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Abstract 

 
A Synthetic Aperture Radar (SAR) is used for all-weather and all-time high resolution aerial and 
space based imaging of terrain. Being independent of light and weather conditions, SAR imaging 
has an advantage over optical imaging. Some of the SAR applications include Surveillance, 
Targeting, 3D Imaging, Navigation & Guidance, Moving Target Indication, and Environmental 
Monitoring. 
 
This project aimed at the System-Level Design, Modeling and Simulation of a Synthetic Aperture 
Radar System and the Implementation of the signal processor for SAR using a TI C6416 DSP.  
 
The system parameters have been specified in view of all the constraints and practical limitations. 
The performance metrics of the system such as range resolution and cross-range resolution, etc 
have been worked out and the system level specification has been worked out keeping in view the 
desired performance. Using MATLAB a as major tool, the specified system parameters have been 
tested for their accuracy and correctness. A simulation of Pulse Doppler radar is completed which 
includes waveform design, target modeling, LFM pulse compression, side lobe control and 
threshold detection. A SAR image formation algorithm(Doppler Beam Sharpening) have been 
implemented in MATLAB. 
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Chapter 

1 
Introduction 

1.1 Synthetic Aperture Radar 
Synthetic Aperture Radar (SAR) is a type of radar which is used for all-weather and all-time high 
resolution aerial and space based imaging of terrain. The term all-weather means that an image 
can be acquired in any weather conditions like clouds, fog or precipitation etc. and the term all-
time means that an image can be acquired during day as well as night. 
 

1.1.1 Why to use SAR 
The primary reason of using SAR is that the quality of image does not depend on weather or light 
conditions and images can be taken at any part of the day and in any weather. An optical imaging 
device (e.g. a camera) can not be used for aerial imaging of earth surface during night or when 
there is fog or clouds. Hence, synthetic aperture radars have an advantage over optical imaging 
devices. 
 
A comparison between optical and SAR image of an airport is given in the following set of 
figures.  
 
During day time, the SAR image with a resolution of 3m (left) and the optical image (right) look 
like: 
 

 
Figure 1.1 Comparison of SAR and Optical Image (Day) 
 (Source: http://www.sandia.gov/RADAR/sar_sub/images/) 

During night, the SAR image with a resolution of 3m (left) and the optical image (right) look like: 
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Figure 1.2 Comparison of SAR and Optical Image (Night) 

(Source: http://www.sandia.gov/RADAR/sar_sub/images/) 
 

Hence, we can see that the optical image does not provide any information if taken at night but 
SAR image is still same as that taken in the day time. 
 

1.1.2 Applications of SAR 
This section discusses a few of the applications for synthetic aperture radar. The applications 
increase rapidly as new technologies and innovative ideas are developed. While SAR is often 
used because of its all-weather, day-or-night imaging capability, it also finds application because 
it renders a different view of a "target," with synthetic aperture radar being at a much lower 
electromagnetic frequency than optical sensors.  
 
Targeting , Reconnaissance, and Surveillance  
Many applications for synthetic aperture radar are for targeting, reconnaissance, and surveillance. 
These applications are driven by the military's need for all-weather, day-and-night imaging 
sensors. SAR can provide sufficiently high resolution to distinguish terrain features and to 
recognize and identify selected man made targets. More is available at 
http://www.sandia.gov/RADAR/sarapps.html. 
 
On the Oceans  
Most of the man-made illegal or accidental spills are well visible on radar images. Ships can be 
detected and tracked from their wakes. Also natural seepage from oil deposits can be observed. 
They provide hints to the oil industries. Scientists are studying the radar backscatter from the 
ocean surface related to wind and current fronts, to eddies, and to internal waves. In shallow 
waters SAR imagery allows to infer the bottom topography. The topography of the ocean floor 
can be mapped using the very precise - ERS Altimeter, because the sea bottom relief is reflected 
on the surface by small variations of the sea surface height.  
The ocean waves and their direction of displacement can be derived from the ERS SAR sensor 
operated in "Wave Mode". This provides input for wave forecasting and for marine climatology.  
At high latitudes, SAR data is very useful for regional ice monitoring. Information such as ice 
type and ice concentration can be derived and open leads detected. This is essential for navigation 
in ice-infested waters. More is available at http://earth.esa.int/applications/data_util/SARDOCS/ 
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Treaty Verification and Nonproliferation 
The ability to monitor other nations for treaty observance and for the nonproliferation of nuclear, 
chemical, and biological weapons is increasingly critical. Often, monitoring is possible only at 
specific times, when overflights are allowed, or it is necessary to maintain a monitoring capability 
in inclement weather or at night, to ensure an adversary is not using these conditions to hide an 
activity. SAR provides the all-weather capability and complements information available from 
other airborne sensors, such as optical or thermal-infrared sensors. More is available at 
http://www.sandia.gov/RADAR/sarapps.html. 
 
 
 
Interferometry (3-D SAR) 
Interferometric synthetic aperture radar (IFSAR) data can be acquired using two antennas on one 
aircraft or by flying two slightly offset passes of an aircraft with a single antenna. Interferometric 
SAR can be used to generate very accurate surface profile maps of the terrain. IFSAR is among 
the more recent options for determining digital elevation. It is a radar technology capable of 
producing products with vertical accuracies of 30 centimeters RMSE. Not only that, but IFSAR 
provides cloud penetration, day/night operation (both because of the inherent properties of radar), 
wide-area coverage, and full digital processing. The technology is quickly proving its worth. 
More about IFSAR is available at http://www.geospatial-solutions.com/geospatialsolutions. 
 
On the Land  
The ability of SAR to penetrate cloud cover makes it particularly valuable in frequently cloudy 
areas such as the tropics. Image data serve to map and monitor the use of the land, and are of 
gaining importance for forestry and agriculture.  
-Geological or geomorphological features are enhanced in radar images thanks to the oblique 
viewing of the sensor and to its ability to penetrate - to a certain extent - the vegetation cover.  
-SAR data can be used to georefer other satellite imagery to high precision, and to update 
thematic maps more frequently and cost-effective, due to its availability independent from 
weather conditions.  
-In the aftermath of a flood, the ability of SAR to penetrate clouds is extremely useful. Here SAR 
data can help to optimize response initiatives and to assess damages. More is available at 
http://earth.esa.int/applications/data_util/SARDOCS/ 
 
 
Navigation, Guidance, and Moving Target Indication 
Synthetic aperture radar provides the capability for all-weather, autonomous navigation and 
guidance. By forming SAR reflectivity images of the terrain and then by correlation of the SAR 
image with a stored reference (obtained from optical device or a previous SAR image), a 
navigation update can be obtained. Position accuracies of less than a SAR resolution cell can be 
obtained. SAR may also be used to guidance applications by pointing or "squinting" the antenna 
beam in the direction of motion of the airborne platform. In this manner, the SAR may image a 
target and guide a munition with high precision.  
 
The motion of a ground-based moving target such as a car, truck, or military vehicle, causes the 
radar signature of the moving target to shift outside of the normal ground return of a radar image. 
New techniques have been developed to automatically detect ground-based moving targets and to 
extract other target information such as location, speed, size, and Radar Cross Section (RCS) 
from these target signatures. More is available at http://www.sandia.gov/RADAR/sarapps.html. 
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1.2 Project Description 
This section describes this project in detail.  

1.2.1 Project Title 
The project is titled as ‘Analysis and Design of a Synthetic Aperture Radar System’. 

1.2.2 Project Objective 
This project aimed at the System-Level Design, Analysis, Modeling and Simulation of a 
Synthetic Aperture Radar System along with the Implementation of the signal processor for SAR 
using a TI C6416 DSP.  
 
The track followed consisted of basic understanding of radar concepts, various types of 
radar systems, radar principles, waveform design and analysis, signal processing 
techniques, SAR system level design considerations, SAR processing and image 
formation. 
 
1.2.3 Reasons for Choosing This Project 
Synthetic aperture radar is an extensive research area in the field of radar. Being used for 
imaging from air or from space, it has its applications in many important areas like 
defense, environmental monitoring and earth observations, etc. This importance of SAR 
was the motivation behind the selection of this project. 
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Chapter 

2 
Background 
In this chapter, the theoretical background required to understand this project is provided. It 
includes the basics of radar operation, the terminologies used in radar, performance metrics of 
radar systems, waveform design for radars, receiver design for radar, radar signal processing, 
fundamentals of SAR and SAR signal processing. 
 

2.1 Introduction 

2.1.1 What is Radar 
“ Radar ” is an acronym for RAdio Detection And Ranging. Radar systems use modulated 
waveforms and directive antennas to transmit electromagnetic energy into a specific volume 
in space to search for targets. Targets within a search volume will reflect portions of this 
energy (returns or echoes) back to the radar. These echoes are then processed by the radar 
receiver and signal processor to extract target information such as range(distance), velocity, 
angular position, and other characteristics of the target. 
 
Radars can be classified according to various criteria. These criteria may include the deployment 
(e.g. ground based, airborne, spaceborne, or ship based radar systems), operational 
characteristics (e.g. frequency band, antenna type, and waveforms utilized), nature of mission 
or purpose (e.g. weather, acquisition and search, tracking, track-while-scan, fire control, early 
warning, over the horizon, terrain following, and terrain avoidance radars). 
 
The mostly used classification is based upon the type of waveform and the operating 
frequency used. Considering the waveforms first, radars can be Continuous Wave (CW) or 
Pulsed Radars (PR). CW radars are those that continuously emit electromagnetic energy, and 
use separate transmit and receive antennas. Pulsed radars use a train of pulsed waveforms 
(mainly with modulation). In this category, radar systems can be classified on the basis of the 
Pulse Repetition Frequency (PRF), as low PRF, medium PRF, and high PRF radars. 
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Figure 2.1 A Basic Pulsed Radar System 

(Source: Radar Systems Analysis and Design using MATLAB by Bassem R. Mahafaza) 

2.2 Radar Parameters and Terminologies 
The operation of a radar system comprises of some parameters such as range, range resolution, 
Doppler frequency, and Doppler resolution. These terms are explained in the following text. 
 

2.2.1 Range 
Range is defined as the radial distance of the target from the aperture of the radar antenna. In 
the above figure, range is denoted by ‘R’. The target’s range ‘R’ is computed by measuring 
the time delay Δt ; it takes a pulse to travel the two-way path between the radar and the target. 
Since electromagnetic waves travel at c=3x108m/s, the speed of light c, then R = cΔt / 2, where 
R is in meters and Δt is in seconds. The factor of 0.5 is needed to account for two-way delay. 
 

2.2.2 Pulse Repetition Interval and Frequency (PRI & PRF)  
A pulsed radar transmits and receives a train of pulses, as illustrated below: 

 
Figure 2.2 PRF & PRI 

(Source: Radar Systems Analysis and Design using MATLAB by Bassem R. Mahafaza) 
 

In the above figure, each pulse has a width τ and the time between to consecutive pulses is T. 
The time separation between two consecutive pulses is known as Inter Pulse Period (IPP) or 
Pulse Repetition Interval (PRI, denoted by ‘T’) and its inverse is known as Pulse Repetition 
Frequency (PRF, denoted by fr).  
 
PRI and the Range Ambiguity 
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The range corresponding to the two-way time delay ‘T’ is known as the radar unambiguous 
range, Ru. 
To avoid ambiguity in range, once a pulse is transmitted the radar must wait a sufficient 
length of time so that the returns from targets at maximum range are back before the next 
pulse is emitted. It follows that the maximum unambiguous range must correspond to half of 
the PRI, i.e.  

Ru = cT/2 = c/2fr 

 

2.2.3 Range Resolution 
Range resolution, denoted as ΔR, is a radar metric that describes its ability to detect targets in 
close proximity to each other as distinct objects. Radar systems are normally designed to 
operate between a minimum range Rmin, and maximum range Rmax. The distance between and 
is divided into M range bins (gates), each of width ΔR, i.e.  

 
M = (Rmax – Rmin) / ΔR 

 
Targets separated by at least ΔR will be completely resolved in range. ΔR should be greater 
or equal to cτ/2. And since the radar bandwidth B is equal to 1/ τ , then 

ΔR  = cτ/2 = c/2B 
Doppler Ambiguity 
If the Doppler frequency of the target is high enough to make an adjacent spectral line move 
inside the Doppler band of interest, the radar can be Doppler ambiguous. Therefore, in order 
to avoid Doppler ambiguities, radar systems require high PRF rates when detecting high speed 
targets. 

 
Figure 2.3 Spectra of transmitted and received waveforms, and Doppler 

bank. (a) Doppler is resolved. (b) Ambiguous Doppler measurement 
(Source: Radar Systems Analysis and Design using MATLAB by Bassem R. Mahafaza) 

2.3 Basic Radar Functions 
Most uses of radar can be classified as detection, tracking, or imaging. 
 



 17 

2.3.1 Detection 
Detection means to decide whether a specific object is present in the coverage area of radar o not. 
This is done by comparing the amplitude of received pulses with a threshold. If it crosses the 
threshold, a target is resent and vice versa. 
 
2.3.2 Tracking 
Once an object has been detected, it may be desirable to track its location or velocity. A radar 
naturally measures position in a spherical coordinate system with its origin at the radar antenna’s 
phase center. 

 
Figure 2.4 Spherical coordinate system for radar measurements 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

 
2.3.3 Imaging 
Airborne radars are also used for imaging the earth terrain. Radars have there own 
electromagnetic illumination and hence are independent of light or weather conditions for 
imaging. Therefore, radar imaging enjoys this benefit over optical imaging devices.  

2.4 Radar Data Acquisition - Collecting Pulsed Radar Data 

2.4.1 A Single Range Sample 
Consider a pulse of length τ whose leading edge is transmitted at time t=0. Then we have to 
sample the receiver output at time t0 = 2R0/c. Hence, the scatterers over a range of ΔR = cτ/2 
meters contribute to the sample. The following diagram explains it: 
 

 
Figure 2.5 A Single Range Sample 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

2.4.2 A Single Pulse and Multiple Range Samples (Fast-Time) 
Now if we want to collect multiple returns caused by a single pulse, we will use a coherent 
receiver. Each range cell contains 1 complex number and each range cell represents echo from a 
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different range interval. These samples are also called range bins, range gates, or fast time 
samples. Following diagram illustrates fast time samples by one pulse. 

 
Figure 2.6 A Row Containing Fast Time Samples 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

2.4.3 Multiple Pulses and Multiple Range Samples (Slow Time) 
If radar transmits several pulses, and collects multiple samples of each transmitted pulse, a two 
dimensional matrix is formed. Pulses are repeated in an interval known as the coherent processing 
interval (CPI) or dwell. The new axis is called pulse-number or slow-time. Below is a diagram 
showing the 2-D matrix. 
 
 

 
Figure 2.7 A Slow / Fast Time Matrix 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
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2.4.4 Multiple Pulses, Multiple Range Samples and Multiple Receiving 
Channels 
If the radar uses more than one receiver (e.g. in the case of multiple phase center antenna, 
monopulse antenna, etc) and collects the above explained 2-D matrix through each channel, a 
three dimensional matrix or a cube is formed. The cube hence formed is called a radar datacube 
and is shown below. 

 
Figure 2.8 A Datacube 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

2.5 The Radar Datacube 

2.5.1 Visualizing the Radar Datacube 
Many radars collect a real or conceptual “datacube” of data on which, various operations are 
performed to achieve different goals. 
 

 
Figure 2.9 The Radar Datacube 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
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2.5.2 Processing the Radar Datacube 
Standard radar signal processing algorithms correspond to operating in 1-D or 2-D along various 
axes of the datacube. The selection of various axes with their use is illustrated in the following 
diagram. 
 

 
Figure 2.10 Processing of the Datacube 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

2.5.3 The Data Matrix 
In synthetic aperture radar, the output 2-D matrix of a single receiving channel is used for 
processing. The outputs of each receiver channel are processed independently. 
 
A 2-D data matrix is depicted below and its various parameters are illustrated. 
 

 
Figure 2.11 A 2D Matrix as a part of Datacube 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
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2.6 Waveform Design for Radar 
In a radar system, it is important to choose the waveform design which is appropriate to the 
purpose and requirements of the radar system. This chapter will enlighten various considerations 
regarding selection of the waveform. Few types of waveforms and a brief comparison between 
some types is also given in this chapter. 

2.6.1 Waveform Characteristics 
Every waveform has some properties that describe it and help selecting a waveform for use. They 
are listed below. 
 

• Duration 
• Power 
• Energy 
• Bandwidth 
• Range Resolution 
• Range Sidelobes 
• Doppler Resolution 
• Doppler Sidelobes 
• Doppler Tolerance 
• Range Doppler Coupling 

2.7 Waveform Selection Criteria 
For selecting a waveform the most important characteristics of a waveform i.e. energy, range 
resolution and Doppler resolution are considered.  

• Energy 
• Range Resolution 
• Doppler Resolution 

2.8 Types of Waveforms 
This section will introduce a special type of waveform called linear frequency modulated 
waveforms and will provide the motivation behind its use and its benefits. Then a comparison of 
simple pulse with LFM pulse will be provided. 

2.8.1 Linear Frequency Modulated (LFM) Waveforms 
It is a modulation technique which is used to decouple waveform energy and range resolution. 
Frequency or phase modulated waveforms can be used to achieve much wider operating 
bandwidths. Linear Frequency Modulation (LFM) is commonly used. In this case, the 
frequency is swept linearly across the pulse width, either upward (up-chirp) or downward 
(down-chirp). The matched filter bandwidth is proportional to the sweep bandwidth, and is 
independent of the pulse width. The pulse width is tau , and the bandwidth is Beta. The figure 
below shows the instantaneous value of an LFM signal. 
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Figure 2.12 An LFM Waveform as a function of time 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

The LFM instantaneous frequency can be expressed by 
 

 
 

 
Figure 2.13 Up-chirp and Down-chirp 

(Source: Radar Systems Analysis and Design by Bassem R Mahafaza) 

2.8.2 Comparison of Simple Pulse and LFM Pulse 
Simple Pulse LFM Pulse 

Pulse and Energy Coupled Pulse and Energy Decoupled 
Matched Filter Output is Triangle Matched Filter Output is a Narrow Sinc 
Gives Coarse Resolution Gives Finer Resolution 



 23 

2.9 Matched Filter for Waveforms 

2.9.1 What is a Matched Filter 
The matched filter is the optimal linear filter for maximizing the signal to noise ratio (SNR) in the 
presence of additive stochastic noise. Matched filters are commonly used in radar, in which a 
known signal is sent out, and the reflected signal is examined for common elements of the out-
going signal. 
 
A matched filter is obtained by correlating a known signal, or template, with an unknown signal 
to detect the presence of the template in the unknown signal. This is equivalent to convolving the 
unknown signal with a time-reversed version of the template.  

 

2.10 Pulse Compression 
Pulse compression is a signal processing technique mainly used in radar, sonar and echography to 
augment the distance resolution as well as the signal to noise ratio. This is achieved by 
modulating the transmitted pulse. Pulse compression allows us to achieve the average 
transmitted power of a relatively long pulse, while obtaining the range resolution 
corresponding to a short pulse.  
 

2.11 SAR Fundamentals 

2.11.1 Cross-Range Resolution and Aperture Time in Radars 
The ability of a radar to distinguish to targets in the azimuth dimension is known as cross-range 
resolution. In real beam imaging, the cross-range resolution is proportional to range. By using 
synthetic arrays, we can decouple cross-range and range. 
 
In a real-beam, forward looking radar if Θaz is the azimuth beamwidth and Ro is the range, the 
cross-range resolution is given by ∆CR = RoΘaz. 

 
Figure 2.14 Cross-Range Resolution using Real Beam Radar 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

 
In the above figure, at a fixed range, two scatterers are considered to be just at the point of being 
resolved in cross-range when they are separated by the width of the (3 dB) main beam and 
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beamwidth of the antenna is θaz = λ / Daz where Daz is the width of antenna in the azimuth 
direction. Therefore, cross-range resolution of a real beam radar is Rλ / Daz. Hence, in real beam 
radar, cross-range resolution is dependent upon operating range. 
 
The synthetic aperture viewpoint enables us to synthesize a virtual large antenna array. The 
physical antenna is one “element” of the synthetic array. Data is collected at each position 
sequentially, and then processed together. The effective aperture size is determined by the 
distance traveled while collecting a data set. The following figure shows the concept synthetic 
aperture array. 

 
Figure 2.15 Collecting Highr Cross-Range Resolution Samples 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

Cross-Range Resolution over an Aperture Time Ta 
Suppose we integrate data over an aperture time Ta, let the speed of the radar platform be v, then 
the resolution we will obtain can be found as: 
 

DSAR = vTa ; θSAR = λ / 2vTa 
 

 ∆CR = R θSAR = R λ / 2vTa 
 

 Ta = R λ / 2v∆CR 
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For some given cross-range resolutions, the useable frequency and aperture times are given in the 
following graphs. 

 
Figure 2.16 Usable Frequency vs. Aperture Time (Cross-Range Resolutions 1m and 5m) 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

The maximum practical value of aperture time is limited by the physical antenna on the platform. 
Any one scatterer contributes to the SAR data only over a maximum synthetic aperture size equal 
to the travel distance between two points shown, which equals to the width of the physical 
antenna beam at the range of interest, namely RΘaz. Maximum synthetic aperture size is the 
maximum distance traveled while target is illuminated. The corresponding maximum effective 
aperture time is RoΘaz / v.  
 

 
Figure 2.17 Maximum Synthetic Aperture Size 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

From the above figure, we have DSARmax = Rθaz 

2.11.2 Sidelooking Stripmap SAR 
In this mode, a phased array aperture is formed parallel to the velocity vector. Therefore array 
factor boresight is perpendicular to the velocity vector. Phase steering can change this steering of 
the physical antenna squints the “element pattern”. “Element pattern” is not a broad typical sinc-
like antenna pattern. In stripmap SAR, physical antenna does not scan but rather, a physical beam  
is dragged along with platform motion. Effective aperture size DSAR or aperture time Ta 
determined by how many pulses contribute to each pixel. This basic SAR operational mode is 
called stripmap SAR. 
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Figure 2.18 Stripmap SAR Data Collection 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

Best Case SAR Stripmap Resolution 
Cross-range resolution corresponding to the maximum synthetic aperture size is given by  

 
θSAR = λ / 2DSAR = λ / 2Rθaz = Daz / 2R 

 
 ∆CRmin = R θSAR = Daz / 2 

 
 

Hence, a larger potential aperture gives a finer resolution. Increase in effective aperture size 
exactly cancels increase in beamwidth with range. 
 
Conclusion 

• By using synthetic aperture, cross-range resolution is now independent of range. 
• By using synthetic aperture, cross-range resolution is now much smaller and comparable 

to range resolution. 
• By using synthetic aperture, we have achieved huge integration gains. 

2.11.3 Stripmap Image Size 
The image size of a stripmap SAR which is also known as “Swath length” denoted by Ls is upper 
bounded by elevation pattern footprint on ground. 

 
Figure 2.19 Swath Length 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
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Doppler Bandwidth 

 
Figure 2.20 Doppler Bandwidth 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

The radial velocity relative to stationary scatterers differs across the physical beamwidth. The 
difference between the maximum and the minimum Doppler shift across area of the beamwidth is 
known as Doppler bandwidth. 
 
Upper and Lower Bounds on PRF 
The upper and lower bounds on the PRF of a sidelooking stripmap SAR are given by the relation: 

2v / Daz <= PRF <= cDeltanδ / 2λR 
 

Cross-Range Sampling Interval 
The Nyquist sampling interval for sidelooking stripmap SAR is 
 

Ts = Daz / 2v sec 
 

2.11.4 Range Migration 
Range migration describes the downrange curvature of the data as cross-range position varies. 
Range migration means that returns from a given scatterer will be spread over multiple range bins 
even after pulse compression. Shifting and interpolation in range can straighten this out. 
 
Range Walk 
It is defined as the difference in range to scatterer at beginning (u = -DSAR/2) and end (u = 
+DSAR/2) of the synthetic aperture. It is always zero for side-looking systems. 
 
Range Curvature 
It is defined as the difference in range to scatterer at beginning or end (u = ±DSAR/2) and middle (u 
=0) of the synthetic aperture. For a constant aperture time, range curvature decreases with range 
and for a constant resolution, it increases with range. 
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2.11.5 SAR Data Acquisition 
Number of Range Samples per Pulse 
Number of range samples to be processed per pulse = (swath length)/(range resolution) + 
(waveform BT product), i.e. 
 

L = Ls / ∆R + (βτ – 1) 
Number of Pulses 
Number of pulses denoted by M contributing to the point target response = (aperture time)(PRF) 
i.e. 
 

M = TaPRF 
 

=(λR / 2v∆CR)(2vθaz / λ) 
 

 M >= (Rθaz / ∆CR) = Rλ / ∆CRDaz 
 

 

2.11.6 Goal of SAR Signal Processing 
Echo energy from a single point target is distributed in both range and cross-range (range bins 
and pulse number, or fast and slow time). This function is called the point spread response (PSR) 
or point target response (PTR) of the SAR sensor. 
 
Goal of SAR processing is to compress the PSR in both range and cross-range to a single 
(correctly located) point. This process is the 2D equivalent of pulse compression. The approach is 
essentially a matched filter but many variations in implementation and accuracy. Shape of point 
target response depends on range of the scatterer therefore SAR processing is not shift-invariant. 
 

 
Figure 2.21 From Point Spread Response to the final Image 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

2.11.7 Doppler Beam Sharpening Algorithm 
In this project, Doppler beam sharpening algorithm is used for image formation.. This algorithm 
is the original form of SAR envisioned. It uses a constant aperture time for all ranges. It provides 
a substantial improvement over real beam cross-range resolution and has relatively low 
computational requirements.  
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DBS Operation Summary 
1. Data is collected over an aperture time Ta selected to get desired cross-range resolution. 
2. Doppler spectrum is computed in each range bin using DFT. It produces range-Doppler image. 
3. Map Doppler axis to cross-range using 
 

 

 
Figure 2.22 Block diagram of DBS Algorithm 

(Source: Fundamentals of Radar Signal Processing by Mark A. Richards) 
 

2.12 References 
i.  Fundamentals of Radar Signal Processing by Mark A. Richards 
ii. Radar Systems Analysis using MATLAB by Bassem R.Mahafaza 
iii. http://www.wikipedia.com/  
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Chapter 

3 
Experiments, Simulations and Results 

3.1 MATLAB Experiment to study LFM Characteristics 
This section contains the results of an experiment performed using MATLAB to demonstrate 
various characteristics of an LFM Waveform. The output graph and list of observations for each 
graph is given below. 

3.1.1 Effects of BT Product on Chirp Spectrum 
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Figure 3.1 Three LFM Pulses with different BT Products 

 
Observations:- 
• Three chirp pulses of same pulse duration of 100e-6 seconds but with swept 

bandwidths of 100 KHz, 1 MHz and 10 MHz were generated at an over sampling 
factor of k=1.2. It is proved that as bandwidth increases sampling rate also increases. 

• All the three spectra have the same bandwidth in the plot as the frequency is 
normalized. 
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• The amplitudes of the spectra differed significantly. The spectrum amplitude is 
proportional to bandwidth. As bandwidth increased spectrum amplitude also 
increased. 

 
Conclusion:- 
It can be said that by increasing bandwidth time product we can approximate magnitude 
of Fourier transform of a chirp with a rectangle function. 

3.1.2 Comparison of LFM pulse and Simple pulse Matched Filtering & 
Resolution in Time Domain 
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Figure 3.2 Matched filter outputs of simple pulse and LFM pulse 

 
Observations:- 
• The approximate bandwidth of simple pulse is 5 KHz. 
• A simple pulse & LFM pulse of k*τp*b =10*100e-6*1e6 samples were generated. 
• Same peak magnitudes were observed at matched filter output of both simple and 

LFM pulse. 
• The peak-to-first-null width of mainlobe response of simple pulse is 1e-4 seconds. 

The peak-to-first-null width of mainlobe response of LFM pulse is 0.12e-4 seconds. 
 
Conclusions:- 
As same peaks were observed for both the simple and LFM pulse therefore the two 
waveforms have same energy. 
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3.1.3 LFM Sidelobe Supression Using Frequency Domain Techniques 
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Figure 3.3 Frequency Domain Windowing Result 

 
Observations:- 
• The loss in processing gain (LPG) is observed to be 7.74 dB. 
• The PSLR without windowing is 13 dB & with frequency windowing it is 36.30 dB. 
• The main lobe width before windowing is 0.02e-4 and after frequency windowing it 

is 0.1321e-4. 
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3.1.4 LFM Sidelobe Supression Using Time Domain Techniques 
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Comparison of Unbwindowed & Time Windowed Matched Filter Output
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Figure 3.4 Time Domain Windowing Result 

 
Observations:- 
• The loss in processing gain (LPG) is observed to be 6.5 dB. 
• The PSLR without windowing is 14 dB & with time windowing it is 32 dB. 
• The main lobe width before windowing is 0.02e-4 and after time windowing it is 

0.05919e-4. 

3.2 MATLAB Simulation of Pulse Compression 
This section represents a MATLAB Simulation to study Pulse Compression using LFM 
Waveforms and Time and Frequency Domain Windowing. 
 
In the project software DVD, this simulation is placed in the folder named ‘Section 3.2 Pulse 
Compression GUI’. To run it, please run ‘matched_filter_gui.m’ found in the folder. 
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Figure 3.5 GUI for Pulse Compression Simulation 

 
Figure 3.6 Transmitted LFM Pulse (Time and Frequency Domain) 
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Figure 3.7 Matched Filter Output for 3 Scatterers (Time-

Mapped)
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Figure 3.8 Matched Filter Output for 3 Scatterers (Range-Mapped) 
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Figure 3.9 Matched Filter Output for 3 Scatterers After Frequency Domain 

Windowing
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Figure 3.10 Matched Filter Output for 3 Scatteres After Time Domain Windowing 
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3.2.1 MATLAB Functions Involved 
LFM.m:  Generates an LFM Waveform according to input parameters. 
 
Matched_filter_GUI.m: Driver function for the GUI. 
 
Matchedfilter.m:  Applies correlation processing to the target returns. 
 
Windowedoutput.m:  Applies window on the receiver filter’s outputs. 
 
Please see Appendix A for MATLAB Codes. 

3.3 Simulation of a Pulse Doppler Radar  
A pulse Doppler radar is the one which is capable of detecting a moving target and measure its 
speed and direction. This chapter presents a simulation of pulse Doppler radar designed using 
MATLAB and Simulink. 
 
In the project software DVD, this simulation is placed in the folder named ‘Section 3.3 Pulse 
Doppler Radar Simulator’. To run it, please open ‘LFM_Wnd_FFT_Complex.mdl’ found in the 
folder. Load the file ‘Chirp_Template.mat’ into the workspace, run ‘Pulse_Compression.m’ and 
then start the simulation from the Simulink model. 
 

3.3.1 Description of the System 
This system contains: 
i. Model of the transmitter 
ii. Model of the target 
iii. Model of signal processing end 

 
• Before the simulation is started, the following function is executed: 

 
Figure 3.11 Function to be executed before simulation 

 
• The file Chirp_Template.mat stores a replica of the transmitted pulse. 
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• The function Pulse_Compression.m applies window on the Chirp_Template and 
calculates the receiver filter response which is matched to the transmitted waveform. 

• The code listing for Pulse_Compression.m is given in Appendix A. 

3.3.2 Overall System 
• The ‘Upchirp System’ block contains the target model, the transmitted 

waveform and the digital matched filter for the receiver. 
• The ‘Find Local Maxima’ block finds the number of peaks (targets) in the 

output. 
• The displays ‘Range’, ‘Frequency’, and ‘Velocity’ display the radial 

distance, Doppler shift and the speed of the target respectively. 
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Figure 3.12 The overall system 

3.3.3 Pulse Transmitter Model 
• The ‘Pulse Generator’ block generates pulses of a finite duration and amplitude. It 

provides a pulse train at its output. 
• The ‘Upchirp’ block gives a linearly swept sine wave at its output with a certain 

bandwidth, target time and sweep time. 



 39 

• The variable ‘Chirp_Template’ saves a copy of the transmitted signal in the workspace to 
be later used in the receiver filter. 

Lin

UpChirp

Chirp_Template

To Workspace

Scope

Pulse

Generator1 (Up)

Product

 
Figure 3.13 Pulse Transmitter of the radar system 

• Figure below shows the time domain representation of the transmitted LFM pulse train. 

 
Figure 3.14 The transmitted signal 
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3.3.4 Target Model 
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Figure 3.15 Target model 

• The ‘Cosine Wave block’ provides a complex cosine wave which is used to model the 
Doppler shift caused by a moving target. 

• The ‘Integer Delay’ block is used to model the delay in receiving the return from a 
specific range. 

 
Figure 3.16 Setting the delay by the target 
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• The ‘Radar Equation’ block is used to calculate the amplitude of the received signal. 
 

• The figure below shows the returns from the target (changed in amplitude and frequency) 

 
Figure 3.17 The returned waveform from the target 

3.3.5 Range Equation in the Target Model 
• All the variables involved in radar range equation are given to this block as input. 

 
Figure 3.18 Setting the variables in range equation 

• This block returns the amplitude of the received signal. 
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Figure 3.19 Computing the received power from range equation 

 

3.3.6 Signal Processor Model 
• This model receives the return from the target. 
• The received signal is then passed from the matched filter (for pulse compression) 
• Then using the buffers, slow/fast time matrix is formed. 
• FFT is applied on each column of the matrix. 
• Threshold is applied on the amplitude of the pulses to decide about presence of the target. 
• Results are stored in the workspace. 
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Figure 3.20 The signal processor model 

 
• The figure below shows the input to the matched filter (lower half) and the compressed 

output of the matched filter (upper half) 

 
Figure 3.21 Input and Output of the receiver matched filter 
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• This is the magnified input and output of the matched filter for one pulse. 

 
Figure 3.22 Uncompressed return (bottom) and compressed return (top) 

 
• At the end of the simulation, the following function is executed to find the target 

parameters. 

 
Figure 3.23 The function to be executed at the end of simulation 
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• The plot below gives the range and Doppler shift of the target. 

 
Figure 3.24 Graph displaying the range and Doppler of the target 

 
 
 

3.4 System Level Design Parameters for the SAR 
In the project software DVD, the parameter calculation application is placed in the folder named 
‘Section 3.4 SAR Parameter Calculator’. To run it, please run ‘SARPARAM.m’ found in the 
folder. A Microsoft Word file containing the system level parameters is also placed in this folder. 

3.4.1 Assumptions 
• Operating Frequency = 2.7GHz  
• Wavelength = 0.11m  
• Height of Aircraft = 2km = 2000m Above Ground Level  
• Velocity of Aircraft = 65 m/s = 127 Knots (for a helicopter) 
• k = Oversampling rate = 2 
• Side looking synthetic aperture radar Squint Angle = 90 degrees 
• Pencil beamwidth for simplicity i.e. Beamwidth Azimuth = Beamwidth Elevation 
• Range Resolution without LFM is 1.5km = 1500m 

 

3.4.2 Gain, Aperture Size & Cross Range Minimum Calculations 
• Aperture Size in Azimuth = Aperture Size in Elevation = 0.5m (for a horn antenna) 
• Beamwidth in Azimuth = Beamwidth in Elevation = 0.22222rads 
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=> G=160.007 Watts = 22 dB which is not acceptable 

 
25dB <= G <= 30dB  = Average Gain of an airborne radar 

 
Thus, changing the aperture size 

 
• Aperture Size in Azimuth = Aperture Size in Elevation = 0.696m (for horn antenna) 
• Beamwidth in Azimuth = Beamwidth in Elevation = 0.15964rads 
 
=> G=309.9871=24.9 approx. 25 dB which is now acceptable 

 
• Minimum  Cross Range Resolution=0.348 m 

 

3.4.3 Bandwidth, Range Resolution, Swath Length, Grazing Angle & 
Slant Range Calculations 

• k = oversampling rate = 2 
• height = 2 km 
• Range Resolution without LFM is 1.5 km = 1500 m corresponds to pulse width of 1e-5 

sec = 10 usec 
• Bandwidth Time Product = BT = 500. 
 
=> Bandwidth of LFM is 50 MHz which corresponds to Range Resolution with LFM = 3 m 

 
• Ts = 1/kB = 1/(2*50e6) = 0.01usec 
• No. of Fast  time samples = Pulse width / Ts = 10usec / 0.01usec = 1000 samples 

(Greater than 1000 results in very high processing) 
• Maximum Swath Length covered  = 1503m = 1.503km 
• Grazing Angle = 1.0882 deg = 0.0190 
• Slant  Range = 2257.8638 = 2.258km 

 

3.4.4 Synthetic Aperture & Aperture Time Calculations 
• Synthetic Aperture = Dsar = (Rs*Lambda) / (2*CRmin) = 360.3473 m 
=> This is maximum aperture size. 
• Aperture Time = Dsar / Velocity = 5.5438 sec 

 
As aperture time has to be changed therefore assuming aperture time to be 3sec  => Dsar = 
195m 

3.4.5 PRF & Unambiguous Range Calculations 
• Number of pulses = 1024 = M = slow time samples (No of pulses slow time samples is 

directly proportional to processing complexity) 
• PRI = Ta / M = 0.0054139 sec = 5msec. 
• No of samples in PRI = PRI / Ts = 5msec / 0.01 usec = 500000 
• PRF = 1/PRI = 184.7108 Hz which is not alright considering the fact that the PRF 

constraint is 
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(2*v*BWaz)/lambda<=PRF<=(2/(Ls*cos(Grazing Angle))  for a  sidelooking radar 
 

186.7788Hz <=PRF<=215049.7 Hz or 0.187 KHz <=PRF<=0.21MHz 
 

Thus, we have to change either aperture time or slow time samples but we can’t change 
slow time samples so we change aperture time. 

 
• Assuming aperture time to be 3sec => Dsar = 195m 
• PRI = Ta / M = 0.0029297 sec = 3msec. 
• No of samples in PRI = PRI / Ts = 3msec / 0.01 usec = 300000 
• PRF = 1/PRI = 341.3333 Hz which is alright as 

 
186.7788Hz <=PRF<=215049.7 Hz or 0.187 KHz <=PRF<=0.21MHz 

 
• Unambiguous Range = 439453.167 m = 439.453km 

 

3.4.6 Resolutions 
• Cross Range Resolution Real (Azimuth) = Cross Range Resolution Real (Elevation) = 

360.4454m 
• Cross Range Resolution Synthetic = 0.64327 metre 
• Range Resolution without LFM is 1.5km = 1500m  
• Range Resolution with LFM = 3m 
• Doppler Resolution = 0.33333 
• Angular Resolution = 0.0002849 

 

3.4.7 Bandwidths 
• Bandwidth LFM = 50MHz 
• Bandwidth Simple Pulse = 0.1MHz 
• Bandwidth Spatial = 1.5546Hz 

 

3.4.8 Beamwidths 
• Beamwidth Azimuth = 0.15964 rads = 9.1467deg 
• Beamwidth Elevation = 0.15964rads = 9.1467deg 
• Beamwidth SAR = 2.82e-4rads = 0.0162deg 

 

3.4.9 Aperture Area & Area Coverage Rate & Range Curvature 
Calculations 

• Aperture Area = 0.48443m^2 
• Area  Coverage Rate = 97695m^2/sec 
• Range Curvature = 2.1051 m 

 

3.4.10 Received Power Calculations 
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If Effective Temperature Te = 290 Kelvin  & Thermal  Temperature To = 300K than noise figure 
F=1.9667W 
 
If Atmospheric Attenuation = 0.0005 dB/KM than Atmospheric Loss  = 1.00052 Watts  
 
If Gs = 50W than Pnoise = kToBFGs = 2.0355e-11Watts = -106.9dB 
 
If RCS sigma nought = 0.1 (target with small RCS) & Power Transmitted = Pt = 10W & System 
Loss = 25W than Power Received = Pr = 1.3488e-10Watts = -98.7dB 

3.4.11 SAR Parameter Calculator 
This section describes the MATLAB based Graphical User Interface (GUI) and the codes 
involved in the SAR parameter calculator application. 

The Graphical User Interface for Parameter Calculation 

 
Figure 3.25 GUI for SAR Parameter Calculator 

 

3.5 DBS Simulation using MATLAB 
This section describes a MATLAB simulation of image formation using DBS algorithm for four 
targets.  
 
In the project software DVD, this simulation is placed in the folder named ‘Section 3.5 
SARDBS’. To run it, please run ‘DBS.m’ found in the folder. 
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3.5.1 The Graphical User Interface 

 
Figure 3.26 GUI for DBS Simulation 
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3.5.2 The Generated Dataset 

 
Figure 3.27 Generated Dataset for 4 Scatterers 

 
 
 

3.5.3 After Fast Time Pulse Compression 

 
Figure 3.28 After Applying Pulse Compression to the Dataset 
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Figure 3.29 Before Dechirping, Azimuth compressed 

3.5.4 After Azimuth Compression (The Image) 

 
Figure 3.30 The DBS Image after Dechirping, Azimuth Compressed 
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Figure 3.31 The Image after Axis mapped 

3.5.5 MATLAB Functions Involved 
SAR_DataSet.m:  Generates a data set containing target returns according to input 

parameters. 
 
FastTime.m:   Applies Fast Time Pulse Compression on Data Set. 
 
SlowTime.m:   Applies Slow Time FFT on Data Set. 
 
DeChirped.m:   Applies DeChirping. 
 
AxisMapping.m:  Applies axis mapping. 
 
Please see Appendix A for MATLAB Codes. 
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Chapter  

4 
Conclusions and Recommendations 
This chapter contains the future recommendations for this project and highlights any 
discrepancies left in the project. Possibilities of further design and improvement are also 
presented. 

4.1 Hardware Implementation 
This chapter discusses the possibilities and considerations for the hardware implementation of 
SAR Signal Processor. 

4.1.1 DSP vs. FPGA 
In this section, a comparison between DSP and FPGA is given. Depending on the comparison, 
any of the platforms can be adopted for hardware implementation of a SAR signal processor. 
 
In many complex systems, the initial choice of a processing engine and its associated design 
methodology can have a profound impact on the system reliability. This choice will also have a 
large affect on the effort required to maintain the system throughout its life cycle. 
 
One fundamental architecture issue is the type of DSP platform. Digital signal processing 
functions are commonly implemented on two types of programmable platform: digital signal 
processors (DSP) and field programmable gate arrays (FPGA). DSPs are a specialized form of 
microprocessor, while FPGAs are a form of highly configurable hardware. In the past, usage of 
DSPs has been nearly ubiquitous, but with the needs of many applications outstripping the 
processing capabilities (MIPS) of DSPs, the use of FPGAs has become prevalent. Currently, the 
primary reason most engineers choose to use an FPGA over a DSP is driven by the MIPS 
requirements of an application. Thus, when comparing DSPs and FPGAs, the common focus is 
on MIPS comparison; but while this is certainly important, it is not the only advantage of FPGAs. 
Equally important, and often overlooked, is the inherent advantage that FPGAs have for product 
reliability and maintainability.  
 
Nearly all engineering project managers can readily quote the date of the next product software 
update or release. Most technology companies have a long, internal list of software bugs or 
problem reports, and software release will contain the associated patch or fix. It has generally 
come to be expected that all software (DSP code is considered a type of software) will contain 
some bugs and that the best one can do is to minimize them. 
 
By comparison, FPGA designs tend to be much less frequently updated, and it is generally a 
rather unusual event for a manufacturer to issue a field upgrade for an FPGA configuration file. 
Reliability and maintainability is much better in FPGA implementations compared to those 
using DSPs, due to the fact that the engineering development process for DSPs and FPGAs are 
dramatically different. There is a fundamental challenge in developing complex software for any 
type of processor. In essence, the DSP is basically a specialized processing engine being 
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constantly reconfigured for many different tasks, some digital signal processing, others more 
control or protocol oriented tasks. Resources such as processor core registers, internal and 
external memory, DMA engines, and IO peripherals are shared by all tasks, often referred to as 
threads (Fig 1). This creates ample opportunities for the design or modification of one task to 
interact with another, often in unexpected or non-obvious ways. In addition, most DSP algorithms 
must run in real-time, so even unanticipated delays or latencies can cause system failures.  
 
Common DSP software bugs are due to:  
- Failure of interrupts to completely restore processor state upon completion; 
- Blocking of a critical interrupt by another interrupt or by an uninterruptible process; 
- Undetected corruption or non-initialization of pointers; 
- Failure to properly initialize or disable circular buffering addressing modes; 
- Memory leaks or gradual consumption of available volatile memory due to failure of a thread to 
release all memory when finished; 
- Unexpected memory rearrangement by optimizing memory linkers/compilers; 
- Use of special mode instruction options in core; 
- Conflict or excessive latency between peripheral accesses, such as DMA, serial ports, L1, L2, 
and external SDRAM memories; 
- Corrupted stack or semaphores; and 
- Mixture of C or high-level language subroutines with assembly language subroutines.  
 
Microprocessor, DSP, and operating system (OS) vendors have attempted to address these 
problems with different levels of protection or isolation of one task or thread from another. 
Typically the operating system, or kernel, is used to manage access to processor resources, such 
as allowable execution time, memory, or to common peripheral resources. However, there is an 
inherent conflict between processing efficiency and level of protection offered by the OS. In 
DSPs, where processing efficiency and deterministic latency are often critical, the result is 
usually minimal or no level of OS isolation between tasks. Each task often requires unrestricted 
access to many processor resources in order to run efficiently. 
Compounding these development difficulties is incomplete verification coverage, both during 
initial development and during regression testing for subsequent code releases. It is nearly 
impossible to test all the possible permutations (often referred to as corner cases) and interactions 
between different tasks or threads which may occur during field operation. This makes software 
testing arguably the most challenging part of the software development process. Even with 
automated test scripts, it is not possible to test all possible scenarios. This process must be 
repeated after every software update or modification to correct known bugs or add new features. 
Occasionally, a new software release also inadvertently introduces new bugs, which forces yet 
another release to correct the new bug. As products grow in complexity, the number of lines of 
code will increase, as will the number of processor cores, and an even greater percentage of the 
development effort will need to be devoted to software testing.  
An FPGA is a more native implementation for most digital signal processing algorithms. Each 
task is allocated its own resources and runs independently. This intuitively makes more sense, to 
process an often continuously streaming signal in an assembly-line like process, with dedicated 
resources for each step. And the result is a dramatic increase in throughput. As the FPGA is 
inherently a parallel implementation, it offers much higher digital signal processing rates in 
nearly all applications. 
 
FPGA resources assigned can be tailored to the requirements of the task. The tasks can be broken 
up along logical partitions. This usually makes for a well defined interface between tasks, and 
largely eliminates unexpected interaction between tasks. Because each task can run continuously, 
the memory required is often much less than in a DSP, which must buffer the data and process in 
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a batch fashion. As FPGAs distribute memory throughout the device, each task is most likely 
permanently allocated the necessary dedicated memory. This achieves a high degree of isolation 
between tasks. The result is modification of one task being unlikely to cause an unexpected 
behavior in another task. This, in turn, allows developers to easily isolate and fix bugs in a 
logical, predictable fashion.  
 
The link between system reliability and design methodology is often underappreciated. Generally, 
discussions about development tools emphasizing engineering productivity increase. But as 
product complexities increase, an even greater portion of the overall engineering process is 
dedicated to testing and verification. This is where FPGA design methodology offers large 
advantages compared to software-based design verification. 
 
Fundamentally, FPGA design and verification tools are closely related to ASIC development 
tools. In practice, most ASIC designs are prototyped on FPGAs. This is a critical point, because 
bugs are most definitely not tolerated in ASICs. Unlike software, there is remote possibility of 
field upgrades to remedy design bugs in an ASIC. As time and development costs are very high, 
ASIC developers go to extreme lengths to verify designs against nearly all scenarios. This has led 
to test methodologies that provide nearly complete coverage of every gate under all possible 
inputs, accurate modeling of routing delays within the devices, and comprehensive timing 
analysis. Since FPGA verification tools are closely related cousins of their ASIC counterparts, 
they have benefited enormously from the many years of investment in the ASIC verification.  
 
The use of FPGA partitioning, test benches, and simulation models makes both integration and 
on-going regression testing very effective for quickly isolating problems, speeding the 
development process, and simplifying product maintenance and feature additions. These are 
crucial advantages in the FPGA vs DSP development process and will become increasingly 
important as the complexity of designs and the size of development teams increase. 
 
An FPGA vendor provides a comprehensive set of in-house and third-party tools to provide a 
unified tool flow for architecture, partitioning, floor planning, facilitated design intent, 
simulation, timing closure, optimization, and maintainability. In particular, architectural 
partitioning is integral to the design entry process. This partitioning, which normally includes 
chip resources required within the partition, is extended during timing closure and ongoing 
maintenance phases of the development, which guarantees a high degree of isolation. Each 
logical partition, as well as the overall design, can have independent test benches and simulation 
models. The development of the test benches during the FPGA design cycle can be reused to 
verify proper functionality in later changes. This will make system maintenance much simpler. 
The EDA industry is a large industry which continually drives the development of FPGA and 
ASIC test and verification tools. There is not a comparable counterpart in the software 
verification space. This may change as the industry realizes the enormous costs and challenges in 
software verification, but for now, the practical solution in the software world is to keep 
downloading the latest patch. 
 
Many engineering managers intuitively understand this. The rate of software updates to remedy 
bugs far exceeds the rate of comparable FPGA updates. It is expected and normal to roll out bug 
fixes on embedded software on a regular basis. With the availability of both low-cost and high-
end DSP-optimized FPGA devices, extensive IP cores, as well as the availability of high-level 
design entry methods and the inherent robustness of the design and verification processes, FPGAs 
will increasingly be the preferred choice for implementing digital signal processing. (Source: 
Michael Parker of Altera Corporation) 
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4.2 Discrepancies in the Project 
This section mentions the weak areas of the project where further improvement is possible. 
Anyone continuing this project may consider removing these discrepancies. 

4.2.1 Simulink Model of Pulse Doppler Radar 
The simulation of pulse doppler radar was meant to be extended to a synthetic aperture radar 
simulation but it could not be accomplished. The doppler beam sharpening algorithm could not be 
simulated in Simulink. 

4.2.2 Peak-to-Sidelobe Ration in Pulse Doppler Radar 
The PSLR achieved in the simulation of pulse doppler radar was 25dB whereas a PSLR of 30dB 
or more is adequate for radar systems. 
 

4.3 Future Recommendations 
Here are some of the SAR applications for which, this project can be specialized. 

4.3.1 Range Doppler Algorithm 
The range-Doppler algorithm is another algorithm for processing continuously collected SAR 
data into an image. It is computationally efficient and, for typical spaceborne imaging geometries, 
the range-Doppler algorithm is an accurate approximation to the exact SAR transfer function. The 
future development in this project can include the range Doppler algorithm in the signal 
processing part of the system. 

4.3.2 Spotlight SAR 
Spotlight SAR is a mode of SAR operation for obtaining high resolution by steering the radar 
beam to keep the target within the beam for a longer time and thus form a longer synthetic 
aperture. This project can be extended to include spotlight SAR mode. 
 
Compared to conventional SAR strip mapping mode, which assumes a fixed pointing direction of 
the radar antenna broadside to the platform track, Spotlight SAR is capable of extending the high-
resolution SAR imaging capability significantly. This is achieved by keeping a target within the 
spotlight illumination of the radar beam for a longer time through electronic beam steering, 
resulting in a longer synthetic aperture which leads, in turn, to increased azimuth resolution. 
Spotlight SAR mode of operation is usually at the expense of spatial coverage, as other areas 
within a given accessibility swath of the SAR cannot be illuminated while the radar beam is 
spotlighting over a particular target area. Classified Spotlight SAR systems have been in 
operation for some time on military reconnaissance aircraft and satellites. (Source: 
http://www.ccrs.nrcan.gc.ca/glossary/index_e.php?id=581) 

4.3.3 Interferometeric SAR (IFSAR) 
Another application which can be implemented by improving this project is the IFSAR. 
Interferometric synthetic aperture radar (IFSAR) data can be acquired using two antennas on one 
aircraft or by flying two slightly offset passes of an aircraft with a single antenna. Interferometric 
SAR can be used to generate very accurate surface profile maps of the terrain. IFSAR is among 
the more recent options for determining digital elevation. It is a radar technology capable of 
producing products with vertical accuracies of 30 centimeters RMSE. Not only that, but IFSAR 
provides cloud penetration, day/night operation (both because of the inherent properties of radar), 
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wide-area coverage, and full digital processing. The technology is quickly proving its worth. 
More about IFSAR is available at http://www.geospatial-solutions.com/geospatialsolutions. 
 

4.4 References 
i. White Paper by Micheal Parker 
ii. http://www.geospatial-solutions.com/geospatialsolutions 
iii. http://www.ccrs.nrcan.gc.ca/glossary/index_e.php?id=581 
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Appendix 

A 
MATLAB Code Listings 

Codes used in Simulation of Pulse Compression 
 
To use the GUI for pulse compression, enter the parameters in the input text boxes, select an 
option to view from the drop down menu and click start. Use matrix type of input e.g. [1 2 3] 
for multiple scatterers.  
 
%LFM.m 
function [xc,Xc,f,t,N]=LFM(taup,b,k) 
clc; 
N=k*b*taup; 
N=round(N); 
ts=1/(k*b); 
fs=1/ts; 
t=linspace(-taup/2,taup/2,N); 
f=linspace(-fs,fs,N); 
xc= exp(i*pi*(b/taup).*t.^2); 
Xc=fftshift(abs(fft(xc))); 
 
%matched_filter.m 
function [out,time,N,dpoints,dist]= 
matchedfilter(taup,b,k,scat_range,scat_rcs,scatno,rrec) 
clc; 
[xc,Xc,f,t,N]=LFM(taup,b,k); 
%x(scatno,1:N)=0; 
xcr(1:N)=0; 
%LFM pulse received 
G=1;Pt=10;Lam=0.1;c=3.e8; 
for j=1:length(scat_range) 
    A=((Pt*(G*Lam)^2*scat_rcs(j))/((4*pi)^3*scat_range(j)^4))^0.5; 
    x(j,:)=A*exp(i*pi*(b/taup).*(t+(2*scat_range(j)/c)).^2); 
    xcr=x(j,:)+xcr; 
end 
%Matched filtering of Continuous Time LFM Chirp 
xct=xc; 
out=xcorr(xct,xcr); 
out=out./N; 
time=linspace(0,-taup/length(out)+2*taup,length(out)); 
rres=(c*taup)/2; 
dpoints = ceil(rrec * N /rres); 
dist=linspace(0,rrec,dpoints); 
figure(1); 
plot(dist,abs(out(N:N+dpoints-1))); 
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xlabel('Range in metres'); 
ylabel('Matched Filter Output'); 
figure(2); 
plot(time,abs(out)); 
xlabel('Time in sec'); 
ylabel('Matched Filter Output'); 
save matchedfilter.mat; 
clc; 
 
%windowedoutput.m 
function [out outf outt time timet]= 
windowedoutput(taup,b,k,scat_range,scat_rcs,scatno,rrec) 
clc; 
%Windowing in Frequecy Domain 
[out,time,N,dpoints,dist]= 
matchedfilter(taup,b,k,scat_range,scat_rcs,scatno,rrec); 
winf=hamming(length(out))'; 
IN=fftshift(fft(out)); 
OUTF=abs(IN).*winf; 
outf=fftshift(ifft(OUTF,length(OUTF))); 
figure(3) 
plot(time,20*log10(abs(out)),'r'); 
hold on 
plot(time,20*log10(abs(outf))); 
xlabel('Time in seconds'); 
ylabel('Frequecy Windowed Matched Filter Output in dBs'); 
hold off 
%Windowing in time domain 
wint=hamming(length(out)); 
WINt=fftshift(ifft(wint)); 
outt=conv(out,WINt); 
timet=linspace(0,-taup/length(outt)+2*taup,length(outt)); 
figure(4) 
plot(time,20*log10(abs(out)),'r'); 
hold on 
plot(timet,20*log10(abs(outt))); 
xlabel('Time in seconds'); 
ylabel('Time Windowed Matched Filter Output in dBs'); 
 

Codes used in Simulation of Pulse Doppler Radar 
%Pulse_Compression.m 
Chirp_Template=squeeze(Chirp_Template); 
Chirp_Template=Chirp_Template(1:100); 
Chirp_T_FFT1=fft(Chirp_Template); 
window=hamming(100); 
Chirp_T_FFT1=conj(Chirp_T_FFT1).*window; 
% Received=squeeze(Received); 
% Received=Received(1:1000); 
% R=fft(Received); 
% Chirp_T_FFT1=R.*Chirp_T_FFT1; 
Chirp_Template=ifft(Chirp_T_FFT1); 
save Chirp_Template; 
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How to Use GUI of SAR Parameter Calculation 
After running the GUI, enter any parameters depending upon which you want to calculate the 
other parameters and press ‘Calculate’ button. The GUI will display all the other parameters that 
could be calculated using the available input parameters. 
 

Codes Used in SARDBS 
%git_chirp.m (This function is courtesy of Dr. Mark A. Richards, Georgia Institute of 
Technology) 
function   x = git_chirp( T, W, p ) 
%CHIRP      generate a sampled chirp signal 
%    X = git_chirp( T, W, <P> ) 
%      X:  N=pTW samples of a "chirp" signal 
%            exp(j(W/T)pi*t^2)   -T/2 <= t < +T/2 
%      T:  time duration from -T/2 to +T/2 
%      W:  swept bandwidth from -W/2 to +W/2 
%    optional: 
%      P:  samples at P times the Nyquist rate (W) 
%            i.e., sampling interval is 1/(PW) 
%            default is P = 1 
% 
if nargin < 3 
  p = 1; 
end     
J = sqrt(-1); 
%-------------- 
delta_t = 1/(p*W); 
N = round( p*T*W );    %--same as T/delta_t, but rounded 
nn = [0:N-1]'; 
% x = exp( J*pi*W/T * (delta_t*nn - T/2).^2 );  % old version 
x = exp( J*pi*W/T * (delta_t*nn - (N-1)/2/p/W).^2 );  % symmetric 
version 
  
  
% even older version 
%%%%% alf = 1/(2*p*p*T*W); 
%%%%% git_chirp = exp( J*2*pi*alf*((nn-N/2).*(nn-N/2)) ); 
 
%SAR_DataSet.m 
function [DataSet x zerosVector]=SAR_DataSet (xp, yg, Ta, F, h, v, K, 
B, Taw, PRF) 
tic 
clc 
c=3e8; 
lambda=c/F; 
fs=K*B; 
Dsar=v*Ta; 
du=v/PRF; 
t=0:1/(fs):Taw; 
x=cos(pi*(B/Taw)*t.^2); 
u=-Dsar/2:du:Dsar/2; 
for SP=1:length(yg) 
    Rp(SP)=(h^2+yg(SP)^2)^0.5; 
    R(SP,:)=Rp(SP)*( ones(1,length(u))+((u-xp(SP)).^2)/Rp(SP)^2).^0.5; 



 61 

    Phase(SP,:) = exp(-i*4*pi*R(SP,:)*F/c); 
    m=1; 
    for n=1:length(R(SP,:)) 
        tr=2*R(SP,n)/c; 
        t1=0:1/fs:tr; 
        zerosVector(m)=length(t1); 
        m=m+1; 
    end 
    if (SP==1) 
        scale=min(zerosVector); 
    end 
    zerosVector=zerosVector-scale*ones(1,length(zerosVector)); 
    for k=1:length(zerosVector) 
        Ret=Phase(SP,k)*[zeros(1,zerosVector(k)) x 
zeros(1,1+max(zerosVector)-zerosVector(k))]; 
        if(SP==1) 
            DataSet1(k,:)=Ret; 
        end 
        if(SP==2) 
            DataSet2(k,:)=Ret; 
        end 
        if(SP==3) 
            DataSet3(k,:)=Ret; 
        end 
        if(SP==4) 
            DataSet4(k,:)=Ret; 
        end 
%         if(SP==5) 
%             DataSet5(k,:)=Ret; 
%         end 
%         if(SP==6) 
%             DataSet6(k,:)=Ret; 
%         end 
%         if(SP==6) 
%             DataSet6(k,:)=Ret; 
%         end 
%         if(SP==7) 
%             DataSet7(k,:)=Ret; 
%         end 
%         if(SP==8) 
%             DataSet8(k,:)=Ret; 
%         end 
%         if(SP==9) 
%             DataSet9(k,:)=Ret; 
%         end 
%         if(SP==10) 
%             DataSet10(k,:)=Ret; 
%         end 
    end 
end 
[r(1),col(1)]=size(DataSet1); 
[r(2),col(2)]=size(DataSet2); 
[r(3),col(3)]=size(DataSet3); 
[r(4),col(4)]=size(DataSet4); 
% [r(5),col(5)]=size(DataSet5); 
% [r(6),col(6)]=size(DataSet6); 
% [r(7),col(7)]=size(DataSet7); 
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% [r(8),col(8)]=size(DataSet8); 
% [r(9),col(9)]=size(DataSet9); 
% [r(10),col(10)]=size(DataSet10); 
ZC=max(col); 
DataSet1=[DataSet1 zeros(r(1),ZC-col(1))]; 
DataSet2=[DataSet2 zeros(r(2),ZC-col(2))]; 
DataSet3=[DataSet3 zeros(r(3),ZC-col(3))]; 
DataSet4=[DataSet4 zeros(r(4),ZC-col(4))]; 
% DataSet5=[DataSet5 zeros(r(5),ZC-col(5))]; 
% DataSet6=[DataSet6 zeros(r(6),ZC-col(6))]; 
% DataSet7=[DataSet7 zeros(r(7),ZC-col(7))]; 
% DataSet8=[DataSet8 zeros(r(8),ZC-col(8))]; 
% DataSet8=[DataSet9 zeros(r(9),ZC-col(9))]; 
% DataSet4=[DataSet4 zeros(r(10),ZC-col(10))]; 
DataSet=DataSet1+DataSet2+DataSet3+DataSet4; 
% 
DataSet=DataSet1+DataSet2+DataSet3+DataSet4+DataSet6+DataSet7+DataSet8+
DataSet9+DataSet10; 
figure(1);image(real(DataSet)); 
xlabel('Fast Time Samples'); 
ylabel('Slow Time Samples'); 
title('RAW DATA'); 
save SAR_DataSet.mat; 
clc 
toc 
 
 
%FastTime.m 
function [matchFilter]=FastTime(DataSet, x, zerosVector) 
tic 
clc; 
load SAR_DataSet; 
maxPoint=2*(max(zerosVector)+150)-1; 
matchFilter=zeros(length(zerosVector),(2*length(DataSet(1,:))-1)); 
for n=1:length(zerosVector) 
    %chirp=DataSet(n,1:zerosVector(n)+150); 
    chirp=DataSet(n,:); 
    FTPC=xcorr(chirp,x); 
    matchFilter(n,:)=[FTPC zeros(1,1+maxPoint-length(FTPC))];  
    %matchFilter(n,:)=[FTPC]; 
end 
figure(2); image(real(matchFilter)); 
xlabel('Pulse Compressed Fast Time Samples'); 
ylabel('Slow Time Samples'); 
title('Pulse Compressed'); 
save FastTime; 
toc 
 
%SlowTime.m 
function [slowTime]=SlowTime() 
tic 
clc 
load FastTime; 
[o,p] = size(matchFilter); 
WR = hamming(o); 
for I=1:length(matchFilter(1,:)) 
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    slowTime(:,I)=fftshift(abs(fft(WR.*matchFilter(:,I)))); 
end 
figure(3);image(10*log10(abs(slowTime))); 
xlabel('Pulse Compressed Fast Time Samples'); 
ylabel('Azimuth Compressed Slow Time Samples'); 
title('Azimuth Compressed'); 
save SlowTime.mat; 
toc 
 
%AxisMapping.m 
function [MappedSet]=AxisMapping() 
% Y[l,Fd]<==>Y[R,x] 
% l-> R=Ro + c*Ts*l/2 
% F-> x=-lamda*R*Fd/2*v 
tic 
clc 
load SlowTime; 
lambda=c/F; 
Ro=mean(Rp); 
for i=1:length(slowTime(1,:)) 
    Rm(:,i)=Ro+(0.5*c.*slowTime(:,i))./fs; 
end 
for i=1:length(slowTime(:,1)) 
    MappedSet(i,:)=0.5.*Rm(i,:).*slowTime(i,:)./v; 
end 
figure(4);image(real(MappedSet)); 
xlabel('Range'); 
ylabel('Cross Range'); 
title('Axis Mapped Image'); 
save AxisMapping; 
toc 
 
%Deshirped.m 
function [DeChirped]=Dechirped() 
tic 
clc 
load AxisMapping;  
u=u'; 
for j=1:length(MappedSet(1,:)) 
    
DeChirped(:,j)=matchFilter(:,j).*exp(i*((2*pi*u.^2)./(Rm(:,j).*lambda))
); 
    DeChirped(:,j)=fftshift(abs(fft(WR.*DeChirped(:,j)))); 
end 
figure(5);image(real(DeChirped)); 
xlabel('Pulse Compressed Fast Time Samples'); 
ylabel('Range Compressed Slow Time Samples'); 
title('Azimuth Compressed Without Dechirp'); 
save DeChirped.mat; 
toc 
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 Appendix  

B 
Fast Fourier Transform 

What is FFT 
The fast Fourier transform (FFT) is a discrete Fourier transform algorithm which reduces the 
number of computations needed for N points from  to  2NlogN where log is the base-2 
logarithm. If the function to be transformed is not harmonically related to the sampling frequency, 
the response of an FFT looks like a sinc function (although the integrated power is still correct). 
Aliasing (leakage) can be reduced by apodization using a tapering function. However, aliasing 
reduction is at the expense of broadening the spectral response.  
 
The basic DFT (Discrete Fourier Transform) is 

 
Direct computation requires about 4N multiplications and 4N additions for each k (a complex 
multiplication needs 4 real multiplications and 2 real additions). 
 
For all N coefficients, gives about 8N2 operations. 
 
Generally, we use FFT to refer to algorithms which work by breaking the DFT of a long 
sequence into smaller and smaller chunks. 
 
Algorithms for computing the DFT which are more computationally efficient than the 
direct method (better than proportional to N2) are called Fast Fourier Transforms. 
 

Matlab and the FFT 
Matlab's FFT function is an effective tool for computing the discrete Fourier transform of a 
signal. The following code examples will help you to understand the details of using the FFT 
function. 
 
Example 1: The typical syntax for computing the FFT of a signal is FFT(x,N) where x is the 
signal, x[n], you wish to transform, and N is the number of points in the FFT. N must be at least 
as large as the number of samples in x[n]. To demonstrate the effect of changing the value of N, 
sythesize a cosine with 30 samples at 10 samples per period. 
n = [0:29]; 
x = cos(2*pi*n/10); 
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Define 3 different values for N. Then take the transform of x[n] for each of the 3 values that were 
defined. The abs function finds the magnitude of the transform, as we are not concerned with 
distinguishing between real and imaginary components. 
N1 = 64; 
N2 = 128; 
N3 = 256; 
X1 = abs(fft(x,N1)); 
X2 = abs(fft(x,N2)); 
X3 = abs(fft(x,N3)); 
The frequency scale begins at 0 and extends to N - 1 for an N-point FFT. We then normalize the 
scale so that it extends from 0 to 1 – 1/N. 
F1 = [0 : N1 - 1]/N1; 
F2 = [0 : N2 - 1]/N2; 
F3 = [0 : N3 - 1]/N3; 
Plot each of the transforms one above the other. 
subplot(3,1,1) 
plot(F1,X1,'-x'),title('N = 64'),axis([0 1 0 20]) 
subplot(3,1,2) 
plot(F2,X2,'-x'),title('N = 128'),axis([0 1 0 20]) 
subplot(3,1,3) 
plot(F3,X3,'-x'),title('N = 256'),axis([0 1 0 20]) 
Upon examining the plot (shown in figure B.1) one can see that each of the transforms adheres to 
the same shape, differing only in the number of samples used to approximate that shape. What 
happens if N is the same as the number of samples in x[n]? To find out, set N1 = 30. 
 

 
Figure B.1 FFT of a cosine for N = 64, 128, and 256 



 66 

Fourier Transform Table 

 

  



 67 

Appendix  

C 
Decibel Arithmetic 
The decibel, often called dB, is widely used in radar system analysis and design. It is a way of 
representing the radar parameters and relevant quantities in terms of logarithms.  
 
Gain in dB (in 

terms of 
power) 

log(Po / Pi) 

Gain in dB (in 
terms of 
voltage) 

log(Vo / Vi)2 

Gain in dB (in 
terms of 
current) 

log(Io / Ii)2 

Definition of 
dB 

10log(Po / Pi) = 10log(Vo / Vi)2 = 10log(Io / Ii)2 

 
Calculating 
Inverse dB 

 
dB on 

Multiplication 
and Division 
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Appendix  

D 
Speed Unit Conversions 

Speed Conversion Formulae 

To convert between miles per hour (mph) and knots (kts): 

Speedkts = 0.868391 x Speedmph 

Speedmph = 1.15155 x Speedkts 

To convert between miles per hour (mph) and meters per second (m/s): 

Speedm/s = 0.44704 x Speedmph 

Speedmph = 2.23694 x Speedm/s 

To convert between miles per hour (mph) and feet per second (ft/s): 

Speedf/s = 1.46667 x Speedmph 

Speedmph = 0.681818 x Speedft/s 

To convert between knots (kts) and meters per second (m/s):  

Speedm/s = 0.514791 x Speedkts 

Speedkts = 1.194254 x Speedm/s 

To convert between knots (kts) and kilometers per hour (km/h): 

Speedkm/h = 1.185325 x Speedkts 

Speedkts = 0.539593 x Speedkm/h 


