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Abstract

Intrinsic volumes of convex sets are natural geometric quantities that also play im-
portant roles in applications, such as linear inverse problems with convex constraints,
and constrained statistical inference. It is a well-known fact that, given a closed con-
vex cone C ⊂ Rd, its conic intrinsic volumes determine a probability measure on the
finite set {0, 1, ...d}, customarily denoted by L(VC). The aim of the present paper is to
provide a Berry-Esseen bound for the normal approximation of L(VC), implying a gen-
eral quantitative central limit theorem (CLT) for sequences of (correctly normalised)
discrete probability measures of the type L(VCn), n ≥ 1. This bound shows that, in
the high-dimensional limit, most conic intrinsic volumes encountered in applications
can be approximated by a suitable Gaussian distribution. Our approach is based on a
variety of techniques, namely: (1) Steiner formulae for closed convex cones, (2) Stein’s
method and second order Poincaré inequality, (3) concentration estimates, and (4)
Fourier analysis. Our results explicitly connect the sharp phase transitions, observed
in many regularised linear inverse problems with convex constraints, with the asymp-
totic Gaussian fluctuations of the intrinsic volumes of the associated descent cones. In
particular, our findings complete and further illuminate the recent breakthrough dis-
coveries by Amelunxen, Lotz, McCoy and Tropp (2014) and McCoy and Tropp (2014)
about the concentration of conic intrinsic volumes and its connection with threshold
phenomena. As an additional outgrowth of our work we develop total variation bounds
for normal approximations of the lengths of projections of Gaussian vectors on closed
convex sets.

1 Introduction

1.1 Overview

Every closed convex cone C ⊂ Rd can be associated with a random variable VC , with
support on {0, . . . , d} whose distribution L(VC) coincides with the so-called conic intrinsic
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volumes of C. The distribution L(VC) is a natural object that summarizes key information
about the geometry of C, and is important in applications, ranging from compressed sensing
to constrained statistical inference. In particular, for a closed convex cone C the mean
δC = EVC (which is customarily called the statistical dimension of C) measures in some
sense the ‘effective’ dimension of C, and generalises the classical notion of dimension for linear
subspaces. As proved in the groundbreaking papers Amelunxen, Lotz, McCoy and Tropp
[3] and by McCoy and Tropp [32] (see also Section 1.4 below for a more detailed discussion
of this point), in the case of the so-called descent cones arising in convex optimisation, the
concentration of the distribution of VC around δC explains with striking precision threshold
phenomena exhibited by the probability of success in linear inverse problems with convex
constraints.

Our principal aim in this paper is to produce a Berry-Esseen bound for L(VC) leading to
minimal conditions on a sequence of closed convex cones {Cn}n≥1, ensuring that the sequence

VCn − EVCn√
Var(VCn)

, n ≥ 1,

converges in distribution towards a standard Gaussian N (0, 1) random variable. The bounds
in our main findings depend only on the mean and the variance of the random variables VCn ,
and are summarized in Part 2 of Theorem 1.1 below.

As explained in the sections to follow, the strategy for achieving our goals consists in
using the elegant Master Steiner formula from McCoy and Tropp [32], in order to connect
random variables of the type VC to objects with the form ‖ΠC(g)‖2, where g is a standard
Gaussian vector, ΠC is the metric projection onto C, and ‖·‖ stands for the Euclidean norm.
Shifting from VC to ‖ΠC(g)‖2 allows one to unleash the full power of some recently developed
techniques for normal approximations, based on the interaction between Stein’s method (see
[17]) and variational analysis on a Gaussian space (see [34]). In particular, our main tool will
be the so-called second order Poincaré inequality developed in [14, 35]. In Section 4, we will
also use techniques from Fourier analysis in order to compute explicit Berry-Esseen bounds.

As discussed below, our findings represent a significant extension of the results of [3,
32], where the concentration of L(VC) around δC was first studied by means of tools from
Gaussian analysis, as well as by exploiting the connection between intrinsic volumes and
metric projections. Explicit applications to regularised linear inverse problems are described
in detail in Section 1.4 below.

We will now quickly present some basic facts of conic geometry that are relevant for our
analysis. Our main theoretical contributions are discussed in Section 1.3, whereas connec-
tions with applications are described in Section 1.4 and Section 1.5.

1.2 Elements of conic geometry

The reader is referred to the classical references [36, 37], as well as to [3, 32], for any unex-
plained notion or result related to convex analysis.

Distance from a convex set and metric projections. Fix an integer d ≥ 1. Throughout the
paper, we shall denote by 〈x,y〉 and ‖x‖2 = 〈x,x〉, respectively, the standard inner product

2



and squared Euclidean norm in Rd. Given a closed convex set C ⊂ Rd, we define the distance
between a point x and C as

d(x, C) := inf
y∈C
‖x− y‖. (1)

By the strict convexity of the mapping x 7→ ‖x‖2, the infimum is attained at a unique vector,
called the metric projection of x onto C, which we denote by ΠC(x).

Convex cones and polar cones. A set C ⊂ Rd is a convex cone if ax + by ∈ C whenever x
and y are in C and a and b are positive reals. The polar cone C0 of a cone C is given by

C0 =
{
y ∈ Rd : 〈y,x〉 ≤ 0,∀x ∈ C

}
. (2)

It is easy to verify that the polar cone of a closed convex cone is again a closed convex cone.
By virtue e.g. of [32, formula (7.2)], any vector x ∈ Rd may be written as:

x = ΠC(x) + ΠC0(x) with ΠC(x) ⊥ ΠC0(x), (3)

where the orthogonality relation is in the sense of the inner product 〈·, ·〉 on Rd. A quick
computation shows also that, for every closed convex cone C and every x ∈ Rd,

‖ΠC(x)‖ = sup
y∈C:‖y‖≤1

〈x,y〉. (4)

Steiner formulae and intrinsic volumes. Letting Bd and Sd−1 denote, respectively, the unit

ball and unit sphere in Rd, the classical Steiner formula for the Euclidean expansion of a
compact convex set K states that

Vol(K + λBd) =
d∑
j=0

λd−jVol(Bd−j)Vj for all λ ≥ 0,

where addition on the left-hand side indicates the Minkowski sum of sets, and the numbers
Vj, j = 0, . . . , d on the right, called Euclidean intrinsic volumes, depend only on K. The
Euclidean intrinsic volumes numerically encode key geometric properties of K, for instance,
Vd is the volume, 2Vd−1 the surface area, and V0 the Euler characteristic of K. See e.g. [1,
p. 142], [29, Chapter 7] and [43, p. 600] for standard proofs.

An ‘angular’ Steiner formula was developed in [2, 26, 39], and expresses the size of an
angular expansion of a closed convex cone C as follows:

P
{
d2(θ, C) ≤ λ

}
=

d∑
j=0

βj,d(λ)vj, (5)

where θ is a random variable uniformly distributed on Sd−1, the coefficients

βj,d(λ) = P [B(d− j, d) ≤ λ]

(where each B(d − j, d) has the Beta distribution with parameters (d − j)/2 and d/2) do
not depend on C, and the conic intrinsic volumes v0, . . . , vd are determined by C only, and
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can be shown to be nonnegative and sum to one. As a consequence, we may associate to
the conic intrinsic volumes of C an integer-valued random variable V , whose probability
distribution L(V ) is given by

P (V = j) = vj, for j = 0, . . . , d. (6)

When the dependence of any quantities on the cone needs to be emphasized, we will write
VC for V and vj(C) for vj, j = 0, . . . , d. As shown in [32], relation (5) can be seen as a
consequence of a general result, known as Master Steiner formula and stated formally in
Theorem 3.2 below. Such a result implies that, writing g ∼ N (0, Id) for a standard d-
dimensional Gaussian vector, the squared norms ‖ΠC(g)‖2 and ‖ΠC0(g)‖2 behave like two
independent chi-squared random variables with a random number VC and d−VC , respectively,
of degrees of freedom: in symbols,

(‖ΠC(g)‖2, ‖ΠC0(g)‖2) ∼ (χ2
VC
, χ2

d−VC ). (7)

In particular, equation (7) is consistent with the well-known relation vj(C) = vd−j(C
0)

(j = 0, ..., d), that is: the distribution of the random variable VC0 , associated with the polar
cone C0 via its intrinsic volumes, satisfies the relation

VC0
Law
= d− VC , (8)

where, here and in what follows,
Law
= indicates equality in distribution. To conclude, we

notice that partial versions of (7) (only involving ‖ΠC(g)‖2) were already known in the
literature prior to [32], in particular in the context of constrained statistical inference — see
e.g. [19, 40, 41], as well as [42, Chapter 3].

Statistical dimensions. As for Euclidean intrinsic volumes, the distribution of VC encodes key
geometric properties of C. For instance, the mean δC := E[VC ] = E‖ΠC(g)‖2, generalizes
the notion of dimension. In particular, if Lk is a linear subspace of Rd of dimension k, and
hence a closed convex cone, then vj(Lk) is one when j = k and zero otherwise, and therefore
δ(Lk) = k. The parameter δC is often called the statistical dimension of C. We observe that,
in view of (4), the statistical dimension δC is tightly related to the so-called Gaussian width
of a convex cone

wC := E

(
sup

y∈C:‖y‖≤1

〈g,y〉

)
,

where g ∼ N (0, Id). The notion of Gaussian width plays an important role in many key
results of compressed sensing (see e.g. [38]). Standard arguments yield that w2

C ≤ δC ≤
w2
C+1 (see [3, Proposition 10.2]). One situation where the statistical dimension is particularly

simple to calculate is when C is self dual, that is, when C = −C0. In this case, δC = d/2 by
(8). The nonnegative orthant, the second-order cone, and the cone of positive-semidefinite
matrices are all self dual; see [32] for definitions and further explanations.

Polyhedral cones. We recall that a polyhedral cone C is one that can be expressed as the
intersection of a finite number of halfspaces, that is, one for which there exists an integer N
and vectors u1, . . . ,uN in Rd such that

C =
N⋂
i=1

{x ∈ Rd : 〈ui,x〉 ≥ 0}.
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For polyhedral cones the probabilities vj, j = 0, . . . , d can be connected to the behavior of
the projection ΠC(g) of a standard Gaussian variable g ∼ N (0, Id) onto C. Indeed, in this
case we have the representation

vj = P (ΠC(g) lies in the relative interior of a j-dimensional face of C) (9)

(see e.g. [3, 32]).

1.3 Main theoretical contributions

The main result of the present paper is the following general central limit theorem (CLT), in-
volving the intrinsic volume distributions of a sequence of closed convex cones with increasing
statistical dimensions.

Theorem 1.1 Let {dn : n ≥ 1} be a sequence of non-negative integers and let {Cn ⊂ Rdn :
n ≥ 1} be a collection of non-empty closed convex cones such that δCn → ∞, and write
τ 2
Cn

= Var(VCn), n ≥ 1. For every n, let gn ∼ N (0, Idn) and write σ2
Cn

= Var(‖ΠCn(gn)‖2),
n ≥ 1. Then, the following holds.

1. One has that 2δCn ≤ σ2
Cn
≤ 4δCn for every n and, as n→∞, the sequence

‖ΠCn(gn)‖2 − δCn
σCn

, n ≥ 1,

converges in distribution to a standard Gaussian random variable N ∼ N (0, 1).

2. If, in addition, lim infn→∞ τ
2
Cn
/δCn > 0, then, as n→∞, the sequence

VCn − δCn
τCn

, n ≥ 1,

also converges in distribution to N ∼ N (0, 1), and moreover one has the Berry-Esseen
estimate

sup
u∈R

∣∣∣∣P [VCn − δCnτCn
≤ u

]
− P [N ≤ u]

∣∣∣∣ = O

(
1√

log δCn

)
. (10)

Part 1 follows from Corollary 3.1. Part 2 is a consequence of Theorem 5.1 below that
provides a Berry-Esseen bound, with small explicit constants, for the normal approximation
of VC and for any closed convex cone C, in terms of δC , σ

2
C and τ 2

C . In particular, if C is
a closed convex cone such that τC > 0, then we will prove in Theorem 5.1 and Remark 5.1
that, writing α := τ 2

C/δC , for δC ≥ 8,

sup
u∈R

∣∣∣∣P [VC − δCτC
≤ u

]
− P [N ≤ u]

∣∣∣∣ ≤ h(δC) +
48√

α log+(α
√

2δC)
, (11)

where

h(δ) =
1

72

(
log δ

δ3/16

)5/2

. (12)
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Remark 1.1 Observe that, if one considers the sequence {Cd}d≥1 consisting of the non-
negative orthants of Rd , then VCd follows a binomial distribution with parameters (1/2, d)
(in particular, δCd = d/2). It follows that, in this case, the supremum on the left-hand side
of (10) converges to zero at a speed of the order O(d−1/2), from which we conclude that the
rate supplied by (10) is, in general, not optimal.

As anticipated, our strategy for proving Theorem 1.1 (exception made for the Berry-
Esseen bound (10)) is to connect the distributions of ‖ΠCn(gn)‖2 and VCn via the Master
Steiner formula (7), and then to study the normal approximation of the squared norm of
ΠCn(gn) by means of Stein’s method, as well as of general variational techniques on a Gaus-
sian space (see [17, 34]). As illustrated in the Appendix contained in Section 5 below, Stein’s
method proceeds by manipulating a characterizing equation for a target distribution (in this
case the normal), typically through couplings or integration by parts. Hence, we justify the
title of this work by the heavy use that our application of Stein’s method makes of relation
(7), generalizing the angular Steiner formula (5). As mentioned above, our main tool will be
a form of the second order Poincaré inequalities studied in [14, 35].

Remark 1.2 A crucial point one needs to address when applying Part 2 of Theorem 1.1
is that, in order to check the assumption lim infn→∞ τ

2
Cn
/δCn > 0, one has to produce an

effective lower bound on the sequence of conic variances τ 2
Cn

, n ≥ 1. This issue is dealt with
in Section 4, where we will prove new upper and lower bounds for conic variances, by using
an improved version of the Poincaré inequality (see Theorem 6.2), as well as a representation
of the covariance of smooth functionals of Gaussian fields in terms of the Ornstein-Uhlenbeck
semigroup, as stated in formula (96) below. In particular, our main findings of Section 4 (see
Theorem 4.1) will indicate that, in many crucial examples, the sequence n 7→ τ 2

Cn
eventually

satisfies a relation of the type

c‖E[ΠCn(g)]‖2 ≤ τ 2
Cn ≤ 2‖E[ΠCn(g)]‖2,

where c ∈ (0, 2) does not depend on n. In view of Jensen inequality, this conclusion strictly
improves the estimate τ 2

Cn
≤ 2δCn that one can derive e.g. from [32, Theorem 4.5].

We obtain normal approximation results for random variables that are more general than
‖ΠC(g)‖2. To this end, fix a closed convex cone C ⊂ Rd and µ ∈ Rd, and introduce the
shorthand notation:

F = ‖µ− ΠC(g + µ)‖2 −m, with m = E[‖µ− ΠC(g + µ)‖2] and σ2 = Var(F ). (13)

Then, we prove in Theorem 3.1 that

dTV (F,N) ≤ 16

σ2

{√
m(1 + 2‖µ‖) + 3‖µ‖2 + ‖µ‖

}
, (14)

where N ∼ N (0, σ2) and dTV stand for the total variation distance, defined in (28), between
the distribution of two random variables. In the fundamental case µ = 0, Proposition 3.1
shows that the previous estimate implies the simple relation

dTV
(
‖ΠC(g)‖2 − δC , N

)
≤ 8√

δC
, (15)
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where N ∼ N (0, σ2
C). Relation (15) reinforces our intuition that the statistical dimension δC

encodes a crucial amount of information about the distributions of ‖ΠC(g)‖2 and, therefore,
about VC , via (7).

It does not seem possible to directly combine the powerful inequality (15) with (7) in
order to deduce an explicit Berry-Esseen bound such as (10). This estimate is obtained in
Section 5, by means of Fourier theoretical arguments of a completely different nature.

Remark 1.3 We stress that the crucial idea that one can study a random variable of the type
VC , by applying techniques of Gaussian analysis to the associated squared norm ‖ΠC(g)‖2,
originates from the path-breaking references [3, 32], where this connection is exploited in
order to obtain explicit concentration estimates via the entropy method, see [7] and [30].

As stated in the Introduction, we will now show that our results can be used to exactly
characterise phase transitions in regularised inverse problems with convex constraints.

1.4 Applications to exact recovery of structured unknowns

1.4.1 General framework

In what follows, we give a summary of how the conic intrinsic volume distribution plays a
role in convex optimization for the recovery of structured unknowns and refer the reader e.g.
to the excellent discussions in [3, 10, 13, 32] for more detailed information.

In certain high dimension recovery problems some small number of observations may
be taken on an unknown high dimensional vector or matrix x0, thus determining that the
unknown lies in the feasible set F of all elements consistent with what has been observed.
As F may be large, the recovery of x0 is not possible without additional assumptions, such
as that the unknown possesses some additional structure such as being sparse, or of low
rank. As searching F for elements possessing the given structure can be computationally
expensive, one instead may consider a convex optimization problem of finding x ∈ F that
minimizes f(x) for some proper convex function1 that promotes the structure desired.

The analysis of such an optimization procedure leads one naturally to the study of the
descent cone D(f,x) of f at the point x, given by

D(f,x) = {y : ∃τ > 0 such that f(x + τy) ≤ f(x)}.

That is, D(f,x) is the conic hull of all directions that do not increase f near x. The proof of
Part 1 of Theorem 1.2 below – included here for completeness – reflects the general result,
that in the case where F is a subspace, the convex optimization just described successfully
recovers the unknown x0 if and only if

F ∩ (x0 +D(f,x0)) = {x0} (16)

(see Section 4 of [38] and Proposition 2.1 [13], and Fact 2.8 of [3]).

1a convex function having at least one finite value and never taking the value −∞
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The work [13] provides a systematic way according to which an appropriate convex
function f may be chosen to promote a given structure. When an unknown vector, or
matrix, is expressed as a linear combination

x0 = c1a1 + · · · ckak (17)

for ci ≥ 0, ai ∈ A a set of building blocks or atoms of vectors or matrices, and k small, then
one minimizes

f(x) = inf{t > 0 : x ∈ tconv(A)}, (18)

over the feasible set, where conv(A) is the convex hull of A.

1.4.2 Recovery of sparse vectors via `1 norm minimization

We now consider the underdetermined linear inverse problem of recovering a sparse vector
x0 ∈ Rd from the observation of z = Ax0, where for m < d the known matrix A ∈ Rm×d

has independent entries each with the standard normal N (0, 1) distribution. We say the
vector x0 is s-sparse if it has exactly s nonzero components; the value of s is typically much
smaller than d. As a sparse vector is a linear combination of a small number of standard
basis vectors, the prescription (18) leads us to find a feasible vector that minimizes the `1

norm, denoted by ‖ ·‖1. It is a well-known fact that such a linear inverse problem displays a
sharp phase transition (sometimes called a threshold phenomenon): heuristically, this means
that, for every value of d, there exists a very narrow band [m1,m2] (that depends on d and
on the sparsity level of x0) such that the probability of recovering x0 exactly is negligible
for m < m1, and overwhelming for m > m2. Understanding such a phase transition (and,
more generally, threshold phenomena in randomised linear inverse problems) has been the
object of formidable efforts by many researchers during the last decade, ranging from the
seminal contributions by Candès, Romberg and Tao [11, 12], Donoho [20, 21] and Donoho
and Tanner [22], to the works of Rudelson and Vershynin [38] and Ameluxen et al. [3] (see
[10, Section 3], and the references therein, for a vivid description of the dense history of the
subject). In particular, reference [3] contains the first proof of the fundamental fact that the
above described threshold phenomenon can be explained by the Gaussian concentration of
the intrinsic volumes of the descent cone of the `1 norm at x0 around its statistical dimension.
In what follows, we shall further refine such a finding by showing that, for large values of
d, the phase transition for the exact recovery of x0 has an almost exact Gaussian nature,
following from the general quantitative CLTs for conic intrinsic volumes stated at Point 2 of
Theorem 1.1.

The next statement provides finite sample estimates, valid in any dimension. Note that
we use the symbol bac to indicate the integer part of a real number a.

Theorem 1.2 (Finite sample) Let x0 ∈ Rd and let C be the descent cone of the `1 norm
‖ · ‖1 at x0. Further, let V be the random variable defined by (6), set δ = E[V ] to be the
statistical dimension of C, and τ 2 = Var(V ). Let Tδ,τ be the set of real numbers t such that
the number of observations

mt := bδ + tτc
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lies between 1 and d. Fix t ∈ Tδ,τ . Let At ∈ Rmt×d have independent entries, each with the
standard normal N (0, 1) distribution and let Ft = {x ∈ Rd : Atx = Atx0}. Consider the
convex program

(CPt) : min ‖x‖1 subject to x ∈ Ft.

Then, for δ ≥ 8 one has the estimate

sup
t∈Tδ,τ

∣∣∣∣P {x0 is the unique solution of (CPt)} −
1√
2π

∫ t

−∞
e−u

2/2du

∣∣∣∣ (19)

≤ h(δ) +
48√

α log+(α
√

2δ)
+

1√
2πτ 2

,

where α := τ 2/δ, and h(δ) given by (12).

Remark 1.4 1. The estimate (19) implies that, for a fixed d and up to a uniform explicit
error, the mapping

t 7→ P {x0 is the unique solution of (CPt)} ,

(expressing the probability of recovery as a function of mt) can be approximated by the
standard Gaussian distribution function t 7→ Φ(t) := 1√

2π

∫ t
−∞ e

−u2/2du, thus demon-
strating the Gaussian nature of the threshold phenomena described above. To better
understand this point, fix a small α ∈ (0, 1), and let yα be such that Φ(yα) = 1 − α.
Then, standard computations imply that (up to the uniform error appearing in (19))
the probability

P {x0 is the unique solution of (CPyα)}

is bounded from below by 1− α, whereas P {x0 is the unique solution of (CP−yα)} is
bounded from above by α. Using the explicit expressions m−yα = bδ−yατc and myα =
bδ + yατc, one therefore sees that the transition from a negligible to an overwhelming
probability of exact reconstruction takes place within a band of approximate length
2yατ ≤ 2yα

√
2δ, centered at δ. In particular, if δ →∞, then the length of such a band

becomes negligible with respect to δ, thus accounting for the sharpness of the phase
transition. Sufficient conditions, ensuring that α = τ 2/δ is bounded away from zero
when δ →∞, are given in Theorem 1.3.

2. Define the mapping ψ : [0, 1]→ [0, 1] as

ψ(ρ) := inf
γ≥0

{
ρ(1 + γ2) + (1− ρ)E[(|N | − γ)2

+]
}
, (20)

where N ∼ N (0, 1). The following estimate is taken from [3, Proposition 4.5]: under
the notation and assumptions of Theorem 1.2, if x0 is s-sparse, then

ψ(s/d)− 2√
sd
≤ δ

d
≤ ψ(s/d). (21)

Moreover, as shown in [13, Proposition 3.10] one has the upper bound δ ≤ 2s log(d/s)+
5s/4, an estimate which is consistent with the classical computations contained in [21].
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Proof of Theorem 1.2. We divide the proof into three steps.

Step 1. We first show that x0 is the unique solution of (CPt) if and only if C∩Null(At) = {0}.
Indeed, assume that x0 is the unique solution of (CPt) and let y ∈ C∩Null(At). Since y ∈ C,
there exists τ > 0 such that x := x0 + τy satisfies ‖x‖1 ≤ ‖x0‖1. Since y ∈ Null(A) one
has x ∈ Ft. As x is feasible the inequality ‖x‖1 < ‖x0‖1 would contradict the assumption
that x0 solves (CPt). On the other hand, the equality ‖x‖1 = ‖x0‖1 would contradict the
assumption that x0 solves (CPt) uniquely if x 6= x0. Hence y = 0, so C ∩ Null(At) = {0}.
Now assume that C∩Null(At) = {0} and let x denote any solution of (CPt) (note that such
an x necessarily exists). Set y = x−x0. Of course, y ∈ Null(At). Moreover, by definition of
x and that x0 ∈ Ft one has ‖x‖1 = ‖x0 + y‖1 ≤ ‖x0‖1, implying in turn that y ∈ C. Hence,
y = 0 and x = x0, showing that x0 is the unique solution to (CPt).

Step 2. We show2 that Null(At)
Law
= Q(Rd−mt×{0}) for Q a uniformly random d×d orthog-

onal matrix. Both Null(At) and Q(Rd−mt × {0}) belong almost surely to the Grassmannian
Gd−mt(Rd), the set of all (d − mt)-dimensional subspaces of Rd. Defining the distance be-
tween two subspaces as the Hausdorff distance between the unit balls of those subspaces
makes Gd−mt(Rd) into a compact metric space. The metric is invariant under the action
of the orthogonal group O(d), and the action is transitive on Gd−mt(Rd). Therefore, there
exists a unique probability measure on Gd−mt(Rd) that is invariant under the action of the
orthogonal group. The law of the matrix A, having independent standard Gaussian en-
tries, is orthogonaly invariant. Therefore, P (Null(At) ∈ X) = P (Null(At) ∈ R(X)) for any
R ∈ O(d) and any measurable subset X ⊂ Gd−mt(Rd). On the other hand, it is clear that
one also has P (Q(Rd−mt × {0}) ∈ X) = P (Q(Rd−mt × {0}) ∈ R(X)) for any R ∈ O(d) and
any measurable subset X ⊂ Gd−mt(Rd). Therefore, the claim follows by uniqueness of the
probability measure on Gd−mt(Rd) invariant under the action of O(d).

Step 3. Combining Steps 1 and 2 we find

P (x0 is the unique solution of (CPt)) = P (C ∩Q(Rd−mt × {0}) = {0}),

where Q is a uniformly random orthogonal matrix. On the other hand, with C denoting
the closure of C,

P (C ∩Q(Rd−mt × {0}) = {0}) = P (C ∩Q(Rd−mt × {0}) = {0}).

As a result of this subtle point, that follows from the discussion of touching probabilities
located in [43, pp. 258–259], we may and will assume in the rest of the proof that C is
closed. By the Crofton formula (see [3, formula (5.10)])

P (C ∩Q(Rd−mt × {0}) = {0}) = 1− 2hmt+1(C) where hk(C) =
d∑

j=k,j−k even

vj(C). (22)

Combining (22) with the interlacing relation stated in [3, Proposition 5.9], that states

P (V ≤ mt − 1) ≤ 1− 2hmt+1(C) ≤ P (V ≤ mt) (23)

2 This is a well-known result: we provide a proof for the sake of completeness.
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yields

P (V ≤ mt − 1) ≤ P {x0 is the unique minimizer of (CPt)} ≤ P (V ≤ mt).

But,

P (V ≤ mt − 1) = P
(
V ≤ bδ + tτc − 1

)
≥ P

(
V ≤ δ + tτ − 1

)
= P

(
V − δ
τ
≤ t− 1

τ

)
and

P (V ≤ mt) = P
(
V ≤ bδ + t

√
τc
)

≤ P
(
V ≤ δ + tτ + 1

)
= P

(
V − δ
τ
≤ t+

1

τ

)
.

The conclusion now follows from (11), as well as from the fact that the standard Gaussian
density on R is bounded by (2π)−1/2. �

The next result provides natural sufficient conditions, in order for a sequence of linear
inverse problems to display exact Gaussian fluctuations in the high-dimensional limit.

Theorem 1.3 (Asymptotic Gaussian phase transitions) Let sn, dn, n ≥ 1 be integer-
valued sequences diverging to infinity, and assume that sn ≤ dn. For every n, let xn,0 ∈ Rdn be
sn-sparse, denote by Cn the descent cone of the `1 norm at xn,0 and write δn = δCn = E[VCn ]
and τ 2

n = τ 2
Cn

= Var(VCn). For every real number t, write

mn,t :=


1, if bδn + tτnc < 1
bδn + tτnc, if bδn + tτnc ∈ [1, dn]
dn, if bδn + tτnc > dn

.

For every n, let An,t ∈ Rmn,t×dn be a random matrix with i.i.d. N (0, 1) entries, let Fn,t =
{x ∈ Rdn : An,tx = An,txn,0}, and consider the convex program

(CPn,t) : min ‖x‖1 subject to x ∈ Fn,t.

Assume that there exists ρ ∈ (0, 1) (independent of n) such that sn = bρdnc. Then, as
n→∞, lim infn τ

2
n/δn > 0, and

P {x0 is the unique solution of (CPn,t)} =
1√
2π

∫ t

−∞
e−u

2/2du+O

(
1√

log δn

)
,

where the implicit constant in the term O
(

1√
log δn

)
depends uniquely on ρ.

Proof. In view of the estimate (19), the conclusion will follow if we can prove the existence
of a finite constant α(ρ) > 0, uniquely depending on ρ, such that τ 2

n/δn ≥ α(ρ) for n
sufficiently large. The existence of such a α(ρ) is a direct consequence of the results stated
in the forthcoming Proposition 4.1.

�
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1.4.3 Second example: low-rank matrices

Let the inner product of two m× n matrices U and V be given by

〈U,V〉 = tr(UTV),

and recall that, for X ∈ Rm×n, the Schatten 1 (or nuclear) norm is given by

‖X‖S1 =

min(m,n)∑
i=1

σi(X), (24)

where σ1(X) ≥ · · · ≥ σmin(m,n)(X) are the singular values of X. Given a matrix A ∈ Rm×np,
partition A as (A1, . . . ,Ap) into blocks of sizes m × n, and let A be the linear map from
Rm×n to Rp given by

A(X) = (〈X,A1〉, · · · , 〈X,Ap〉).

Now let X0 ∈ Rm×n be a low rank matrix, and suppose that one observes

z = A(X0),

where the components of A are independent with distribution N (0, 1). To recover X0 we
consider the convex program

min‖X‖S1 subject to X ∈ F , where F = {X : A(X) = z}.

As F is the affine space X0 + Null(A), arguing as in the previous section one can show
that X0 is recovered exactly if and only if C ∩Null(A) = {0} where C = D(‖ · ‖S1 ,X0), the
descent cone of the Schatten 1-norm at X0.

Furthermore, Null(A) is a subspace of Rm×n of dimension nm−p, and is rotation invariant
in the sense that for any P ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} of size p,

Null(A) = Q(SP )

where Q is a uniformly random orthogonal transformation on Rm×n, and

SP = {X ∈ Rm×n : Xij = 0 for all (i, j) ∈ P}.

Now considering the natural linear mapping between Rm×n and Rnm that preserves inner
product, one may apply the Crofton formula (5.10) and proceed as for the `1 descent cone as
above in Section 1.4.3 to deduce low rank analogues of Theorems 1.2 and 1.3. In particular,
for the latter we have the following result. As the Schatten 1-norm of a matrix and its
transpose are equal, without loss of generality we assume that all matrices below have at
least as many columns as rows.

Theorem 1.4 For every k ∈ N, let (nk,mk, rk) be a triple of nonnegative integers depending
on k. We assume that nk → ∞, mk/nk → ν ∈ (0, 1] and rk/mk → ρ ∈ (0, 1) as k → ∞,
and that for every k the matrix X(k) ∈ Rmk×nk has rank rk. Let

Ck = D(‖ · ‖S1 ,X(k)), δk = δ(Ck) and τ 2
k = Var(VCk)

12



denote the descent cone of the Schatten 1-norm of X(k), its statistical dimension, and the
the variance of its conic intrinsic volume distribution, respectively. For every real number t,
write

pk,t :=


1 if bδk + tτkc < 1

bδk + tτkc if bδk + tτkc ∈ [1,mknk]
mknk if bδk + tτkc > mknk

.

For every k, let Ak,t ∈ Rmk×nkpk,t be a random matrix with i.i.d. N (0, 1) entries, let Fk,t =
{X : Ak,t(X) = Ak,t(X(k))} and consider the convex program

(CPk,t) : min‖X‖S1 subject to X ∈ Fk,t.

Then, as k →∞, lim inf τ 2
k/δk > 0, and

P {X(k) is the unique solution of (CPk,t)} =
1√
2π

∫ t

−∞
e−u

2/2du+O

(
1√

log δk

)
,

where the implicit constant in the term O
(

1√
log δk

)
depends uniquely on ν and ρ.

1.5 Connections with constrained statistical inference

Let C ⊂ Rd be a non-trivial closed convex cone, let g ∼ N (0, Id) and fix a vector µ ∈ Rd.
When µ is an element of C and y = g + µ is regarded as a d-dimensional sample of
observations, then the projection ΠC(g + µ) is the least square estimator of µ under the
convex constraint C, and the norm ‖µ − ΠC(g + µ)‖ measures the distance between this
estimator and the true value of the parameter µ; the expectation E‖µ − ΠC(g + µ)‖2 is
often referred to as the L2-risk of the least squares estimator.

Properties of least square estimators and associated risks have been the object of vigorous
study for several decades; see e.g. [5, 9, 15, 16, 44, 45, 46, 47] for a small sample. Although
several results are known about the norm ‖µ− ΠC(g + µ)‖2 (for instance, concerning con-
centration and moment estimates – see [15, 16] for recent developments), to our knowledge
no normal approximation result is available for such a random variable, yet. We conjecture
that our estimate (14) might represent a significant step in this direction. Note that, in order
to make (14) suitable for applications, one would need explicit lower bounds on the variance
of ‖µ−ΠC(g +µ)‖2 for a general µ, and for the moment such estimates seem to be outside
the scope of any available technique: we prefer to think of this problem as a separate issue,
and leave it open for future research.

We conclude by observing that, as explained e.g. in [19, 41] and in [42, Chapter 3],
the likelihood ratio test (LRT) for the hypotheses H0 : µ = 0 versus H1 : µ ∈ C\{0}
rejects H0 when the projection ‖ΠC(y)‖2 of the data y on C is large. In this case, our
results, together with the concentration estimates from [3, 32], provide information on the
distribution of the test statistic under the null hypothesis. Similarly, the squared projection
length ‖ΠC0(y)‖2 onto the polar cone C0 is the LRT statistic for the hypotheses H0 : µ ∈ C
versus H1 : µ ∈ Rd\C.

1.6 Plan

The paper is organised as follows. Section 2 deals with normal approximation results for
the squared distance between a Gaussian vector and a general closed convex set. Section
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3 contains total variation bounds to the normal, and our main CLTs for squared norms of
projections onto closed convex cones, as well as for conic intrinsic volumes. In Section 4,
we derive new upper and lower bounds on the variance of conic intrinsic volumes. Section
5 is devoted to explicit Berry-Esseen bounds for intrinsic volumes distributions, whereas
the Appendix in Section 6 provides a self-contained discussion of Stein’s method, Poincaré
inequalities and associated estimates on a Gaussian space.

2 Gaussian Projections on Closed Convex Sets: nor-

mal approximations and concentration bounds

Let C ⊂ Rd be a closed convex set, let µ ∈ Rd and let g ∼ N (0, Id) be a normal vector. In
this section, we obtain a total variation bound to the normal, and a concentration inequality,
for the centered squared distance between g + µ and C, that is, for

F = d2(g + µ, C)− E[d2(g + µ, C)], (25)

where d(x, C) is given by (1). We also set σ2 = Var(d2(g + µ, C)) = Var(F ). It is easy to
verify that σ2 is finite for any non empty closed convex set C, and equals zero if and only if
C = Rd. To exclude trivialities, we call a set C non-trivial if ∅ ( C ( Rd.

The following two lemmas are the key to our main result Theorem 2.1: their proofs are
standard, and are provided for the sake of completeness.

Lemma 2.1 Let C be a non empty closed convex subset of Rd, and let ΠC(x) the metric
projection onto C. Then, ΠC and Id − ΠC are 1-Lipschitz continuous, and the Jacobian
Jac(ΠC)(x) ∈ Rd×d exists a.e. and satisfies

‖(Id − Jac(ΠC)(x))T y‖ ≤ ‖y‖ for all y ∈ Rd. (26)

Proof: Since ΠC is a projection onto a non-empty closed convex set, by [36, p. 340] (see also
B.3 of [3]), we have that

‖ΠC(v)− ΠC(u)‖ ≤ ‖v − u‖ for all u,v ∈ Rd,

that is, ΠC , and hence Id − ΠC , are 1-Lipschitz. Bound (26) now follows by Rademacher’s
theorem and the fact that, on a Hilbert space, the operator norms of a matrix and that of
its transpose are the same. �

Lemma 2.2 Let C be a non-empty closed convex set C ⊂ Rd, and let ΠC(x) be the metric
projection onto C. Then,

∇d2(x, C) = 2 (x− ΠC(x)) , x ∈ Rd. (27)

Proof: Fix an arbitrary x0 ∈ Rd, and use the shorthand notation v0 := x0−ΠC(x0). Writing
ϕ(u) := d2(x0 +u, C)−d2(x0, C)−2〈v0,u〉, relation (27) is equivalent to the statement that
the mapping u 7→ ϕ(u) is differentiable at u = 0, and ∇ϕ(0) = 0. To prove this statement,
we show the following stronger relation: for every u ∈ Rd, one has that |ϕ(u)| ≤ ‖u‖2.
Indeed, the inequality ϕ(u) ≤ ‖u‖2 follows from the fact that d2(x0 + u, C) ≤ ‖u + v0‖2 and
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d2(x0, C) = ‖v0‖2. To obtain the relation ϕ(u) ≥ −‖u‖2, just observe that u 7→ ϕ(u) is a
convex mapping vanishing at the origin, implying that ϕ(u) ≥ −ϕ(−u) ≥ −‖−u‖2 = −‖u‖2,
where the second inequality is a consequence of the estimates deduced in the first part of
the proof. This yields the desired conclusion. �

We recall that the total variation distance between the laws of two random variables F
and G is defined as

dTV (F,G) = sup
A
|P (F ∈ A)− P (G ∈ A)|, (28)

where the supremum runs over all the Borel sets A ⊂ R. It is clear from the definition that
dTV (F,G) is invariant under affine transformations, in the following sense: for any a, b ∈ R
with a 6= 0, one has dTV (aF + b, aG + b) = dTV (F,G). We say that Fn converges to F in

total variation (in symbols, Fn
TV→ F ) if dTV (Fn, F )→ 0 as n→∞. Note that, if Fn

TV−→ F ,

then Fn
Law−→ F , where

Law−→ denotes convergence in distribution.

The following statement provides a total variation bound for the normal approximation
of the squared distance between a Gaussian vector with arbitrary mean and a closed convex
set.

Theorem 2.1 Let C ⊂ Rd be a non trivial closed convex set, F and σ2 as in (25), and
N ∼ N (0, σ2). Then for g ∼ N (0, Id) and µ ∈ Rd,

dTV (F,N) ≤
16
√
Ed2(g, C − µ)

σ2
.

Proof: As the translation of a closed convex set is closed and convex, and

d2(g + µ, C) = d2(g, C − µ)

we may replace C by C − µ and assume (without loss of generality) that µ = 0. Using
Lemma 6.2 and Theorem 6.1 in the Appendix we deduce that

dTV (F,N) ≤ 2

σ2

√
Var

(∫ ∞
0

e−t〈∇F (g), Ê(∇F (ĝt))〉dt
)
, (29)

where

ĝt = e−tg +
√

1− e−2tĝ,

with ĝ an independent copy of g, and the symbols E and Ê denote, respectively, expectation
with respect to g and ĝ. Set also E = E ⊗ Ê. Letting H(g) denote the integral inside the
variance in (29), by (27) we have

H(g) = 4

∫ ∞
0

e−t〈g − ΠC(g), Ê[ĝt − ΠC(ĝt)]〉dt. (30)

We bound the variance of H(g) by the Poincaré inequality (see Theorem 6.2 in the Ap-
pendix), which states that

Var(H(g)) ≤ E‖∇H(g)‖2. (31)
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Applying the product rule and differentiating under the integral (justified e.g. by a domi-
nated convergence argument), using (30), (27) and Lemma 2.1 we obtain

∇H(g) = 4

∫ ∞
0

e−t (Id − Jac(ΠC)(g))T Ê[ĝt − ΠC(ĝt)]dt (32)

+4

∫ ∞
0

e−tÊ[(Id − Jac(ΠC)(ĝt))
T ] (g − ΠC(g)) dt.

The expectation of the squared norm of the first term on the right-hand side of (32) is given
by a factor of 16 multiplying

E‖
∫ ∞

0

e−t (Id − Jac(ΠC)(g))T Ê[ĝt − ΠC(ĝt)]dt‖2

≤ E

∫ ∞
0

e−t‖ (Id − Jac(ΠC)(g))T Ê[ĝt − ΠC(ĝt)]‖2dt

≤ E

∫ ∞
0

e−t‖Ê[ĝt − ΠC(ĝt)]‖2dt ≤ E

∫ ∞
0

e−t‖ĝt − ΠC(ĝt)‖2dt

= E

∫ ∞
0

e−t‖g − ΠC(g)‖2dt = E‖g − ΠC(g)‖2 = Ed2(g, C),

where we have used the triangle inequality, Lemma 2.1, Jensen’s inequality, and the fact
that ĝt has the same distribution as g for all t. Applying a similar chain of inequalities, it is
immediate to bound the expectation of the squared norm of the second summand in (32) by
the same quantity. Applying (31) together with the inequality ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2,
we therefore deduce that Var(H(g)) is bounded by 64Ed2(g, C). Substituting this bound
into (29) yields the desired result. �

To conclude the section, we present a concentration bound for random variables of the
type (25).

Theorem 2.2 Let C be a closed convex set, and F given in (25). Then,

EeξF ≤ exp

(
2ξ2Ed2(g, C − µ)

1− 2ξ

)
, for all ξ < 1/2, (33)

and

P (F > t) ≤ exp

(
−Ed2(g, C − µ)h

(
t

2Ed2(g, C − µ)

))
for all t > 0 (34)

where

h(u) = 1 + u−
√

1 + 2u.

Proof: We reduce to the case µ = 0 as in the proof of Theorem 3.1. The arguments used
in the proof of Lemma 4.9 of [32] for convex cones work essentially in the same way for
projections on closed convex sets: we shall therefore provide only a quick sketch of the proof,
and leave the details to the reader. Similarly to [32], for g ∼ N (0, Id) we set

H(g) = ξZ for Z = d2(g, C)− Ed2(g, C),
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and, using (27), we deduce that

‖∇H(g)‖2 = 4ξ2‖g − ΠC(g)‖2 = 4ξ2d2(g, C) = 4ξ2
(
Z + Ed2(g, C)

)
.

Proceeding as in the proof of Lemma 4.9 in [32], with Ed2(g, C) here replacing δC there, yields
the bound (33) on the Laplace transform of F . Using the terminology defined in Section 2.4
of [8], we have therefore shown that F is sub-gamma on the right tail, with variance factor
4Ed2(g, C) and scale parameter 2. The conclusion now follows by the computations in that
same section of [8]. �

Note that the estimate (34) is equivalent to the following bound: for every t > 0

P
(
F >

√
8Ed2(g, C − µ)t+ 2t

)
≤ e−t.

Remark 2.1 Let C be a closed convex cone. In [32, Lemma 4.9] it is proved that, for every
ξ < 1

2
,

Eeξ(‖ΠC(g)‖2−δC) ≤ exp

(
2ξ2δC
1− 2ξ

)
, (35)

where g ∼ N (0, Id) and (as before) δC = E[‖ΠC(g)‖2]. This estimate can be deduced by
applying the general relation (33) to the polar cone C0 in the case where µ = 0: indeed, by
virtue of (3) one has that

‖ΠC(x)‖2 = d2(x, C0), (36)

so that (35) follows immediately.

3 Steining the Steiner formula: CLTs for conic intrin-

sic volumes

3.1 Metric projections on cones

The goal of our analysis in this subsection is to demonstrate the following variation of
Theorem 2.1.

Theorem 3.1 Let C ⊂ Rd be a non-trivial closed convex cone and let

F = ‖µ− ΠC(g + µ)‖2 −m, with m = E[‖µ− ΠC(g + µ)‖2] and σ2 = Var(F ).

Then for every µ ∈ Rd,

dTV (F,N) ≤ 16

σ2

{√
E‖ΠC(g + µ)‖2 + 2

√
m‖µ‖+ 3‖µ‖2

}
≤ 16

σ2

{√
m(1 + 2‖µ‖) + 3‖µ‖2 + ‖µ‖

}
.
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Proof: Expanding F we obtain

F = ‖µ‖2 + ‖ΠC(g + µ)‖2 − 2〈µ,ΠC(g + µ)〉 −m.

The gradient of the first and last terms above are zero, while

∇‖ΠC(x + µ)‖2 = 2ΠC(x + µ) and ∇〈µ,ΠC(x + µ)〉 = Jact(ΠC(x + µ))µ.

the first equality following from (36) and (27), the second from the definition of the Jacobian,
and Lemma 2.1, showing existence. We apply (94), and hence consider

G =

∫ ∞
0

e−t〈∇F (g), Ê(∇F (ĝt))〉dt where ĝt = e−tg +
√

1− e−2tĝ,

with ĝ an independent copy of g. As before, we let E and Ê be expectation with respect to
g and ĝ, respectively, and write E = E ⊗ Ê.

Expanding out the inner product, we obtain

G

=

∫ ∞
0

e−t〈2ΠC(g + µ)− 2Jact(ΠC(g + µ))µ, Ê
(
2ΠC(ĝt + µ)− 2Jact(ΠC(ĝt + µ))µ

)
〉dt

= 4(A1 − A2 − A3 + A4)

where

A1 =

∫ ∞
0

e−t〈ΠC(g + µ), Ê (ΠC(ĝt + µ))〉dt

A2 =

∫ ∞
0

e−t〈ΠC(g + µ), Ê
(
Jact(ΠC(ĝt + µ))µ

)
〉dt

A3 =

∫ ∞
0

e−t〈Jact(ΠC(g + µ))µ, Ê (ΠC(ĝt + µ))〉dt and

A4 =

∫ ∞
0

e−t〈Jact(ΠC(g + µ))µ, Ê
(
Jact(ΠC(ĝt + µ))µ

)
〉dt.

Exploiting (94), as well as the fact that σ2 = E[G] = 4E[A1 −A2 −A3 +A4], we deduce
that

dTV (F,N) ≤ 2

σ2
E|σ2 − 4 (A1 − A2 − A3 + A4) |

≤ 8

σ2

4∑
i=1

E|Ai − EAi| ≤
8

σ2
(B1 +B2 +B3 +B4) , (37)

where

B1 =
√

Var(A1) and Bj = 2E|Aj| for j = 2, 3, 4.

One has that

Bj ≤ 2E
(
‖ΠC(g + µ)‖2

)1/2 ‖µ‖ ≤ 2(
√
m+ ‖µ‖)‖µ‖ for j = 2, 3 and B4 ≤ 2‖µ‖2,
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where we have applied the Cauchy-Schwarz and triangle inequality, as well as Lemma 2.1.
On the other hand, one can write

A1 =

∫ ∞
0

e−t〈g + µ− ΠC0(g + µ), Ê (ĝt + µ− ΠC0(ĝt + µ))〉dt,

and exploit exactly the same arguments used after formula (30) (with g + µ and ĝt + µ
replacing, respectively, g and ĝt) to deduce

B2
1 = Var(A1) ≤ 4E[‖g + µ− ΠC0(g + µ)‖2] = 4E[‖ΠC(g + µ)‖2],

thus yielding the first claim of the theorem. The second follows from observing that√
E[‖ΠC(g + µ)‖2] ≤

√
m+ ‖µ‖,

where we have applied the triangle inequality with respect to the norm on Rd-valued random
vectors defined by the mapping X 7→

√
E‖X‖2. �

3.2 Master Steiner formula and Main CLTs

As anticipated in the Introduction, the aim of this section is to obtain CLTs involving the
conic intrinsic volume distributions {L(VCn)}n≥1 (see Section 1.2) associated with a sequence
{Cn}n≥1 of closed convex cones. The strategy for achieving this goal will consist in connecting
the intrinsic volume distribution of a closed convex cone C ⊂ Rd to the squared norm of the
metric projection of g ∼ N (0, Id) onto C.

Our main tool will be the powerful “Master Steiner Formula” stated in [32, Theorem
3.1 and Corollary 3.2]. Throughout the following, we use the symbol χ2

j to indicate the
chi-squared distribution with j degrees of freedom, j = 0, 1, 2, ... .

Theorem 3.2 (Master Steiner Formula, see [32]) Let C ⊂ Rd be a non-trivial closed
convex cone, denote by C0 its polar cone, and write {vj : j = 0, ..., d} to indicate the conic
intrinsic volumes of C. Then, for every measurable mapping f : R2

+ → R,

Ef(‖ΠC(g)‖2, ‖ΠC0(g)‖2) =
d∑
j=0

E[f(Yj, Y
′
d−j)]vj, (38)

where {Yj, Y ′j , j = 0, . . . , d} stands for a collection of independent random variables such that
Yj, Y

′
j ∼ χ2

j , j = 0, 1 . . . , d.

Observe that, somewhat more compactly, we may also express (38) as the mixture relation

(‖ΠC(g)‖2, ‖ΠC0(g)‖2)
Law
= (YVC , Y

′
VC0

) (39)

where the integer-valued random variable VC is independent of {Yj, Y ′j , j = 0, . . . , d}, and
VC0 = d − VC . Once combined with (3) and (9), in the case of a polyhedral cone C ⊂ Rd,
relation (39) reinforces the intuition that, given the dimension j of the face of C in which lies
the projection ΠC(g), the Gaussian vector g can be written as the sum of two independent
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Gaussian elements, with dimension j and d − j respectively, whose squared lengths follow
the chi-squared distribution with the same respective degrees of freedom.

Fix a non-trivial closed convex cone C ⊂ Rd. In order to connect the standardized
limiting distributions of ‖ΠC(g)‖2 and VC , we use (39) to deduce that

‖ΠC(g)‖2 Law
=

VC∑
i=1

Xi = WC + VC , where WC =

VC∑
i=1

(Xi − 1), (40)

and {Xi}i≥1 denotes a collection of i.i.d. χ2
1 random variables, independent of VC . Since

EXi = 1, we find E‖ΠC(g)‖2 = E[VC ], and letting GC denote the squared projection length,
we have

GC = ‖ΠC(g)‖2 and δC = E[GC ]. (41)

Similarly, applying the conditional (on VC) variance formula in (40) yields, with τ 2
C :=

Var(VC) and σ2
C := Var(GC), that

Var(WC) = 2δC and σ2
C = τ 2

C + 2δC , (42)

the latter formula recovering Proposition 4.4 of [32]. Standardizing both sides of the first
equality in (40) we therefore obtain that

GC − δC
σC

Law
=

√
2δC
σC

WC√
2δC

+
τC
σC

VC − δC
τC

. (43)

The following statement, that is partially a consequence of Theorem 3.1, shows that a
total variation bound to the normal for the standardized projection can be expressed in
terms of the mean δC only. We recall that C is self dual when C0 = −C, and that in this
case δC = d/2 by (8).

Proposition 3.1 We have that

τ 2
C ≤ 2δC and 2δC ≤ σ2

C ≤ 4δC . (44)

In addition, with GC and δC as in (41) and N ∼ N (0, σ2
C), one has that

dTV (GC − δC , N) ≤ 16
√
δC

σ2
C

≤ 8√
δC

and, if C is self dual, then dTV (F,N) ≤ 8
√

2√
d
. (45)

Proof: Theorem 4.5 of [32] yields the first bound in (44). The second bound in (44) now
follows from the second relation stated in (42). The first inequality in (45) follows from the
first inequality of Theorem 3.1 by setting µ = 0, and the remaining claims by the lower
bound on σ2

C in (44). �

Remark 3.1 The first estimate in (45) can also be directly obtained from Theorem 2.1 by
specializing it to the case µ = 0. Indeed, writing C0 for the dual cone of C, one has that
‖ΠC(g)‖2 = d2(g, C0): the conclusion then follows by applying Theorem 2.1 to the random
variable F = d2(g, C0)− Ed2(g, C0).
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We now consider normal limits for the conic intrinsic volumes. Explicit Berry-Esseen
bounds will be presented in Theorem 5.1.

Theorem 3.3 Let {dn : n ≥ 1} be a sequence of non-negative integers and let {Cn ⊂ Rdn :
n ≥ 1} be a collection of non-trivial closed convex cones such that δCn →∞. For notational
simplicity, write δn, σn, τn, etc., instead of δCn, σCn, τCn, etc., respectively. Then,

1.

dTV

(
Wn√
2δn

, N

)
≤ 2σn

δn
, for all n ≥ 1, (46)

where N ∼ N (0, 1), and

Wn√
2δn

TV−→ N (0, 1), as n→∞.

2. The two random variables Wn√
2δn

and Vn−δn
τn

are asymptotically independent in the fol-

lowing sense: if {nk : k ≥ 1} is a subsequence diverging to infinity and

Vnk − δnk
τnk

, k ≥ 1, (47)

converges in distribution to some random variable Z, then(
Wnk√
2δnk

,
Vnk − δnk

τnk

)
Law−→ (N,Z),

where N has the N (0, 1) distribution and is stochastically independent of Z.

3. If

Vn − δn
τn

Law−→ N (0, 1), as n→∞, (48)

then

Gn − δn
σn

Law−→ N (0, 1), as n→∞, (49)

and the converse implication holds if lim infn→∞ τ
2
n/δn > 0.

Remark 3.2 Proposition 3.1 shows that, if δn →∞, then (49) holds and, provided

lim inf τ 2
n/δn > 0,

relation (48) also takes place by virtue of Part 3 of Theorem 3.3. This chain of implications,
which is one of the main achievements of the present paper, corresponds to the statement
of Theorem 1.1 in the Introduction (exception made for the Berry-Esseen bound). Results
analogous to Part 3 of Theorem 3.3 (involving general mixtures of independent χ2 random
variables) can be found in Dykstra [25].
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Proof of Theorem 3.3: Throughout the proof, and when there is no risk of confusion, we
drop the subscript n for readability.
(Point 1) By [31], a variable X with a Γ(α, λ) distribution satisfies

E[Xf ′(X) + (α− λX)f(X)] = 0

for all locally absolutely continuous functions f for which these expectations exist. Hence,
since conditionally on V , W has a centered chi-squared distribution with V degrees of free-
dom, one verifies immediately that, for every Lipschitz mapping φ : R→ R,

E

[
W√
2δ
φ

(
W√
2δ

)]
=

1

δ
E

[
(W + V )φ′

(
W√
2δ

)]
.

Stein’s inequality (89) in the Appendix therefore yields that

dTV

(
W√
2δ
,N

)
≤ 2

δ
E|W + V − δ| ≤ 2

δ

√
2δ + τ 2 =

2σ

δ
≤ 4√

δ
→ 0

using (44) together with the fact that δ →∞ by assumption.
(Point 2) Let η, ξ be arbitrary real numbers. Using that the conditional distribution L(W |V )
corresponds to a centered chi-squared distribution with V degrees of freedom, we have

E[eiηW |V ] =
e−iηV

(1− 2iη)V/2
= exp(−V (iη + (1/2) log(1− 2iη)).

Conditioning on V , we obtain the following expression for the joint characteristic function
of W/

√
2δ and (V − δ)/τ :

ψ(η, ξ) := E
[
e
iη W√

2δ
+iξ V−δ

τ

]
= E[e−V (iη/

√
2δ+(1/2) log(1−2iη/

√
2δ))+iξ V−δ

τ ]

= eδ[−iη/
√

2δ− 1
2

log(1−2iη/
√

2δ)] × E
[
e
V−δ
τ (iξ−iητ/

√
2δ− τ

2
log(1−2iη/

√
2δ))
]
. (50)

As δ →∞, one has clearly that

δ

[
−iη/

√
2δ − 1

2
log(1− 2iη/

√
2δ)

]
→ −η2/2.

Moreover, since τ/δ ≤
√

2/δ → 0 by (44), we obtain as well that

iξ − iητ/
√

2δ − τ/2 log(1− 2iη/
√

2δ)→ iξ.

Hence, letting ψZ be the characteristic function of the limiting distribution Z of the sequence
in (47), we infer that

ψ(η, ξ)→ e−η
2/2ψZ(ξ),

thus yielding the desired conclusion.
(Point 3) For both implications it is sufficient to show that, for every subsequence nk, k ≥ 1,
of 1, 2, 3, . . ., there exists a further subsequence nkl , l ≥ 1, along which the claimed distribu-
tional convergence holds. By (44), 0 ≤ lim inf τ 2/δ ≤ lim sup τ 2/δ ≤ 2, so for every nk, k ≥ 0

22



there exists a further subsequence nkl , l ≥ 1, along which τ 2/δ converges to a limit, say r, in
[0, 2]. Hence, along nkl , l ≥ 1, we obtain

√
2δ/σ =

√
2δ/(2δ + τ 2)→

√
2

2 + r
and τ/σ →

√
r

2 + r
.

Assume first that (48) is satisfied. Then, according to (43) and Point 2 in the statement,

one has that G−δ
σ

converges in distribution along nkl , l ≥ 1, to
√

2
2+r

N +
√

r
2+r

Z, where

N and Z are two independent N (0, 1) random variables, and we conclude that (49) holds
along nkl , l ≥ 1. Now assume that (49) is satisfied and that lim infn→∞ τ

2
n/δn > 0; in this

case, we may assume that τ 2/δ converges to r ∈ (0, 2] along nkl . Observe that, by virtue
of boundedness in L2, the family {V−δ

τ
} is tight. Consider now a further subsequence of nkl

along which V−δ
τ

converges in distribution to, say, Z. According to Point 2 we know that the

elements of the limiting pair (N,Z) are independent, and by (49) the sum
√

2
2+r

N +
√

r
2+r

Z

is normal. By Cramér’s theorem we conclude that both N and Z are normally distributed,
yielding the desired conclusion.

�

As Table 1 below shows, Theorem 1.1 yields a central limit theorem for Gn and Vn for
the most common examples of convex cones that appear in practice. The last two rows refer
to CA and CBC , chambers of finite reflection groups acting on Rd, which are the normal
cones to the permutahedon, and signed permutahedron, respectively. For further definitions
and properties, see e.g. [3, 32] and the references therein.

Cone Ambient δ τ 2

Orthant Rd 1
2
d 1

4
d

Real Positive Semi-Definite Cone Rn2 1
4
n(n+ 1) '

(
4
π2 − 1

4

)
n2

Circα Rd d sin2 α 1
2
(d− 2) sin2(2α)

CA Rd
∑d

k=1 k
−1

∑d
k=1 k

−1(1− k−1)

CBC Rd
∑d

k=1
1
2
k−1

∑d
k=1

1
2
k−1(1− 1

2
k−1)

Table 1: Some common cones

Remark 3.3 The first three lines of Table 1 are taken from Table 6.1 of [32]. The means for
the permutathedron and signed permutahedron are from Section D.4. of [3]. The expressions
for the variances τ 2 associated with the permutathedron and signed permutahedron can be
deduced as follows. Let

q(s) =
d∑

k=0

vks
k,

be the probability generating function of the distribution of V = VCd . We have

q′(1) = EV and q′′(1) = EV (V − 1)
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so in particular,

Var(V ) = q′(1) + q′′(1)− q′(1)2 = q′(1) + log q(s)′′|s=1.

For the permutahedron, one can use Theorem 3 of [23, Theorem 3] (see also the first line of
Table 10 of [18]) to deduce that

q(s) =
1

d!

d∏
k=1

(s+ k − 1) so that log q(s) = − log d! +
d∑

k=1

log(s+ k − 1).

Hence,

EV = q′(1) = log q(s)′|s=1 =

(
d∑

k=1

1

s+ k − 1

)
s=1

=
d∑

k=1

1

k
,

and

Var(V ) = q′(1) + log q(s)′′|s=1 = q′(1) −

(
d∑

k=1

1

(s+ k − 1)2

)
s=1

=
d∑

k=1

(
1

k
− 1

k2

)
.

The calculation for the signed permutahedron is the analogous, but now one has to use [6,
formula (3)]; see also the second line of Table 10 of [18].

We conclude the section with a statement showing that the rate of convergence appear-
ing in (46) is often optimal. Also, by suitably adapting the techniques introduced in [33],
one can deduce precise information about the local asymptotic behaviour of the difference
P [Wn/

√
2δn ≤ x]− P [N ≤ x], where x ∈ R and N ∼ N (0, 1).

Proposition 3.2 Let the notation and assumptions of Theorem 3.3 prevail, and assume
further that τ 2

n/δn → r for some r ≥ 0, as n→∞. Then, for every x ∈ R one has that, as
n→∞,

δn
σn

(
P

[
Wn√
2δn
≤ x

]
− P [N ≤ x]

)
−→ −

√
2

18 + 9r
(x2 − 1)

e−x
2/2

√
2π

. (51)

As a consequence, there exists a constant c ∈ (0, 1) (independent of n) such that, for all n
sufficiently large,

c
σn
δn
≤ dKol

(
Wn√
2δn

, N

)
≤ dTV

(
Wn√
2δn

, N

)
. (52)

Proof. Fix x ∈ R. It suffices to show that, for every sequence nk, k ≥ 1 diverging to infinity,
there exists a subsequence nkl , l ≥ 1 along which the convergence (51) takes place. Let then
nk →∞ be an arbitrary divergent sequence. By L2-boundedness, the collection of the laws

of the random variables
Vnk−δnk
τnk

, k ≥ 1 is tight, and therefore there exists a subsequence nkl

such that
Vnkl

−δnkl
τnkl

converges in distribution to some random variable Z. Exploiting again

L2-boundedness, which additionally implies uniform integrability, one sees immediately that
Z is necessarily centered. Now let φx = φh denote the solution (90) to the Stein equation
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(88) for the indicator test function h = 1(−∞,x]. By (2.8) of [17], φx is Lipschitz, so as in part
1 of the proof of Theorem (3.3), we have

E

[
Wn√
2δn

φ

(
Wn√
2δn

)]
=

1

δn
E

[
(Wn + Vn)φ′

(
Wn√
2δn

)]
.

Hence, by (88), we obtain

P

[
Wn√
2δn
≤ x

]
− P [N ≤ x] = E

[
φ′x

(
Wn√
2δn

)
− Wn√

2δn
φx

(
Wn√
2δn

)]
=

1

δn
E

[
φ′x

(
Wn√
2δn

)
(δn −Wn − Vn)

]
.

Dividing both sides by σn/δn, one obtains

δn
σn

(
P

[
Wn√
2δn
≤ x

]
− P [N ≤ x]

)
= E

[
φ′x

(
Wn√
2δn

)(
− τn
σn

Vn − δn
τn

−
√

2δn
σn

Wn√
2δn

)]
.

In view of Parts 1 and 2 of Theorem 3.3, of formula (42), and of the fact that Z is
centered, one has, along the subsequence nkl , that

δn
σn

(
P

[
Wn√
2δn
≤ x

]
− P [N ≤ x]

)
→ −

√
2

2 + r
E[φ′x(N)N ],

where N ∼ N (0, 1). We can now use e.g. [33, formula (2.20)] to deduce that, for every real
x,

E[φ′x(N)N ] =
(x2 − 1)

3
× e−x

2/2

√
2π

,

from which the desired conclusion follows at once.
�

In the next section, we shall prove general upper and lower bounds for the variance of
conic intrinsic volumes. In particular, these results will apply to two fundamental examples
that are not covered by the estimates contained in Table 1, and that are key in convex
recovery of sparse vectors and low rank matrices: the descent cone of the `1 norm, and of
the Schatten 1-norm.

4 Bounds on the variance of conic intrinsic volumes

4.1 Upper and lower bounds

Fix d ≥ 1, let C ⊂ Rd be a closed convex cone, and let V = VC be the integer-valued random
variable associated with C via relation (6). As before, we will denote by g ∼ N (0, Id) a
d-dimensional standard Gaussian random vector. The following statement provides useful
new upper and lower bounds on the variance of VC .

Theorem 4.1 Define

v := ‖E[ΠC(g)]‖2 and b :=
√
dδC/2, (53)
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where δC is the statistical dimension of C. Then, one has the following estimates:

min(v2, 4b2)

b
≤ Var(VC) ≤ 2v. (54)

Remark 4.1 (a) In view of the orthogonal decomposition (3) and of the fact that g is a
centered Gaussian vector, one has that

v = −〈E[ΠC(g)], E[ΠC0(g)]〉 = ‖E[ΠC0(g)]‖2, (55)

where C0 is the polar of C. Moreover, since the mapping x 7→ min(x2, 4b2) is increasing
on R+, one has also that Var(VC) ≥ min(x2, 4b2)/b, for every 0 ≤ x < v.

(b) An elementary consequence of (54) is the intuitive fact that a closed convex cone C
is a subspace if and only if v = 0, that is, if and only if ΠC(g) is a centered random
vector.

In order to prove Theorem 4.1, we need the following auxiliary result.

Lemma 4.1 (Steiner form of the conic variance) For any closed convex cone C,

Var(VC) = −Cov(‖ΠC(g)‖2, ‖ΠC0(g)‖2).

Proof: From the Master Steiner Formula (38), we deduce that

Cov(‖ΠC(g)‖2, ‖ΠC0(g)‖2) =
d∑
j=0

E[YjY
′
d−j]vj − δC(d− δC) =

d∑
j=0

j(d− j)vj − δC(d− δC),

and the conclusion follows from straightforward simplifications. �

Proof of Theorem 4.1. (Upper bound) Using (42), one has that Var(VC) = Var(‖ΠC(g)‖2)−
2δC . Now we apply Lemma 6.2 and Theorem 6.2 in the Appendix to the mapping F (g) =
‖ΠC(g)‖2 = d2(g, C0), to obtain that

Var(‖ΠC(g)‖2) ≤ 1

2
E[‖∇F (g)‖2] +

1

2
‖E[∇F (g)]‖2 = 2δC + 2v,

where we have used the fact that ∇‖ΠC(g)‖2 = 2ΠC(g), following from (36) and (27).

(Lower bound) For every t > 0, define ĝt = e−tg +
√

1− e−2tĝ, where ĝ is an independent
copy of g. The crucial step is to apply relation (96) in the Appendix to the random variables
F (g) = ‖ΠC(g)‖2 and G(g) = ‖ΠC0(g)‖2, obtaining that, for any a ≥ 0,

Cov(‖ΠC(g)‖2, ‖ΠC0(g)‖2)=4E

∫ ∞
0

e−t〈ΠC(g),ΠC0(ĝt)〉dt≤4E

∫ ∞
a

e−t〈ΠC(g),ΠC0(ĝt)〉dt,

where we have used the definition of the polar cone C0 as that set that has non-positive
inner product with all elements of C, and E indicates expectation over g and ĝ. Now write

〈ΠC(g),ΠC0(ĝt)〉 = 〈ΠC(g),ΠC0(ĝ)〉+ 〈ΠC(g),ΠC0(ĝt)− ΠC0(ĝ)〉. (56)
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For the second term, using the fact that the projection ΠC0(x) is 1-Lipschitz,

|E〈ΠC(g),ΠC0(ĝt)− ΠC0(ĝ)〉| ≤ E (‖ΠC(g)‖ ‖ΠC0(ĝt)− ΠC0(ĝ)‖)
≤ E (‖ΠC(g)‖ ‖ĝt − ĝ‖) ≤

√
δ(C)E‖ĝt − ĝ‖2 ≤

√
2dδ(C)e−t = 2be−t,

as

E‖ĝt − ĝ‖2 = E‖e−tg + (
√

1− e−2t − 1)ĝ‖2 = 2
(

1−
√

1− e−2t
)
d ≤ 2e−2td.

Now use Lemma 4.1: multiplying (56) by e−t, integrating over [a,∞) and taking expectation
yields

−Var(VC) ≤ 4E

∫ ∞
a

e−t〈ΠC(g),ΠC0(ĝt)〉dt ≤ 4e−a(−v + be−a),

showing that, for every y ∈ [0, 1],

Var(VC) ≥ 4y(v − by).

The claim now follows by maximizing the mapping y 7→ 4y(v − by) on [0, 1]. �

In the next two sections, we shall apply the variance bounds of Theorem (4.1) to the
descent cones of the `1 and Schatten-1 norms.

4.2 The descent cone of the `1 norm at a sparse vector

The next result provides the key for completing the proof of Theorem 1.3. In the body of
the proofs in this subsection and the next, given two positive sequences an, bn, n ≥ 1, we
shall use the notation an ≈ bn to indicate that an/bn → 1, as n→∞.

Proposition 4.1 Let the assumptions and notation of Theorem 1.3 prevail (in particular,
sn = bρdnc for a fixed ρ ∈ (0, 1)). Then,

lim inf
n

τ 2
n

δn
≥
√

2 min

{
2

√
1

ψ(ρ)
;
ρ2γ(ρ)4

ψ(ρ)3/2

}
> 0, (57)

where ψ(ρ) is defined in (20) and γ = γ(ρ) > 0 is the unique solution to the stationary
equation √

2

π

∫ ∞
γ

(
u

γ
− 1

)
e−u

2/2du =
ρ

1− ρ
.

Proof. Since the `1 norm is invariant with respect to signed permutations, we can assume –
without loss of generality – that the sparse vector xn,0 has the form (xn,1, ..., xn,sn , 0, ..., 0),
xn,j > 0. Also, by virtue of the estimate (21), one has that δn ≈ snψ(ρ)/ρ. Now write

vn := ‖E[ΠCn(gn)]‖2 = ‖E[ΠC0
n
(gn)]‖2, n ≥ 1

where we have used (55), and: (i) Cn is the descent cone of the `1 norm at xn,0, (ii) C0
n is the

polar cone of Cn, and (iii) gn = (g1, ..., gdn) stands for a dn-dimensional standard centered
Gaussian vector.
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Using the lower bound in (54) together with some routine simplifications, it is easily seen
that relation (57) is established if one can show that

lim inf
n

vn
sn
≥ γ(ρ)2. (58)

To accomplish this task, we first reason as in [3, Section B.1] to deduce that, for every n, the
polar cone C0

n has the form
⋃
γ≥0 γ ·∂‖xn,0‖1, where ∂‖xn,0‖1 denotes the subdifferential of the

`1 norm at xn,0, that collection of vectors z = (z1, ..., zdn) ∈ Rdn such that z1 = · · · = zsn = 1
and |zj| ≤ 1, for every j = sn + 1, ..., dn. As a consequence, for every n, the projection
ΠC0

n
(gn) has the form

ΠC0
n
(g) = (γρ,n, ..., γρ,n, ? , ..., ? ),

where the symbol ‘?’ stands for entries whose exact values are immaterial for our dis-
cussion, and γρ,n > 0 is defined as the unique random point minimising the mapping

γ 7→ Fn,ρ(γ) :=
∑sn

i=1(gi−γ)2 +
∑dn

i=sn+1(|gi|−γ)2
+ over R+. This shows that vn ≥ snE[γρ,n]2:

as a consequence, in order to prove that (58) holds it suffices to check that

lim inf
n

E[γρ,n] ≥ γ(ρ). (59)

The key point is now that γρ,n is (trivially) the unique minimiser of the normalised mapping
γ 7→ 1

dn
Fn,ρ(γ), and also that, in view of the strong law of large numbers, for every γ ≥ 0,

1

dn
Fn,ρ(γ) −→ Hρ(γ) :=

{
ρ(1 + γ2) + (1− ρ)E[(|N | − γ)2

+]
}
, as n→∞, (60)

with probability 1.
The function γ 7→ Hρ(γ) is minimised at the unique point γ = γ(ρ) > 0 given in the

statement, and Fn,ρ(γ) is convex by (1) of Lemma C.1 of [3]. Fix ω ∈ Ω and 0 < ε < γ(ρ),
and set

Dε = min
u∈{±1}

[Hρ(γ(ρ) + εu)−Hρ(γ(ρ))].

Since γ(ρ) is the unique minimizer of Hρ, one has Dε > 0. From (60) we deduce the existence
of n0(ω) large enough such that n ≥ n0(ω) implies

2 max
v∈{0,±1}

∣∣∣∣ 1

dn
Fn,ρ(γ(ρ) + εu)−Hρ(γ(ρ) + εu)

∣∣∣∣ < Dε,

implying in turn, by Lemma 6.3, that

|γρ,n − γ(ρ)| ≤ ε.

That is, with probability 1,
γρ,n −→ γ(ρ) as n→∞.

Relation (59) now follows from a standard application of Fatou’s Lemma, and the proof
of (57) is therefore achieved. �
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4.3 The descent cone of the Schatten 1-norm at a low rank matrix

In this section we provide lower bounds on the conic variances of the descent cones of the
Schatten 1-norm (see definition (24)) for a sequence of low rank matrices.

For every k ∈ N, let (n,m, r) be a triple of nonnegative integers depending on k. We
drop explicit dependence of n,m and r on k for notational ease, and continue to take m ≤ n
without loss of generality. We assume that n→∞,m/n→ ν ∈ (0, 1] and r/m→ ρ ∈ (0, 1)
as k →∞, and that for every k the matrix X(k) ∈ Rm×n has rank r. Let

Ck = D(‖ · ‖S1 ,X(k)), δk = δ(Ck) and τ 2
k = Var(VCk)

denote the descent cone of the Schatten 1-norm of X(k), its statistical dimension, and the
the variance of its conic intrinsic volume distribution, respectively. Proposition 4.7 of [3]
provides that

lim
k→∞

δk
nm

= ψ(ρ, ν), (61)

where ψ : [0, 1]2 → [0, 1] is given by

ψ(ρ, ν) = inf
γ≥0

η(γ) with

η(γ) =

{
ρν + (1− ρν)

[
ρ(1 + γ2) + (1− ρ)

∫ a+

a−

(u− γ)2
+φy(u)du

]}
, (62)

and y = (ν − ρν)/(1− ρν), a± = 1±√y, and

φy(u) =
1

πyu

√
(u2 − a2

−)(a2
+ − u2) for u ∈ [a−, a+].

The infimum of η(γ) over [0,∞) is attained at the solution γ(ν, ρ) to∫ a+

a−∨γ

(
u

γ
− 1

)
φy(u)du =

ρ

1− ρ
.

It is not difficult to verify that γ(ν, ρ) > 0 for all ν ∈ (0, 1], ρ ∈ (0, 1).

Proposition 4.2 For the sequence of matrices X(k), k ∈ N,

lim inf
k→∞

τ 2
k

δk
≥ min

(√
2[ρ(1− νρ)γ(ν, ρ)]2

ψ(ρ, ν)3/2
,

23/2√
ψ(ρ, ν)

)
. (63)

Proof. By (D.8) of [3], the subdifferential of the Schatten 1-norm at X(k) is given by

∂‖X(k)‖S1 =

{[
Ir 0
0 W

]
∈ Rm×n : σ1(W ) ≤ 1

}
, (64)

and it generates the polar C0 of the descent cone, see Corollary 23.7.1 of [36]. Closely
following the proof of Proposition 4.7 of [3], and in particular the application of the Hoffman-
Wielandt Theorem, see [28], Corollary 7.3.8] for the second equality below, taking G to be

29



an m× n matrix with independent N (0, 1) entries, we have

dist(G, γ · ∂‖X(k)‖S1)
2 =

∣∣∣∣∣
∣∣∣∣∣
[

G11 − γIr G12

G21 0

] ∣∣∣∣∣
∣∣∣∣∣
2

F

+ inf
σ1(W)≤1

‖G22 − γW‖2
F

=

∣∣∣∣∣
∣∣∣∣∣
[

G11 − γIr G12

G21 0

] ∣∣∣∣∣
∣∣∣∣∣
2

F

+
m−r∑
i=1

(σi(G22)− γ)2
+ , (65)

with ‖ · ‖F denoting the Frobenius norm and where G is partitioned into the 2 × 2 block
matrix (Gij)1≤i,j≤2 formed by grouping successive rows of sizes r and m− r, and successive
columns of sizes r and n− r. Hence, we obtain

ΠC0
k
(G) =

[
γkIr 0

0 γkW
∗

]
(66)

for some matrix W ∗ with largest singular value at most 1, and γk the minimizer of the map
γ → dist(G, γ · ∂‖X(k)‖S1)

2 given by (65). As the subdifferential (64) is a nonempty, com-
pact, convex subset of Rm×n that does not contain the origin, Lemma C.1 of [3] guarantees
that the map is convex.

By [4], Theorem 3.6,

1

nm
dist2(G, γ

√
n− r · ∂‖X‖S1)→a.s. η(γ),

where η(γ) is given in (62). Reasoning as in Section 4.2 (that is, using Lemma 6.3 followed
by Fatou’s lemma), we obtain

γk√
n− r

= argmin
(
dist2(G, γ

√
n− r · ∂‖X‖S1)

)
→a.s. γ(ν, ρ)

and lim inf
k→∞

E[γk]√
n− r

≥ γ(ν, ρ). (67)

We now invoke Theorem 4.1, and make use of b) of Remark 4.1, to compute a variance
lower bound in terms of

vk = ‖E[ΠC0
k
(G)]‖2

F .

The two terms in the minimum in (54) give rise to the corresponding terms in (63). By (66),

‖ΠC0(G)‖F ≥
√
rγk.

Squaring, taking expectation, and applying (67), we find

lim inf
k→∞

vk
nm
≥ lim inf

k→∞

rγ2
k

nm
= ρ(1− νρ)γ(ν, ρ). (68)

Letting bk =
√
δknm/2, since (61) provides that δk ≈ nmψ(ρ, ν), we obtain

lim inf
k→∞

v2
k

δkbk
= lim inf

k→∞

√
2v2

k

(nm)2ψ(ρ, ν)3/2
.

Applying (68) now yields the first term in (63). Next, as

lim inf
k→∞

4bk
δk

= lim inf
k→∞

23/2

√
nm

δk
,

applying (61) now yields the second term in (63), completing the proof. �
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5 Bound to the normal for VC

Fix a non-trivial convex cone C ⊂ Rd, and denote by δC and τC , respectively, the mean and
variance of its intrinsic conic distribution. The main result of the present section is Theorem
5.1, providing a bound on the L∞ norm

η = ‖F − Φ‖∞ = sup
u∈R
|F (u)− Φ(u)| (69)

of the difference between the distribution function F (u) of (VC − δC)/τC and Φ(u) = P [N ≤
u], where N ∼ N (0, 1). In the following, we set log+ x = max (log x, 0).

Lemma 5.1 Let ψF (t) and ψG(t) denote the characteristic functions of a mean-zero distri-
bution with variance 1 and the standard normal distribution N (0, 1), respectively. If

sup
|t|≤L
|ψF (t)− ψG(t)| ≤ B (70)

for some positive real numbers L and B, then

η ≤ B log+(L) +
4

L
. (71)

Proof: The result holds trivially for L < 1, so assume L ≥ 1. Let hL(x) be the ‘smoothing’
density function

hL(x) =
1− cosLx

πLx2
,

corresponding to the distribution function HL(x), let ∆(x) = F (x)−G(x), and let

∆L = ∆ ∗HL and ηL = sup |∆L(x)|.

By Lemma 3.4.10 and the proof of Lemma 3.4.11 of [24] we have

η ≤ 2ηL +
24√

2π3/2L
and ηL ≤

1

2π

∫
|t|≤L
|ψF (t)− ψG(t)|dt

|t|
. (72)

As ψF (t) is a characteristic function of a mean-zero distribution with variance 1, it is straight-
forward to prove that

|ψF (t)− 1| ≤ t2

2
,

so

|ψF (t)− ψG(t)| = |(ψF (t)− 1)− (ψG(t)− 1)| ≤ t2.

Hence for all ε ∈ (0, L] ∫
|t|≤ε
|ψF (t)− ψG(t)|dt

|t|
≤
∫
|t|≤ε
|t| = ε2. (73)
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By (70), ∫
ε<|t|≤L

|ψF (t)− ψG(t)|dt
|t|
≤ 2B log(L/ε). (74)

Hence, by (73), (74) and (72),

η ≤ 1

π

(
ε2 + 2B log(L/ε) +

24√
2πL

)
.

As L ≥ 1 we may choose ε = L−1/2. The conclusion now follows. �

Lemma 5.2 Let τ ≥ 0 and δ > 0 satisfy τ 2 ≤ 2δ. Then, the quantity

L =

√
τ 2

144δ
log+

(
τ 3

δ

)
satisfies L ≤ τ/8. (75)

Proof: Consider the function on [0,∞) given by

f(x) = 2
√

2x− e
9x2

4 , with derivative f ′(x) = 2
√

2− 9x

2
e

9x2

4 .

Clearly, f ′(x) is positive at zero and decreases strictly to −∞ as x→∞. Hence f(x) has a
global maximum value on [0,∞) achieved at the unique solution x0 to the equation

xe
9x2

4 =
4
√

2

9
.

Note that

f(x0) = 2
√

2x0 − e
9x20
4 =

2
√

2

9x0

(
9x2

0 −
9

2
√

2
x0e

9x20
4

)
= g(x0) where g(x) =

2
√

2

9x

(
9x2 − 2

)
and that

f ′

(√
2

3

)
=

√
2

2

(
4− 3

√
e
)
< 0.

Hence x0 ≤
√

2/3, and since g(x) is increasing in [0,∞), we have f(x0) = g(x0) ≤ g(
√

2/3) =
0. As f(x0) is the global maximum of f(x) on [0,∞) we conclude that

2
√

2x ≤ e
9x2

4 . (76)

Using τ 2 ≤ 2δ and (76) we obtain

τ 3 ≤ 2
√

2δ3/2 ≤ δe
9δ
4 implying log

(
τ 3

δ

)
≤ 9δ

4
.

The final inequality holds with log replaced by log+ since the right hand side is always non
negative. The inequality so obtained provides an upper bound on L in (75) that verifies the
claim. �

In the following theorem, for notational simplicity we will write δ, τ and σ instead of δC ,
τC and σC respectively, and also set a ∨ b = max{a, b}.
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Theorem 5.1 The L∞ norm η given in (69) satisfies

η ≤ 1

108

(
τ

δ3
∨ 1

δ8/3

) 3
16
(

log+

(
τ 3

δ

)) 3
2

log+

(
τ 2

144δ
log+

(
τ 3

δ

))
+ 48

√
δ

τ 2 log+
(
τ3

δ

) . (77)

Remark 5.1 The estimate (11) follows immediately from (77) and the following inequalities,
valid for δ ≥ 8: (

τ

δ3
∨ 1

δ8/3

) 3
16

≤
√

2

δ15/32
,(

log+

(
τ 3

δ

)) 3
2

≤ (log 2
√

2δ)3/2 ≤ (log δ)3/2,

log+

(
τ 2

144δ
log+

(
τ 3

δ

))
≤ log (log δ) ≤ log δ.

The above relations all follow from the bound τ ≤
√

2δ stated in (44).

Remark 5.2 When considering a sequence of cones such that lim inf τ 2/δ > 0, the right-
hand side of the bound (77) behaves like O

(
1/
√

log δ
)
, thus yielding the Berry-Esseen es-

timate stated in Part 2 of Theorem 1.1. However, one should note that the bound (77)
covers in principle a larger spectrum of asymptotic behaviors in the parameters τ 2 and δ:
in particular, in order for the right-hand side of (77) to converge to zero, it is not necessary
that the ratio τ 2/δ is bounded away from zero.

Proof: We show Lemma 5.1 may be applied with L as in (75) and

B = 32L3e
9L2δ
τ2

δ

τ 3
. (78)

Let t ∈ R satisfy |t| ≤ L. As was done in [32] for the Laplace transform, the implication
(40) of the Steiner formula (39) can be applied to show that the relationship

EeitV = EeξitG with ξt =
1

2

(
1− e−2t

)
(79)

holds between the characteristic functions of V = VC and G = ‖ΠC(g)‖2. Replacing t by
t/τ and multiplying by e−itδ/τ in (79) yields the following expression for the standardized
characteristic function of V ,

Eeit(
V−δ
τ ) = Eeξit/τGe−

itδ
τ . (80)

Comparing the characteristic function of the standardized V to that of the standard normal,
identity (80) and the triangle inequality yield

|Eeit(
V−δ
τ ) − e−t2/2| = |Eeξit/τGe−

itδ
τ − e−t2/2|

≤ |Eeξit/τG
(
e−

itδ
τ − e

(
t2

τ2
−ξit/τ

)
δ

)
|+ e

t2δ
τ2 |Eeξit/τ (G−δ) − Eeit/τ(G−δ)|

+ e
t2δ
τ2 |Eeit/τ(G−δ) − e−σ2t2/2τ2|. (81)
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For the final term we have used (42), which shows that 2δ − σ2 = −τ 2. For the first two
terms we will make use of the inequality

|e(a+bi)g − ecig| ≤ (|b− c|+ |a|) e|ga||g|, (82)

valid for all a, b, c, g ∈ R, which follows immediately by substitution from

|ea+bi − eci| = |ea+bi − ea+ci + ea+ci − eci|
≤ ea|b− c|+ |ea − 1|
≤ ea|b− c|+ e|a| − 1

≤ e|a| (|b− c|+ |a|) .

Now using (79), implying |Eeξit/τG| = |Ee(it/τ)V | ≤ 1, we bound the first term in (81) by

|Eeξit/τG| |e−
itδ
τ − e

(
t2

τ2
−ξit/τ

)
δ| ≤ |e−

itδ
τ − e

(
t2

τ2
−ξit/τ

)
δ| = |eci − ea+bi|,

where we have set

a =
t2δ

τ 2
− 1

2
(1− cos (2t/τ)) δ, b = −1

2
sin(2t/τ)δ, and c = −tδ

τ
,

which satisfy

|a| ≤ 2|t|3δ
3τ 3

and |b− c| ≤ 2|t|3δ
3τ 3

.

By (44) of Corollary 3.1 we have τ 2 ≤ 2δ, and in particular we may apply Lemma 5.2 to
yield |t| ≤ L ≤ τ/8. Now (82) with g = 1 shows that the first term is bounded by

4|t|3δ
3τ 3

e
2t2δ
τ2 . (83)

Now we write the second term as

e
t2δ
τ2 E|eξit/τ (G−δ) − eit/τ(G−δ)| = e

t2δ
τ2 E|e(a+bi)g − ecig|, (84)

where

a =
1

2
(1− cos(2t/τ)) , b =

1

2
sin(2t/τ), c = t/τ and g = G− δ,

for which

|a| ≤ min

(
|t|
τ
,
t2

τ 2

)
and |b− c| ≤ t2

τ 2
.

Applying (82) and the Cauchy Schwarz inequality we may bound (84) as

e
t2δ
τ2

2t2

τ 2
E
(
e
|t|
τ
|G−δ||G− δ|

)
≤ 2σt2

τ 2
e
t2δ
τ2

√
Ee

2|t|
τ
|G−δ|. (85)
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Recalling that ‖ΠC(x)‖2 = d2(x, C0), invoking Theorem 2.2 for the polar cone C0 and µ = 0,
for 0 ≤ ξ < 1/2 inequality (33) yields

Eeξ|G−δ| = Eeξ(G−δ)1(G− δ ≥ 0) + Ee−ξ(G−δ)1(G− δ < 0)

≤ Eeξ(G−δ) + Ee−ξ(G−δ)

≤ exp

(
2ξ2δ

1− 2ξ

)
+ exp

(
2ξ2δ

1 + 2ξ

)
≤ 2 exp

(
2ξ2δ

1− 2ξ

)
.

Thus, applying this bound with ξ = 2|t|/τ , where ξ < 1/2 by virtue of |t| ≤ τ/8 we obtain
a bound on (85), and hence on the second term of (81), of the form

2σt2

τ 2
e
t2δ
τ2

√
2 exp

(
8t2δ

τ 2(1− 4|t|/τ)

)
≤ 2
√

2
σt2

τ 2
e

9t2δ
τ2 . (86)

For the final term, as the function eit/τ has modulus 1, Theorem 2.1 yields

e
t2δ
τ2 |Eeit/τ(G−δ) − e−σ2t2/2τ2| ≤ 16

√
δC
σ2

e
t2δ
τ2 . (87)

Combining the three terms (83), (86) and (87), for |t| ≤ L we obtain

4|t|3δ
3τ 3

e
2t2δ
τ2 + 2

√
2
σt2

τ 2
e

9t2δ
τ2 + 16

√
δC
σ2

e
t2δ
τ2 ≤

(
4L3δ

3τ 3
+ 2
√

2
σL2

τ 2
+ 16

√
δC
σ2

)
e

9L2δ
τ2 .

From the bounds (44) in Corollary 3.1, we have

4L3δ

3τ 3
+

2
√

2L2σ

τ 2
+

16
√
δC

σ2
≤
(

4L3

3
+ 8L2 + 16

√
2

)
δ

τ 3
.

As the bound (71) holds for L < 1, we may assume L ≥ 1, in which case B as in (78) satisfies
(70) when ψF and ψG are the characteristic functions of (V − δ)/τ and the standard normal,
respectively. Invoking Lemma 5.1, the proof is completed by specializing (71) to yield (77)
for the given values of L and B. �

6 Appendix

6.1 A total variation bound

Here, we prove the total variation bound (29) used in the proof of Theorem 2.1. We begin
with a standard lemma based on Stein’s method (see [34]), involving the solution φh to the
Stein equation

φ′h(x)− xφh(x) = h(x)− E[h(N)] (88)

for N ∼ N (0, 1) and a given test functions h.

Lemma 6.1 If E[F ] = 0 and E[F 2] = 1, then

dTV (F,N) ≤ sup
φ
|E[φ′(F )]− E[Fφ(F )]|, (89)

where N ∼ N (0, 1) and the supremum runs over all C1 functions φ : R→ R with ‖φ′‖∞ ≤ 2.
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Proof: For a given h ∈ C0 taking values in [0, 1], by e.g. (2.5) of [17], the unique bounded
solution φh(x) to the Stein equation (88) is given by

φh(x) = ex
2/2

∫ x

−∞
e−u

2/2(h(u)− E[h(N)])du = −ex2/2
∫ ∞
x

e−u
2/2(h(u)− E[h(N)])du, (90)

where the second equality holds since∫
R
e−u

2/2(h(u)− E[h(N)])du =
√

2πE[h(N)− E[h(N)]] = 0.

One can easily check that φh is C1. Using the first equality in (90) for x < 0, and the
second one for x > 0 one obtains that |xφh(x)| ≤ ex

2/2
∫∞
|x| ue

−u2/2 = 1. We deduce that

|φ′h|∞ ≤ 2. Recall that the total variation distance dTV (F,G) (as defined in (28)) may also
be represented as the supremum over all measurable functions h taking values in [0, 1]. Using
this fact, together with Lusin’s theorem, relation (88) and the properties of the solution φh,
we infer that

dTV (F,N) = sup
h:R→[0,1]

|E[h(F )]− E[h(N)]|

= sup
h:R→[0,1], h∈C0

|E[h(F )]− E[h(N)]| ≤ sup
φ
|E[φ′(F )]− E[Fφ(F )]|,

as claimed. �

To make the paper as self-contained as possible, we will also prove the total variation
bound (29) that was applied in the proof of Theorem 2.1; this result is given, at a slightly
lesser level of generality, as Lemma 5.3 in [14].

Given d ≥ 1, we use the symbol D1,2 to denote the Sobolev class of all mappings f :
Rd → R that are in the closure of the set of polynomials p : Rd → R with respect to the
norm

‖p‖1,2 =

(∫
Rd
p(x)2dγ(x)

)1/2

+

(∫
Rd
‖∇p(x)‖2dγ(x)

)1/2

,

where γ stands for the standard Gaussian measure on Rd. It is not difficult to show that a
sufficient condition in order for f to be a member of D1,2 is that f is of class C1, with f and
its derivatives having subexponential growth at infinity. We stress that, in general, when f
is in D1,2 the symbol ∇f has to be interpreted in a weak sense. See e.g. [34, Chapters 1 and
2] for details on these concepts.

Theorem 6.1 Let H : Rd → R be an element of D1,2. Let g ∼ N (0, Id) be a standard
Gaussian random vector in Rd. Let F = H(g) and set m = E[F ] and σ2 = Var(F ).
Further, for t ≥ 0, set ĝt = e−tg +

√
1− e−2tĝ, where ĝ is an independent copy of g. Write

Ê to indicate expectation with respect to ĝ. Then, with N ∼ N(m,σ2),

dTV (F,N) ≤ 2

σ2

√
Var

(∫ ∞
0

e−t〈∇H(g), Ê(∇H(ĝt))〉dt
)
. (91)
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Proof: Without loss of generality, assume that m = 0 and σ2 = 1. The random vector

gt =
√

1− e−2tg − e−tĝ is an independent copy of ĝt, and g = e−tĝt +
√

1− e−2tgt. (92)

By a standard approximation argument, it is sufficient to show the result for H ∈ C1,
with H and its derivatives having subexponential growth at infinity. Let E = E ⊗ Ê. If
ϕ : R→ R is C1, then using the growth conditions imposed on H to carry out the interchange
of expectation and integration and the integration-by-parts, one has

E[Fϕ(F )] = E[(H(g)−H(ĝ))ϕ(H(g))] = −
∫ ∞

0

d

dt
E[H(ĝt)ϕ(H(g))]dt

=

∫ ∞
0

e−tE〈∇H(ĝt),g〉ϕ(H(g))dt−
∫ ∞

0

e−2t

√
1− e−2t

E〈∇H(ĝt), ĝ〉ϕ(H(g))dt

=

∫ ∞
0

e−t√
1− e−2t

E〈∇H(ĝt),gt〉ϕ(H(e−tĝt +
√

1− e−2tgt))dt

=

∫ ∞
0

e−tE〈∇H(ĝt),∇H(e−tĝt +
√

1− e−2tgt)〉ϕ′(H(e−tĝt +
√

1− e−2tgt))dt

= E

∫ ∞
0

e−t〈∇H(g), Ê(∇H(ĝt))〉ϕ′(H(g))dt. (93)

Applying identity (93) to (89) yields

dTV (F,N) ≤ 2E

∣∣∣∣1− ∫ ∞
0

e−t〈∇H(g), Ê(∇H(ĝt))〉dt
∣∣∣∣ , (94)

and for ϕ(x) = x yields

Var(F ) = E

∫ ∞
0

e−t〈∇H(g), Ê(∇H(ĝt))〉dt. (95)

As Var(F ) = 1 the conclusion (91), with σ2 = 1, now follows by applying the Cauchy Schwarz
inequality in (94). �

We now prove the following useful fact that was applied in the proofs of Theorem 2.1
and Lemma 4.1.

Lemma 6.2 Let C be a closed convex subset of Rd. Then, the mapping

x 7→ d2(x, C)

is an element of D1,2.

Proof: It is sufficient to show that d2(·, C) and its derivative have sub-exponential growth at
infinity. To prove this, observe that Lemma 2.1 together with the triangle inequality imply
that d(·, C) is 1-Lipschitz, so that d2(x, C) ≤ 2d2(0, C) + 2‖x‖2. To conclude, use (27) in
order to deduce that

‖∇d2(x, C)‖ = 2d(x, C) ≤ 2d(0, C) + 2‖x‖.

�
A variation of the arguments leading to the proof of (93) (whose details are left to the

reader) yield also the following useful result.
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Proposition 6.1 Let F,G ∈ D1,2, and let the notation adopted in the statement and proof
of Theorem 6.1 prevail. Then,

Cov[F (g)G(g)] = E

∫ ∞
0

e−t〈∇F (g),∇G(ĝt)〉dt. (96)

6.2 An improved Poincaré inequality

The next result refines the classical Poincaré inequality, and plays a pivotal role in Theorems
2.1 and 4.1.

Theorem 6.2 (Improved Poincaré inequality) Fix d ≥ 1, let F ∈ D1,2, and g =
(g1, ..., gd) ∼ N (0, Id). Then,

Var(F (g)) ≤ 1

2
E[‖∇F (g)‖2] +

1

2
‖E[∇F (g)]‖2 ≤ E[‖∇F (g)‖2].

Proof: The quickest way to show the estimate Var(F (g)) ≤ 1
2
E[‖∇F (g)‖2] + 1

2
‖E[∇F (g)]‖2

is to adopt a spectral approach. To accomplish this task, we shall use some basic results
of Gaussian analysis, whose proofs can be found e.g. in [34, Chapter 2]. Recall that, for
k = 0, 1, 2, ..., the kth Wiener chaos associated with g, written Ck, is the subspace spanned
by all random variables of the form

∏m
i=1Hki(gji), where {Hk : k = 0, 1, ...} denotes the

collection of Hermite polynomials on the real line, k1 + · · · + km = k, and the indices
k1, · · · , km are pairwise distinct. It is easily checked that Wiener chaoses of different orders
are orthogonal in L2(Ω), and also that every square-integrable random variable of the type
F (g) can be decomposed as an infinite sum of the type F (g) =

∑∞
k=0 Fk(g), where the series

converges in L2(Ω) and where, for every k, Fk(g) denotes the projection of F (g) on Ck (in
particular, F0(g) = E[F (g)]). This decomposition yields in particular that

Var(F (g)) =
∞∑
k=1

E[F 2
k (g)].

The key point is now that, if F ∈ D1,2, then one has the additional relations

E[‖∇F (g)‖2] =
∞∑
k=1

kE[F 2
k (g)]

(see e.g. [34, Exercice 2.7.9]) and

E[F 2
1 (g)] = ‖E[∇F (g)]‖2,

the last identity being justified as follows: if F is a smooth mapping, then the projection of
F (g) on C1 is given by

F1(g) =
d∑
i=1

E[F (g)gi]gi =
d∑
i=1

E

[
∂F

∂xi
(g)

]
gi,
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and the result for a general F ∈ D1,2 is deduced by an approximation argument. The previous
relations imply therefore that

Var(F (g))=
∞∑
k=1

E[F 2
k (g)] ≤ E[F 2

1 (g)]+
∞∑
k=2

k

2
E[F 2

k (g)]=
1

2
‖E[∇F (g)]‖2 +

1

2
E[‖∇F (g)‖2].

The proof is concluded by observing that, in view of Jensen inequality, ‖E[∇F (g)]‖2 ≤
E[‖∇F (g)‖2]. �

6.3 A bound on the distance to the minimizer of a convex func-
tion.

Following an idea introduced by Hjort and Pollard [27], one has the following lemma, pro-
viding a bound on the distance to the minimizer of a convex function in terms of another,
not necessarily convex, function.

Lemma 6.3 Suppose f : [0,∞) → R is a convex function, and let g : [0,∞) → R be any
function. If x0 is a minimizer of f , y0 ∈ (0,∞) and ε ∈ (0, y0), then

2 max
v∈{0,±1}

|g(y0 + εv)− f(y0 + εv)| < min
u∈{±1}

[g(y0 + εu)− g(y0)] (97)

implies |x0 − y0| ≤ ε.

Proof. Suppose a := |x0 − y0| > ε > 0. Set u = a−1(x0 − y0). Then u ∈ {±1}, x0 = y0 + au
and the convexity of f implies

(1− ε/a)f(y0) + (ε/a)f(x0) ≥ f(y0 + εu).

Hence

ε

a
(f(x0)− f(y0)) ≥ f(y0 + εu)− f(y0)

= g(y0 + εu)− g(y0) + [f(y0 + εu)− g(y0 + εu)] + [g(y0)− f(y0)]

≥ min
u∈{±1}

[g(y0 + εu)− g(y0)]− 2 max
v∈{0,±1}

|g(y0 + εv)− f(y0 + εv)|.

If (97) is satisfied, then ε
a
(f(x0)− f(y0)) > 0. But this contradicts that x0 is a minimizer of

f . Hence, |x0 − y0| > ε is impossible. �

Acknowledgments: The authors would like to thank John Pike for his assistance with the
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