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Abstract—Data traffic from mobile devices experiences un-
precedented growth, which current cellular network capacities
cannot sustain. Traffic offloading to other type of networks, such
as WiFi, can be used to reduce load in cellular networks. In
this paper, we propose a novel solution, which unlike other
existing methodologies, implements tight cooperation with the
cellular network to optimize traffic offloading. The cellular
network provides information about channel usage statistics, user
mobility patterns, available resources and other parameters. The
offloading decisions aim at optimizing the balance between user
application requirements and availability of network resources.
The validation results, obtained from NS-3 simulations, confirm
effectiveness of the proposed solution in balancing cellular traffic
load while ensuring QoS.

Keywords—Mobile cloud computing, network awareness, cellu-
lar networks, traffic offloading.

I. INTRODUCTION

Mobile cloud applications is one of the fastest growing
markets. Currently, more than 7 billion people use mobile
devices connected to Internet, of which 4.4 billion will
use mobile applications by 2017 [1]. Mobile gadgets and
smartphones are already essential in our daily activities [2].
They help to do business, communicate and entertain [3], [4]. In
2013, smart devices accounted for only 21% of the total number
of Internet connections originated by mobile devices, but they
generated more than 88% of the total mobile data traffic [5].
Currently, mobile data traffic is growing at an unprecedented
rate and is projected to generate up to 15 EB per month by
2018 [5], which overloads current cellular networks.

A number of promising solutions have been proposed
to address growing traffic demands. With the objective of
“bringing network closer to the user”, a mix of macro, micro,
pico, femto and relay base stations has been proposed in LTE-
A [6]. Reducing the cell size helps to increase network capacity
and coverage, but comes at the expense of the costs of installing
and maintaining base stations denser [7]. Network coding is
proved to improve network throughput and is a widely used
technique in mobile networks nowadays. Recently, a technique
that improves content distribution of mobile cloud applications
by combining traffic flows has been proposed for cellular
networks [8]. Traffic offloading to other networks can help
to avoid having additional cellular network equipment. The
offloading is usually performed to WiFi [9]–[11] or to the
opportunistic networks [12]–[14]. WiFi operates on unlicensed
frequencies and, unlike LTE, which uplink and downlink data
rates remain constant to every user, WiFi channels are shared

between the served users. WiFi infrastructure is not expensive
and already widespread in many areas. Opportunistic networks
do not require any infrastructure, but they operate relying on
intermittent contacts of in proximity users.

From the user perspective, with traffic offloading appli-
cations can directly contact the server in the cloud without
the need to pass by the mobile core network. WiFi and
opportunistic communications are more energy efficient than
LTE or 3G [15], [16] and commonly available “free of charge”.
As a result, users do not consume data from the monthly
traffic plan they subscribed and for which they have to pay
the operators. On the other hand, traffic offloading latency
can be an issue affecting performance [17] as both WiFi and
opportunistic communications become unreliable with high
levels of user mobility. Network performance can change
quickly and degrade user experience making it worse than in
the case without offloading. In addition, most of the operating
systems for smartphones, including Android and iOS, already
make preference to WiFi over cellular connectivity for data
transmission. However, keeping both interfaces constantly active
excessively drains battery power. For these reasons, offloading
decisions should be taken carefully and take into account
performance and mobility in the offloaded networks.

In this paper, we propose to exploit information from the
cellular network about user statistics, application requirements
and network resource availability to improve traffic offloading.
For this, we introduce a software module called Mobile
Cloud Offloading Helper (MCOH) in the mobile operator
network, which uses the aforementioned information to take
offloading decisions. Wireless service providers have at disposal
information about the number and the type of connected
devices, the traffic and network statistics, such as available
bandwidth, error rates and delay. However, now it is mostly
used to understand habits of large groups of users with an
objective of predicting general trends. Our contribution, instead,
consists of using this information to enable a “user-application”
based offloading policy. For this, MCOH retrieves and uses the
aforementioned information on a per-user and per-application
basis, while the application awareness is obtained by inspection
of the in transit traffic.

Cellular and WiFi technologies provide different perfor-
mance levels according to the application currently in use.
Mobile cloud applications have very different requirements
from the networking point of view. For example, multimedia
streaming applications like VoIP impose severe constraints
on the latency. On the other hand, retrieving large objects
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like geographic maps requires bandwidth availability, but the
application is delay tolerant. Mobile cloud gaming is an example
of application which necessitates of high traffic load and
requires tight delay constraints to keep synchronization among
the players. Hence, WiFi technology appears to be more suitable
for services demanding high-bandwidth like navigation through
online maps because of its capability to achieve higher bit rates,
but due to higher loss ratios it might not be suitable for VoIP
applications.

II. THE MOBILE CLOUD OFFLOADING HELPER

Mobile Cloud Offloading Helper (MCOH) is a software
module, which resides in mobile operator network and uses
feedback from the network, application requirements and user
behavior to assist in taking traffic offloading decisions (see
Fig. 1). Channel quality, data rate and latency are the main
performance characteristics affecting availability of network.
From user behavior, MCOH considers mobility and data traffic
plan. Offloading decisions aim at balancing user behavior
and application requirements with available network resources.
Traffic is offloaded when the aforementioned requirements
exceed a threshold called offloading-sensitivity, which allows
the mobile network operators to tune the amount of offloaded
traffic.

A. Network Architecture

Fig. 2 shows the position of MCOH in mobile operator
network featuring both LTE1 and WiFi connectivity. Dual
connectivity is currently very common, as more and more
operators deploy proprietary WiFi networks [10], [14].

Packet Data Network Gateway (P-GW) bridges cellular,
WiFi and wide-area networks. It allocates network resources to
UEs and handles QoS and data encapsulation. Current P-GWs
usually run Deep Packet Inspection (DPI), which can also be
used by MCOH to acquire knowledge about the application
requirements. In addition, with the help of the Policy Control
and Charging Rules Function (PCRF), the P-GW also provides
flow-based charging control decisions. Indeed, the PCRF is in
charge of providing to the P-GW the QoS parameters and the
bit rates according to subscription profiles of the users. This
information permits the MCOH to be aware of the amount of
data consumed by each user.

The Serving Gateway (S-GW) handles network traffic before
it is delivered to eNodeBs and UEs. The S-GW is responsible
of packet forwarding and collecting statistics for billing, i.e.,
the amount of traffic sent and received by each user. The S-GW
also helps in user authentication and interacts with the Home

1http://www.3gpp.org/LTE/

TABLE I. APPLICATION WEIGHTED COEFFICIENT
EXPERIMENTAL SET UP

APPLICATION CLASS
COEFFICIENTS

µ ρ ω

Bandwidth intensive 0.15 0.70 0.15
Delay constrained 0.425 0.150 0.425
Bandwidth intensive and Delay constrained 0.34 0.33 0.33

Subscriber Server (HSS). The latter contains user information
and subscription profiles containing QoS parameters, such as
traffic classes and allowed bit rates. The Mobility Management
Entity (MME) controls signaling between UEs and the core
network including, for example, procedures for S-GW selection
for initial UE attachment and during horizontal handovers. The
MCOH obtains information on user mobility from this module.

B. The User and Application Based Offloading Policy

Unlike traditional offloading approaches, the MCOH of-
floads traffic taking into account user application requirements
and availability of network resources. The MCOH relies on
a set of impact factors to model both application and user
requirements. The set of impact factors can be extended with
respect to the representative ones considered in this paper for
more fine models.

1) Application Requirements: Different types of cloud
applications use network resources differently [18]. Therefore,
considering their requirements is a key point for taking proper
offloading decisions. In this paper, we consider three classes of
applications: (a) delay constrained (e.g., VoIP), (b) bandwidth
intensive (e.g., navigation) and (c) both delay constrained and
bandwidth intensive (e.g., gaming). Such classification reflects
in a general way the most important network resources that
applications need for their operation. Packet inspection tools
like DPI, commonly installed in P-GW, can be used to identify
type applications and their requirements. From them, MCOH
computes application impact factor as a weighted sum of
channel quality (fAC ), bit rate (fAR ) and latency (fAL ):

fA = µ · fAC + ρ · fAR + ω · fAL . (1)

Coefficients µ, ρ and ω define the impact of the corresponding
components. Higher values of µ and ω are assigned to delay-
constrained applications, while higher values of ρ characterize
bandwidth intensive applications. The sum of µ, ρ and ω must
equal unity. Table I shows representative setups obtained from
the evaluation experiments. The parameters fAC , fAR , and fAL

are all in the range [0, 1].

To track channel quality we rely on the Received Signal
Strength Indicator (RSSI) that is of easy detection since every
wireless card measures it. Although being measured on the
reception of Physical Layer Convergence Protocol (PCLP)
preamble and header that are always transmitted at basic
rate [19], low values of RSSI usually lead to low Mean Opinion
Score (MOS) values [20] in delay constrained applications.
Ideally, Signal to Interference plus Noise Ratio (SINR) would
be a better option in estimating channel quality. However, SINR
can not be measured efficiently [21]. We define the channel
quality impact factor fAC as:

fAC = 1− |RSSIhigh − RSSI|
|RSSIhigh − RSSIlow|

, (2)
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where RSSI is the last RSSI value detected for the user,
RSSIhigh corresponds to the RSSI determined as the user was
at one meter distant from the AP being in line of sight and
RSSIlow is the lowest RSSI detected for the card.

Signal-to-Noise (SNR) measured at the receiver side should
guide the selection of proper transmission rate [22]. However,
in practice the transmission rate is selected based on channel
probing [22], which is obtained by testing the effectiveness of
individual rates and measuring losses. High loss ratios force the
selection of lower rates and, vice versa, low loss ratios allow
transmission at higher rates. It should be noted that whenever
collisions are detected, packet retransmissions occur at lower
rates. We define the rate impact factor fAR as:

fAR =
R

Rmax
, (3)

where R is the last selected transmission rate and Rmax is the
maximum transmission rate available to the user.

High latencies can seriously affect performance of the delay-
constrained applications. To understand whether it is beneficial
to offload traffic or not, the MCOH compares the one way
delay (L) of WiFi (LWiFi) and LTE (LLTE) networks measured
between the P-GW and the user. The latency impact factor is
then defined as:

fAL = max

(
LLTE − LWiFi

LLTE
, 0

)
. (4)

2) User Behavior: User mobility and employed data plan
can affect offloading decisions considerably. High velocities
commonly lead to higher variations in the received signal,
fast fading and connection termination. Under such hypothesis,
offloading delay-constrained application traffic is risky because
multiple losses can impact QoS dramatically.

To compute the mobility impact factor fM the MCOH
considers the records of users velocity and determines the
average velocity V t of user u at time t through the Exponential
Weighted Moving Average (EWMA):

V t = σ · Vt + (1− σ) · V t−1, (5)

where Vt is the observed velocity at time t, V t−1 corresponds
to the previous value of the average velocity and parameter σ
is exponential weighting coefficient. Higher values of σ limit
the contribution of older values.

Low values of V t do not compromise user QoS. On the
other hand, higher values of V t are a serious obstacle to user

QoS. These observations suggest that fM can be defined as a
sigmoid function:

fM =
1

1 + e−
ψM
εM
·(−v+(1− εM

2 ))
, (6)

where parameters ψM and 1− εM/2 represent the incline and
the center of the curve illustrated in Fig. 3(a) respectively, while
v is the normalized velocity defined as ratio between V u|t and
a reference maximum velocity Vmax.

Users subscribe to a data plan with their operator, which
defines the amount of data traffic they have at disposal. When
the amount of data consumed is close to a limit, users are very
interested in not receiving traffic from cellular interface. On
the other hand, when the amount of data left to consume is
high, users may not care whether the traffic is offloaded or not.
From these observations, we define the data plan impact factor
fD as:

fD =
1

1 + e−ψD·(d−εD)
. (7)

where parameters ψD and εD represent the incline and the
center of the curve respectively illustrated in Fig. 3(b), while
d is the normalized utilized user data defined as ratio between
the utilized user data and the nominal value.

Having at disposal information on user behaviour, applica-
tion requirements and network resources, the MCOH can decide
whether to offload traffic. The user-application based offloading
policy of the MCOH takes into account the aforementioned
information through a combination of application requirements
(fA), user velocity (fM) and user data plan (fD) factors:

fA · fM · fD ≥ γ. (8)

Parameter γ is the offloading sensitivity which can be tuned
by the mobile network operator to increase or decrease the
amount of the offloaded traffic. Low values of γ will increase
the amount of the offloaded traffic, which means that the user
behavior and application requirements are fully satisfied. On
the other hand, higher values of γ impose tighter constrains for
offloading, which may decrease the amount of the offloaded
traffic if the requirements are not met.

III. PERFORMANCE EVALUATION

The effectiveness of the MCOH module performance has
been evaluated using the NS-3 network simulator2, extended
with LTE functionality from LENA project framework.

2www.nsnam.org
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TABLE II. SIMULATION PARAMETERS

PARAMETER VALUE

µ 0.45
ρ 0.10
ω 0.45
εD 18.00
ψD 0.25
εM 9.00
ψM 0.65

Fig. 2 illustrates simulation scenario. A set of 4 users has
been equipped to support LTE and WiFi functionalities. The
users move at different average speeds on a square region with
WiFi AP and eNodeB placed in the center. The maximum
velocity Vmax has been set to 10m/s, which corresponds to the
velocity of an average human run. User terminals constantly
signal their location, which is used to determine their distance d
from the WiFi AP. Knowing d it becomes possible to estimate
RSSI [23]:

RSSI = −(10 · n · log10 d+A), (9)

where n is the loss exponent (n = 2 for propagation in free
space, n = 2.7 in the simulations) and A is the received signal
strength when d = 1m.

At the beginning of the simulation, an available data plan
uniformly distributed between [0, 1] GB is associated to each
user. During simulation run, the data plan is reduced accordingly
to the amount of traffic utilized.

At the beginning of the simulation, the amount of data left
on the data plan unconsumed is uniformly distributed between
[0, 1] Gb for each user. All the users run a VoIP application
modeled according to G.711 codec standard3. On and off voice
periods are randomly chosen from exponential distribution.
The VoiP application transmits packets at 64Kbit/s with a 160
Byte long payload. To compute the application impact factor
the weighting coefficients have been selected to be sensitive
to channel quality and delay to satisfy the profile of delay-
constrained applications. Table II summarizes the values of
simulation parameters.

Fig. 4 shows the amount of data sent to the users through
WiFi and LTE links with increasing values of the offloading

3http://www.cisco.com/c/en/us/support/docs/voice/voice-quality/
7934-bwidth-consume.html
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sensitivity γ for simulation duration of 60 s. In the extreme
cases, when γ is equal to 0 or 1, all traffic is sent completely
through the WiFi or LTE interface respectively. User 1 is the
farthest from the AP, moves at a higher average speed than the
other users and has utilized the major part of the available data.
For these reasons, only low values of offloading sensitivity
(γ < 0.2) permit to offload more than 50% of the traffic. User
2 moves less quickly than User 1. In addition, the user is
not very close to the AP and has utilized a small part of her
available data. Consequently, with high values of the offloading
sensitivity part of her traffic can still be offloaded. Users 3 and
4 have intermediate parameters with respect to Users 1 and
2. Hence, they receive most of the traffic through the WiFi
link with values of γ < 0.5. User 3 moves very slow being
the closest user to the AP. However, the incentive to offloading
given by good channel quality is mitigated by the fact that
she utilized a small part of his available data. On the other
hand, User 4 moves faster than User 3. In addition, the user
is relatively distant from the AP, which penalizes offloading.
However, having utilized most of her available traffic, the data
plan impact factor does not inflate the offloading disincentive
caused by mobility.

Fig. 5(a) and Fig. 5(b) illustrate the effect of the user
parameters on the amount of offloaded traffic. Values close to
1 correspond to having all the traffic sent through the WiFi
interface while values close to -1 denote that all the traffic is
delivered through the LTE interface. Focusing on User 4 and
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having fixed the initial data plan at user disposal for all the
experiments, the user was allowed to move with increasingly
average velocity during the simulation runs to analyze the effect
of the mobility. On the other hand, having fixed the user average
velocity for all the experiments, increasing values of data plan
have been set at the beginning of each simulation run. As a
result, the mobility and the data plan impact factors in Fig. 5
correspond to averages computed over the entire simulation
period. As expected, the results trace a sigmoid shape. Only the
curve in Fig. 5(b) is very close to the one presented in Fig 3(b).
With the offloading decisions taken on a per-packet basis, the
instantaneous velocity is important and not the average over
the entire simulation period velocity. Thus, the system can still
offload traffic even when the average mobility impact factor
approaches the value of 1. This behavior is not shown by the
analysis of data plan impact factor because data utilized is
progressively increased during the simulation period and VOIP
application does not require significant bandwidth availability.
Consequently, instantaneous variation of the utilized data has
no relevant effect on the data plan impact factor.

IV. CONCLUSION AND FUTURE WORK

In this paper we propose MCOH, a software module
that takes offloading decisions with the aim of optimizing
balance between user behavior and application requirements
with availability of network resources. For this, the MCOH
module uses information already available in mobile operator
networks including channel usage statistics and user mobility
patterns among the others.

We validated the performance of the MCOH module
through simulations performed with the NS-3 network simulator.
The results highlight the importance of the aforementioned
information in taking offloading decisions able to guarantee
user QoS.

Future work will focus on extending the concept of the
MCOH to allow using mobile operator network information to
help not only the offloading process, but in a broader range of
cloud networking applications.
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