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Abstract

We develop a new method for showing that a given sequence of
random variables verifies an appropriate law of the iterated logarithm.
Our tools involve the use of general estimates on multidimensional
Wasserstein distances, that are in turn based on recently developed in-
equalities involving Stein matrices and transport distances. Our main
application consists in the proof of the exact law of the iterated log-
arithm for the Hermite variations of a fractional Brownian motion in
the critical case.
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1 Introduction

1.1 Overview

The aim of the present paper is to develop a new technique for proving
laws of the iterated logarithm (LIL) for general sequences of random
variables, possibly having the form of partial sums of random elements
displaying some strong form of dependence. One of the main contri-
butions of our work consists in a collection of sufficient conditions for
the LIL to hold, expressed either in terms of uniform controls on the
(multidimensional) Wasserstein distance between the elements of the
sequence and some Gaussian counterpart, or in terms of some underly-
ing collection of Stein matrices (see Definition 2.1 below). Stein matri-
ces can be roughly described as arrays of random variables verifying a
generalised integration by parts formula: they appear naturally when
implementing the so-called Stein’s method for normal approximations,
see [26] for an introduction to this topic. One of the key technical tools
developed in our work is the new inequality (3.4), that we believe has
a remarkable independent interest, providing an explicit bound on the
multidimensional Kolmogorov distance in terms of the 1-Wasserstein
distance, where the involved constants display a logarithmic depen-
dence in the dimension. In the proof of our main estimates, we shall
often make use of the recent findings from [20, 24], where a new con-
nection between Stein matrices and information functionals has been
revealed, thus yielding new bounds on transport distances.

In what follows, every random element is defined on a common
probability space (Ω,F , IP).
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1.2 Motivation: fractional Hermite variations in

the critical regime

Let BH = {Bt : t ∈ IR} be a standard fractional Brownian motion
on the real line with Hurst parameter H ∈ (0, 1), that is: BH is a
centered Gaussian process having covariance IE[BH

s B
H
t ] = 2−1[|t|2H +

|s|2H − |s − t|2H ]. Write ZH
k := BH

k+1 − BH
k , k ∈ Z, and denote by

{Hq : q = 0, 1, ...} the usual collection of Hermite polynomials (so
that H0 = 1, H1(x) = x, H2(x) = x2 − 1, and so on; see e.g. [26,
Section 1.4]). We are interested in the asymptotic behavior of the so-
called Hermite variations of BH , that is, we want to study random
sequences of the type n 7→ Vn :=

∑n
k=1Hq(Z

H
k ), as n → ∞, for fixed

values of q and of the Hurst index H . It is a well-known fact that the
fluctuations of such variations heavily depend on the relation between
q and H , a crucial role being played by the so-called ‘critical regime’,
corresponding to the choice of parameters H = 1 − 1

2q . The following
convergence results, involving two well-known Central Limit Theorems
(CLTs), are classical:

(a) (Breuer-Major CLT, see e.g. [26, Chapter 6]) If H ∈ (0, 1−1/2q),
then there exists a finite constant σq > 0, such that the sequence
n−1/2Vn converges in distribution to a centered Gaussian random
variable with variance σ2

q .

(b) (Non-central convergence, see [13, 32]) If H > 1 − 1/2q, then

the sequence nq(1−H)− 1
2Vn converges in distribution to a non-

Gaussian random variable, having a so-called ‘Hermite distribu-
tion’.

(c) (CLT in the critical regime, see e.g. [15]) If H = 1 − 1/2q, then,
for some appropriate constant σq > 0, (logn)−1/2Vn converges
in distribution to a centered Gaussian random variable with vari-
ance σ2

q .

The reader is referred to [26, Section 7.4] for a unified modern
presentation of these phenomena. The following question is therefore
natural: can one associate an exact law of the iterated logarithm (LIL)
to each one of the convergence results described at Points (a), (b) and
(c)? It turns out that, although an appropriate LIL has been shown
in the two cases (a) and (b) (see the discussion below), none of the
available techniques can be used to deal with the critical case (c). It
will be demonstrated that our new approach exactly allows to fill this
fundamental gap.

We will now provide a discussion of the available results concerning
LILs for subordinated Gaussian sequences.

Case (a). Let Z = {Zk : k ∈ Z} be a centered stationary Gaussian
sequence, and let f be a measurable and square-integrable mapping.
Since the seminal results by Breuer and Major (see [7], as well as [26,
Chapter 7]), many authors tried to deduce criteria on f and Z ensuring
that, for some adequate finite constant σ > 0,

lim sup
n→∞

1√
2n log logn

n
∑

k=1

f(Zk) = σ, (1.1)
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with probability one. Relying on a seminal paper of Lai and Stout
[19] which provides conditions for the upper-bound of the iterated log-
arithm for general partial sums of dependent random variables, and
by using systematically the so-called ‘method of moments’, Arcones [2]
and Ho [16] obtained LILs for non-linear functionals of general Gaus-
sian fields. First, Ho [16] has provided criteria ensuring that the
right-hand side of (1.1) is bounded from above by some finite constant
σ, by expressing the conditions of Lai and Stout in terms of the co-
variance of Z and the coefficients of the Hermite expansion of f . Next,
Arcones [2] has extended the results of Ho, in particular by obtaining
exact lower bounds. The key idea developed by Arcones in order to
obtain lower bounds, is to consider Gaussian stationary sequences of
the form

Gk =

∞
∑

n=∞
an+kNn, (1.2)

and next to use the classical law of the iterated logarithm for locally
dependent sequences by a truncation argument. It turns out that some
of the results by Arcones contain the exact law of LIL associated with
the CLT at Point (a). Indeed, whereas it is not obvious at first glance,
one can represent the increments of the BH in the form (1.2) (see for
instance [17]). Besides, the coefficients in the expansion (1.2) are such
that ak ∼ 1

k
3
2
−H

(see [3, prop. 2.2, p.64]). Plugging these facts in [2,

Proposition 1], one deduces immediately that, if H < 1− 1
2q , then

lim sup
n→∞

1
√

2n log log(n)

n
∑

k=1

Hq(B
H
k+1 −BH

k ) = σq > 0,

with probability one.

Case (b). The question of the iterated logarithm in this setup was
partially solved by Taqqu in [30]. Later on, Lai and Stout [19] gave
criteria for upper bounds, whereas the complete law of the iterated
logarithm was proved by Mori and Oodaira in [22].

Case (c). The first LIL ever proved for the critical regime (c) will
appear in Theorem 2.4 below: the proof is based on the novel approach
developed in the present work. Note that, so far, there has been no
attempt to prove a LIL in this delicate context. We believe indeed that
it would be not possible (or, at least, technically very demanding) to
extend the approaches by Arcones [2] and Mori and Oodaira in [22]
to deal with this case. One plausible explanation for this impasse is
that, in both cases (a) and (b), the convergence in distribution takes
place at an algebraic speed in n (with respect e.g. to the Kolmogorov
distance, see e.g. [26, p. 146]). However, it is known since [4, p. 381]
that the speed of convergence is logarithmic in the critical regime (c),
and such a rate is sharp. A careful analysis of the proofs of Mori
Oodaira and Arcones reveals that most arguments in their approach
are based on ‘polynomial’ estimates in the truncations, derived from
upper bounds on moment sequences: as they are, such estimates are of
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no use for dealing with a logarithmic speed of convergence. In contrast,
our approach allows one to obtain a simple and transparent proof of
the LIL stated in Theorem 2.4, thus by-passing at once the difficulties
mentioned above.

1.3 Stationary Gaussian sequences

As a by-product of our analysis, in Theorem Theorem 2.2 we shall ob-
tain a very general LIL for a stationary Gaussian sequence Z. To our
knowledge, the most general LIL for a stationary Gaussian sequence is
due again to Arcones [1]. In such a reference, the author shows that
the LIL holds under the condition that

∑

k |ρ(k)| <∞, where ρ is the
correlation function of Z (this covers the result of Deo [12]). Other
conditions were given in [18, 30] which are similar to the condition we
provide in the Theorem 2.2, in the sense that it is required that the
variance of the sequence of partial sums is asymptotically equivalent to
a sequence of the type nαL(n), where L is a regularly varying function.
We stress that there is an important difference between our work and
some of the existing literature, namely: we do not need any further
assumptions on the function L, whereas both references [18, 30] need
some additional technical requirements on L. Finally, we stress that
our condition covers the findings of [1], see Corollary 2.1 below. Our
findings support the conjecture that the law of the iterated logarithm
in this setting holds under the only assumption that the variance is reg-
ularly varying (meaning that Assumption 2.15 below can be dropped).

1.4 Remark on notation

Throughout the paper, we shall use standard notations from Malliavin
calculus – the reader is referred to [26, Chapters 1 and 2] for a standard
introduction to this topic. In particular, given an isonormal Gaussian
process G = {G(h) : h ∈ H} over some real separable Hilbert space H,
we shall denote by D and δ, respectively, the Malliavin derivative and
divergence operators. Also, we shall write L to indicate the generator of
the associated Ornstein-Uhlenbeck semigroup. We recall that a square-
integrable functional F of G is said to belong to the qth Wiener chaos
associated with G (for q = 0, 1, 2, ...) if LF = −qF . We also recall, for
future use, the following crucial hypercontractivity property of Wiener
chaoses (see e.g. [26, Corollary 2.8.14] for a proof): if F is an element
of the qth Wiener chaos of a given Gaussian field, then, for every
r > p > 1,

IE[|F |r]1/r ≤
(

r − 1

p− 1

)q/2

× IE[|F |p]1/p. (1.3)

1.5 Plan

The paper is organized as follows. Section 2 contains the statements
of our main results. Section 3 is devoted to some preliminary mate-
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rial, whereas Section 4 and 5 contain the proofs, respectively, of our
theoretical results and of our findings connected to applications.

2 Statement of the main results

Throughout the present section, we will consider a sequence

X = {Xn : n ≥ 0}

of real-valued random variables that are defined on a common prob-
ability space (Ω,F , IP). We make the convention that X0 = 0, and
we assume that the elements of the sequence X are centered, i.e., that
IE[Xn] = 0 for all n ≥ 1. In general, the capital letter C stands for a
general constant which may vary from line to line; its dependency on
other parameters at hand will be emphasized whenever it is important.

Given two random elements Z,Y with values in IRd (d ≥ 1), the
Kolmogorov distance between the laws of Z and Y, denoted dK(Z,Y),
is defined as follows:

dK(Z,Y) = sup
∣

∣

∣IP[Z ∈ Q]− IP[Y ∈ Q]
∣

∣

∣,

where the supremum runs over all rectangles of the formQ = (−∞, a1]×
· · · × (−∞, ad], with a1, ..., ad ∈ IR.

Fix θ ≥ 1. Given two random elements Z,Y with values in IRd

(d ≥ 1) and such that IE‖Z‖θ
IRd , IE‖Y‖θ

IRd < ∞, the θ-Wasserstein
distance Wθ(Z,Y) between the laws of Z and Y is given by

Wθ(Z,Y) := inf
{

(IE[‖U−V‖θIRd ])
1/θ
}

,

where the infimum runs over all 2d-dimensional vectors (U,V) such

that U
law
= Z and V

law
= Y. The value of the dimensional parameter d,

which does not appear in the notation Wθ(Z,Y), will be always clear
from the context.

Given two sequences of real numbers (un)n≥1 and (vn)n≥1, the
notation un ∼ vn means that

lim
n→∞

un
vn

= 1.

2.1 A general law of the iterated logarithm

We shall now introduce a collection of assumptions, that will enter the
statements of our main results.

(A1) The sequence X verifies Assumption (A1) if there exists a slowly
varying function L ( that is, L is such that limx→∞ L(ax)/L(x) =
1 for every a > 0 — see e.g. [6, p. 14]) and a function g : N → IR+

such that for some a ∈]0, 1]

g(n) ∼ naL(n),

6



and for some C > 0 and all n1 < n2

∣

∣

∣

∣

IE
[Xn2 −Xn1

g(n2 − n1)

]2

− 1

∣

∣

∣

∣

≤ C

1 + log(n2 − n1)
. (2.1)

(A2) We shall say the X verifies Assumption (A2) if, for every pair of
integers n, p ≥ 1,

lim sup
a→∞

IE[(Xa+n −Xa)
2p] <∞.

(A3) Let G be a one-dimensional standard Gaussian random variable,
let X verify assumption (A1), and let g : IR+ → IR+ be the
corresponding function. We say that X verifies Assumption (A3)
if there exist constants C, λ > 0 such that, for all θ ≥ 1,

Wθ

(

Xn2 −Xn1

g(n2 − n1)
, G

)

≤ Cα(θ)
θλ

1 + log(n2 − n1)
,

where α(1) = 1 and α(θ) = (θ − 1)
1
2 for θ > 1, and moreover

dK

(

Xn2 −Xn1

g(n2 − n1)
, G

)

≤ C

1 + log(n2 − n1)

for every n2 > n1.

(A4) Given real numbers q > 1, α > 0, and integers d,m ≥ 1, we
consider the particular collection of positive integers (with [x]
the integer part of the real number x)

n↑ := {ni}1≤i≤2d =
{

[q(m+i)1+α

]
}

1≤i≤2d
.

For simplicity we write

Yn↑ = (Y1, · · · , Yd) (2.2)

=

(

Xn2 −Xn1

g(n2 − n1)
,
Xn4 −Xn3

g(n4 − n3)
, · · · , Xn2d

−Xn2d−1

g(n2d − n2d−1)

)

,

the random vector or size d of increments of X along the sub-
sequence n↑. We say that the sequence X verifies Assumption
(A4) if, for some fixed q > 1 and every α > 0, there exists some
constant Cα,q such that, for every d,m ≥ 1,

W1(Yn↑ ,G) ≤ dCα,q

1 + log(n2 − n1)
, (2.3)

where G stands for a d-dimensional vector of i.i.d. centered stan-
dard Gaussian random variables.

Remark 2.1. Roughly speaking, assumption (A4) expresses the fact

that the normalized increments of X taken at the particular scale qi
1+α

,
behave as independent Gaussian. Moreover, the error in this approx-
imation for the Wasserstein distance is logarithmic in the size of the
smallest increment (n2 − n1).
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The next statement is one of the main achievements of the present
paper.

Theorem 2.1. Assume that the sequence {Xn : n ≥ 1} satisfies the
four assumptions (A1)–(A4). Then,

lim sup
n→∞

Xn
√

2g2(n) log logn
= 1, a.s. (2.4)

lim inf
n→∞

Xn
√

2g2(n) log logn
= −1, a.s. (2.5)

where the mapping g appears in Assumption (A1).

Remark 2.2. As demonstrated below, the Assumption (A3) expresses
a sort of hypercontractivity. However, an inspection of the proof of the
Theorem 2.1 reveals that the mere Assumptions (A1), (A2) and (A4)
are enough to ensure that

lim sup
n→∞

Xkn

g(kn)
√

2 log log(kn)
= 1 a.s.,

where kn = qn
1+α

.

2.2 Checking the assumptions by means of Stein

matrices

We will now show how one can check the validity of Assumptions (A2)–
(A4) of the previous section by using the concept of a Stein matrix as-
sociated with a given random vector. As discussed below, such a notion
is particularly well adapted for dealing with the normal approximation
of functionals of general Gaussian fields.

Definition 2.1 (Stein matrices). Fix d ≥ 1, let F = (F1, ..., Fd) be
a d-dimensional centered random vector, and denote by M(d, IR) the
space of d× d real matrices. We say that the matrix-valued mapping

τ : IRd →M(d, IR) : x 7→ τ(x) = {τi,j(x) : i, j = 1, ..., d}
is a Stein matrix for F if τi,j(F ) ∈ L1(IP) for every i, j and the following

is verified: for every differentiable function g : IRd → IR such that g and
its partial derivatives have at most polynomial growth, the two (vector-
valued) expectations IE [Fg(F)] and IE [τ(F)∇g(F)] are well defined
and

IE [Fg(F)] = IE [τ(F)∇g(F)] , (2.6)

or, equivalently,

IE [Fig(F)] =

d
∑

j=1

IE [τi,j(F)∂jg(F)] , i = 1, ..., d. (2.7)

Note that, selecting g(x) = xj , j = 1, ..., d, one obtains from (2.6) that
IE[FiFj ] = IE[τi,j(F )] = IE[τj,i(F )], for every i, j = 1, ..., d. Finally,
we stress that, in dimension d = 1 the Stein matrix τ is simply a
real-valued mapping, which is customarily called a Stein factor.
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The next statement provides an explicit connection between prop-
erties of Stein matrices and the law of the iterated logarithm stated in
the previous section.

Proposition 2.1. Let X = {Xn : n ≥ 1} be the sequence of centered
random variables introduced in the previous section. Assume that X
verifies Assumption (A1) (for some adequate mapping g), and also
that the following properties hold:

(i) For each d ≥ 1, and each increasing sequence n↑ = {ni}1≤i≤2d

of 2d integers, the vector Yn↑ = (Y1, · · · , Yd), as defined in (2.2),
admits a d × d Stein matrix τn↑ = {τi,j : i, j = 1, ..., d}, in the
sense of Definition 2.1.

(ii) There exists q > 1 such that, for every α > 0, there exists a
constant Cα,q > 0 verifying the inequalities

√

Var
[

τi,i(Yn↑)
]

≤ Cα,q

1 + log(n2i − n2i−1)
, ∀i = 1, ..., d, (2.8)

and

A(i, j) ≤ Cα,q

1 + log(n2i − n2i−1)
, ∀1 ≤ i < j ≤ d, (2.9)

where

A(i, j) = max

{

√

IE
[

τi,j(Yn↑)2
]

,

√

IE
[

τj,i(Yn↑)2
]

}

,

for every d ≥ 1 and every increasing collection of integers of
the type n↑ = {ni}1≤i≤2d =

{

[q(m+i)1+α

]
}

1≤i≤2d
, where m ≥ 1.

Here, we have adopted the notation (2.2), whereas τn↑ = {τi,j} is
the Stein matrix associated with Yn↑ .

(iii) There exist constants C, λ > 0 such that, for all θ ≥ 1,

∥

∥

∥τ

(

Xn2 −Xn1

g(n2 − n1)

)

− 1
∥

∥

∥

θ
:=

(

IE
∣

∣τ

(

Xn2 −Xn1

g(n2 − n1)

)

− 1
∣

∣

θ
)

1
θ

≤ C
θλ

1 + log (n2 − n1)
, (2.10)

for every n1 < n2, where τ stands for the Stein factor of
Xn2−Xn1

g(n2−n1)
.

Then, X verifies assumptions (A2), (A3) and (A4).

Remark 2.3. If the random sequence X = {Xn : n ≥ 1} is composed
of functionals of an isonormal Gaussian process G = {G(h) : h ∈ H}
and if each Xn lies in the domain of the Malliavin derivative operator
D , then the previous assumption (i) is always fulfilled by taking

τi,j(Y1, · · · , Yd) = IE
[

〈DYj ,−DL−1Yi〉H | (Y1, · · · , Yd)
]

,
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where L−1 stands for the pseudo-inverse of the Ornstein-Uhlenbeck
generator (see e.g. [26, Section 2.8.2]). In particular, if the sequenceX
belongs to the qth Wiener chaos of G (and therefore L−1Xn = −q−1Xn

for every n), one has the simple representation

τi,j(Y1, · · · , Yd) =
1

q
IE
[

〈DYj , DYi〉H | (Y1, · · · , Yd)
]

, (2.11)

which also implies that the Stein matrix {τi,j(Y1, ..., Yd) : i, j = 1, ..., d}
is symmetric. Again, we refer the reader e.g. to [24] for a concise
exposition of the required notions and to the monographs [26, 27] for
more details.

Remark 2.4. When {Xn : n ≥ 0} lies in a finite sum of Wiener
chaoses, Assumption (iii) is particularly easy to check. Indeed, using
hypercontractivity properties (1.3), it is sufficient to check equation
(2.10) only in the case θ = 2. This case is indeed covered by Assumption
(ii).

2.3 First examples: LIL for independent sequences

As demonstrated in the sections to follow, the techniques developed in
the present paper have been specifically devised for deducing laws of
the iterated logarithm involving sums of random variables displaying
some form of non-trivial dependence. However, in order to develop
some intuition about the assumptions appearing in the statements of
Theorem 2.1 and Proposition 2.1, it is instructive to first focus on
the case of independent random variables. We stress that the aim of
this section is to provide an illustration of our techniques in a familiar
framework: in particular, we do not aim at generality. The reader is
referred e.g. to [14, Section 12.5] for an exhaustive discussion of the
LIL (and its history) for sequences of i.i.d. random variables.

2.3.1 Rademacher sequences

We start by considering the case of independent Rademacher random
variables {εi : i ≥ 1} (that is, IP[εi = 1] = 1/2 = IP[εi = −1], i ≥ 1).
In this case, it is well known that, by noting Sn =

∑n
i=1 εi, n ≥ 1,

lim sup
n→∞

Sn√
2n log logn

= 1 = − lim inf
n→∞

Sn√
2n log logn

, (2.12)

with probability one. In what follows, we shall show that (2.12) can
be directly deduced from Theorem 2.1 and Proposition 2.1. In order
to accomplish this task, it is indeed preferable to show the equivalent
statement: with probability one,

lim sup
n→∞

Xn√
2n log logn

= 1 = − lim inf
n→∞

Xn√
2n log logn

, (2.13)

where Xn = Sn +U and U is a random variable uniformly distributed
on [−1, 1], independent of the εi’s. It is clear that, in this case, Assump-
tion (A1) is verified for the choice of function g(n) =

√
n. Moreover,
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a simple computation (based e.g. on [10, Lemma 3.3]), shows that,
for any choice of n↑, the vector Yn↑ appearing at Assumption (i) of
Proposition 2.1 admits a Stein matrix τn↑ = {τi,j : i, j = 1, ..., d} such
that, for i = 1, ..., d,

τi,i =
IE
{

n2i − n2i−1 − (Sn2i − Sn2i−1)U + (1− U2)/2
∣

∣

∣Yn↑

}

n2i − n2i−1
,

and, for 1 ≤ i 6= j ≤ d,

τi,j =
1

√

(n2i − n2i−1)(n2j − n2j−1)
IE
{

(1− U2)/2
∣

∣

∣Yn↑

}

,

and it is a matter of a simple verification to check that Assumption (ii)
of Proposition 2.1 is indeed satisfied. Finally, since for any choice of
integers n2 > n1 one has that

τ

(

Xn2 −Xn1√
n2 − n1

)

=
IE
{

n2 − n1−(Sn2 − Sn1)U+(1− U2)/2
∣

∣

∣

Xn2−Xn1√
n2−n1

}

n2 − n1
,

we deduce immediately from a standard application of Khinchin in-
equality that, for every θ > 2,

∥

∥

∥
τ

(

Xn2 −Xn1√
n2 − n1

)

− 1
∥

∥

∥

θ
≤ (θ − 1)1/2 + 1

n2 − n1
.

This implies in particular that Assumption (iii) in Proposition 2.1 is
verified, and consequently that (2.13) (and therefore (2.12)) holds.

The crucial point of the previous example is of course that, although
the random variables Sn are discrete and not directly amenable to anal-
ysis by means of our techniques, the simple addition of the independent
bounded component U makes Stein matrices appear very naturally. For
the time being, it is unclear whether a similar smoothing operation can
be realised for an arbitrary sequence of independent discrete random
variables.

2.3.2 Random variables with densities

We now consider a sequence {Zi : i ≥ 1} of i.i.d. real-valued centered
random variables with unit variance. We assume that the law of Z1

is absolutely continuous with respect to the Lebesgue measure, with a
density f whose support is assumed (for simplicity) to be a (possibly
unbounded) interval. Writing Xn = Sn =

∑n
i=1 Zi, it is of course

well-known (see e.g. [14, Theorem 12.5.1]) that relation (2.13) holds
with probability one. In what follows, we shall show that, under some
additional assumption on the regularity of the density f , such a result
can be directly deduced from Theorem 2.1 and Proposition 2.1. To
this end, we define an auxiliary function s : IR → IR as follows:

s(x) =

∫∞
x
yf(y)dy

f(x)
,
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for each x in the support of f , and s(x) = 0 otherwise. Then, it is a
simple exercise in integration to show that the random variable s(Z1)
is indeed a Stein factor for Z1, that is: for every smooth mapping ϕ,
one has that IE[Z1ϕ(Z1)] = IE[s(Z1)ϕ

′(Z1)]. Moreover, one can check
that s(Z1) ≥ 0 with probability one (see e.g. [28, Chapter VI]). The
following statement contains the announced connection with the main
results of the present paper.

Proposition 2.2. Let the above notation and assumptions prevail. If
IE[s(Z1)

2] < ∞, then Assumption (A1) together with Assumptions
(i) and (ii) of Proposition 2.1 are verified for the choice of function
g(n) =

√
n. If moreover there exist constants 0 < λ,K <∞ such that

IE[s(Z1)
θ]1/θ ≤ Kθλ, θ ≥ 2, (2.14)

then also Assumption (iii) of Proposition 2.1 is satisfied.

Remark 2.5. It is easy to find sufficient conditions on f , ensur-
ing that (2.14) is satisfied. For instance, if f has the form f(x) =

(2π)−1/2q(x)e−x2/2, where q is some smooth mapping satisfying q(x) ≥
c > 0 and |q′(x)| ≤ C <∞, then one has that s(x) ≤ 1+

√
2πC/c <∞,

so that the requirement (2.14) is trivially met.

Proof of Proposition 2.2. The fact that assumption (A1) is satisfied
for g(n) =

√
n is trivial. Moreover, for any choice of n↑, the vectorYn↑

appearing at Assumption (i) of Proposition 2.1 admits a Stein matrix
τn↑ = {τi,j : i, j = 1, ..., d} such that, for i = 1, ..., d,

τi,i =
1

n2i − n2i−1
IE





n2i
∑

k=n2i−1+1

s(Zk)
∣

∣

∣Yn↑



 ,

and τi,j = 0 for every i 6= j. Since Var(τi,i) ≤ (n2i − n2i−1)
−1IE[(1 −

s(Z1))
2], we deduce immediately that Assumption (ii) of Proposition

2.1 is indeed satisfied. To see that relation (2.14) implies that Assump-
tion (iii) of Proposition 2.1 is also verified, we shall apply Rosenthal
inequality for centered random variables (see e.g. [11, p. 46]), together
with the fact that IE[s(Z1)] = 1 and that, for every choice of integers

n1 < n2, a Stein factor for
Xn2−Xn1√

n2−n1
is given by

τ

(

Xn2 −Xn1√
n2 − n1

)

=
1

n2 − n1

n2
∑

k=n1+1

s(Zk).

According to the Rosenthal inequality, one has indeed that, for some
universal finite constant C and for every θ ≥ 2,

∥

∥

∥
τ

(

Xn2 −Xn1√
n2 − n1

)

− 1
∥

∥

∥

θ

≤ C
θ

log θ

(

1√
n
IE[(s(Z1)− 1)2]1/2 +

1

n1−1/θ
IE[(s(Z1)− 1)θ]1/θ

)

,

from which we immediately deduce the desired conclusion.

Starting from the next section, we shall focus on sequences of de-
pendent random variables living on a Gaussian space.
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2.4 LIL for Gaussian sequences

As a more substantial application of our main results, we shall now
prove a general version of the law of the iterated logarithm for a cen-
tered stationary Gaussian sequence {Zk : k ≥ 1} with correlation func-
tion r(k) := IE[ZnZn+k]. We write Xn =

∑n
k=1 Zk.

The following statement is the main result of the section.

Theorem 2.2. Assume that g(n) :=
√

IE [X2
n] ∼ naL(n), where a ∈

(0, 1) and L is a slowly varying function. Moreover, we assume that

n2
∑

k=n1

r(k) = O
(

(n2 − n1)
2a−1L(n2 − n1)

)

. (2.15)

Then, we have the following law of the iterated logarithm

lim sup
n→∞

Xn
√

2g2(n) log logn
= 1 a.s.-IP. (2.16)

Remark 2.6. We emphasize that the condition (2.15) is strongly re-
lated to the fact that g(n) is regularly varying. This can be seen from
the equation

g2(n) = 2

n−1
∑

k=1

r(k)(n − k) + n.

We conjecture that assumption (2.15) can indeed be removed, but such
an improvement seems difficult for the time being.

The next corollary generalizes some results contained in [1, 12, 18,
30]: to our knowledge, it corresponds to the most general statement for
stationary Gaussian sequences available in the literature. The fact that
∑

k |r(k)| < ∞ is sufficient to get the law of the iterated logarithm is
due to M. Arcones [1, Corollary 2.1]. Let us stress that Lai and Stout
have provided in [18, Theorem 4] criteria for the law of the iterated
logarithm under additional assumptions on the slowly varying function
L. Case (i) of the next corollary with b ≤ 1 seems to be new.

Corollary 2.1. Let the assumptions and notation of the present sec-
tion prevail. The following two implications hold:

(i) Let g(n) = naL(n) with a ∈ (0, 1). If r(k) = O( 1
kb ) where b =

2− 2a, then (2.16) holds.

(ii) If
∑∞

k=1 |r(k)| <∞, then (2.16) holds.

2.5 LIL in the Breuer-Major theorem: critical and

non-critical regimes

As anticipated in the Introduction, our main results allow one to deduce
sharp laws of the iterated logarithm for the Hermite variations of a
fractional Brownian motion. This fact is resumed in the next two
propositions. We stress that Theorem 2.3 can be deduced from [2,
Proposition 1], whereas Theorem 2.4 seems to be outside the scope of
any other available technique.

13



Theorem 2.3. Let q ≥ 2 and Hq stands for Hermite polynomial of
degree q. Assume that BH = {BH

t }t∈IR be a fractional Brownian mo-
tion with Hurst parameter H < 1− 1

2q . Set Zk = BH
k+1 −BH

k , k ∈ Z.
Define

Xn :=

n−1
∑

k=0

Hq(Zk) =

n−1
∑

k=0

Hq(B
H
k+1 −BH

k ) n ≥ 1. (2.17)

Then, Theorem 2.1 with g(n) ∼ √
n implies that there exists a positive

constant l such that

lim sup
n→∞

Xn√
2n log logn

= l a.s.-IP.

Here,

l =
q!

2q

∑

r∈Z

(

|r + 1|2H + |r − 1|2H − 2|r|2H
)q
.

Theorem 2.4. Let the notation of Proposition 2.3 prevail, and set
H = 1− 1

2q . Then, applying Theorem 2.1 with g(n) ∼ √
n logn implies

that there exists a positive constant l such that

lim sup
n→∞

Xn√
2n logn log logn

= l a.s.-IP.

In this case,

l = 2q!

(

1− 1

q

)q (

1− 1

2q

)q

.

The next section contains a number of preliminary results, that will
be exploited in the proofs of our main findings.

3 Preliminaries

In this section, we gather together several useful statements, that are
needed in order to prove our main results.

3.1 A result by Lai and Stout

As anticipated in the Introduction, one of the key contributions of the
present paper is a new technique, allowing one to deduce exact lower
bounds in the LIL for possibly dependent sequences. For upper bounds,
our principal tool will be a classical result by Lai and Stout [19, Lemma
1], that we reformulate in a way that is convenient for our discussion.

Lemma 3.1 (Lemma 1 in [19]). Let the sequence X = {Xn : n ≥ 1}
verify Assumption (A1) (for some appropriate mapping g) and As-
sumption (A2) of Section 2.1, and assume that the following two con-
ditions hold:

14



(a) For every 0 < ǫ < 1, there exist ǫ′,K > 0 such that, for n, a ∈ IN
large enough,

IP

(

Xn+a −Xa

g(n)
≥ (1 + ǫ)

√

2 log logn

)

≤ K

log1+ǫ′ n
.

(b) There exist numbers θ,K ′ > 0 and B > 1 such that, for a and n
large enough,

IP

(

Xn+a −Xa

g(n)
≥ x

√

2 log logn

)

≤ K ′

xθ log log n
, x ≥ B.

Then, with IP-probability one,

lim sup
n→∞

|Xn|
√

2g(n)2 log logn
≤ 1. (3.1)

Remark 3.1. In view of the assumptions on the mapping g appearing
in (A1), one has always that

lim inf
n→∞

g(K ′′n)/g(n) > 1, ∀K ′′ > 1 (3.2)

and also that, for every ǫ > 0, there exists ρ < 1 such that

lim sup
n→∞

{

max
ρn≤i≤n

g(i)/g(n)

}

≤ 1 + ǫ. (3.3)

Relations (3.2)–(3.3) imply, in particular, that the mapping n 7→ IE[X2
n]

automatically satisfies relations (1.1)–(1.2) in [19], that in turn appear
as explicit assumptions in the original statement of [19, Lemma 1]. One
should also notice that, in the statement of [19, Lemma 1], conditions
(a) and (b) require that K = K ′ = 1. It is immediately checked that
the conclusion remains valid if one considers instead arbitrary finite
constants K,K ′ > 0.

3.2 Comparison of multivariate Kolmogorov and 1-

Wasserstein distances

The next result, which is of independent interest, is a crucial step in
our approach. We emphasis that the logarithmic dependence on the
dimension in the forthcoming estimate (3.4) is absolutely necessary for
achieving the proof of our main results.

Theorem 3.1. Let d ≥ 1 be an integer, let X = (X1, · · · , Xd) be any
random vector and let G = (G1, · · · , Gd) be a Gaussian random vector
with covariance identity. Then, one has that

dK(X,G) ≤ 3 log
1
4 (d+ 1)

√

W1(X,G). (3.4)

Proof. Without loss of generality, we can assume that X and G are
defined on the same probability space, and also that IE

[

‖X − G‖
]

=
W1(X,G). Let t = (t1, · · · , td). For convenience, we set {X ≤ t} :=
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{X1 ≤ t1, · · · , Xd ≤ td} and {G ≤ t} = {G1 ≤ t1, · · · , Gd ≤ td}.
Let us be given a positive parameter ǫ > 0. We have the following
inequalities (where we set for simplicity ‖x‖∞ := maxi=1,··· ,d |xi| and
‖x‖ := ‖x‖IRd =

√

x21 + · · ·+ x2d):

IP(X ≤ t)− IP(G ≤ t)

≤ IP
(

X ≤ t, ‖X−G‖∞ ≤ ǫ
)

− IP(G ≤ t) +
1

ǫ
IE
[

‖X−G‖∞
]

≤
(

IP(G ≤ t+ (ǫ, · · · , ǫ))− IP(G ≤ t)
)

+
1

ǫ
IE
[

‖X−G‖
]

≤
(

IP(G ≤ t+ (ǫ, · · · , ǫ))− IP(G ≤ t)
)

+
W1(X,G)

ǫ

In order to estimate the first term, we set

φ(x) = IP
(

G ≤ t+ (x, · · · , x)
)

.

One has
|φ(ǫ)− φ(0)| ≤ sup

x∈IR
|φ′(x)|ǫ.

Besides, one has

φ′(x) =
d

dx

(

d
∏

i=1

∫ ti+x

−∞
e−

u2

2
du√
2π

)

=
1

(2π)
d
2

d
∑

i=1

e−
(ti+x)2

2

∏

j 6=i

∫ tj+x

−∞
e−

u2

2 du

≤ θd := sup
t∈IRd

1

(2π)
d
2

d
∑

i=1

e−
t2i
2

∏

j 6=i

∫ tj

−∞
e−

u2

2 du

To estimate θd we follow an iterative scheme. Namely, one has

θd ≤ sup
t1∈IR

(

1√
2π
e−

t21
2 +

∫ t1

−∞
e−

u2

2
du√
2π
θd−1

)

.

We are left to estimate the maximum of the next univariate function

h(t1) =
1√
2π
e−

t21
2 +

∫ t1

−∞
e−

u2

2
du√
2π
θd−1.

We have

h′(t1) = (θd−1 − t1)
e−

t21
2√
2π
,

implying that the maximum of h is reached when t1 = θd−1. From
theses facts, we obtain the following recursion.

θd ≤ 1√
2π
e−

θ2
d−1
2 + θd−1

∫ θd−1

−∞
e−

u2

2
du√
2π

:= f(θd−1).
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We will now show that the previous inequality entails that θd ≤
√

2 log(d+ 1).
We proceed with induction on d. When d = 1, one has θ1 ≤ 1√

2π
≤√

2 log 2. Let us assume now that d ≥ 2, a straightforward computation
implies that f is increasing. Therefore,

θd+1 ≤ f(θd) ≤ f(
√

2 log(d+ 1))

=
1√
2π

1

d+ 1
+
√

2 log(d+ 1)

∫

√
2 log(d+1)

−∞
e−

u2

2
du√
2π

≤ 1√
2π

1

d+ 1
+
√

2 log(d+ 1)
(

1− 1

(d+ 1)
√

2 log(d+ 1)

)

≤
√

2 log(d+ 1) + (
1√
2π

− 1)
1

d+ 1

≤
√

2 log(d+ 2).

The same strategy can be implemented to deduce an analogous bound
for IP(G ≤ t) − IP(X ≤ t). Putting these facts together, we have
showed that, for every ǫ > 0,

dK(X,G) ≤ ǫ
√

2 log(d+ 1) +
1

ǫ
W1(X,G).

A standard argument of optimization implies the desired bound.

When d = 1, one recovers from (3.4) the inequality dK(X,G) ≤
c
√

W1(X,G), where c = 3(log 2)1/4 ≈ 2.737. This estimate is slightly

worse than the usual bound dK(X,G) ≤ 2
√

W1(X,G), see e.g. [26,
formula (C.2.6)] and the references therein.

3.3 Bounds on Wasserstein and Kolmogorov dis-

tances in terms of Stein matrices

The following statement shows how Stein’s matrices can be directly put
into use, in order to asses normal approximations (both in the sense of
the Wasserstein and Kolmogorov distances). Part (a) corresponds to
Proposition 3.4 in [20], while Part (b) follows from a standard appli-
cation of the one-dimensional Stein’s method (see e.g. [26, Chapters 3
and 5]).

Proposition 3.1. Fix an integer d ≥ 1, as well as θ ∈ [1,∞). Let
X = (X1, ..., Xd) be any centered random vector whose entries have
moments of order θ, and let G = (G1, ..., Gd) be a centered standard
Gaussian vector. Assume that X has a Stein matrix τ(X) (in the sense
of Definition 2.1).

(a) If the entries of τ(X) have finite moments of order θ, then

Wθ(X,G) ≤ D(d, θ)





d
∑

i,j=1

IE |τi,j(X)− δij |θ




1
θ

, (3.5)
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where δi,j is the Kronecker symbol, and D(d, θ) := cθd
1−1/θ if θ ∈

[1, 2), and D(d, θ) := cθd
1−2/θ if θ ≥ 2, with cθ := (IE|G1|θ)1/θ.

(b) If d = 1, and therefore X = X, G = G and τ(X) are one-
dimensional random variables,

dK(X,G) ≤ IE |τ(X)− 1| . (3.6)

In order to bound the 1-Wasserstein distance, we will actually need
a slightly different bound, proven e.g. by means of Stein’s method
and of a slight modification of the arguments used in the proof of
[23, Proposition 3.5]: under the assumptions of Proposition 3.1, and
assuming the entries of of τ(X) are square-integrable,

W1(X,G) ≤

√

√

√

√

d
∑

i,j=1

IE[(τi,j(X)− δij)2]. (3.7)

4 Proofs of the main theoretical results

4.1 Proof of Theorem 2.1

4.1.1 Proof of the upper bound

Let g(n) be the mapping appearing in Assumption (A1). We shall
prove that, under (A3), both Conditions (a) and (b) in the statement
of Lemma 3.1 are verified, thus implying that the asymptotic upper
bound (3.1) holds with probability one.

Verification of Condition (a). Fix integers a, n such that 2 log logn > 1,
as well as a real number p ≥ 1. In view of Assumption (A3), there
exists on some auxiliary probability space a coupling (U, V ) such that

U
law
=

Xn+a −Xa

g(n)

V
law
= N (0, 1)

IE
[

|U − V |2p
]

≤ (2p− 1)p
(

C
(2p)λ

1 + logn

)2p

. (4.1)

The Markov inequality yields therefore that, for every ǫ ∈ (0, 1),

IP

(

Xn+a −Xa

g(n)
≥ (1 + ǫ)

√

2 log logn

)

≤ IP
(

V ≥ (1 +
ǫ

2
)
√

2 log logn
)

+IP
(

|U − V | > ǫ

2

√

2 log logn
)

≤ 1

log(1+
ǫ
2 )

2

n
+

22p

ǫ2p
IE
[

|U − V |2p
]

,
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where we have used the basic estimate IP[V ≥ c] ≤ e−c2/2, for every
c > 1. Since, the previous bound is valid for any p, one can choose
2p = log logn. We now claim that, for n sufficiently large,

2log logn

ǫlog logn
(log logn)

log logn

(

C
(log logn)λ

1 + logn

)log logn

≤ 1

log(1+
ǫ
2 n)2

.

To see this, just observe that the logarithm of the left hand side of the
previous expression is given by

log logn×
(

log
2

ǫ
+ log log logn+

logC + λ log log logn
)

− (log logn)
2 ∼ − (log logn)

2
,

whereas the logarithm of the right hand side is given by

−
(

1 +
ǫ

2

)2

log log(n).

In view of these relations, we conclude immediately that Condition (a)
is verified (for some appropriate K ≥ 1, by choosing ǫ′ = (1 + ǫ

2 )
2 − 1

for some 0 < ǫ < 2(
√
2− 1).

Verification of Condition (b). If n is such that 2 log logn > 1, the same
coupling strategy as above yields the bound: for every x > 1

IP

(

Xn+a −Xa

g(n)
≥x
√

2 log logn

)

≤ 1

log(
x
2 )

2

n
+
22p

x2p
IE
[

|U − V |2p
]

,

where p ≥ 1 is arbitrary and the coupling (U, V ) verifies the bound
(4.1). We now choose p = 2−1 log logn, and we shall verify that each of
the summands on the right-hand side of the previous inequality is less
than 1

xlog log n for n large enough. The logarithm of the first summand

is −
(

x
2

)2
log logn, which is less than − log logn log x for every x > 0.

On the other hand, the logarithm of the second summand is

log logn
(

log 2 + log log logn+ logC

+λ log log logn
)

− (log logn)
2 − log logn log x.

which also verifies the desired inequality, since

log logn (log 2 + log log log n+ logC + λ log log logn)−(log logn)2 < 0.

The above computations show that Condition (b) is verified for B =
θ = 1, and some appropriate K ′ ≥ 2.

4.2 Proof of the lower bound

Let q > 1 be the real number appearing in Assumption (A4). For any
ǫ > 0, we select a strictly positive number αǫ > 0 in such a way that
the following condition holds:

(1 + αǫ)(1 − ǫ)2 < 1. (4.2)
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We need some further notation. Let d ≥ 1, and let p = 1, 2, ... be an
arbitrary integer. We define the d-dimensional vector:

Zp,d =

(

Xq(2p+2)1+αǫ −Xq(2p+1)1+αǫ

g
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
) ,

· · · ,
Xq(2p+2d)1+αǫ −Xq(2p+2d−1)1+αǫ

g
(

q(2p+2d)1+αǫ − q(2p+2d−1)1+αǫ
)

)

.

We also write

Ap =

{

Xq(2p+2)1+αǫ −Xq(2p+1)1+αǫ

g
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
) ≥ (1− ǫ)×

×
√

2 log log
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
)

}

.

We consider a sequence of i.i.d. standard Gaussian random variables
{Gi : i ≥ 1}, and define

Gp,d = (Gp, · · · , Gp+d−1) .

Finally, we introduce the set

Bp =

{

Gp ≥ (1 − ǫ)
√

2 log log
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
)

}

.

We shall now prove thatAp is realized infinitely often with IP-probability
one. This is indeed the most difficult part of the proof. Indeed, be-
cause of lack of independence of the increments of {Xn}n, one can not
simply use the Borel-Cantelli Lemma. However, the assumption (A4)

expresses the fact that, at the particular scale qp
1+αǫ

, the increments
become sufficiently decorrelated to get the desired result. In order to
prove it, we need to translate the amount of information contained in
(A4) in terms of Kolmogorov distance between the vector of increments
and a Gaussian target. This delicate procedure will rely on Theorem
3.4 and Proposition 3.1. We are therefore naturally led to write the
following estimates (where Cq,ǫ is a constant which only depends on
(q, ǫ) and that may change from line to line):

∣

∣

∣

∣

∣

∣

IP





p+d−1
⋂

i=p

Ac
i



− IP





p+d−1
⋂

i=p

Bc
i





∣

∣

∣

∣

∣

∣

≤ dK

(

Zp,d,Gp,d

)

≤ 3 log
1
4 (d+ 1)

√

W1

(

Zp,d,Gp,d

)

(by using (3.4))

≤ Cq,ǫ log
1
4 (d+ 1)

√
d

√

1 + log
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
)

(by using (A4)).
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On the other hand, exploiting the independence of the events Bi,

log IP





p+d−1
⋂

i=p

Bc
i



 =

p+d−1
∑

i=p

log
(

1− IP(Bi)
)

≤ −
p+d−1
∑

i=p

IP(Bi)

≤ −Cq,ǫ

p+d−1
∑

i=p

1

i(1+αǫ)(1−ǫ)2

1√
log i

≤ −Cq,ǫ

∫ p+d−1

p

dx

x(1+αǫ)(1−ǫ)2
√
log x

,

where we have used that, if G
law
= N (0, 1), then IP(G > x) > e−

x2

2

x .
Now we choose η > 0 such that 1− η > (1+αǫ)(1− ǫ)2. The existence
of η is indeed supported by the condition 4.2. We have

∫ p+d−1

p

dx

x(1+αǫ)(1−ǫ)2
√
log x

> Cq,ǫ

∫ p+d−1

p

dx

x1−η
= Cq,ǫ

(

(p+d−1)η−pη
)

.

This implies that

log IP





p+d−1
⋂

i=p

Bc
i



 ≤ −Cq,ǫ

(

(p+ d− 1)η − pη
)

.

Therefore,

IP





p+d−1
⋂

i=p

Ac
i



 ≤ e
−Cq,ǫ

(

(p+d−1)η−pη

)

+
Cq,ǫ log

1
4 (d+ 1)

√
d

√

1 + log
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
)

.

We can now take d = px: if x > 1 then the first term in the right hand
side of the above inequality tends to zero as p tends to infinity. To deal
with the second term, we infer that

Cq,ǫ log
1
4 (d+ 1)

√
d

√

1 + log
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
)

< Cq,ǫ,x
p

x
2

p
1+αǫ

2

log
1
4 p.

This term goes to zero when p tends to infinity if x < 1 + αǫ. As a
matter of fact, for any 1 < x < 1 + αǫ, we have shown that

lim
p→∞

IP





p+px−1
⋂

i=p

Ac
i



 = 0.
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The fact claimed above, namely that Ap is realized infinitely often with
probability one, follows at once from the observation that for all k ≥ 1

IP

( ∞
⋂

i=k

Ac
i

)

≤ lim
p→∞

IP





p+px−1
⋂

i=p

Ac
p



 = 0.

We now proceed towards the end of the proof. Recall that we have
shown that, almost surely, one has infinitely often that

Xq(2p+2)1+αǫ −Xq(2p+1)1+αǫ

g
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
) (4.3)

≥ (1 − ǫ)
√

2 log log
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
)

.

For simplicity, we set ψ(t) = g(t)
√
2 log log t. First, we will prove that,

for any α > 0, one has that

∞
∑

k=0

IP
(

|Xqk1+α | > ψ
(

qk
1+α)

)

<∞.

To accomplish this task, we use Assumption (A3) to deduce that

dK

(

Xqk1+α

g(qk1+α)
, G

)

≤ C

k1+α
. (4.4)

By the triangle inequality and inequality (4.4), we get

∞
∑

k=1

IP(Ak) < Cq,α

∞
∑

k=1

1

k1+α
+

∞
∑

k=1

IP

(

G >

√

2 log log qk1+α

)

.

Hence, since 1 + α > 1, the first sum converges. So, one is left to
show that the second sum converges as well. Indeed, using the bound

IP(G > t) ≤ e−
t2

2 for t ≥ 1, we have that, for k large enough,

IP

(

G >

√

2 log log qk1+α

)

≤ e− log(log(qk
1+α

)) ≤ Cq,α

k1+α
.

By virtue of the first Borel-Cantelli Lemma, we can now infer that, for
p large enough, one has

Xq(2p)1+αǫ ≥ −ψ
(

q(2p)
1+αǫ

)

.

Coming back to (4.3), we deduce that almost surely we have infinitely
often

Xq(2p+2)1+αǫ ≥ (1 − ǫ)ψ
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
)

− ψ
(

q(2p+1)1+αǫ
)

.

Therefore, almost surely,

lim sup
p→∞

Xq(2p+2)1+αǫ

ψ
(

q(2p+2)1+αǫ
)

≥ lim
p→∞



(1− ǫ)
ψ
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
)

ψ
(

q(2p+2)1+αǫ
) −

ψ
(

q(2p+1)1+αǫ
)

ψ
(

q(2p+2)1+αǫ
)





= (1− ǫ).
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To obtain the last equality, we have used the fact that

lim
p→∞

ψ
(

q(2p+2)1+αǫ − q(2p+1)1+αǫ
)

ψ
(

q(2p+2)1+αǫ
) = 1,

lim
p→∞

ψ
(

q(2p+1)1+αǫ
)

ψ
(

q(2p+2)1+αǫ
) = 0,

which can be easily deduced from the Karamata integral representation
of the slowly varying function L (see e.g. [6, p. 14]).

4.3 Proof of Proposition 2.1

We have to check that, under the assumptions in the statement, the
three conditions (A2), (A3) and (A4) are verified.

Proof of (A2). Fix n, a ∈ IN, and let τ indicate the Stein factor of
the random variable (Xn+a − Xa)/g(n) (that exists by virtue of (i)).
According to the definition of τ , one has that

IE

[

(

Xn+a −Xa

g(n)

)2p
]

= (2p− 1)IE

[

(

Xn+a −Xa

g(n)

)2p−2

τ

(

Xn+a −Xa

g(n)

)

]

≤ (2p− 1)IE

[

(

Xn+a −Xa

g(n)

)2p
]

p−1
p

IE

[

τ

(

Xn+a −Xa

g(n)

)p] 1
p

.

Applying Assumption (iii) in the statement, we therefore deduce that

IE

[

(

Xn+a −Xa

g(n)

)2p
]

≤ (2p− 1)p IE

[

τ

(

Xn+a −Xa

g(n)

)p]

.

≤ (2p− 1)p
(

1 + C
pλ

g(n)

)p

,

thus yielding the desired conclusion.

Proof of (A3). Fix n2 > n1, and let τ indicate the Stein factor of the
random variable (Xn2 − Xn1)/g(n2 − n1). According to Proposition
3.1-(a), one has that, for every θ ≥ 1

Wθ

(

Xn2 −Xn1

g(n2 − n1)
, G

)

≤ cθ

∥

∥

∥τ
(Xn2 −Xn1

g(n2 − n1)

)

− 1
∥

∥

∥

θ
,

so that the desired estimate in the θ-Wasserstein distance follows from
(2.10), as well as the bound cθ ≤ α(θ). The required one-dimensional
bound in the Kolmogorov distance is an immediate consequence of
(2.10) and (3.6).

Proof of (A4). The conclusion follows at once from (3.7), as well as
Assumption (ii) in the statement.
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5 Proofs connected to applications

In what follows we shall implicitly use the following elementary fact.
Let Z = {Zk : k ∈ Z} be a centered stationary Gaussian sequence.
Then, it is a classical result (use e.g. the results discussed in [26,
Section 2.1]) that one can always find an isonormal Gaussian process
G = {G(h) : h ∈ H} such that the separable Hilbert space H contains
a sequence {hk : k ∈ Z} having the property that {G(hk) : k ∈ Z} has
the same distribution as Z.

5.1 Proof of Theorem 2.2

We have to check that properties (A1) and (i), (ii) and (iii) in Propo-
sition 2.1 are verified. First of all we observe that, since the sequence
X is Gaussian, then every vector of the type Yn↑ has a Stein matrix
given by its own covariance. In view of this fact, it is immediate to
check that all the required properties are verified, provided one can
show that, for all j ≥ i,

∣

∣

∣

∣

∣

IE
[

(Xn2i −Xn2i−1)(Xn2j −Xn2j−1 )
]

g(n2i − n2i−1)g(n2j − n2j−1)

∣

∣

∣

∣

∣

≤ C

1 + log(n2i − n2i−1)
.

Now, in view of our assumptions, for all n2i−1 ≤ k ≤ n2i,

∣

∣

∣

∣

∣

∣

n2j−k
∑

l=n2j−1−k

r(l)

∣

∣

∣

∣

∣

∣

≤ C(n2j − n2j−1)
2a−1L(n2j − n2j−1).

and also
∣

∣

∣

∣

∣

IE
[

(Xn2i −Xn2i−1)(Xn2j −Xn2j−1 )
]

g(n2i − n2i−1)g(n2j − n2j−1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑n2i

k=n2i−1

∑n2j

l=n2j−1
r(l − k)

g(n2i − n2i−1)g(n2j − n2j−1)

∣

∣

∣

∣

∣

≤ n2i − n2i−1

g(n2i − n2i−1)g(n2j − n2j−1)
max

n2i−1≤k≤n2i

∣

∣

∣

∣

∣

∣

n2j−k
∑

l=n2j−1−k

r(l)

∣

∣

∣

∣

∣

∣

.

≤
(

n2i − n2i−1

n2j − n2j−1

)1−a
L(n2j − n2j−1)

L(n2i − n2i−1)
.

≤ Cǫ

(

n2i − n2i−1

n2j − n2j−1

)1−a−ǫ

,

where we have used the fact that L(n)
L(m) ≤ Cǫ

(

n
m

)ǫ
for any ǫ > 0 (see [18,

Theorem 4.4]). Choosing ǫ small enough leads at once to the desired
conclusion.
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5.2 Proofs of Theorem 2.3 and Theorem 2.4

For the sake of brevity, we will only focus on the more delicate case
of Theorem 2.4, as the non-critical case can be treated in the same
way (and is also proved in [2, Proposition 1]). We will check that
Assumption (A1) is verified, together with properties (i), (ii) and (iii)
in the statement of Proposition 2.1. We adopt the same notations as
in 2.17, we set H = 1− 1

2q , and

l =

√

2q!

(

1− 1

q

)q (

1− 1

2q

)q

,

and we set
g(n) :=

√

ln log(n).

In view of the papers [7, 13, 15], it is well known that

Xn

g(n)

law−−−−→
n→∞

N (0, 1).

Checking (A1). First, by using the stationarity of the increments of a
fractional Brownian motion, we infer that

Xn2 −Xn1

Law
= Xn2−n1 .

One immediately deduces that
∣

∣

∣

∣

IE
[Xn2 −Xn1

g(n2 − n1)

]2

− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

IE
[ Xn2−n1

g(n2 − n1)

]2

− 1

∣

∣

∣

∣

.

Now we observe that the covariance function ρH of the Gaussian se-
quence {Zk}k∈Z is given by

ρH(k) =
1

2

(

|k + 1|2−1/q − 2|k|2−1/q + |k − 1|2−1/q
)

,

and therefore verifies the following straightforward asymptotic relation:

ρH(k)q =

(

(1− 1

2q
)(1 − 1

q
)

)q

|k|−1 +O(|k|−3), as |k| → ∞. (5.1)

On the other hand, we have that

IE

[

X2
n

g(n)2

]

=
q!

l2n logn

n−1
∑

k,l=0

ρqH(k − l)

=
1

(

(1− 1
2q )(1− 1

q )
)q

n logn

n−1
∑

k=0

(n− k − 1)ρqH(k)

(5.1)
=

1

n logn

n−1
∑

k=1

(n− k − 1)
1

k
+O

(

1

n log(n)

n−1
∑

k=1

(n− k − 1)
1

k3

)

+O

(

1

logn

)

= I1 + I2 + I3.
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First, we notice that

I2 ≤ 1

logn

n−1
∑

k=1

1

k3
= O

(

1

log n

)

.

As a consequence, we have only to show that

I1 = 1 +O

(

1

logn

)

.

To do so, we use the relations

I1 =
1

n logn

(

(n− 1)
n−1
∑

k=1

1

k
− (n− 1)

)

=
1

logn

n
∑

k=1

1

k
+O

(

1

logn

)

=
1

logn

(

log n+ γ +O

(

1

n

))

+O

(

1

log n

)

= 1 +O

(

1

logn

)

,

where γ stands for the Euler-Mascheroni constant appearing in the
asymptotic development of the harmonic series.

Checking (i) in Proposition 2.1. A consequence of the previous discus-
sion is that Xn can be represented as a sequence of elements of the
q-th Wiener chaos associated with some isonormal Gaussian process
G = {G(h) : h ∈ H}. The existence of the required Stein matrices
follows immediately from relation (2.11).

Checking (ii) in Proposition 2.1. Recall once again the explicit expres-
sion of the Stein matrix for chaotic random variables given in (2.11).
Now, in [26, p. 146] it is proved that, writing σ2

n = IE[X2
n],

√

√

√

√IE

[

(

1− 1

qσ2
n

‖DXn‖2H
)2
]

≤ C

log n
. (5.2)

By the triangle inequality, we have
√

√

√

√IE
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qg(n)2
‖DXn‖2H

)2
]

≤ C

logn
+

∣

∣

∣

∣

1− σ2
n

g(n)2

∣

∣

∣

∣

√

√

√

√IE

[

(

1

qσ2
n

‖DXn‖2H
)2
]

.

As a consequence, one infers that IE

[

(

1
qσ2

n
‖DXn‖2H

)2
]

is a bounded

sequence by hypercontractivity (1.3). Besides, we have showed in check-
ing assumption (A1) that

σ2
n

g(n)2
=

1

g(n)2
IE[X2

n] = 1 +O

(

1

log(n)

)

.
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It follows that,

√

√

√

√IE

[

(

1− 1

qg(n)2
‖DXn‖2H

)2
]

≤ C

log(n)
. (5.3)

Making use of the stationarity of the Zk, one can see that

‖DXn −DXm‖2H
Law
= ‖DXn−m‖2H .

This implies that (2.8) is verified. In order to prove the assumption
(A4) (2.9), we shall use [26, p 120, Lemma 6.2.1]. This Lemma says
that for two elements F,G in the same Wiener chaos of order q, one
has

IE
[

< DF,DG >2
H
]

≤ Cq

(

IE [FG]
2
+Var

[

‖DF‖2H
]

+Var
[
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]

)

.

We apply such an estimate to

F =
Xni

−Xni−1

g(ni − ni−1)

G =
Xnj

−Xnj−1

g(nj − nj−1)
.

Relying on equation (5.3), one is left to show that (if i < j)
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1
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Since when i, j → ∞ we have both ni−1

nj
→ 0 and

nj−1

nj
→ 0 we see that

log nj + log(1− ni−1

nj
)

lognj + log(1− nj−1

nj
)
=

1 +
log(1−ni−1

nj
)

lognj

1 +
log(1−nj−1

nj
)

lognj

is a bounded sequence which gives the desired bound.

Checking (iii) in Proposition 2.1. Such an assumption is a straightfor-
ward application of (5.3) and hypercontractivity (1.3).
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