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Abstract. Optimal Prime Fields (OPFs) are considered to be one of
the best choices for lightweight elliptic curve cryptography implemen-
tation on resource-constraint embedded processors. In this paper, we
revisit efficient implementation of the modular arithmetic over the spe-
cial prime fields, and present improved implementation of modular mul-
tiplication for OPFs, called Optimal Prime Field Coarsely Integrated
Operand Caching (OPF-CIOC) method. OPF-CIOC method follows the
general idea of (consecutive) operand caching technique, but has been
carefully optimized and redesigned for Montgomery multiplication in an
integrated fashion. We then evaluate the practical performance of pro-
posed method on representative 8-bit AVR processor. Experimental re-
sults show that the proposed OPF-CIOC method outperforms the pre-
vious best known results in ACNS’14 by a factor of 5 %. Furthermore,
our method is implemented in a regular way which helps to reduce the
leakage of side-channel information.
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1 Introduction

Public key cryptography applications including RSA [15], ECC [6] and pairing-
based cryptography [16] are commonly used for secure and robust network ser-
vices. These protocols highly rely on finite field operations. The main difference
between real world number and finite field representation is that finite field
computations should conduct reduction process once results go beyond the size
of target field. Montgomery algorithm [14] is one of the efficient algorithms to
perform the modular multiplication and squaring since it replaces expensive di-
vision operation with normal multiplication operations. Recently, a variant of
Montgomery multiplication on OPFs was introduced in [3]. This method can
be seen as a simplified version of Montgomery multiplication on OPFs, which is
proposed to enhance the performance of Elliptic Curve Cryptography (ECC) on
8-bit AVR processors. One of the features of OPFs is the low hamming weight,
which allows to remove or replace part of multiplication operations with several
addition instructions when using Montgomery algorithm to perform modular
multiplciation.

In this paper, we present a novel technique for implementing the Montgomery
multiplication on OPFs. Instead of adopting the “traditional” multiplication
techniques, e.g. operand scanning, product scanning and hybrid scanning mul-
tiplication, our work follows the state-of-the-art (consecutive) operand caching
and has been finely redesigned for OPF-Montgomery algorithm. For practical
performance evaluation, we implemented the proposed methods on 8-bit AVR
processors and the performance enhancements are 5 % than previous best known
results in ACNS’14 [13]. The remainder of this paper is organized as follows. In
Section 2 and 3, we recap previous multi-precision multiplication methods and
OPF-Montgomery algorithms. In Section 4, we present novel OPF-Montgomery
multiplication. In Section 5, we describe the performance evaluation on 8-bit
RISC microprocessors. Finally, Section 6 concludes the paper and shows the
ideas for future work.

2 Multi-precision Multiplication

Multi-precision multiplication is a crucial operation for modular multiplication.
In the past several decades, a large body of research has been attempted to
speed up the performance of multiplication on 8-bit processors. The most ba-
sic technique is called operand scanning method, which consists of two parts,
i.e. the inner and outer loops. In the inner loop, one register holds a digit of
an operand and computes the partial product by multiplying all the digits of
another operand. While in the outer loop, the index of operand increases by a
word-size and then the inner loop is executed. An alternative method is called
product scanning method, which computes all partial products in the same col-
umn by multiplication and addition [2]. Since each partial product in the column
is computed and then accumulated, registers are not needed for intermediate re-
sults. The results are stored once, and the stored results are not reloaded since
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all computations have already been conducted. In CHES’04, the classical hy-
brid scanning method was proposed which combines both of the advantages of
operand scanning and product scanning. Hybrid scanning method employs the
product scanning as the outer loop and operand scanning method as the in-
ner loop. This method reduces the number of load instructions by sharing the
operands within one block [5]. In CHES’11, the operand caching (OC) method
was introduced [7]. The method follows the product scanning method [2], but
it divides the calculation into several row sections. By reordering the sequence
of inner and outer row sections, the operands which have been loaded in work-
ing registers are reused for the next partial products. A few store instructions
are added, but the number of required load instructions is reduced. However,
a straightforward implementation of OC method has to reload operands when-
ever a row is changed, which generates unnecessary overheads. In order to avoid
these shortcomings, an advanced version of operand caching named consecutive
operand caching (COC) method was introduced at WISA’12 [17]. COC provides
a connection point among rows that share the common operands for partial
products.

3 Optimal Prime Field Montgomery Algorithm

Table 1. OPF prime for 160-, 192-, 224- and 256-bit [3]

160-bit: 52542× 2144 + 1

0xCD3E000000000000000000000000000000000001

192-bit: 55218× 2176 + 1

0xD7B200000000000000000000000000000000000000000001

224-bit: 50643× 2208 + 1

0xC5D30000000000000000000000000000000000000000000000000001

256-bit: 37266× 2240 + 1

0x9192000000000000000000000000000000000000000000000000000000000001

The Montgomery algorithm was firstly proposed in 1985 [14]. Montgomery
algorithm avoids division in modular multiplication and reduction by introducing
simple shift operations. Given two integers A and B and the modulusM , in order
to compute the product P = A ·B mod M using Montgomery method, the first
step is to convert the operands A and B into Montgomery domain, namely,
A′ = A · R mod M and B′ = B · R mod M . For efficiency, the Montgomery
residue R is generally selected as a power of 2 and the constantM ′ = −M−1 mod
2r has to be pre-computed. Montgomery multiplication can be computed in the
following three steps: (1)P = A·B, (2)Q = P ·M ′ mod 2r, (3) Z = (P+Q·M)/2r.

In 2006, a special family of prime fields, named Optimal Prime Fields (OPFs),
was proposed by Großschädl in [3]. A typical y-bit OPF prime M can be rep-
resented as the form M = U · 2k + V . U and V are relatively small coefficients
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Fig. 1. Separated Product Scanning Method for Optimal Prime Fields

compared to 2k, U is normally chosen as 8-, 16-bit which can be stored into one or
two registers on 8-bit processor, V has several bits. Character k denotes y−m ·w
where m is a small integer and m ·w is the size of U . The OPFs chosen in [3] set
U as 16-bit long integer and V as 1 and is formalized in M = U ·2(y−16)+1. Most
of bits of OPF prime are 0 except a few bits in most and least significant words.
Some examples of OPF are given in Table 1. Due to low hamming weight of
optimal prime field, Montgomery multiplication is much simpler than ordinary
counterparts. Recently, elliptic curve cryptography implementations over OPFs
have been reported, for example, the work in [10] used OPF as the underlying
field to evaluate GLV and Montgomery curves on 8-bit AVR processors. Their
results show that OPF is efficient yet secure prime field which can be used for
lightweight elliptic curve cryptography implementation.

Throughout the paper, we will use the following notations. Let A and B be
two operands with a length of y-bit that are represented by multiple-word ar-
rays. Each operand is written as follows: A = (A[n− 1], ..., A[2], A[1], A[0]) and
B = (B[n− 1], ..., B[2], B[1], B[0]), whereby n = ⌈y/w⌉, and w is the word size.
The result of multiplication C = A · B is twice length of A, and represented
by C = (C[2n − 1], ..., C[2], C[1], C[0]). For clarity, we describe the method us-
ing a multiplication structure and rhombus forms. The multiplication structure
describes order of partial products from top to bottom and each point in rhom-
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Fig. 2. Finely Integrated Product Scanning Method for Optimal Prime Fields

bus form represents a multiplication A[i] · B[j]. The rightmost corner of the
rhombus represents the lowest indices (i, j = 0), whereas the leftmost repre-
sents corner the highest indices (i, j = n − 1). The lowermost side represents
result indices C[k], which ranges from the rightmost corner (k = 0) to the left-
most corner (k = 2n− 1). To describe Montgomery multiplication, we introduce
double rhombus forms. Upper rhombus represents multi-precision multiplication
and under rhombus represents Montgomery reduction. The under rhombus form
has two operands Q and M . Each operand follows same representation we used
for multi-precision multiplication. For OPF-Montgomery reduction, we use two
colored dots. The yellow dots describe the addition of Q to intermediate results
because parameter M has one in the least significant bit which is computable
with simple addition operation instead of partial products. In case of white dots,
16-bit partial products on Q ·M are updated to intermediate results.

In general, the Montgomery multiplication can be implemented in a sepa-
rated or integrated fashion according to the computation order. The separated
mode performs the reduction process after the entire multiplication as shown
in Figure 1. For example, Separated Product Scanning (SPS) [9, 11] firstly con-
ducts multiplication in product-scanning, and then performs the Montgomery
reduction. The distinctive strength of SPS is that it requires less registers, since
three intermediate registers are sufficient. For this reason, this method is con-
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sidered to be a good choice when it comes to resource constrained devices where
the platform has limited number of registers. The alternative method, Separated
Operand Scanning (SOS), calculates the products in an operand scanning way
and then reduces the results separately [8]. However, this is not recommended on
embedded processors since the OS method needs more memory-access instruc-
tion in order to get the intermediate results.

In case of integrated mode, the multiplication and reduction are performed in
an interleaved way. This can avoid a number of memory accesses for intermediate
results, but it requires many registers to retain a number of parameters including
operands, modulus and intermediate results. The Coarsely Integrated Operand
Scanning (CIOS) method improves previous SOS method by integrating the mul-
tiplication and reduction steps. Instead of computing the multiplication processes
separately, multiplication and reduction steps are alternated in every loop. With
this technique, we can update intermediate results more efficiently. In CIOS,
two inner loops are computed separately and this causes inefficient computation
processes. The alternative method, Finely Integrated Operand Scanning (FIOS)
integrates the two inner loops of multiplication and reduction and compute the
one inner loop. However, operand scanning method is not good choice due to high
requirements of registers to retain operands. In order to further improve perfor-
mance, many works have studied Finely Integrated Product Scanning (FIPS)
described in Figure 2 [4, 19, 1, 13]. The method conducts product scanning mul-
tiplication and reduction in integrated form. This method pursues two main
benefits. On one hand, the number of required registers is relatively lower than
OS because PS does not need many registers for intermediate results. On the
other hand, the method does not re-load/store intermediate results so the num-
ber of memory access is significantly reduced. However, PS method is not the
fastest multiplication method so far. In CHES’11 and WISA’12, OC and COC
multiplication methods are released. It shows that there is some space to improve
Montgomery multiplication by adopting the OC and COC multiplication meth-
ods. In this paper, we challenge to this point and present novel OPF-Montgomery
multiplication with OC and COC methods.

4 Optimal Prime Field-Coarsely Integrated Operand
Caching (OPF-CIOC)

In this section, we present novel Coarsely Integrated Operand Caching for OPFs
(OPF-CIOC). We selected the fastest multiplication methods including operand
caching and consecutive operand caching methods for multiplication part. In
order to further reduce the number of intermediate results load and store

instructions, we chose the integrated mode. The OC and COC multiplication
methods show high performance in ordinary multi-precision multiplication but
they consume a number of registers to retain operands. To combine the mul-
tiplications on resource constrained devices, we divided multiplication into two
parts. First part is only computing multi-precision multiplication by size of n−m
where n and m represent size of operand and inverse of modulus (M ′). The first
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Fig. 3. Coarsely Integrated Operand Caching Method for Optimal Prime Fields

part is computed with multiplication methods including OC and COC. The both
methods have very similar performance, so we should carefully select the proper
method depending on operand parameters. The detailed costs are drawn in Ta-
ble 2. The result shows that COC method is only slightly faster than OC in case
of OPF-256-bit so for the others OC methods are better choice than COC. Sec-
ondly, remaining multiplication part is integrated with reduction computations.
The size of remaining part is size of inverse of modulus (M ′). In the paper, we
pick OPF-CIOC in Figure 3 to describe our method, but this is simply applied
to OPF-CI(C)OC as described in Figure 4.

The proposed OPF-CIOC method combines the OC multiplication together
with OPF reduction process for Montgomery multiplication as described in Fig-
ure 3. The multiplication is divided into two parts. Part 1 computes ordinary
multiplications on A[i] · B[j] where 1 ≤ i ≤ 7 and 0 ≤ j ≤ 6. The number of
row is computed by following the equation ⌈(n − m)/c⌉ where n, m and c are
size of operand, inverse of modulus and caching registers. Part 2 is integrating
remaining partial products and Montgomery reduction. For the first step, par-
tial products on A[i] · B[j] where 0 ≤ i, j ≤ 7 are computed and then operand
Q[k] where 0 ≤ k ≤ 7 is generated. After then Montgomery reduction described
in yellow and white dots are computed with multiplying M [i] by Q[j] where
0 ≤ i, j ≤ 7. In particular, the yellow dots are simple addition operations and
white dots are 16-bit multiplication operations so it has lower overheads than
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Fig. 4. Coarsely Integrated Consecutive Operand Caching Method for Optimal Prime
Fields

ordinary Montgomery algorithm. Finally the results are updated to intermediate
result and this process is iterated till the end of operands.

In Figure 5, we give a detailed example of OPF-CIOC in 160-bit operand
and 8-bit word sizes but this is readily extended to COC multiplication and
other operand and word sizes. The main body is divided into Part 1 and 2.
Part 1 conducts multiplication and Part 2 computes remaining multiplications
together with reduction process.

Part 1 The size of operand and inverse of modulus is 160-bit (n = 20) and
32-bit (m = 4). The length of Part 1 is 128-bit (160−32, n−m) and the number
of row is 2 (⌈16/10⌉, ⌈(n − m)/c⌉) where caching registers are 10. These two
rows compute partial products on A[i] · B[j] where 4 ≤ i ≤ 19 and 0 ≤ j ≤ 16
by following operand caching method.

Part 2 The reduction and remaining partial products are integrated in Part 2.
The partial products (A[0 − 3] · B[0 − 3] named block 1 is computed and then
parameter Q[0− 3] is obtained by multiplying intermediate results (C[0− 3]) by
inverse of modulus (M ′). In block 2, the partial products (Q[0 − 3] ·M [0]) are
added to intermediate results (C[0− 3]). Following this order, remaining blocks
from 3 to 9 are computed. In block 10, most significant word is multiplied before
generate parameter Q[18 − 19]. After then in block 11, yellow dots including
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Table 2. Comparison of operand caching and consecutive operand caching in terms of
number of memory access

Algorithms load store total

OC 128-bit for OPF 160-bit 50 44 94

OC 160-bit for OPF 192-bit 70 60 130

OC 192-bit for OPF 224-bit 116 84 200

OC 224-bit for OPF 256-bit 152 108 260

COC 128-bit for OPF 160-bit 50 44 94

COC 160-bit for OPF 192-bit 70 60 130

COC 192-bit for OPF 224-bit 118 90 208

COC 224-bit for OPF 256-bit 146 110 256

M [0] · Q[16 − 19] are added to intermediate results. From block 12 to 21, the
same process of multiplication and reduction are iterated.

Final subtraction without conditional statements in OPF Final sub-
traction is conducted when final results go beyond size of target prime field. The
final subtraction of Montgomery multiplication is computable with conditional
branch by checking the carry bit, which is vulnerable to side-channel attacks
since the attacker can catch the leakage information based on this conditional
statement [18]. Our work follows the idea of constant-time Montgomery multi-
plication which has been presented in [11, 10].

5 Result

This section discusses the computation complexity of the proposed OPF-Montgomery
multiplications in terms of memory access and real implementations on 8-bit
AVR processor.

Memory Access The number of memory access should be concerned because
the operations are extremely expensive on embedded processors. OPF-CIOC
consists of two main bodies. The Part 1 conducts multiplication on operand by
n−m. We adopted (consecutive) operand caching method where the number of
load and store instructions is 2(n−m)2/c and (n−m)2/c+(n−m), respectively.
Part 2 conducts integrated multiplication and reduction which needs to load
intermediate results by 2 · (n−m) and operands A and B by 2n for remaining
multiplications. For reduction, we load modulus (M) by 16-bit. In case of store
instruction, final results are stored by 2n times because after reduction process,
length of results are reduced from 4n to 2n. Finally total costs of load and
store for OPF-CI(C)OC are 2(n−m)2/c+ 4n− 2m and (n−m)2/c+ 3n−m,
respectively.
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Fig. 5. Coarsely Integrated Operand Caching for Optimal Prime Field in 160-bit

Evaluation on 8-bit Platform ATmega128 On an AVR platform, each mul,
load and store instruction consumes 2 clock cycles, while other arithmetic and
logical operations need 1 clock cycle. Target board runs at a frequency of 7.3728
MHz and program is evaluated using AVR studio 6.0.

In Table 3, performance evaluations of OPF-Montgomery algorithm are de-
scribed. In ACNS’14, works by [13] adopted FIPS because this method is readily
integrating the reduction and multiplication and requiring small number of reg-
isters. They achieved 3237, 4500, 5971 and 7650 clock cycles for 160-, 192-,
224- and 256-bit OPF-Montgomery multiplications. For comparison, the pro-
posed OPF-CIOC method achieves 3116, 4288, 5650 and 7258 clock cycles. The
performance gains are from 3.7 ∼ 5 %. The reason to draw high performance en-
hancement is we adopt the most advanced multiplication for OPF-Montgomery
multiplication and finely integrated multiplication and reduction processes. To
do this, we divided OC and COC methods into two parts and then integrated
second part of multiplication with reduction process. This approach challenges
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Table 3. Execution time (in clock cycles) of OPF-Montgomery multiplication for dif-
ferent operand lengths on the ATmega128.

Algorithms 160 192 224 256

OPF-FIPS [4] 5239 7070 n/a n/a

OPF-FIPS [1] 3588 n/a n/a n/a

OPF-FIPS [19] 3542 4851 6545 8091

OPF-FIPS [13, 10] 3237 4500 5971 7650

This work (OPF-CIOC) 3116 4288 5650 7258

This work (OPF-CICOC) 3116 4288 5668 7250

to current OPF-FIPS and breaks the speed records. Furthermore, our method is
implemented in a constant-time way and therefore resists against simple power
analysis attack.

6 Conclusion and Future Work

In this paper, we presented novel Optimal Prime Field Montgomery multipli-
cation over embedded microprocessors. For high performance enhancements, we
integrated previous best known multiplications with OPF reduction process.
This is first trial to combine OC and COC with OPF Montgomery reduction.
The design is highly exploiting limited number of registers together with high
performance gains. In order to measure power of proposed method, we imple-
mented the method on representative 8-bit RISC processor. Finally, we achieved
remarkable performance enhancements by 5% than previous best known results.

A future work based on this work is to evaluate the proposed technique for
the modular squaring over OPFs. Furthermore, it would also be interesting to
apply the proposed method to enhance the performance of elliptic curve cryp-
tography over OPFs on resource constrained devices, similar as the work [12],
which employed COC methods to push the speed limit of NIST curve on 8-bit
AVR processors.
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