features
VoltDB 403 4.5 In-Memory

PostgreSQL 757 8.3 Disk oriented

4.5 Experimental evaluation

We conducted several experiments to answer the research questions explained in Sec-

tion 4.3 based on the following procedure. The experiment procedure has four steps:

1) Submit the workload case described in Section 4.2.3, 2) Analyze the execution

results based on the RQs, 3) Collect the code coverage data, and 4) Proceed to the

comparative study.

The experiments are executed on a HPC platform [93]. We used two different

configurations: 1) 11 machines for PostgreSQL (one DBMS server and ten testers)

and 2) 13 machines for VoltDB (three DBMS server and ten testers). Each machine

has dual Xeon X5675@3.07GHz with 48GB of RAM, which runs Debian GNU/Linux

and connected by a Infiniband QDR (40Gb/s) network. Our approach is implemented

in Java.

We used the database schema and the transaction specification defined by TPC-

B benchmark4. TPC-B provides four tables that implement a hypothetical bank.

The bank has one or more branches and each branch has multiple tellers. The bank

has many customers, each with an account. The transaction represents a customer’s

deposit or withdrawal.

To collect the code coverage information of PostgreSQL, we used the GNU/Gcov

tool5, which is supported by default by the DBMS. For VoltDB, the code coverage is

measured by JaCoCo6, since the DBMS is implemented in Java.

The threshold values are specified in Table 4.4. Since VoltDB is an in-memory

database, the warm-up process is basically instant and not substantial. The thrashing

4http://www.tpc.org/tpcb
5https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
6http://www.eclemma.org/jacoco/

95

Table 4.4: Threshold values for the state transitions. VoltDB does not need values for
the warm-up and thrashing states since this DBMS does not experience these states.

PostgreSQL VoltDB
𝑡𝑤 0.1 –
𝑡𝑠 0.9 0.9
𝑡𝑠𝑡 0.1 * 𝑡𝑝𝑠𝑢𝑝 0.1 * 𝑡𝑝𝑠𝑢𝑝
𝑡𝑡ℎ 1 –

state is not observed on the VoltDB. The 𝑡𝑠 threshold is limited by 90% of the trans-

action rate acceptance and the 𝑡𝑠𝑡 is limited by 10% of the transaction acceptance

rate compared to the previous state (i.e., Under Pressure). For the 𝑡𝑡ℎ, we used one

second. The slide window is set to 60 observations (i.e., 𝑝 = 60).

4.5.1 Comparative Study

Several techniques aim to analyze the performance behaviors of database systems.

These techniques are known as benchmarks, as so, they focus on performance metrics

in order to compare different database systems 2.4.2. Thus, we conducted a compar-

ative study between MoDaST and a baseline technique to attest the effectiveness of

our approach. For that, we selected the TPC-B benchmark4 as the baseline technique

for two reasons: 1) it is considered a standard stress benchmark and 2) its “Residence

time” constraint (i.e., “90% of the transactions with a response time less than or equal

to two seconds”) is similar to the steady state in DSM. TPC-B imposes performance

constraints to ensure a stable condition to the DUT.

4.6 Results

In this Chapter, we present the results of experiments described in Chapter 4. This

section explains the four results: A) performance results, B) code coverage, C) defects,

and D) thrashing prediction.

96

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

8000"

9000"

States!

Th
ro

ug
hp

ut
!

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
!

Time !
(seconds)!

Submitted!
Treated!

δ! Δ!
Δ!

Thrashing)

t))))))))t+1)ϕ)

Δ < 0.1	

Δ = 0	

	

¬	
 (δ > 0.9)	

δ = 0.77	

Δ > 0.1 * tpsup	

Δ = 122, tpsup =740	

 	

Figure 4-5: Performance results of PostgreSQL.

4.6.1 Performance Results

PostgreSQL experienced all the states of DSM as shown in Figure 4-5. It presented an

unexpected behavior concerning the ability to maintain a stable performance. Dur-

ing the execution of the workload case #1, the test driver increased the number of

connections sequentially as described in Section 4.2.3. According to the specifica-

tion of PostgreSQL, it can process 2,000 concurrent connections (i.e., defined by the

MAX_CONNECTION configuration). However, the DUT could not deal with any

workload greater than 1,000 concurrent connections as shown in Figure 4-57. For the

workload case #2, the test driver increased the number of transactions with a fixed

number of connections. PostgreSQL’s behavior was more stable in this case and did

not reach the thrashing state. However, it stayed either in of the under pressure or

stress states.

VoltDB presented consistent results in terms of throughput stability. Thus, the

DUT was mostly either in the steady or under pressure states for both workload cases

(see Figure 4-6). However, the connection module was forced into stress state trigger-
7The thrashing state is only observable in the workload case #1.

97

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

8000"

9000"

States!

Th
ro

ug
hp

ut
!

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
!

Submitted!
Treated!

Time !
(seconds)!

δ! Δ!
¬	
 (δ > 0.9)	

δ = 0.89	

Δ > 0.1 * tpsup	

Δ = 119, tpsup = 956.5	

 	

Figure 4-6: Performance results of VoltDB.

ing a backpressure condition8 when applying the workload case #1. This condition

occurs when a burst of incoming transactions was sustained for a certain period of

time. This period must be sufficient to make the planner queue full. More information

about this condition will be described in Section 4.6.3.

The baseline approach considers a performance constraint to ensure the DBMS

on the steady state during measurement time. This constraint is defined as the

“Residence Time”. It limits the test with the condition: “90% of the transaction with

a response time less or equal to 2 seconds”. Thus, it is not possible to explore any

stress condition of the DUT, since it never reached the under pressure nor the stress

states. In both workload cases, the baseline approach only contemplates the steady

state, by definition.

Answer to RQ0: MoDaST drove a DUT into each state of the DSM while the

baseline technique explored only two initial states.

8http://voltdb.com/download/documentation/

98

4.6.2 Code Coverage

Figure 4-7 shows the code coverage results of PostgreSQL. Three packages presented

a significant impact on the following modules: (i) Freespace that implements the seek

for free space in disk pages; (ii) Page that initializes pages in the buffer pool; and

(iii) Manager that implements the shared-row-lock. The coverage increased mainly

during the two last states: stress and thrashing. It occurs because those packages are

responsible for: 1) managing disk page allocation; 2) the transaction lock mechanism

to ensure ACID properties. This implies that the DUT executed a set of functions

dedicated to stress conditions since the DUT needs to allocate extra resources and to

deal with the high concurrency when the number of transactions increases.

VoltDB showed a notable improvement of code coverage results as shown in Fig-

ure 4-7, even though it was not significant compared to that of PostgreSQL. We

observed the improvement in two packages: org.voltdb and org.voltdb.sysproc. These

packages contain classes that manage the performance: the maximum number of con-

nections9 and transactions10. The package “org.voltdb.sysproc” is related to the basic

management information about the cluster.

The above-mentioned VoltDB classes were not covered when applying the TPC-B

since it was not able to generate race conditions. Basically, the warm-up and steady

states did not generate any concurrent condition. Similarly, the TPC-B could not

discover more execution paths of PostgreSQL compared to our approach.

Answer to RQ1: MoDaST allows to explore a larger part of source code of DUTs

than the baseline technique since a certain part of source code can be executed only

when pushing the DUT to a high workload.

4.6.3 Defects

During the experiments, we found two potential defects (one from PostgreSQL and

one from VoltDB) and one new unreported major defect (VoltDB)11.

9http://zip.net/bwpsFS
10http://zip.net/byptyG
11http://zip.net/bvptxQ

99

0	

10	

20	

30	

40	

50	

60	

70	

 C
ov

er
ag

e
(%

)	

States	

Page	

Free space	

Manager	

Figure 4-7: Code coverage results of PostgreSQL. This focuses on three major mod-
ules: Free Space, Page, and Manager.

We identified a performance defect of PostgreSQL, which is related to the inability

to deal with the incoming connections, mainly in the workload case #1. Actually,

the defect can be triggered either by transaction or connection flooding. PostgreSQL

implements a backend process to deal with the incoming clients. Each client keeps

one connection with the database. Thus, for each incoming connection, the DUT

starts a new backend process.

Moreover, each connection holds one or more transactions, which proceed to modi-

fications in the database. The modifications are made by insert and update operations

that compose each transaction. To ensure the consistency of the database, the DUT

must apply table locks. The DBMS configuration allows to set the number of con-

current connections (i.e., MAX_CONNECTIONS) up to the resources limitations.

In our experiments, the maximum value set for MAX_CONNECTIONS was 2,000.

Despite of this limit, the DUT was not able to reach the number of 2,000 open con-

nections at any time. As the number of connections/transactions increases, the DUT

spends most of the computational power dealing with the table locks instead of cre-

ating new backend processes. From the testing point of view, we consider a potential

defect.

The VoltDB experienced a backpressure condition by applying the workload case

100

0	

5	

10	

15	

20	

25	

30	

35	

 C
ov

er
ag

e
(%

)	

States	

org.voltdb	

org.voltdb.sysprocs	

Figure 4-8: Code coverage results of VoltDB. This focuses on org.voltdb and
org.voltdb.sysprocs packages. These packages are related to the concurrency
control and server management.

#2. The increasing number of submitted transactions, via JDBC interface12, fulfills

the planner queue limit (i.e., 250) and raised up the message below:

∙ (GRACEFUL_FAILURE): ’Ad Hoc Planner task queue is full. Try again.’

This can be considered a potential defect13, once the planner queue is waiting for

VoltDB planner. The planner became full and started to reject incoming operations.

This is essentially a different kind of backpressure conditions. It could be solved by

setting the planner queue limit according to the server available resource.

The code coverage also enabled to reveal a functional defect. Figure 1-2 shows

the code fragment where the defect was identified (Line 426). We reported this

defect14 to the developer community of VoltDB. This branch of code is responsible

for ensuring that the DUT does not accept more concurrent connections than the

maximum constraint allowed by the server resources. The defect rose up when our

approach led the DUT to the stress state, which exposed it to a race condition in

the connection module. The solution for this defect is to ensure that, even during

race conditions, the number of concurrent connections never goes beyond the limit.
12http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/
13http://zip.net/bmps8J
14http://zip.net/byptRy

101

Basically it should be guaranteed in the condition statement (i.e., IF) by replacing

“==” by “>=”. VoltDB developers created a bug report15 as a major defect and

already committed a patch16 to fix it immediately after our reporting.

Answer to RQ2: The MoDaST found and reproduced three potential defects

and one of them is confirmed as a major defect by the developers of VoltDB.

4.6.4 Thrashing Prediction

Our approach could predict the thrashing states of PostgreSQL. As shown in Figure 4-

5, the DUT went to the thrashing state after being in the stress state. However, due

the instability of the DUT, it crashed immediately (<< one second) after detecting

𝜙 < 𝑡𝑡ℎ. Thus, it is almost impossible to take any action to avoid such a state.

VoltDB never went to the thrashing state under the two workload cases. This

implies that 𝜙 >> 𝑡𝑡ℎ and the DUT was highly stable. It does not mean that our ap-

proach was not effective. Rather, MoDaST correctly performed thrashing prediction

for a stable DBMS. Due to the limitation of the experiment resources, we could not

significantly scale up the number transactions, but MoDaST may generate a huge

amount of workload to make the DUT go to the trashing state. This remains as

future work.

Answer to RQ3: The thrashing prediction was not accurate for two reasons:

the high instability of the PostgreSQL turned it to the thrashing instantly; the high

stability of VoltDB did not bring it to the thrashing.

4.7 Conclusion

In this Chapter, we presented a novel model-based approach to database stress testing,

MoDaST. It leverages a state machine to figure out the current internal state of the

DUT based on performance data. We evaluated MoDaST on two popular DBMS:

PostgreSQL and VoltDB. Although the goal for MoDaST is originally for testing

15https://issues.voltdb.com/browse/ENG-6881
16http://goo.gl/8FJJy7

102

NewSQL, we candidly tested PostgreSQL, with its setup tuned directly to its prime,

to show that MoDaST can be applied to any DBMS. The experiment results show

that MoDaST can successfully infer the current internal state of both DUTs based on

the state model. In addition, we found out that submitting a high workload can lead

to a higher code coverage. Consequently, we identified new defects in both database

systems. In particular, one of the defects is already confirmed and fixed by a VoltDB

developer since it is significant. A good deal of benefits can be drawn from MoDaST.

For test engineers, MoDaST offers a convenient driver to assess non-functional re-

quirements, including, performance, stability, or scalability. MoDaST can be plugged

to any DUT, including open-source and closed-source systems due to its black-box

nature. Test engineers will also find that the MoDaST stress testing model increases

code coverage in the task of finding defects. Although a higher code coverage does

not necessarily guarantee detection of defects, engineers can benefit from higher code

coverage to set up performance profiling, such as pinpointing performance limitations.

For instance, most DBMS have specific code paths for treating stress conditions (e.g.,

limiting concurrent connections), but those paths cannot be executed unless a certain

condition is met. MoDaST may help exercising exactly such condition.

For DBAs, MoDaST could be a powerful tool for “Stress” and “Thrashing” states

prediction in a dynamic monitoring. This prediction is particularly useful to pinpoint

performance limitations of DUT setups in running environment, such as machine

clusters. This is convenient when DBAs want testing new system releases before

deploying the database system into production.

103

Chapter 5

Under Pressure Benchmark

5.1 Introduction

In this Chapter, we present the Under Pressure Benchmark (UPB) to measure per-

formance loss imposed by the availability replication mechanism of NewSQL. UPB

measures the performance loss with different degrees of replication and failures. The

UPB methodology increases the evaluation complexity from a stable system scenario

up to a faulty system scenario upon different load sizes and replicas. The scenarios

are designed to evaluate the following different settings: (1) no fault tolerance, no

failures; (2) fault tolerance, no failures; (3) fault tolerance with failures. For each

scenario, the benchmark generates a set of partial metrics measuring the NewSQL

performance. These partial metrics are summarized to provide a unique availability

index. We conducted experiments applying our benchmark on two different high-

throughput in-memory DBMS: VoltDB and NuoDB.

UPB differs from STEM and MoDaST, mainly on its focus. UPB is designed to

be a benchmark. In the benchmarking context, UPB also differs from the related

work to our knowledge. While the related work measures performance for finding

the best tuning for a given workload, UPB measures performance loss when DBMS

activate the availability mechanisms of replication. Therefore, UPB sticks to our goal

of assessing non-functional requirements of DBMS. Here, they are performance and

availability.

105

This Chapter is structured as follows. Sections 5.2 and 5.3 present our bench-

mark and methodology, respectively. Section 5.6 describes our validation through

experimentation. Section 5.8 presents the conclusion.

5.2 UPB

The UPB benchmark is composed by two tasks: 1) defining the availability scenarios

and 2) executing the scenarios.

5.2.1 Defining the availability scenarios

We define scenarios that represent the set of possible states wrt. availability. The

scenarios are chosen based on the combination of values of two variables, as described

below:

1. Fault tolerance index (𝐾): quantity of "failed nodes" supported by the cluster

without service outage. The possible 𝐾 values are:

∙ 𝐾 = 0 (no fault tolerance): the service stops in presence of any node

failure.

∙ 𝐾 = 1, 2, ..., 𝑁
2
: 𝑁 represents the nodes that compose the DBMS cluster.

In this case, the DBMS supports failures in 𝐾 nodes. The values vary

between 1 to 𝑁
2
.

2. Number of failed nodes (𝐹).

∙ 𝐹 = 0: cluster without failures.

∙ 𝐹 = 1, 2, ..., 𝐾: cluster with 𝐾 "failed nodes". The failed values are

between 1 to 𝐾.

However, it is not necessary to have one scenario for all combinations of variable

values, since some scenarios cannot occur in practice. Table 5.1 shows possible

values of the variables, a short explanation and the relevance of each combination.

106

Since some values depend on the scenario, 𝑋 represents the values assumed by 𝐾 (

1 ≤ 𝑋 ≤ 𝑁
2

) and 𝑌 represents the values assumed by 𝐹 (1 ≤ 𝑋 ≤ 𝐾) in different

scenarios.

Table 5.1: Scenarios

Combination K F Relevance Comment
1 0 0 Yes Basis to scenarios comparison
2 0 Y Unfeasible 𝐹 > 𝐾
3 X 0 Yes Performance impact of fault tolerance mechanism
4 X Y Yes Performance impact of failures

Following the combination analysis, there are three interesting scenarios that will

be applied by UPB:

∙ Scenario (1) - combination 1: No fault tolerance (𝐾 = 0), no failures (𝐹 = 0);

∙ Scenario (2) - combination 3: Fault tolerance (𝐾 > 0), no failures (𝐹 = 0);

∙ Scenario (3) - combination 4: Fault tolerance (𝐾 > 0), failures (0 < 𝐹 ≤ 𝐾).

Since the values of 𝐾 and 𝐹 vary, each scenario has one or several steps to evaluate

all the possibilities.

According to [89], the overall performance of the DBMS varies about 2 percent

during the steady state. Before reaching such state, it is necessary to pass through a

warming period, preventing any unstable behavior.

Similarly to the TPC-C benchmark, the warming period is set up by the respon-

sible for applying the benchmark. The UPB performance measures must be the

transactions per second (𝑡𝑝𝑠) average during a period of 2 minutes in a steady state.

This period is defined empirically, with the objective to measure the system behavior

and to normalize possible punctual performance instabilities. The performance is

measured by monitoring the number of 𝑡𝑝𝑠, collected during the steady state.

To guarantee an accurate measurement, each client has a 𝑄 configuration to limit

their workload throughput (i.e., transactions per second). It prevents from having a

stressed environment on the client side (i.e., client contention), that could generate

107

an unstable performance. The maximum workload a client is able to submit with no

contention on the client side (i.e., the maximum value allowed for 𝑄) is represented

by 𝐿𝑐. To define 𝐿𝑐 we apply an iterative method:

1. Define the low load (𝑄) respecting the latency 𝜑;

2. Measure the performance (𝑡𝑝𝑠):

IF 𝑄 * 0.95 ≤ 𝑡𝑝𝑠 THEN 𝑄 = 𝑄 * 1.10, repeat step 2 ELSE 𝐿𝑐 = 𝑄 * 0.90;

To exemplify this method, let’s assume that an hypothetic client is set to submit

initially 10 tps (𝑄 = 10). The cluster is evaluated with this load and it processes

all the transactions. The load of the client is increased by 10% until the difference

between the cluster performance and the 𝑄 configuration of the client is less than 5%.

Consider that the load is increased until 𝑄 = 174 tps, but the cluster processes just

150 tps. In this case, the difference between the performance expected and achieved is

higher than 5%. The 𝐿𝑐 is this limit achieved decreased by 10%. In this illustration,

156 tps.

5.2.2 Executing the scenarios

UPB is executed iteratively, in three steps, one per scenario. Each step may be

executed more than one time depending on the max value of the fault tolerance

index(𝐾). The partial metrics are denoted by 𝑇𝐾,𝐹 (𝐹 represents the "failed nodes").

Step 1:

In this step the fault tolerance and failures are not taken into account. In real

environments this configuration is not recommended, but in our methodology it is

important to set a basis for comparison. This configuration is used to define the

max performance reached by the cluster, since there is no additional costs related to

replication and/or failures (i.e., K=0, F=0). The max performance is represented by

𝑇𝐾,𝐹 (see Algorithm 1).

Step 2:

The fault tolerance mechanisms have an impact on the system performance even

108

input : Q, a set of client workloads; 𝐿𝑐, maximum workload per client
output: 𝑇𝐾,𝐹

foreach 𝑞 ∈ 𝑄 do
𝑞 = 𝐿𝑐 * 0.10;
while (𝑄𝑡𝑜𝑡𝑎𝑙 + 𝑞) * 0.95 ≤ 𝑡𝑝𝑠 and 𝑞 ≤ 𝐿𝑐 do

𝑙𝑎𝑠𝑡𝑄 = 𝑞;
𝑞 = 𝑞 * 1.10;

end
if (𝑄𝑡𝑜𝑡𝑎𝑙 + 𝑞) * 0.95 ≤ 𝑡𝑝𝑠 then

𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑡𝑜𝑡𝑎𝑙 + 𝑞;
else

𝑇𝐾,𝐹 = 𝑄𝑡𝑜𝑡𝑎𝑙 + 𝑙𝑎𝑠𝑡𝑄;
return 𝑇𝐾,𝐹

end
end

Algorithm 1: Baseline

without node failures. This impact varies depending on the implementation and

strategies used by each DBMS. The step 2 aims to verify and to measure these impacts.

The fault tolerance index is configured with different values(𝐾 > 0). The node

failure index(𝐹) is not used. The goal is to measure the data replication impact

on performance. For each 𝐾 value, the max performance is calculated, using the

Algorithm 1, and represented by:

𝐷𝐾,0 = (1 − 𝑇𝐾,0

𝑇0,0

) * 100

Step 3:

This step measures the performance during a failure state, with a fault tolerance

mechanism activated. The DBMS must be operational during node failures. In this

case, the performance may be impacted by read workloads (the replicated data is

used to maximize the throughput) and write workloads (the replicated data must be

synchronized, implicating in additional costs depending on the 𝐾 value).

The number of failures vary up to the number of replicated nodes: 1 ≤ 𝐹 ≤ 𝐾

For each 𝐹 value, the performance is calculated, using the Algorithm 1, and related

109

to 𝑇𝐾,0 obtained in the step 2. Thus, performance degradation is defined by:

𝐷𝐾,𝐹 = (1 − (
𝑇𝐾,𝐹

𝑇𝐾,0

)) * 100

The final degradation metric(𝐷𝐹𝐾) is given by summarization of the metric 𝐷𝐾,𝐹

𝐷𝐹𝐾 =

𝐾∑︀
𝐹=1

(1
𝐹
*𝐷𝐾,𝐹)

𝐾∑︀
𝐹=1

(1
𝐹

)

We used a weighted average to calculate the global degradation considering that

simultaneous failures are less common than unique failures. Thus, the weight of

simultaneous failures on the metric are lower.

5.3 Overall Metrics

We define two overall metrics that summarize the partial metrics calculated. Each

metric is the average value obtained for one kind of metric, over the 𝐾 index, as

shown in Table 5.2. We do not use step 1 to calculate an overall metric, since it is

used only as basis for comparison.

Table 5.2: Overall Metrics

Metric Step Description

𝐷𝑇 =

𝐾∑︀
𝑖=1

𝐷𝑖,0

𝐾
2 Performance degradation with fault tolerance

𝐷𝐹 =

𝐾∑︀
𝑖=1

𝐷𝐹𝑖

𝐾
3 Performance degradation during failures

These two metrics are the final results of the performance analysis of UPB.

110

5.4 The Environment Outline

The benchmark called Under Pressure Benchmark (UPB) evaluates one important

mechanism related to DBMS availability [68]: replication. While data replication is

up and running, the impact on performance may vary depending both on the evalua-

tion environment and the proper implementation that differ from DBMS (e.g., asyn-

chronous or synchronous). The UPB seeks to assess the efficiency and performance

impact of replication with different configurations and workloads. The workload varies

up to extreme situations in terms of faults and bulk load.

A set of partial metrics computes performance along the execution of the UPB,

for instance, the number of transactions per second with or without node failures. At

the end, a final metric sums up the partial metrics to present the overall performance

of the DBMS under pressure. We present the main characteristics of UPB as follows:

∙ Portability: UPB can be applied to any DBMS with minor adaptations.

∙ Adaptability: The UPB methodology allows to use different workloads.

∙ Flexibility: Since UPB provides a set of partial metrics, one may use subsets

for specific proposes, such as, analyzing different configurations or applications.

∙ Extensibility: The methodology supports to be extended to consider different

DBMS features, by incorporating new metrics.

5.5 Architecture

The UPB architecture is designed to fit a classical DBMS architecture. It is composed

by client machines and a cluster of distributed machine nodes to run the DBMS(see

Figure 5-1).

5.5.1 Clients

The connection between the DBMS and the clients depends on the DBMS. The clients

connect and submit transactions to any cluster node or all the cluster nodes at the

111

Figure 5-1: UPB architecture

same time with the DBMS connector (i.e. driver) taking care of load balance.

UPB has a stepwise methodology to drive its execution, in which the number

of clients submitting transactions grows at each step. Two configuration knobs are

required to limit the number of clients and their throughput (in transactions per

seconds). The number of clients may vary from DBMS, even if they are running in

the same environment, and a tuning procedure must be taken to draw the best fit

number and avoid bungles to spoil the final result. The tuning procedure includes

leveraging the results of the partial metrics to figure out the proper configuration.

For an Online Transaction Processing (OLTP) application running in a real envi-

ronment, there is no throughput limitation for clients, since they are distributed all

over the Wide Area Network (WAN) and do not run in the same machine. Other-

wise, mimicking a large number of clients may saturate the client machine increasing

latency of the transaction requests. As consequence, the DBMS may never reach

its performance boundary and the final performance result may be spoiled as well.

To scale out the benchmark and avoid any client contention, we implemented our

benchmark to run across distributed machines [60].

112

5.5.2 Fault tolerance

Data replication is the main mechanism for fault tolerance in DBMS with two main

strategies implemented by the DBMS: asynchronous updating of replicas (i.e., op-

timistic strategy) and synchronous updating (i.e., pessimistic strategy). For those

strategies, a replication factor defines the number of nodes that could be out of op-

eration without data loss or service outage.

The replication factor is configured following the availability requirements given

by the application. According to the VoltDB documentation1, to size the hardware

based on data replication, the number of cluster nodes must be a multiple of the

number of copies.

The UPB goal is to evaluate the performance impact on the DBMS while a number

of its nodes is unavailable. It does not evaluate the impact of different failures. In

this context, our understanding follows the definition of fail-fast presented in [44] in

which any system module should operate perfectly or stop immediately. It means that

any failure in a node, whether hardware or the DBMS itself, is enough to immediately

disrupt the node.

5.5.3 Workload

In this work we leverage the YCSB [20] workload generator, but the UPB accepts any

workload based on the transaction concept. Transactions could be composed by sim-

ple database operations (e.g., reads, writes, deletes) or complex business operations,

such as, the transactions of the TPC-C and the TPC-E 2. The only constraint is that

at least 90% of the transactions must complete in less than 1 second. This requisite

is normally used by well-known benchmarks to cope with real applications [89, 90].

From now, we denote this constraint as 𝜑.

1http://docs.voltdb.com/PerfGuide/
2http://www.tpc.org/

113

5.6 Experimental evaluation

In this section we present experiments performed by applying the UPB in two different

DBMS. Our goal is to validate the proposed benchmark and its methodology as a

robust approach to compare availability. The experiments are conducted by following

the three steps of UPB.

5.6.1 Experimental Setup

The experimental evaluation was performed in two in-memory DBMS: VoltDB and

NuoDB. In order to provide a fair comparison, all the experiments were performed in

the same environment, the Grid’5000 testbed 3. The experimental setup is described

bellow:

∙ Intel Xeon E5440 QC (2.83 GHz / 4 MB), 2 sockets, 4 cores per socket

∙ Memory 8 GB

∙ Network Myri-10G (10G-PCIE-8A-C)

∙ Debian GNU/Linux Lenny x64

∙ JavaTMSE Development Kit 7, Update 17

∙ YCSB-0.1.4

∙ DBMS: VoltDB v2.8.4.1 Community Edition, NuoDB Starlings Release 1.1

We used 6 server-class machines running the DBMS and three to run the clients. In

order to avoid any interference, the clients and servers were run in separate machines.

To load the database and generate the workload, we used the YCSB frame-

work [20]. The database schema is composed by a single table with 11 columns

(see Figure 5-2).

Each column stores 1,000 alphanumeric characters, totalizing 1,100 bytes per

record. In our experiments, the database was loaded with 1 million tuples. The
3http://www.grid5000.fr

114

CREATE TABLE usertable (

 YCSB_KEY VARCHAR(1000) NOT NULL,

FIELD1 VARCHAR(1000), FIELD2 VARCHAR(1000),

FIELD3 VARCHAR(1000), FIELD4 VARCHAR(1000),

FIELD5 VARCHAR(1000), FIELD6 VARCHAR(1000),

FIELD7 VARCHAR(1000), FIELD8 VARCHAR(1000),

FIELD9 VARCHAR(1000), FIELD10 VARCHAR(1000),

 PRIMARY KEY (YCSB_KEY)

);

Figure 5-2: Database schema

workload was based on read operations that perform a select using the primary key

and columns projection (see Figure 5-3). The YCSB workload engine has been con-

figured to use a Zipfian query distribution [45].

SELECT FIELD1, FIELD2, FIELD3, FIELD4, FIELD5,

 FIELD6, FIELD7, FIELD8, FIELD9, FIELD10

FROM USERTABLE

WHERE YCSB_KEY = :1

Figure 5-3: Read operation

Each client machine runs 32 threads to generate and to submit the workload.

For the DBMS cluster, VoltDB cluster has 36 partitions divided into 6 nodes. The

NuoDB implementation doesn’t support data partitioning. Every NuoDB node can

play three different roles: Broker(i.e., manages access and control of transaction en-

gines and storage managers), Transaction Engine (TE)(i.e., provides access to a single

database. It handles requests from clients, caches data, and coordinates transactions)

and Storage Manager (SM)(i.e., each storage manager is associated with exactly one

database). Thus, each layer can scale independently.

The NuoDB architecture supports one or more TEs, on a single node or across

the cluster. The NuoDB Documentation4 recommends to add TEs to improve perfor-
4http://doc.nuodb.com/

115

mance. Thus, during the experiments, we maximize the number of TEs to improve

the requests management. For each database, one SM is required (i.e., depending the

number of replicas the number of SMs is increased). The node Broker is fixed in one

node. Therefore, the NuoDB cluster assumes different configurations based on the

fault tolerance index(𝐾), as shown in Table 5.3.

Table 5.3: NuoDB configuration

Configuration Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
K=1 Broker TE TE TE TE TE & SM
K=2 Broker TE TE TE TE & SM TE & SM
K=3 Broker TE TE TE & SM TE & SM TE & SM
K=4 Broker TE TE & SM TE & SM TE & SM TE & SM

5.6.2 Step 1

UPB has two parameters that determine how the experiments should be executed:

Warm-up time and maximum workload per client (𝐿𝑐). These parameters are related

to the environment and must be defined in the first run. The way to obtain these

parameters is quite similar for any DBMS. For this reason, we only present the results

from VoltDB.

After that it is possible to obtain the maximum performance of the cluster without

fails (𝐹 = 0) and configured with 𝐾 = 0.

5.6.2.1 Parameters definition

To get the workload limit per client (𝐿𝑐), we evaluate the cluster performance by

setting a client with different 𝑄 values. The Table 5.4 presents the sustained per-

formance of the VoltDB cluster and indicates the variation between the measured

performance and 𝑄 configuration of the clients (maximum throughput a client could

submit).

When 𝑄 parameter is less than 90.000 tps, the client is capable to submit the

workload determined by 𝑄. In these situations, the difference between 𝑄 and the real

performance is pretty close (less than 0,04%). However when 𝑄 is higher than 90.000,

116

Table 5.4: Defining the workload limit per client (𝐿𝑐)

Client Configuration (𝑄) VoltDB Performance (tps) Variation
70.000 69.999 0,0%
80.000 80.005 0,0%
90.000 90.039 0,0%
100.000 94.543 5,5%
110.000 94.266 14,3%

the clients can’t submit more than 95.000 tps. In that situation the difference between

the performance and 𝑄 is higher than the 5% (threshold defined in methodology).

Because that, the maximum 𝑄 configuration acceptable by a VoltDB client (𝐿𝑐) is

90.000 tps.

5.6.2.2 Cluster Performance with K=0 and F=0

To get 𝑇0,0 it is necessary to run the workload several times, increasing the 𝑄 until

the difference between 𝑄 total and the cluster performance is higher than 5%. The

results of the VoltDB runs are presented on Table 5.5. The column 𝑄𝑡𝑜𝑡𝑎𝑙 indicates

the sum of 𝑄 of all clients on the environment, considering that the 𝑄 configuration

of each client must be equal or less than 𝐿𝑐 parameter determined previously.

Table 5.5: VoltDB runs to determine 𝑇0,0 (No fault tolerance (𝐾 = 0), no failures
(𝐹 = 0))

𝑄𝑡𝑜𝑡𝑎𝑙 VoltDB Performance (tps) Variation
180.000 180.052 0,0%
220.000 218.839 0,5%
240.000 237.564 1,0%
250.000 238.740 4,5%
255.000 237.378 6,9%
260.000 239.018 8,1%

The VoltDB results indicate that the cluster performance increase continuously

until 238.740 tps. After that, the difference between 𝑄𝑡𝑜𝑡𝑎𝑙 and Cluster Performance

is higher than 5%. This behaviour of performance stabilization around 238.000 tps is

due a backpressure situation5. In all of the VoltDB runs the 𝜑 requirement has been
5http://docs.voltdb.com/UsingVoltDB/

117

met.

The 𝑇0,0 of the others DBMS is obtained in a similar way than VoltDB. The results

are presented on Table 5.6.

Table 5.6: Parameters defined for each DBMS

DBMS 𝑇0,0

VoltDB 238.740 tps
NuoDB 112.692 tps

5.6.3 Step 2

On Step 2 we evaluated the DBMS with different 𝐾 configurations. The results

of 𝑇𝐾,0 and the performance degradation of the fault tolerance systems (𝐷𝐾,0) are

presented on Table 5.7.

Table 5.7: The performance degradation using fault tolerance mechanism.

VoltDB NuoDB
Environment 𝑇𝐾,0 𝐷𝐾,0 𝑇𝐾,0 𝐷𝐾,0

K=0 238.740 - 112.692 -
K=1 156.659 34.38% 103.340 8.30%
K=2 112.388 52.92% 103.669 8.00%
K=3 101.899 57.32% 101.166 10.22%

* The negative value means a performance increasing, no degradation.

The VoltDB results indicate that the backpressure state was achieved in the ex-

periments. This means that the maximum performance has been reached.

The performance degradation on VoltDB happens because when we increase the

replication level, we are dividing the available partitions among the duplicate copies.

For example, on our environment when 𝐾 = 1 there are 18 partitions to process

transactions and the other 18 partitions store copies of the data. In the VoltDB

architecture, the performance will be proportionally decreased as replication is in-

creased.

While NuoDB and VoltDB present the same behavior with performance decreasing

as long as 𝐾 increases.

118

5.6.4 Step 3

The performance of the DBMS evaluated with faults (𝐹 > 0) and the performance

degradation when compared to a non-fault cluster are indicated on Table 5.8.

Table 5.8: DBMS performance in a faulty environment - The degradation is based on
non-fault cluster.

VoltDB NuoDB
Environment 𝑇𝐾,𝐹 𝐷𝐾,𝐹 𝑇𝐾,𝐹 𝐷𝐾,𝐹

K=1 and F=1 152.072 2.928% 111.660 −8.05%*
K=2 and F=1 110.491 1.687% 106.244 −2.48%
K=2 and F=2 109.781 2.319% 109.729 −5.84%
K=3 and F=1 92.8194 8.910% 103.469 −2.27%
K=3 and F=2 86.837 14.781% 103.922 −2.72%
K=3 and F=3 76.003 25.413% 104.304 −3.10%

* The negative value means a performance increasing, no degradation.

The results on a faulty environment indicate that VoltDB performance degrada-

tion is less than 3% when 𝐾 is configured as 1 or 2. But when 𝐾 = 3, performance

degradation increases considerably, varying between 8.9% and 25.4%.

Due to its particular implementation, NuoDB behaves differently when increasin

performance as the number of faults increase. This is due to the peer-to-peer mes-

saging infrastructure used to route tasks to nodes. Therefore, the fewer node replicas

are running the fewer tasks and messages are routed. In addition, we observe that

NuoDB has the stablest performance degradation upon faults, which may be also

inherited from the resilience of the P2P backend.

Table 5.9: This summarizes the performance degradation results in a faulty environ-
ment.

Metric VoltDB NuoDB
𝐷𝐹1 2.928 -8.05*
𝐷𝐹2 1.897 -3.6*
𝐷𝐹3 13.511 -2.475*

* The negative value means a performance increasing, no degradation.

Table 5.9 summarizes the performance degradation results in a faulty environment.

119

They corroborate our observations that VoltDB, while NuoDB actually improves per-

formance due to its P2P nature almost reaching the baseline results (𝐾 = 0, 𝐹 = 0).

5.7 Final Comparison and Discussion

Based on the partial metrics presented above, it is possible to calculate the final

metrics for each DBMS and to compare the availability of them based on two different

aspects. The final metrics are presented on Table 5.10.

Table 5.10: Overall metrics - This summarizes the partial metrics. 𝐷𝑇 is the average
of performance degradation metric (with fault tolerance), over the K index. 𝐷𝐹 is the
average of performance degradation metric (during failures), over the K index.

Metric VoltDB NuoDB
𝐷𝑇 48.21 8.84
𝐷𝐹 6.11 -4.70*

* The negative value means an increase on performance, not degradation.

VoltDB had the best overall performance throughput in a faultless scenario, the

same was not observed while faults are injected (reflected by the 𝐷𝐹 metric). In con-

trast, NuoDB had some performance impact to maintain the replicas, but presented a

surprisingly 𝐷𝐹 that is a direct result from its P2P core. Therefore, NuoDB presented

the best results in environments with faults.

One may argue that one DBMS is better than the other based on the presented

results. While this may be true considering the execution scenarios to test replication

and resilience, the DBMS makes a different set of tradeoffs to improve availability,

which may lead to situations where one of them will be more appropriate than the

other. In this context, we claim that the UPB can be an important tool to help choos-

ing the more appropriate DBMS while heating the debate on availability solutions.

120

5.8 Conclusion

We presented the Under Pressure Benchmark (UPB) for evaluating NewSQL when

supporting availability through replication. The UPB methodology increases the

evaluation complexity from a stable system scenario up to a faulty system scenario,

including (1) no fault tolerance, no failures; (2) fault tolerance, no failures; (3) fault

tolerance with failures. To the best of our knowledge, UPB is the first benchmark of

its kind.

The UPB provides a focused benchmark to deal with a central issue related to

DBMS availability. We believe that the UPB fits the requirements for evaluating

NewSQL upon critical situations, such as heavy loads and failures. Moreover, the

UPB provides a good basis for database administrators to take decision about repli-

cation indexes, based on performance impact.

We validated our benchmark through experimentation and evaluation of two

NewSQL: VoltDB and NuoDB. We have verified that data replication has a large

impact on performance, as a side-effect of availability. The impact could be consid-

ered negative or positive, depending on the DBMS. This is more evident while the

DBMS is under high-throughput load.

121

Chapter 6

Conclusion and Future Work

In this chapter we present the general conclusions of this thesis. First, we recall the

main issues on DBMS testing. Second, we summarize the related work. Then, we

present the summary of our contributions. Finally, we point the directions for future

work.

6.1 Issues on DBMS testing

DBMS testing can be categorized into two categories: functional and non-functional.

On the one hand, the functional testing is related to the system ability to reproduce

a proper output for a given input. On the other hand, the non-functional testing take

into consideration non-functional requirements concerning to system quality, such as

performance, robustness, security, scalability.

Over the last years, non-functional testing became critical due to the recent growth

of the transaction workload (e.g., Internet, Cloud computing, BigData) that impacts

directly on DBMS development. While traditional DBMS require systematically em-

bedding new features in order to fit these requirements, contemporary DBMS present

a completely new architecture.

The main challenge on DBMS testing is to establish a proper testing approach

to challenge the high performance DBMS by systematically submitting increasing

volumes of transactions to recreate the production workload.

123

6.2 Current DBMS testing approaches

DBMS validation is commonly performed through benchmarks to reproduce a pro-

duction environment. Different benchmarks approaches were presented along the last

decades, but focusing on providing comparison metrics (e.g., response time, through-

put, and resource consumption) [51] rather than finding defects, such as: Debit/-

Credit [34], AS3AP [92], TPC-like [2], SetQuery [65], the cloud data service bench-

mark YCSB [19], and a data-analysis benchmark for parallel DBMS [70]. In addition,

current benchmarks do not focus on all new features of contemporary DBMS, such

as availability (i.e., replication).

Performance testing tools such as Hammerora1, Oracle Application Testing Suite2,

and AppPerfect3, provide a test driver to submit operations based on a TPC-like

benchmark. Focusing on functional assessments, the Agenda [30] tool provides a

testing methodology to validate ACID properties of the DBMS. Therefore, Agenda

does not generate test cases to tackle non-functional requirements.

Regarding to model-based testing, several approaches are focused on performance

evaluation needs. In fact, in specific scenarios, they are able to examine functional

as well as non-functional requirements. of the SUT, such as security [?, 32, 73],

reliability [39], and efficiency [58, 39, 76], but none of them focuses on DBMS.

6.3 Contribution

In this thesis, we presented three contributions to address different needs on DBMS

evaluation and validation: 1) Stress testing methodology for traditional DBMS to

expose defects related to the combination of a stress workload and mistuning; 2)

Model-based stress testing approach for NewSQL, which infers internal states of the

database and point defects based on performance observations under different work-

load levels; 3) A benchmark to assess availability mechanisms in NewSQL database

1http://hammerora.sourceforge.net/
2http://www.oracle.com/technetwork/oem/app-test/index.html
3http://www.appperfect.com/

124

systems.

1. Stress Testing Methodology (STEM): STEM revealed load-related de-

fects from the combination of stressing workloads and mistuning in traditional

DBMS. We can draw many interesting findings from the results. First, stress

testing requires a distributed testing approach, where multiple test drivers are

deployed across a cluster machine to submit a large number of transactions. The

single driver approach, used in the related work, bounds the size of the load,

thus leading to a classical functional test. Next, the incremental approach was

able to expose different defects in PostgreSQL at each step and a defect within

the network backend process of a leading commercial DBMS. When DBMS-

X gets closer to the expected maximum number of concurrent connections, it

starts issuing an unexpected network error message. This approach turns out to

be an important tool to assess performance limitations of the traditional DBMS

under stress conditions.

2. Model-Based approach to Database Stress Testing (MoDaST): A novel

model-based approach to reveal potential non-functional defects in DBMS, spe-

cially NewSQL MoDaST enabled to pinpoint conditions of performance loss,

a technique to predict thrashing states that can damage the system execution

and reveal defects related to different states of performance. The experiment

results shown that MoDaST can successfully infer the current internal state of

both DUTs based on the state model, our Database State Machine (DSM). In

addition, we found out that as the DBMS has visited the state machine in di-

rection of the thrashing state, the code coverage increases. Consequently, the

probability of findings defects increase in the same way. In particular, we found

one defect that has been confirmed as a major defect by VoltDB developers and

already applied to the last version of VoltDB.

3. Under Pressure Benchmark (UPB): UPB evaluated the performance of

NewSQL considering availability through replication. The UPB provided a

focused benchmark to deal with a central issue related to NewSQL availability.

125

We believe that the UPB fits the requirements for evaluating the DBMS upon

critical conditions, such as under pressure workloads and failures. Moreover, the

UPB provides a good basis for database administrators taking decision about

replication indexes, based on performance impact. We have verified that data

replication has a large impact on performance, as a side-effect of availability.

The impact could be considered negative or positive, depending on the NewSQL.

This is more evident while the DBMS is under pressure conditions.

6.4 Future work

We focus our future work on MoDaST. This approach proved to be the most ap-

propriate to represent DBMS and reveal related defects. So far, MoDaST might be

applied in different ways. For test engineers, it offers a convenient driver to assess

non-functional requirements, including, performance, stability, or scalability. While

our experiments only focus on performance, test engineers can easily extend the test

case for other assessments.

Our approach can be plugged to any DUT, including open-source and closed-

source systems due to its black-box nature. Test engineers will also find that the

stress testing model increases code coverage in the task finding defects. Although a

higher code coverage does not necessarily guarantee detection of defects, engineers

can benefit from higher code coverage to setup performance profiling, such as: tuning

setup and performance limitations. For instance, most DBMS have specific func-

tions for stress conditions (e.g., for access control), but those functions cannot be

executed unless a certain condition is met. Therefore, MoDaST may help detecting

such conditions for building performance profiles.

For DBAs, MoDaST could be a powerful tool for “Stress” and “Thrashing” states

prediction in a dynamic monitoring. This prediction is particularly useful for recking

performance limitations of DUT setups in running environment, such as machine

clusters. This is convenient when DBAs want testing new system releases and tuning

setups before deploying the database system into production.

126

For future work, we plan apply MoDaST to cloud computer hypervisors in order

to monitor cloud database-as-a-service systems (DBaaS). For that, additional states

may be attached, such as a High Stress state between the stress and thrashing states,

or a Idle state in case the system allocated more resources than needed.

127

Bibliography

[1] Hammerora: The open source load test tool. http://hammerora.
sourceforge.net/.

[2] Transaction Processing performance council, 2013. http://www.tpc.org.

[3] Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan Porres. Mbpet:
A model-based performance testing tool. In VALID 2012, The Fourth Inter-
national Conference on Advances in System Testing and Validation Lifecycle,
pages 1–8, 2012.

[4] Mohammed Abouzour, Ivan T. Bowman, Peter Bumbulis, David DeHaan,
Anil K. Goel, Anisoara Nica, G. N. Paulley, and John Smirnios. Database
self-management: Taming the monster. IEEE Data Eng. Bull., 34(4):3–11,
2011.

[5] Anneliese A. Andrews, Jeff Offutt, and Roger T. Alexander. Testing web ap-
plications by modeling with fsms. Software and Systems Modeling, 4:326–345,
2005.

[6] Oracle Application Testing Suite, 2014. http://www.oracle.com/
technetwork/oem/app-test/index.html.

[7] AppPerfect, 2014. http://www.appperfect.com/.

[8] Thomas Arts and Simon J. Thompson. From test cases to fsms: augmented
test-driven development and property inference. In Scott Lystig Fritchie and
Konstantinos F. Sagonas, editors, Erlang Workshop, pages 1–12. ACM, 2010.

[9] Vikas Bajpai and Ravi Prakash Gorthi. On non-functional requirements: A sur-
vey. In Students’ Conference on Electrical, Electronics and Computer Science,
pages 1–4, 2012.

[10] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. Autonomic load-testing
framework. In Proceedings of the 8th ACM international conference on Auto-
nomic computing, pages 91–100. ACM, 2011.

[11] Cornel Barna, Marin Litoiu, and Hamoun Ghanbari. Model-based performance
testing. In Proceedings of the 33rd International Conference on Software En-
gineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages
872–875, 2011.

129

[12] Phil Bernstein, Michael Brodie, Stefano Ceri, David DeWitt, Mike Franklin,
Hector Garcia-Molina, Jim Gray, Jerry Held, Joe Hellerstein, H. V. Jagadish,
Michael Lesk, Dave Maier, Jeff Naughton, Hamid Pirahesh, Mike Stonebraker,
and Jeff Ullman. The asilomar report on database research. SIGMOD Rec.,
27(4):74–80, December 1998.

[13] Robert V. Binder. Testing Object-oriented Systems: Models, Patterns, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[14] Claudio Borio, Mathias Drehmann, and Kostas Tsatsaronis. Stress-testing
macro stress testing: does it live up to expectations. 2011.

[15] Shalabh C. Radhakrishna Rao, Helge Toutenburg and Christian Heumann. Lin-
ear models and generalizations, least squares and alternatives, 3rd edition. AStA
Advances in Statistical Analysis, 93(1):121–122, 2009.

[16] Ji-Woong Chang, Kyu-Young Whang, Young-Koo Lee, Jae-Heon Yang, and
Yong-Chul Oh. A formal approach to lock escalation. Inf. Syst., 30(2):151–166,
April 2005.

[17] Edward G Coffman, Melanie Elphick, and Arie Shoshani. System deadlocks.
ACM Computing Surveys (CSUR), 3(2):67–78, 1971.

[18] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. Pnuts: Yahoos hosted data serving platform. Proc. VLDB Endow.,
1(2):1277–1288, August 2008.

[19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM symposium on Cloud computing, SoCC ’10, pages 143–154, New
York, NY, USA, 2010. ACM.

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of ACM symposium on Cloud computing, pages 143–154, New York, NY, USA,
2010.

[21] Carlo Curino, Evan Jones, Raluca Ada Popa, Nirmesh Malviya, Eugene Wu,
Samuel Madden, Hari Balakrishnan, and Nickolai Zeldovich. Relational cloud:
A database service for the cloud. In 5th Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, January 2011.

[22] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton,
and B. M. Horowitz. Model-based testing in practice. In Proceedings of the
21st International Conference on Software Engineering, ICSE ’99, pages 285–
294, New York, NY, USA, 1999. ACM.

130

[23] Sudipto Das, Shashank Agarwal, Divyakant Agrawal, and Amr El Abbadi. Elas-
tras: An elastic, scalable, and self managing transactional database for the
cloud. Technical report, CS, UCSB, 03/2010 2010.

[24] Eduardo Cunha de Almeida, João Eugenio Marynowski, Gerson Sunyé, and
Patrick Valduriez. Peerunit: A framework for testing peer-to-peer systems. In
Proceedings of the IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE ’10, pages 169–170, New York, NY, USA, 2010. ACM.

[25] Eduardo Cunha de Almeida, João Eugenio Marynowski, Gerson Sunyé, Yves
Le Traon, and Patrick Valduriez. Efficient distributed test architectures for
large-scale systems. In ICTSS 2010: 22nd IFIP Int. Conf. on Testing Software
and Systems, pages 174–187, Natal, Brazil, November 2010.

[26] Eduardo Cunha de Almeida, Gerson Sunyé, Yves Le Traon, and Patrick Val-
duriez. Testing peers’ volatility. In 23rd IEEE/ACM ASE, pages 419–422,
2008.

[27] Eduardo Cunha de Almeida, Gerson Sunyé, Yves Le Traon, and Patrick
Valduriez. Testing peer-to-peer systems. Empirical Software Engineering,
15(4):346–379, 2010.

[28] Murilo R. de Lima, Marcos Sfair Sunyé, Eduardo Cunha de Almeida, and
Alexandre Ibrahim Direne. Distributed benchmarking of relational database
systems. In Qing Li, Ling Feng, Jian Pei, Xiaoyang Sean Wang, Xiaofang Zhou,
and Qiao-Ming Zhu, editors, APWeb/WAIM, volume 5446 of Lecture Notes in
Computer Science, pages 544–549. Springer, 2009.

[29] Yuetang Deng, Phyllis Frankl, and David Chays. Testing database transactions
with AGENDA. In Proceedings of the 27th International Conference on Software
Engineering, pages 78–87. ACM, 2005.

[30] Yuetang Deng, Phyllis Frankl, and David Chays. Testing database transactions
with agenda. In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 78–87, New York, NY, USA, 2005. ACM.

[31] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H.
Travassos. A survey on model-based testing approaches: A systematic review. In
Proceedings of the 1st ACM International Workshop on Empirical Assessment
of Software Engineering Languages and Technologies: Held in Conjunction with
the 22Nd IEEE/ACM International Conference on Automated Software Engi-
neering (ASE) 2007, WEASELTech ’07, pages 31–36, New York, NY, USA,
2007. ACM.

[32] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Lutess: A
specification-driven testing environment for synchronous software. In Proceed-
ings of the 21st International Conference on Software Engineering, ICSE ’99,
pages 267–276, New York, NY, USA, 1999. ACM.

131

[33] Levente Ers and Tibor Csndes. An automatic performance testing method
based on a formal model for communicating systems. In IWQoS, pages 1–5.
IEEE, 2010.

[34] Anon et al. A measure of transaction processing power. In Michael Stonebraker,
editor, Readings in Database Systems, First Edition. Morgan Kaufmann, 1985.

[35] Alessandro Gustavo Fior, Jorge Augusto Meira, Eduardo Cunha de Almeida,
Ricardo Gonçalves Coelho, Marcos Didonet Del Fabro, and Yves Le Traon.
Under pressure benchmark for ddbms availability. JIDM, 4(3):266–278, 2013.

[36] Martin Fowler. UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional, 2004.

[37] G. Friedman, Alan Hartman, Kenneth Nagin, and T. Shiran. Projected state
machine coverage for software testing. In ISSTA, pages 134–143, 2002.

[38] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Sys-
tems: The Complete Book. Prentice Hall Press, Upper Saddle River, NJ, USA,
2 edition, 2008.

[39] Vahid Garousi, Lionel C. Briand, and Yvan Labiche. Traffic-aware stress testing
of distributed systems based on uml models. In Proceedings of the 28th Inter-
national Conference on Software Engineering, ICSE ’06, pages 391–400, New
York, NY, USA, 2006. ACM.

[40] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software
Engineering. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition,
2002.

[41] Carlo Ghezzi and Amir Molzam Sharifloo. Verifying non-functional properties
of software product lines: Towards an efficient approach using parametric model
checking. Software Product Line Conference, International, 0:170–174, 2011.

[42] Martin Glinz. On non-functional requirements. In 15th IEEE International
Requirements Engineering Conference, RE 2007, October 15-19th, 2007, New
Delhi, India, pages 21–26, 2007.

[43] Jim Gray. Why do computers stop and what can be done about it? In Sym-
posium on reliability in distributed software and database systems, pages 3–12.
Los Angeles, CA, USA, 1986.

[44] Jim Gray and Daniel P. Siewiorek. High-availability computer systems. IEEE
Computer, 24(9):39–48, September 1991.

[45] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J.
Weinberger. Quickly Generating Billion-Record Synthetic Databases. ACM
Special Interest Group on Management of Data, 23(2):243–252, May 1994.

132

[46] Mark Grechanik, B. M. Mainul Hossain, and Ugo Buy. Testing database-centric
applications for causes of database deadlocks. In Proceedings of the 2013 IEEE
Sixth International Conference on Software Testing, Verification and Valida-
tion, ICST ’13, pages 174–183, Washington, DC, USA, 2013. IEEE Computer
Society.

[47] B. M. Mainul Hossain, Mark Grechanik, Ugo Buy, and Haisheng Wang. Redact:
preventing database deadlocks from application-based transactions. In Bertrand
Meyer, Luciano Baresi, and Mira Mezini, editors, ESEC/SIGSOFT FSE, pages
591–594. ACM, 2013.

[48] Michael S Hsiao, Elizabeth M Rudnick, and Janak H Patel. Application of
genetically engineered finite-state-machine sequences to sequential circuit atpg.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 17(3):239–254, 1998.

[49] Ieee standards association, 2014. http://standards.ieee.org.

[50] Raj Jain. The art of computer systems performance analysis - techniques for ex-
perimental design, measurement, simulation, and modeling. Wiley professional
computing. Wiley, 1991.

[51] Raj Jain. The art of computer systems performance analysis: Techniques for
experimental design, measurement, simulation and modeling (book review).
SIGMETRICS Performance Evaluation Review, 19(2):5–11, 1991.

[52] Evan P. C. Jones, Daniel J. Abadi, and Samuel Madden. Low overhead concur-
rency control for partitioned main memory databases. In SIGMOD Conference,
pages 603–614, 2010.

[53] Evan Philip Charles Jones. Fault-tolerant distributed transactions for partitioned
OLTP databases. PhD thesis, Massachusetts Institute of Technology, 2012.

[54] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex
Rasin, Stanley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stone-
braker, Yang Zhang, John Hugg, and Daniel J. Abadi. H-store: a high-
performance, distributed main memory transaction processing system. PVLDB,
1(2):1496–1499, 2008.

[55] Rick Kuhn, Yu Lei, and Raghu Kacker. Practical combinatorial testing: Beyond
pairwise. IT Professional, 10:19–23, May 2008.

[56] David Lee and Mihalis Yannakakis. Principles and methods of testing finite
state machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[57] Huaiwei Liao and Marija Ilic. Stress test model of cascading failures in power
grids. In North American Power Symposium (NAPS), 2011, pages 1–5. IEEE,
2011.

133

[58] Dino Mandrioli, Sandro Morasca, and Angelo Morzenti. Generating test cases
for real-time systems from logic specifications. ACM Trans. Comput. Syst.,
13(4):365–398, November 1995.

[59] Aditya P. Mathur. Foundations of Software Testing. Addison-Wesley Profes-
sional, 1st edition, 2008.

[60] Jorge Augusto Meira, Eduardo Cunha de Almeida, Gerson Sunyé, Yves Le
Traon, and Patrick Valduriez. Stress testing of transactional database systems.
JIDM, (3):279–294.

[61] Memsql, 2014. http://www.memsql.com/.

[62] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and using
non-functional requirements: A process-oriented approach. IEEE Transactions
on Software Engineering, 18:483–497, 1992.

[63] Nuodb, 2014. http://www.nuodb.com/.

[64] Marcelo Eidi Ochiai, Otávio C. E. Gebara, João Batista Serro-Azuland Lígia
B. Pinto; Amit Nussbacher, Humberto Pierri, and Mauricio Wajngarten. Ex-
ercise stress test: prognostic value for elderly patients with stable coronary
atherosclerosis. 2006.

[65] Patrick E. O’Neil. The set query benchmark. In The Benchmark Handbook.
1993.

[66] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying
and generating fuctional tests. Commun. ACM, 31(6):676–686, June 1988.

[67] Hiroko Oura and Liliana B Schumacher. Macrofinancial stress testing-principles
and practices. International Monetary Fund Policy Paper, 2012.

[68] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Sys-
tems, Third Edition. Springer, 2011.

[69] Ioannis Parissis and Farid Ouabdesselam. Specification-based testing of syn-
chronous software. SIGSOFT Softw. Eng. Notes, 21(6):127–134, October 1996.

[70] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. De-
Witt, Samuel Madden, and Michael Stonebraker. A comparison of approaches
to large-scale data analysis. In Proceedings of the 35th SIGMOD international
conference on Management of data, SIGMOD ’09, pages 165–178, New York,
NY, USA, 2009. ACM.

[71] Steven C Port. Imaging guidelines for nuclear cardiology procedures. Journal
of nuclear cardiology, 6(2):G47–G84, 1999.

[72] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill, Inc., New York, NY, USA, 3 edition, 2003.

134

[73] Debra J. Richardson, Stephanie Leif Aha, and T. Owen O’Malley. Specification-
based test oracles for reactive systems. In Proceedings of the 14th International
Conference on Software Engineering, ICSE ’92, pages 105–118, New York, NY,
USA, 1992. ACM.

[74] Suzanne Robertson and James Robertson. Mastering the Requirements Process.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

[75] Giancarlo Ruffo, Rossano Schifanella, Matteo Sereno, and Roberto Politi.
Walty: A user behavior tailored tool for evaluating web application perfor-
mance. In Network Computing and Applications, 2004.(NCA 2004). Proceed-
ings. Third IEEE International Symposium on, pages 77–86. IEEE, 2004.

[76] Bernhard Rumpe. Model-based testing of object-oriented systems. In In: For-
mal Methods for Components and Objects, International Symposium, FMCO
2002, Leiden. LNCS 2852. Springer Verlag, 2003.

[77] Mahnaz Shams, Diwakar Krishnamurthy, and Behrouz Far. A model-based
approach for testing the performance of web applications. In Proceedings of the
3rd International Workshop on Software Quality Assurance, SOQUA ’06, pages
54–61, New York, NY, USA, 2006. ACM.

[78] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database Systems Con-
cepts. McGraw-Hill, Inc., New York, NY, USA, 5 edition, 2006.

[79] Ian Sommerville and Gerald Kotonya. Requirements Engineering: Processes
and Techniques. John Wiley & Sons, Inc., New York, NY, USA, 1998.

[80] Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem,
Peter Kokosielis, and Sunil Kamath. Automatic virtual machine configuration
for database workloads. ACM Trans. Database Syst., 35(1):7:1–7:47, February
2008.

[81] Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem,
Peter Kokosielis, and Sunil Kamath. Automatic virtual machine configuration
for database workloads. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD08, pages 953–966, New York, NY,
USA, 2008. ACM.

[82] Gokul Soundararajan, Daniel Lupei, Saeed Ghanbari, Adrian Daniel Popescu,
Jin Chen, and Cristiana Amza. Dynamic resource allocation for database servers
running on virtual storage. In Proccedings of the 7th conference on File and
storage technologies, FAST09, pages 71–84, Berkeley, CA, USA, 2009. USENIX
Association.

[83] Keith Stobie. Model based testing in practice at microsoft. Electron. Notes
Theor. Comput. Sci., 111:5–12, January 2005.

135

[84] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. The end of an architectural era: (it’s time
for a complete rewrite). In Proceedings of the 33rd International Conference on
Very Large Data Bases, VLDB ’07, pages 1150–1160. VLDB Endowment, 2007.

[85] Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone, Yixin Diao,
and M. Surendra. Adaptive self-tuning memory in db2. In Proceedings of the
32Nd International Conference on Very Large Data Bases, VLDB ’06, pages
1081–1092. VLDB Endowment, 2006.

[86] David G. Sullivan, Margo I. Seltzer, and Avi Pfeffer. Using probabilistic
reasoning to automate software tuning. SIGMETRICS Perform. Eval. Rev.,
32(1):404–405, June 2004.

[87] Test optimal, 2014. http://testoptimal.com/.

[88] The Institute of Electrical and Eletronics Engineers. Ieee standard glossary of
software engineering terminology. IEEE Standard, September 1990.

[89] Transaction Processing Performance Council TPCC. Tpc benchmark c - stan-
dard specification revision 5.11. Technical report, 2010. http://www.tpc.
org/tpcc/spec/tpcc_current.pdf , Acessado em 01/2013.

[90] Transaction Processing Performance Council TPCE. Tpc benchmark e - stan-
dard specification version 1.12.0. Technical report, 2010. http://www.tpc.
org/tpce/spec/v1.12.0/TPCE-v1.12.0.pdf , Acessado em 01/2013.

[91] Dinh Nguyen Tran, Phung Chinh Huynh, Y. C. Tay, and Anthony K. H. Tung.
A new approach to dynamic self-tuning of database buffers. Trans. Storage,
4(1):3:1–3:25, May 2008.

[92] Carolyn Turbyfill, Cyril U. Orji, and Dina Bitton. As3ap - an ansi sql standard
scaleable and portable benchmark for relational database systems. In Jim Gray,
editor, The Benchmark Handbook. Morgan Kaufmann, 1993.

[93] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. Management of an
academic hpc cluster: The ul experience. In Proc. of the 2014 Intl. Conf. on
High Performance Computing & Simulation (HPCS 2014), Bologna, Italy, July
2014. IEEE.

[94] Lucas Vespa, Mini Mathew, and Ning Weng. P3fsm: Portable predictive pattern
matching finite state machine. In Application-specific Systems, Architectures
and Processors, 2009. ASAP 2009. 20th IEEE International Conference on,
pages 219–222. IEEE, 2009.

[95] Marco Vieira and Henrique Madeira. A dependability benchmark for oltp ap-
plication environments. In Proceedings of the 29th International Conference on
Very Large Data Bases - Volume 29, VLDB ’03, pages 742–753. VLDB Endow-
ment, 2003.

136

[96] Voltdb, 2014. http://voltdb.com/.

[97] Inc. VoltDB. Technical overview - high performance, scalable rdbms for big
data and real-time analytics. Technical report, VoltDB, Inc., 2014.

[98] Ronghua Wang, Naijun Sha, Beiqing Gu, and Xiaoling Xu. Comparison analysis
of efficiency for step-down and step-up stress accelerated life testing. Reliability,
IEEE Transactions on, 61(2):590–603, 2012.

[99] Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zabback. Self-
tuning database technology and information services: From wishful thinking to
viable engineering. In Proceedings of the 28th International Conference on Very
Large Data Bases, VLDB ’02, pages 20–31. VLDB Endowment, 2002.

[100] David Willmor and Suzanne M. Embury. An intensional approach to the spec-
ification of test cases for database applications. In Proceedings of the 28th
International Conference on Software Engineering, pages 102–111. ACM, 2006.

[101] Michael M Wu and Michael C Loui. Modeling robust asynchronous communica-
tion protocols with finite-state machines. Communications, IEEE Transactions
on, 41(3):492–500, 1993.

[102] C. Xiong. Inferences on a simple step-stress model with type-ii censored expo-
nential data. IEEE Transactions on Reliability, 47:142 – 146, June 1998.

[103] Guang Yang, Jianhui Jiang, and Jipeng Huang. System modules interaction
based stress testing model. Computer Engineering and Applications, Interna-
tional Conference on, 2:138–141, 2010.

[104] Ji Zhu, James Mauro, and Ira Pramanick. R-cubed (r3): Rate, robustness, and
recovery - an availability benchmark framework. Technical report, Mountain
View, CA, USA, 2002.

137

