
PhishScore: Hacking Phishers’ Minds
Samuel Marchal∗†, Jérôme François∗‡, Radu State∗, Thomas Engel∗

∗ SnT - University of Luxembourg, Luxembourg – { samuel.marchal | radu.state | thomas.engel }@uni.lu
† TELECOM Nancy - University of Lorraine, France – samuel.marchal@univ-lorraine.fr

‡ INRIA Nancy Grand Est, France – jerome.francois@inria.fr

Abstract—Despite the growth of prevention techniques, phish-
ing remains an important threat since the principal countermea-
sures in use are still based on reactive URL blacklisting. This
technique is inefficient due to the short lifetime of phishing Web
sites, making recent approaches relying on real-time or proactive
phishing URLs detection techniques more appropriate. In this
paper we introduce PhishScore, an automated real-time phishing
detection system. We observed that phishing URLs usually have
few relationships between the part of the URL that must be
registered (upper level domain) and the remaining part of the
URL (low level domain, path, query). Hence, we define this
concept as intra-URL relatedness and evaluate it using features
extracted from words that compose a URL based on query data
from Google and Yahoo search engines. These features are then
used in machine learning based classification to detect phishing
URLs from a real dataset.

I. INTRODUCTION

Phishing is currently one of the most lucrative cybercrime
activities. Although accurately evaluating the financial loss
cause by phishing is difficult, some surveys have been con-
ducted, suggesting losses of several billion dollars every year.
In 2007, Gartner Research estimated a $3.2 billion loss due
to phishing scams [1]. Javelin Strategy & Fraud published a
report [2] that identity theft led to a loss of $54 billion in
2009, mostly due to cybercrime.

Various techniques are used to perform phising attacks,
ranging from technical subterfuges (DNS cache poisoning, e-
mail spoofing, Web server takeover, etc.) to social engineering.
In addition various goals are sought: data, money or credential
stealing through fake Web sites, drive-by download of mal-
ware, etc. Despite this diversity, one common feature is the
use of obfuscated URLs to misdirect users to fake Web sites
or drive-by downloads.

Luring Internet users by making them click on rogue links
that seem trustworthy is an easy task because of widespread
credulity and unawareness. To cope with this threat, the
best strategy is to prevent connection to phishing Web sites
by the identification of phishing URLs. Phishing Web site
short lifetime [3] makes the protracted process of reactive
blacklisting based on user reports inefficient. In addition the
use of different variations in URLs for the same phishing
campaign [4] complicates the task of blacklisting, as blacklists
must provide a perfect match for a URL. Hence real-time
malicious URL detection is a better technique for defeating
phishing.

In this paper, we propose an automated real-time URL
phishingness rating system to protect users against phishing

content: PhishScore. The underlying method targets identifi-
cation of phishing URLs that are based on registered domains
(malicious or not) that are not related to their targeted brand.
To delude their victims, phishers blend many phishing key-
words (famous brand, attractive words) into the remaining
parts of the URL. Most Internet users are not aware of the
DNS hierarchy. Seeing words like paypal, ebay or visa at any
level of a URL will make them feel confident that the rogue
link actually leads to the official Web site of these brands.

From observation of phishing URLs, we claim that there are
few relationships between the registered domain and the rest
of the URL. However, the words that compose the rest of the
URL (low level domain, path, query) often have many interre-
lationships. Therefore, our approach evaluates the relatedness
of words that compose a URL and highlights the differences
between legitimate and phishing URLs. Previously existing
solutions [5], [6], [7], [8], are not well suited to evaluating
word similarity or relatedness for the Internet vocabulary.
These tools, coming from the natural language processing
field, usually have no entries for domain names and most of the
words that compose a URL. We leverage search engine query
data from Google and Yahoo to compute this relatedness.

Based on this, we define the term of intra-URL relatedness.
We extract 12 features from a single URL which are input to
machine learning algorithms to identify phishing URLs. Our
technique is assessed on ground truth data of 96,018 URLs
leading to a correct classification rate of 94,91%. Finally, a
phishingness scores is computed for every single URL based
on Random Forest classifier.

To summarize the major contributions of this paper:
– We introduce the concept of intra-URL relatedness de-

picting the relation between a registered domain and the
words that compose the rest of a URL.

– We leverage search engine query data to establish relat-
edness between words and show that this is more suited
to Internet vocabulary than existing methods.

– We propose new features based on intra-URL relatedness
and build a machine learning based approach relying
on these for distinguishing between phishing and non-
phishing URLs.

The rest of the paper is structured as follows: we start
by presenting URL obfuscation techniques in Section II. We
introduce the search engine query data and the metrics used
to calculate intra-URL relatedness in Section III. Section IV
presents the datasets. PhishScore is assessed in Section V, both

Obf. Type Example

Type I http://school497.ru/222/www.paypal.com/29370274276105805/
http://paypal.com.eu.compte.client.update.condst.com.br/

Type II http://www.quadrodeofertas.com.br/www1.paypal-com/encripted/ssl218
http://sezopoztos.com/paypalitlogin/us/webscr.html?cmd= login-run

Type III http://cgi-3.paypal-secure.de/info2/verikredit.html
http://paypal-shopping.co.il/

Type IV http://69.72.130.98/janaseva/https.paypal.com/uk/onepagepaypal.htm
ftp://212.13.144.72/SERVICE/PayPal.com/security/alert/paypal.com

Type V http://tiny.cc/clientID00858JD8
http://goo.gl/HQx5g

TABLE I
EXAMPLE OF OBFUSCATED URLS FOR THE DOMAIN paypal.com

for classification and scoring. Limitations of this technique are
identified in Section VI, related works are discussed in Section
VII and we conclude in Section VIII.

II. PHISHING URL OBFUSCATION

This paper assumes some knowledge about DNS organisa-
tion and operation; the reader is referred to [9], [10], [11] for
the necessary background.

Phishers usually try to lure their victims into clicking on
rogue URLs pointing to phishing sites or drive-by downloads.
Different URL obfuscation techniques are used with the aim of
hiding the real host, and particularly the registered domain, the
only part of the URL that cannot be freely defined. If some-
body wants to use a domain mydomain.tld and derive several
URLs from it: url1.mydomain.tld, url2.mydomain.tld/file, he
has first to register the domain mydomain.tld at a domain
registrar, ensuring that it cannot be registered by anybody
else. Assuming a phisher wants to trap PayPal users, he must
use a domain.tld other than paypal.com, as this domain is
already registered by PayPal Inc. The phisher must register
a domain name mydomain.tld and try to deceive people by
blending labels such as paypal into the rest of the URL:
login.mydomain.tld/paypal.

A registered domain consists of two parts: a main level
domain and a public suffix. A public suffix (or ps) is a domain
name suffix under which an Internet user can register a name.
It can be just a Top Level Domain like .com, .org or a
combination of level domains like .co.uk or .blogspot.com. A
main level domain (or mld) is the level domain preceding a
public suffix. A registered domain is then: mld.ps. For instance
in www.paypal.com/login, com is the ps and paypal is the mld.

The different obfuscation techniques consist of blending
either the original domain name or phishing keywords into
the remaining part of the URL. These keywords are usually
the targeted brand, related services of the brand and other
attractive words such as secure, login, protect, etc.

Assume a URL formed of a hostname with different
level domain (ld), a path (path) and a query (key=value):
http://5ld.4ld.3ld.mld.ps/path1/path2/path3?key1=value1
&key2=value2. The obfuscation often consists in blending
keywords into the path, the query and the low level domain

of the hostname (5ld.4ld.3ld). In the following we present the
most used URL obfuscation techniques [12], with examples
given in Table I for the domain paypal.com:

• Type I: URL obfuscation with other domain: The
mld.ps is a real domain name, usually registered by the
phisher, while the original domain being phished is part
of the path, the query or the low level domain.

• Type II: URL obfuscation with keywords: Again the
mld.ps is a real domain name, and the brand being
phished and related words are part of the path, the query
or low level domain.

• Type III: Typosquatting domains or long domains:
the mld.ps of the URL is the domain being phished but
misspelled, with letters or words missing or added, or
the domain is pronounced the same way as the original
but written differently. The targeted brand can also be
combined with other words to create an unregistered
domain.

• Type IV: URL obfuscation with IP address: the URL’s
hostname is replaced by an IP address and the brand
being phished is part of the path or the query.

• Type V: Obfuscation with URL shortener: A URL
shortening service is used to hide the name of the real
host. Such URLs are not meaningful and are mainly used
in phishing attacks targeting services that use this kind
of short URL, like Twitter.

We focus on the identification of the four first types of URL
obfuscation technique since our technique relies on natural
language processing, which is clearly not suited to shortened
URLs. The common feature of these obfuscated URLs is that
the brand and some related terms are included in the path,
the query and low level domain. These terms are related as
they have relationships with the targeted brand and have no
obvious relation with the mld.ps that is used for phishing. This
is the opposite of what happens for a legitimate URL, where
all the parts of the URL are normally related. To reveal this
difference a relatedness analysis of the different part of a URL
is performed.

III. INTRA-URL RELATEDNESS ANALYSIS

The intra-URL relatedness is the quantification of the re-
latedness among the words composing the different parts of
a URL and more precisely between the registered domain
and the rest of the URL. Due to the limitations of existing
relatedness calculation techniques, we leverage search engine
query data to compute it.

A. URL Word Extraction

The examples of obfuscated phishing URL from Type I
to IV highlight a global characteristic in URL obfuscation,
namely that there is no relation between the mld.ps and the rest
of the URL. To reveal this, we split the URL in the two parts
that are presumed to have no relationship: extract the mld.ps
and separate it from the rest. As the ps may be composed of
multiple level domain, we use Public Suffix List1 to identify
it and then retrieve the immediately preceding level domain
as the mld. For the rest of the URL, a split according to non-
alpha-numeric characters is first performed. From extracted
parts composed of several words such as paypalitlogin in
http://sezopoztos.com/paypalitlogin/us/... we use a dictionary-
based word splitter [13]. For instance, the three words paypal,
it and login are extracted from paypalitlogin through this
process.

Based on this splitting two sets are composed: one,
called RDurl (for Registered Domain), consists just
of two elements: RDurl = {mld,mld.ps}. The other,
REMurl (for REMaining part), is composed of all
extracted words from the URL except mld.ps. Given
http://sezopoztos.com/paypalitlogin/us/webscr.html?cmd= login-
run, the following sets are extracted:
• RDurl = {sezopoztos, sezopoztos.com}
• REMurl = {paypal, it, login, us, web, src, html, cmd,

login, run}
The mld.ps is not split like the other part to keep the mld

unmodified, which can be composed of several words.
Assume a type III obfuscated URL such as http://cgi-

3.paypal-secure.de/info2/verikredit.html . The word paypal
would be an element of RDphish = {paypal, secure, de}.
If http://cgi-3.paypal.de/info2/verikredit.html is a real Pay-
Pal URL, we have RDlegit = {paypal, de} and RDlegit ∩
RDphish = {paypal, de}. However with the proposed decom-
position of mld.ps we have the two lists RDphish = {paypal-
secure,paypal-secure.de} and RDlegit = {paypal, paypal.de}
giving RDlegit ∩ RDphish = ∅. Hence our proposed decom-
position emphasizes the difference between the two domains.

Once the two sets are built, the next step is to evaluate
the relatedness of their components. It is tempting to compute
word similarity or word relatedness with existing tools such
as Disco [7]. However this tool, even if efficient in most cases
and especially for phishing domain names analysis as shown
in our previous work [14], it is not necessarily suited to intra-
URL relatedness computation.

1http://publicsuffix.org/list/

B. Word Relatedness Evaluation Tools Shortcomings

WordNet [8] is a lexical database containing a collection
of english language words. Given a word, WordNet can give
a collection of related words. The limitation of this tool is
that it is only based on English vocabulary that is likely to
appear in an English dictionary, whereas Internet vocabulary
includes several different languages and many words that are
not contained in dictionaries.

Automated techniques and measures have also been devel-
oped to evaluate word relatedness. Latent Semantic Analysis
(LSA) proposed by Landauer and Dumais [15] or Pointwise
Mutual Information (PMI), introduced by Church and Hanks
[5], are examples of these techniques. The Normalized Google
Distance (NGD [6]) computes the semantic similarity between
two words by querying the Google search engine for these
words and counts the number of Web pages where they
appear together and individually. Disco [7] relies on mutual
information evaluation between two words based on corpora.

To prove the limitations of these existing tools, we tested
whether two of them are able to find related words for a
set of labels. WordNet and Disco are chosen since these are
the only ones that are really usable through an interface.
The testing set consisted of the RDurl extracted from a set
of 94 URLs. These URLs come from PhishTank (described
in Section IV-A) i.e. phishing URLs present in PhishTank
blacklist are categorised according to the brand they target,
when we made our evaluation 94 brands and associated URLs
were present in this list. A subset of this test set is given in
Table II and the result of the test for each tool is given in the
two first rows of Table III. The numbers of mld and mld.ps
for which the tested tools can give at least one related word
are given in absolute value and percentage terms.

Neither WordNet nor Disco performs well on this test set.
These only provide related words for less than 25% of mld
and never match any mld.ps, although the brands and domain
names tested are well known. In addition for the mlds that
match a result, it is usually for brand that is also a meaningful
word such as live or visa. The test proves that current word
relatedness tools are not suited to the measure of intra-URL
relatedness.

While creating a dedicated corpus to be used with existing
methods would be helpful but challenging, word relatedness
can be dynamically inferred from search engine query data,
as shown in next section.

C. Search Engine Query Data

To perform the evaluation of intra-URL relatedness, we use
search engine query data. The reason is that URL obfuscation
is a social engineering lure. Phishing URLs target a brand, so
clever phishers blend within them the brand and words that
Internet users associate with the brand, such as a provided
service: payment for PayPal. People generally use search
engines to access these services. When they make a search,
they type some keywords that are typically the brand or the
domain name and the service needed like paypal payment
or hsbc.com on-line banking. These word associations reflect

Brand mld mld.ps
JPMorgan Chase jpmorganchase jpmorganchase.com
TAM Airline tam tam.com.br
Visa visa visa.com
Windows Live live live.com
Poste Italiane poste poste.it
Wells Fargo wellsfargo wellsfargo.com
Blizzard blizzard blizzard.com

TABLE II
SUBSET OF MOST PHISHING TARGETED BRANDS WITH mld & mld.ps

Tool #mld %mld #mld.ps %mld.ps
WordNet 20 21.3% 0 0%
Disco 23 24.5% 0 0%
Yahoo Clues 87 92.6% 68 72.3%
Google Trends 92 97.9% 76 80.9%
Total 94 - 94 -

TABLE III
NUMBER OF LABELS MATCHING AT LEAST ONE RELATED WORD FOR 4

TOOLS

the cognitive process of users searching for PayPal or HSBC.
Consequently, such words are the ones phishers tend to blend
into URLs to trap PayPal and HSBC customers [3].

Hence, mining search engine query data for word related-
ness measurement is relevant in a phishing context. To achieve
this goal, we use search engine query data from two top-
ranked search engines: Google and Yahoo. Both offer services,
that, given a term, provide some insights on requesting trends
concerning it. These services are respectively Google Trends2

and Yahoo Clues3. In the context of the paper we define a term
t as a set of words w. {paypal} and {paypal, login, secure}
are two examples of terms.

Google Trends shows the relative interest of Google users
over time in a term. It depicts the geographic interest for this
term and provide related terms according to users’ related
searches. Google Trends provides the top ten related searches
over time as well as the ten rising related searches namely
those on which interest has increased recently. This allows us
to gather up to twenty related terms for one given term.

Yahoo Clues provides the same kind of services as Google
Trends. It offers an insight into the search flows, the terms
requested just before (5 terms) and after (5 terms) a term.
Like Google Trends it also provides a set of related searches,
but no rising searches.

Combining both sources can give up to forty related terms
for one given term. A result for the queried term {paypal} for
both tools Google Trends and Yahoo Clues is given in Table
IV. The ability of these tools to find related words for phishing
targeted mld and mld.ps is highlighted in Table III. Both tools
were tested on the same set of terms used for WordNet and

2http://www.google.com/trends/
3http://clues.yahoo.com/analysis

Disco, giving the results in rows 3 and 4. They perform better,
with Google Trends being the best at finding related words.
However both provide match results for more than 90% mld
and 70% mld.ps, much more than usual similarity evaluation
tools tested earlier.

Having a URL url and the extracted sets RDurl and
REMurl, Google Trends and Yahoo Clues are automati-
cally requested for each element of the two sets. We de-
fine Termw, as the set of terms resulting from the re-
quests of the word w in both Google Trends (related &
rising) and Yahoo Clues (related & requests). A subset
of Termpaypal is given in Table IV with Termpaypal =
{{paypal, account}, {paypal, login}, ...}.

We define four sets of words built from a URL url:
RELrd(url), RELrem(url), ASrd(url) and ASrem(url).
RELset(url) consists of all the words related to the words

of set i.e. words included in terms that are results of requests
for elements of set. Here set is either RDurl or REMurl. The
formulas for these sets are given in Equations (1) and (2).

RELrd(url) = {w ∈ t | t ∈ Termw′ , w′ ∈ RDurl} (1)

RELrem(url) = {w ∈ t | t ∈ Termw′ , w′ ∈ REMurl} (2)

ASset(url) is the set of words that are associated with
the words of set i.e. the words that appear in a common
single term. Assuming a term t composed of three words
{w1, w2, w3}, there is a symmetric association relationship
between w1 and w2, w1 and w3, w2 and w3. The two sets
ASrd(url) for RDurl and ASrem(url) for REMurl are defined
in Equations (3) and (4) respectively.

ASrd(url) = {w ∈ t | ∃w′ ∈ RDurl, w
′ ∈ t, w′ 6= w} (3)

ASrem(url) = {w ∈ t | ∃w′ ∈ REMurl, w
′ ∈ t, w′ 6= w}

(4)
These four sets are extracted to quantify the relationship

between and inside each set RDurl and REMurl. Assume a
URL www.paypal.com/login:
RDwww.paypal.com/login = {paypal, paypal.com}. Consider
the subset of three terms resulting from querying paypal in
Google Trends (rising) given in Table IV: Termpaypal =
{{amazon, paypal}, {paypal, fees}, {ebay, uk}}
We have:
RELrd(www.paypal...) = {amazon, paypal, fees, ebay, uk}
ASrd(www.paypal...) = {amazon, fees}

D. Feature Calculation

Based on the sets defined in the previous subsection, we
introduce 12 features characterising intra-URL relatedness and
URL popularity. The popularity criteria is based on the search
count for components of a URL (registered domain, mld, etc.).
These features are described in Table V.

The features 1-6 define intra-URL relatedness by calculating
the Jaccard index pairwise between the four sets defined
in Section III-C (RELrd(url), RELrem(url), ASrd(url) and
ASrem(url)). The Jaccard index is a long-established metric
used to calculate similarity and diversity between two sets A

Google related Google rising Yahoo related Yahoo requests
{paypal, account} {amazon, paypal} {bill,me, later} {paypal, login}
{paypal, login} {paypal, fees} {netspend} {paypal.com}

{paypal, credit, card} {ebay, uk} {suntrust} {paypal, buyer, credit}
{paypal, email} {paypal, login} {regions} {paypal, customer, service}

TABLE IV
EXAMPLE OF TERM RESULTS FROM GOOGLE TRENDS AND YAHOO CLUES FOR {paypal}

Features Description
1 JRR = |RELrd(url)∩RELrem(url)|

|RELrd(url)∪RELrem(url)| Jaccard index b/w RELrd(url) and RELrem(url)

2 JRA = |RELrd(url)∩ASrem(url)|
|RELrd(url)∪ASrem(url)| Jaccard index b/w RELrd(url) and ASrem(url)

3 JAA = |ASrd(url)∩ASrem(url)|
|ASrd(url)∪ASrem(url)| Jaccard index b/w ASrd(url) and ASrem(url)

4 JAR = |ASrd(url)∩RELrem(url)|
|ASrd(url)∪RELrem(url)| Jaccard index b/w ASrd(url) and RELrem(url)

5 JARrd = |ASrd(url)∩RELrd(url)|
|ASrd(url)∪RELrd(url)| Jaccard index b/w ASrd(url) and RELrd(url)

6 JARrem = |ASrem(url)∩RELrem(url)|
|ASrem(url)∪RELrem(url)| Jaccard index b/w ASrem(url) and RELrem(url)

7 cardrem = |REMurl| number of words in REMurl

8 ratioArem = |ASrem(url)|
|REMurl| ratio of associated words for words in REMurl

9 ratioRrem = |RELrem(url)|
|REMurl| ratio of related words for words in REMurl

11 mldres =

{
0 if |Termmld| = 0
1 else

whether there is search engine results
or not for the mld of the URL

11 mld.psres

{
0 if |Termmld.ps| = 0
1 else

whether there is search engine results
or not for the mld.ps of the URL

12 ranking Alexa ranking for mld.ps

TABLE V
URL FEATURE DESCRIPTIONS

and B. The closer J(A,B) is to 1 the more similar are A and
B. These six features quantify the relatedness between the
two parts of the URL (mld.ps and the rest) through JRR, JRA,
JAA and JAR, as these compute Jaccard indexes between sets
extracted from different parts (RDurl and REMurl). These also
measure the relatedness inside each part through JARrd and
JARrem, as these features are calculated from sets extracted
from the same part of a URL.

Features 7-12 reflect the popularity of a URL and its com-
ponents with the number of words that compose it (cardrem)
and the number of related and associated words found in
search engine query data based on these words with ratioArem

and ratioRrem. These two features are weighted by cardrem.
Features mld.psres and mldres represent the popularity of the
registered domain by giving boolean values describing whether
the mld.ps and mld match results while queried in Google
Trends and Yahoo Clues. The final feature (ranking) is the
ranking of the mld.ps according to the Alexa4 Web site ranking
list. Alexa gives a ranking for the top 1,000,000 most visited
Web sites; if a particular mld.ps is not in the list, the value
10,000,000 is considered.

Features 10, 11 and 12 can be considered as relying on the
reputation of a domain and not on the intra-URL relatedness.
Even if features 10 and 11 are new — ranking has been used

4http://www.alexa.com/

already in state of the art work — we compare in Section V
classification results with and without these three features to
assess the relevancy of intra-URL relatedness features.

IV. DATASETS

To assess the ability of the proposed feature set to be used
in supervised classification, we use two datasets. One of these
is a malicious dataset, the phishing dataset; the other is the
legitimate dataset. These sets are composed from different
sources — as in several phishing detection work [12], [16],
[17] — already used in [18], [19].

A. Phishing Dataset

We used PhishTank to build a phishing dataset. PhishTank5

is a collaborative project to which people can submit phishing
e-mails and Web sites. Suspected phishing URLs are further
checked by several people before being confirmed as malicious
and added to a blacklist. PhishTank provides lists of valid and
active phishing URLs.

We downloaded this list on a daily basis between October
11th and November 10th, 2012 and built a phishing ground
truth dataset of 53,089 unique URLs. URLs consisting only of
mld.ps, www.mld.ps or IP addresses without path or query were
discarded because it is impossible to calculate the intra-URL
relatedness for such URLs, as REMurl = ∅. In addition we

5http://www.phishtank.com/

already addressed the identification of such phishing domains
in [14]. After this selection we had 48,009 extended phishing
URLs in the phishing dataset meaning less than 10% phishing
URLs discarded.

B. Legitimate Dataset

To provide additional learning instances for legitimate
URLs, we selected URLs from the Open Directory Project
(DMOZ6). DMOZ is a directory of the Web containing more
than two million URLs. We first discarded URLs consisting
only of mld.ps or www.mld.ps, as for the phishing dataset.
Then a uniform random selection was made on the rest to
keep 48,009 legitimate URLs.

We constructed a balanced dataset (half malicious/half le-
gitimate) of ground truth data composed of 96,018 URLs.
We acknowledge that a half/half ratio for phishing and legiti-
mate URLs does not reflect real world repartition. However
this dataset is used to assess the efficiency of the search
engine query data and the features extracted therefrom, in
distinguishing phishing from legitimate URLs through ten-fold
cross-validation. And as presented in [20], imbalanced dataset
in cross-validation provides misleading results. This URL
set with extracted features is publicly available for research
purpose7.

V. PHISHING URL DETECTION

To automatically detect phishing URLs, we use supervised
classification techniques. We build a feature vector matrix from
the dataset presented in previous section. Each feature vector
is composed of 12 elements, namely the 12 features described
in Section III-D. The predicted variable is 0 for a legitimate
URL and 1 for a phishing URL. This gives a matrix of 96,018
feature vectors representing the 96,018 URLs of the testing
dataset.

A. URL Classification

Since there is a wide range of supervised classification algo-
rithms, we assessed our dataset according to several classifiers
using Weka [21]. Seven classifiers were tested divided between
tree-based (Random Tree, Random Forest, C4.5, LMT) rule-
based (PART, JRip) and function-based (SVM). The clas-
sification was made without parameters tuning through a
ten-fold cross-validation as a first step to select the most
promising approach. Results for accuracy, true positives and
true negatives are given in Figure 1 for each classifier. For
sake of clarity we define for URLs:
• Phishing classified as phishing: true positives (TP) and

TPrate =
TP

TP+FN
• Legitimate classified as phishing: false positives (FP)

and FPrate =
FP

TN+FP
• Legitimate classified as legitimate: true negatives (TN)

and TNrate =
TN

TN+FP
• Phishing classified as legitimate: false negatives (FN)

and FNrate =
FN

TP+FN

6http://www.dmoz.org/
7http://secan-lab.uni.lu/images/stories/samuel marchal/urlset.csv

and the accuracy: Accuracy = TP+TN
TP+TN+FP+FN

Fig. 1. Classification results for 7 classifiers

Among the tested classifiers, SVM yields the worst accuracy
(86.31%) while being efficient in identifying legitimate URLs
(93.1%). Rule-based classifiers have approximately the same
performance (around 90%) with disproportionate true posi-
tives and true negatives. The best performers are tree-based
classifiers, with Random Forest, correctly classifying 95.22%
of URLs, being the best.

Hence, Random Forest is selected for classification. Ran-
dom Forest [22] is a classification method that creates a
multitude of decision trees during training. During prediction,
it outputs a hard decision for the class of an instance as the
class that has been predicted by the most individual trees.
However a soft prediction can also be deduced from the
combination of results given by individual trees. This soft
prediction is bounded on [0, 1] and gives a confidence score
for the prediction. It is then compared to a discrimination
threshold to give the hard decision.

We tuned the parameters of Random Forest training in order
to achieve better classification. The number of trees to be
generated during training was set to 100. The ROC (Receiver
Operating Characteristic) curve describing the classification
results for the tuned classifier in true positive rate and false
positive rate is illustrated in Figure 2. The ROC curve typically
corresponds to the variation of true positives and false positives
while varying the discrimination threshold from 0 to 1. To
minimize the number of legitimate URLs classified as phishing
(false positives) we adjust the discrimination threshold from
0.49 (the value giving the best accuracy) to 0.76. This reduces
the accuracy from 95.66% to 94.91% but also decreases the
FPrate from 4.13% to 1.44%.

The detailed classification metrics for the Random Forest
algorithm with a 0.76 discrimination threshold are given in
Table VI. The two first columns represent the rate of well-
classified and misclassified instances for each class: TPrate,
FPrate, FNrate and TNrate. The Precision corresponds to the
ratio of phishing URLs classified as phishing with respect to
the total URLs classified as phishing such that: Precision =

TP
TP+FP . The F-measure is defined as:
F-measure = 2 · Precision·Recall

Precision+Recall , where Recall = TPrate

To show the relevancy of intra relatedness features, we
classified with different features the set of URLs. Using only

Class Class. as phish. Class. as leg. Precision F-measure Accuracy
Phishing 91.27% (TP) 8.73% (FN) 98.44% 94.72% 94.91%Legitimate 1.44% (FP) 98.56% (TN)

TABLE VI
DETAILED CLASSIFICATION RESULTS FOR RANDOM FOREST (THRESHOLD = 0.76)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.05 0.1 0.15 0.2 0.25

T
ru

e
po

st
iv

e
ra

te

False positive rate

Fig. 2. ROC curve for Random
Forest classification

Fig. 3. Phishing and legitimate URL
partition according to rating ranges

features 1-9 for classification yields an accuracy of 93.48%
whereas using reputation based features 10-12 yields 83.97%.
Feature 12 (ranking) and other state of the art features are not
sufficient to distinguish between phishing and non-phishing
URLs alone. However we show that the proposed feature set
yields good results in doing this task. In addition, combining
the new proposed features with reputation based features can
lead to an improvement in the classification accuracy making
this work complementary to the state of the art.

Even though this technique, which gives a hard decision for
URL class, is proved efficient, correctly classifying 94.91%
of URLs with only 1.44% of legitimate URLs classified as
malicious, we further leverage machine learning to build a
reputation system.

B. URL Rating

The soft prediction value provided by Random Forest is
defined on the range [0; 1]. In the previous section a dis-
crimination threshold was fixed to give a hard decision on
the phishingness degree of a URL. However soft prediction
values are not uniformly distributed over the range [0; 1] and
some sub-ranges of values may be more suitable to providing a
highly reliable decision on the phishingness of a URL. Hence,
we analysed the soft prediction distribution regarding phishing
or legitimate URLs.

The soft prediction range of value [0; 1] is divided in 12 sub-
ranges, two being the exact value 0 and 1 and the ten remaining
being ranges of length 0.1:]0; 0.1[, [0.1; 0.2[, ... , [0.9; 1[.
The soft prediction provided by the tuned Random Forest
was computed for all 96,018 URLs of the dataset through
a ten-fold cross-validation. We counted the URLs having a
score belonging in each sub-range. Figure 3 depicts this count
according to the set (phishing at the top / legitimate at the
bottom) the URLs come from. The 12 different sub-ranges
are on the x-axis and the URL count is on the y-axis in a log
scale centered on 10 and increasing in both directions for each
class (phishing up/legitimate down).

We can observe that most of the URLs are grouped in
each extremity of the range and mostly in the sub-ranges
0,]0; 0.1[, [0.9; 1[and 1, which contain a total of 80,630
URLs out of 96,018. In addition the middle values of soft
prediction have few of either kind of URLs, usually less than
1,000. This confirms that the soft prediction is not uniformly
distributed over its range of definition. Considering the two
extreme values, very few phishing URLs (40) have the score
0, whereas 22,863 legitimate URLs do. The same happens for
a soft prediction of 1 where 34,790 phishing URLs have this
score against only 26 legitimate. Given that 0 corresponds to
legitimate and 1 to phishing, we are able to classify 60.11%
of the dataset (57,719 URLs) with an accuracy of 99.89%.
URLs getting a soft prediction of 0 or 1 are very likely to be
either legitimate or phishing URLs respectively. This proves
that some ranges of soft prediction values are more suited to
making a reliable prediction. If we extend the analysis to the
range [0; 0.1], it contains 38,741 legitimate URLs and only
288 phishing ones. The range [0.9; 1] is composed of 41,260
phishing URLs and 341 legitimate URLs. Considering these
two sub-ranges, these contain 83.97% of the testing dataset
and their components are correctly identified as legitimate or
phishing with an accuracy of 99.22%.

The soft prediction can be used as a risk score for a URL.
The closer it is to 1, the higher the risk; the closer to 0 the safer
the URL. PhishScore automatically provides a phishingness
score for requested URLs to inform users of risks. We have
demonstrated that such a rating system is reliable in 99.22%
of the cases for most of the URLs (83.96%).

While performing our experiments, we timed the process
from labels extraction, requesting search engines, features
computation to classification decision. It took around 112
hours for the set of 96,018 URLs on a single machine (Intel
Core i7 processor and 4Gb memory). This gives an average
time per URL of 4.2 seconds, most of the time being taken by
the requests to search engines. Direct access to search engine
query data would highly decrease this time making the delay
introduced by this method shorter.

VI. DISCUSSION

This paper introduces PhishScore a system relying on
search engine query data for phishing URL identification. This
technique has some limitations that we identify in this section.

Our technique is not applicable to all types of obfuscated
URLs as described in Section II. URLs composed of only
a malicious domain, URLs based on shortening services or
URLs algorithmically generated are kind of malicious URLs
that can bypass our detection technique. This kind of URLs
and malicious domains are however widely used in botnet

communication (C&C) or spamming activities [23], such activ-
ities does not rely on a social engineering process as phishing
does. The main part of URLs used for phishing are meaningful
and composed of many terms [3], this is why our technique
is relevant in a phishing context.

A limitation of the implementation is that data publicly
available through Google Trends and Yahoo Clues is limited.
For each requested term only the ten related most popular
terms are returned by these tools. Related terms less requested
by search engine users do not appear in results while being
relevant for intra-URL relatedness computing. For the same
reason, some unpopular terms blended in URLs do not match
any results. The reason is that Google and Yahoo do not
provide data that is not representative enough i.e. for terms
that are not requested enough by their users. These facts limit
the accuracy of intra-URL relatedness computing and is one of
the reason why extra features such as ranking are included
in the feature set. A full access to Web search logs would
highly improve the relevancy of intra relatedness metrics and,
as a result, the classification performance as well. Despite
this limited access to data, the results presented in this paper
provide strong hints regarding the relevancy of using search
engine query data for phishing detection.

A last issue of using on-line tools for inferring intra-URL
relatedness is the delay implied by multiple HTTP requests
making real-time analysis difficult. As presented in Section
V the average processing time per URL is 4.2 seconds. A
solution to speed up the process would be again direct access
to search engine query data or temporary local cashing.

VII. RELATED WORK

For most related work the datasets used for assessment
and the implemented techniques of phishing URL detection
are not publicly available, making quantitative comparisons
impossible.

In recent years, many techniques have been developed
to cope with phishing and have focused on the real-time
identification of this threat. One approach is to compare the
content of presumed phishing Web pages with the original
Web page being phished as in [24], [25], [26], [27]. The
main shortcoming of such a method is that the site being
phished must be first identified. Another is that this approach
is limited to rogue Web sites which is just one of several
types of phishing (i.e. drive-by download attacks). PhishScore
relying only on URL analysis covers a larger scope than the
latter.

Passively captured DNS traffic is used to recognise mali-
cious domains in [28], [29]. The technique relies on machine
learning algorithms applied to DNS-based features. The lim-
itation of this approach when applied to phishing is that it
identifies malicious domains instead of malicious URLs. For
obfuscated phishing using URLs based on popular domain
names, it is inefficient.

Consequently automated techniques to identify phishing
URLs have been developed. Most rely on the extraction
of phishing heuristics based only on the URL components.

Features such as the length of the level domain, the path, the
tokens, and the number of tokens at each level are considered
in [18]. Some domain name-related information like ranking,
WHOIS information, AS number, blacklisted status, etc. are
used in [12], [17], [30]. A lexical analysis is performed to
create binary features from each label observed in the URL
in [12], [17], [18], [30]. In these techniques, label extraction
is performed by splitting according to basic separators (/, .,
=, -, etc.) whereas our method is more sophisticated [13].
In addition these approaches need previous knowledge about
the exact labels being used in URLs. PhishScore although
relying on labels that compose URLs, only computes from
these labels and analyses numerical relatedness metrics. This
relatedness can be calculated from previously unseen labels as
long as these appear in search engine query data. Moreover
none of these methods consider the semantic dimension of
labels composing URLs as we do.

More predictive approaches have been developed to cope
with phishing. In [31], a tailor made blacklist suited to single
machine is proposed, this blacklist is built based on the
machine’s logs and historical attacks from other machines
that are considered as similar. In [19], several phishing URLs
are grouped according to common pattern in order to extract
a common regular expression. Then new potential phishing
URLs are generated according to the variable part of regular
expressions.

Recently some solutions considering the semantic dimen-
sion of phishing attacks have been proposed. In [32], the
content of phishing Web pages is mined. A semantic concept
is extracted from every sentence composing the Web page.
These concepts are then compared with templates learned from
known phishing pages through a machine learning algorithm
to determine if the Web page is a phishing one. Approximately
the same technique is used in [33] to block phishing e-
mails based on semantic content analysis. The common aspect
with our approach is the leveraging of semantic information
for phishing detection, a concept close to word relatedness.
However previous research targets phishing e-mails and Web
pages. Semantic relatedness analysis is performed on such
content with existing similarity metrics, whereas in our work
it is applied to URLs with new similarity metrics based on
search engine query data. Our work is also complementary
to [14], where phishing domain names likely to be registered
by phishers are generated in a predictive process based on
a natural language model to build predictive blacklists. Here
we focus on real-time identification of full phishing URLs
based on machine learning and new features, regardless they
are based on malicious or legitimate domains.

Search engine query data has already been used for the
analysis of search interests over time [34]. By monitoring the
variation of interest for terms related to influenza, Ginsberg et
al. [35] estimate the magnitude of flu infection for a given
geographic region. In [36], Web search logs are used to
improve search engine results. However, to the best of our
knowledge we are the first to use this data for the purpose of
word-relatedness evaluation.

VIII. CONCLUSION AND FUTURE WORK

This paper introduces PhishScore, an efficient phishing
URL detection system relying only on URL lexical analysis.
The approach is based on the intra-URL relatedness. This
relatedness reflects the relationship among the words blended
into a URL and particularly into the part of the URL that
can be freely defined and the registered domain. We leverage
search engine query data in order to extract 12 features from a
URL characterizing its intra relatedness and its popularity. The
proposed features were used in supervised classification on a
ground truth dataset of 96,018 phishing and legitimate URLs.
This experiment yielded a classification accuracy of 94.91%
with a low false positive rate of 1.44%. This experiment was
extended to introduce a URL rating system, PhishScore, to
dynamically compute a risk score for URLs. The risk score
on the testing dataset is able to correctly identify 99.22% of
the legitimate and phishing URLs for 83.97% of the dataset.

Future work will consist in merging the technique proposed
in [14], which is complementary to that introduced in this
paper, to create a phishing detection system with a larger scope
of action. Due to delay issues the applications for real time
phishing URLs are limited. A solution to apply this technique
is as a centralized phishing e-mail detection system. Every
link/URL embedded in incoming e-mail can be extracted and
analysed by PhishScore to rate the risk of an e-mail before
forwarding it to mail clients as a spam filter does.

ACKNOWLEDGEMENTS.

This work is supported by the Fonds National de la
Recherche, Luxembourg (Project ID: 3967419).

REFERENCES

[1] “Gartner survey shows phishing attacks escalated in 2007,” Gartner
Research, Tech. Rep., 2007. [Online]. Available: http://www.gartner.
com/newsroom/id/565125

[2] “2010 Identity Fraud Survey Report,” Javelin Strategy & Research, Tech.
Rep., 2010.

[3] “Global Phishing Survey: Trends and Domain Name Use,” APWG, Tech.
Rep. 2H2011, 2012.

[4] “Phishing Activity Trends Report,” APWG, Tech. Rep. 3rd Quarter
2012, 2013.

[5] K. W. Church and P. Hanks, “Word association norms, mutual informa-
tion, and lexicography,” Computational linguistics, vol. 16, no. 1, pp.
22–29, 1990.

[6] R. L. Cilibrasi and P. M. Vitanyi, “The Google similarity distance,”
Knowledge and Data Engineering, IEEE Transactions on, vol. 19, no. 3,
pp. 370–383, 2007.

[7] P. Kolb, “Disco: A multilingual database of distributionally similar
words,” in Proceedings of KONVENS-2008, 2008.

[8] G. A. Miller et al., “Wordnet: a lexical database for english,” Commu-
nications of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[9] P. Mockapetris, “RFC 1034: Domain Names - Concepts and Facilities,”
1987.

[10] ——, “RFC 1035: Domain Names - Implementation and Specification,”
1987.

[11] P. Mockapetris and K. Dunlap, “Development of the domain name
system,” in Proceedings of the 1988 ACM SIGCOMM. IEEE Computer
Society, 1988.

[12] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for
detection and measurement of phishing attacks,” in Proceedings of the
2007 ACM workshop on recurring malcode. ACM, 2007, pp. 1–8.

[13] T. Segaran and J. Hammerbacher, Beautiful data: the stories behind
elegant data solutions. O’Reilly Media, Incorporated, 2009.

[14] S. Marchal, J. François, R. State, and T. Engel, “Proactive discovery of
phishing related domain names,” in Research in Attacks, Intrusions, and
Defenses. Springer, 2012, pp. 190–209.

[15] T. K. Landauer and S. T. Dumais, “A solution to Plato’s problem: The
latent semantic analysis theory of acquisition, induction, and represen-
tation of knowledge,” Psychological Review; Psychological Review, vol.
104, no. 2, p. 211, 1997.

[16] M. Khonji, Y. Iraqi, and A. Jones, “Lexical url analysis for discrimi-
nating phishing and legitimate e-mail messages,” in 2011 International
Conference for Internet Technology and Secured Transactions (ICITST),
2011, pp. 422–427.

[17] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying suspicious
URLs: an application of large-scale online learning,” in Proceedings of
the 26th Annual International Conference on Machine Learning. ACM,
2009, pp. 681–688.

[18] A. Le, A. Markopoulou, and M. Faloutsos, “Phishdef: URL names say it
all,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 191–195.

[19] P. Prakash, M. Kumar, R. Kompella, and M. Gupta, “Phishnet: predictive
blacklisting to detect phishing attacks,” in Proceedings of INFOCOM.
IEEE, 2010, pp. 1–5.

[20] G. Forman and M. Scholz, “Apples-to-apples in cross-validation stud-
ies: Pitfalls in classifier performance measurement,” SIGKDD Explor.
Newsl., vol. 12, no. 1, pp. 49–57, 2010.

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[22] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[23] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “Detecting
algorithmically generated malicious domain names,” in Proceedings of
the 10th ACM SIGCOMM Conference on Internet Measurement, ser.
IMC ’10. ACM, 2010.

[24] T.-C. Chen, S. Dick, and J. Miller, “Detecting visually similar web
pages: Application to phishing detection,” ACM Transactions on Internet
Technology, vol. 10, no. 2, 2010.

[25] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based phishing
detection,” in Proceedings of the 4th international conference on security
and privacy in communication netowrks. ACM, 2008, p. 22.

[26] G. Xiang and J. I. Hong, “A hybrid phish detection approach by
identity discovery and keywords retrieval,” in Proceedings of the 18th
international conference on World wide web. ACM, 2009, pp. 571–580.

[27] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-based
approach to detecting phishing web sites,” in Proceedings of the 16th
international conference on World Wide Web. ACM, 2007, pp. 639–648.

[28] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,
“Building a dynamic reputation system for DNS,” in 19th Usenix
Security Symposium, 2010.

[29] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure: Finding
malicious domains using passive DNS analysis,” in Proceedings of
NDSS, 2011.

[30] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
learning to detect malicious web sites from suspicious urls,” in Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2009.

[31] J. Zhang, P. Porras, and J. Ullrich, “Highly predictive blacklisting,” in
Proceedings of the 17th conference on Security symposium. USENIX
Association, 2008.

[32] J. Zhang, Q. Li, Q. Wang, T. Geng, X. Ouyang, and Y. Xin, “Parsing
and detecting phishing pages based on semantic understanding of text,”
Journal of Information & Computational Science, no. 9, pp. 1521–1534,
2012.

[33] V. Ramanathan and H. Wechsler, “phishGILLNET phishing detection
methodology using probabilistic latent semantic analysis, AdaBoost, and
co-training,” EURASIP Journal on Multimedia and Information Security,
vol. 2012, no. 1, pp. 1–22, 2012.

[34] J. Rech, “Discovering trends in software engineering with Google
Trend,” ACM SIGSOFT Software Engineering Notes, vol. 32, no. 2,
pp. 1–2, 2007.

[35] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski,
and L. Brilliant, “Detecting influenza epidemics using search engine
query data,” Nature, vol. 457, no. 7232, pp. 1012–1014, 2008.

[36] H. Liu, J. He, Y. Gu, H. Xiong, and X. Du, “Detecting and tracking
topics and events from web search logs,” ACM Trans. Inf. Syst., vol. 30,
no. 4, pp. 21:1–21:29, Nov. 2012.

