
PhD-FSTC-2014-26
The Faculty of Sciences, Technology and Communication

DISSERTATION

Presented on 08/09/2014 in Luxembourg
to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG
EN INFORMATIQUE

by

Alexandre Bartel
Born on 22 November 1986 in Strasbourg (France)

Security Analysis of Permission-Based Systems using
Static Analysis: An Application to the Android Stack

Dissertation defense committee
Dr. Yves Le Traon, Dissertation supervisor
Professor, Université du Luxembourg

Dr. Lionel Briand, Chairman
Professor, Université du Luxembourg

Dr. Martin Monperrus, Deputy Chairman
Professor, Université de Lille

Dr. Andreas Zeller, Member
Professor, Universität des Saarlandes

Dr. Benjamin Livshits, Member
Professor, Microsoft Research

Dr. Eric Bodden, Invited Member
Professor, Technische Universität Darmstadt

Dr. Jacques Klein, Advisor
Université du Luxembourg

In memory of my father.
To my mother.

To my wife, Claire.

Abstract

In recent years, mobile devices, such as smart phones, have spread at an exponential rate. The most used system
running on these devices, accounting for almost 80% of market share for smart phones world-wide, is the Android
software stack. This system runs Android applications that users download from an application market. The system
is called a permission-based system since it limits access to protected resources by checking that applications have
the required permission(s). Users store and manipulate personal information such as contact lists or pictures using
applications on their devices and trust that their data is safe. Analyzing applications and the system on top of which
they are running would be an objective method to evaluate if the data is well-protected.

In this thesis we aim at analyzing Android applications from the security point of view and answering to the
following challenging questions: How can Android applications be analyzed? Are permissions well-defined for
Android applications? Can applications leak protected data? How can dynamic analysis complement static analysis?
To answer these questions we structure the thesis around four objectives.

The first objective is to analyze Android applications with static analysis tools. The challenge is that Android
applications are packaged with Dalvik bytecode, different in many aspects from the Java bytecode. We developed
Dexpler, a tool to transform Dalvik bytecode into Jimple, an understandable format for Soot, one of the most used
static analysis framework for Java-based programs. With Dexpler we can now analyze Android applications.

The second objective is to check that developers do not give too many permissions to the Android applications
they develop. Reducing the number of permission reduces the attack surface of an malicious user exploiting an
application. We analyze the code of applications to check which permissions they really require. This requires
to deeply analyze the Android framework to extract a mapping between API methods (that Android application
call) and required permissions. We present an Andersen-like field-sensitive approach using novel domain-specific
optimizations to extract the mapping from the Android framework.

Permissions protect sensitive data. Nevertheless, applications having the right permission(s) to access the data
could leak the data. This is for instance the case with malware or application packaged with aggressive advertisement
libraries. The third objective is to statically analyze Android applications to detect such leaks. Android applications
are different from traditional Java applications. One of the most important differences is that Android applications are
made of components. Analyzing Android applications to find leaks requires to link components that communicate
together and to model every component. We developed IccTA to detect privacy leaks. It connects components at the
code level to perform inter-component and inter-application data-flow analysis.

Analyzing Android applications statically enables to find security issues such as the GPS coordinates leaking out
of the device. However, static analyses do not run directly on users’ devices and thus do not take the device’s context
into account. The last objective of this thesis is to have an insight of how dynamic approaches can complement static
analyses. We are the first to present a tool-chain to dynamically instrument Android applications in vivo, i.e. directly
on the device. We present two use cases instrumenting applications to show that dynamic approaches are feasible,
that they can leverage results from static analyses, and that they are beneficial for the user from the point of view of
security or privacy. One of the use case is a fine-grained permission system prototype enabling the user to disable or
enable application permissions at will.

The four contributions have been validated through rigorous experiments as complete as possible.
Through this thesis we provide solutions to analyze Android applications using static analysis, to check the

permission set of applications, to find private data leaks in Android applications and to analyze permission-based
frameworks. By analyzing what goes wrong, we can improve the security and privacy of mobile applications.

Acknowledgements

First and foremost, I want to thank my supervisor, Yves Le Traon. It has been an honor to be his first
Ph.D. student in his SERVAL team. I am grateful for the time he spent discussing with me on new ideas
and contributions. When faced with a technical problem he insisted that I take a step back and look at the
global picture, which really helped. Yves told me how good software engineering research is done.

Then, I would like to thank my day-to-day advisor, Jacques Klein. He is the one who initiated the
first Android research projects by bringing Android devices onto my desk and steering me towards the
right research questions. Always in a good mood, it was a real pleasure to work with him. He taught me
to focus my thoughts and how to reason at an abstract level to clearly present new ideas.

Martin Monperrus was my remote advisor from the University of Lille. I would like to thank him
for his constructive and insightful feedback on my work as well as great advices regarding paper writing
and time management. Always motivated he pushed me to work hard to reach top-level conferences and
journals.

During my Ph.D. I had very interesting technical discussions with numerous people from the Uni-
versity of Luxembourg, especially with Kevin Allix, Tegawendé François D’Assise Bissyande and Li Li,
whom I would like to thank in particular for his great work on IccTA.

I had the opportunity to work with and visit researchers at the University of Pennsylvania in the USA
and at the Technical University of Darmstadt in Germany. I would like to thank Damien Octeau and
Patrick McDaniel from the University of Pennsylvania for initiating and leading the successful collabo-
ration we had on EPICC. I also would like to thank Eric Bodden, Steven Arzt and Siegfried Rasthofer
from the Technological University of Darmstadt for their amazing work on FlowDroid and our fruitful
collaboration on taint analysis.

I would like to thank Lionel Briand, who did me the the honor of being the chairman of the disserta-
tion defense. I thank the members of my oral dissertation defense committee, Andreas Zeller, Benjamin
Livshits and Eric Bodden, for their time and insightful questions. For this dissertation I would also like
to thank my readers, Jacques Klein, Yves Le Traon, Martin Monperrus, Li Li and Panuwat Trairatphisan
for their time, interest, and helpful comments.

I would like to thank my Ph.D. candidate colleagues and friends who made my time enjoyable at
the University of Luxembourg. I am grateful to Panuwat Trairatphisan, Wei Dou, Lamia Bekkour, Li Li,
Phu-Hong Nguyen and Rustam Mazitov for memorable badminton and tennis games. I thank Kevin Allix
for the interesting discussions we had on a very broad range of topics. More generally, I thank all people
from the SERVAL team and SnT that I have had the chance to meet, in particular Christopher Henard,
Donia El Kateb, Anestis Tsakmalis, Iram Rubab, Jabier Martinez, Thomas Hartmann, Jorge Meira, and
Grégory Nain.

I gratefully acknowledge the National Research Fund of Luxembourg (FNR), my funding source that
made my Ph.D. work possible during three years and a half.

Lastly, I would like to thank my family for their encouragements and love. For my parents who
always supported me during my studies. And most of all for my loving supportive and encouraging wife
Claire whose support during this Ph.D. has been much appreciated. Thank you.

Alexandre Bartel
University of Luxembourg
September 2014

Contents

1 Introduction 1
1.1 A Brief History of Access-Control . 2
1.2 Access Control for the Masses . 3
1.3 Motivation for Permission-Based System Analysis 4

1.3.1 Confused Deputy . 4
1.3.2 Application Collusion . 4
1.3.3 Data Leakage . 5
1.3.4 Incomplete Documentation . 6
1.3.5 Fine-Grained Protection of User Data 6

1.4 Challenges for Permission-Based System Analysis 7
1.4.1 Dalvik Bytecode . 7
1.4.2 Analysis of the Framework . 8
1.4.3 Analysis of Applications . 9
1.4.4 Analysis Directly on Devices . 10

1.5 Contributions . 10
1.6 Roadmap of this Dissertation . 11

2 Technical Background 13
2.1 Introduction to the Android Stack . 13

2.1.1 Overall Architecture . 13
2.1.2 Structure of Android Applications . 15
2.1.3 Structure of the Android System . 18

2.2 Introduction to Static Analysis . 21
2.2.1 Call Graph . 21
2.2.2 Data-Flow Analysis . 27

2.3 Conclusion . 31

3 Dexpler: Converting Dalvik Bytecode to Jimple 35
3.1 Introduction . 35
3.2 Dalvik Bytecode and its Peculiarities . 36

3.2.1 Overall Structure . 37
3.2.2 Dalvik Instruction . 37
3.2.3 Primitives and Null . 37

ii Contents

3.2.4 Exceptions . 40
3.3 From Dalvik to Typed Jimple Code . 40

3.3.1 Requirements of the Translation . 41
3.3.2 Ambiguous Type Resolution . 44

3.4 Evaluation . 47
3.4.1 Discussion on Failed Apks . 47

3.5 Limitations . 48
3.5.1 Invalid Bytecode Never Executed and Never Checked by the VM . . . 48
3.5.2 Invalid Dalvik Bytecode Bypassing the VM Verification 48
3.5.3 Hidden Bytecode . 48

3.6 Conclusion . 49

4 Permission Gaps 51
4.1 Introduction . 51
4.2 The Permission Gap Problem . 53
4.3 Definitions . 54
4.4 Overview of Android . 56

4.4.1 Software Stack . 56
4.4.2 Android Permissions . 56
4.4.3 Services and Permissions . 57
4.4.4 Android Boot Process . 58
4.4.5 Android Communication . 58

4.5 Static Analyses for the Android Framework 59
4.5.1 Common Components for CHA and Spark 61
4.5.2 CHA-Android . 64
4.5.3 Spark-Android . 67
4.5.4 Recapitulation . 71

4.6 Discussion . 71
4.6.1 CHA versus Spark . 72
4.6.2 Comparison with PScout . 72
4.6.3 Comparison with Felt et al. 73
4.6.4 Soundness . 74
4.6.5 The Impact of Service Identity Inversion 74
4.6.6 Limitations . 75

4.7 Computing Permission Gaps . 75
4.7.1 A Calculus for Permission Analysis 76
4.7.2 Extraction of M and AV . 77
4.7.3 Computing the Permission Gap . 77

4.8 Conclusion . 78

5 Data Leakage in Android Applications 79
5.1 Introduction . 79
5.2 Background . 82

5.2.1 Android ICC Methods . 82

Contents iii

5.2.2 FlowDroid . 83
5.2.3 Epicc . 84

5.3 Motivating Example . 85
5.4 Definitions . 87
5.5 IccTA . 88

5.5.1 FlowDroid-IccTA: Reducing the ICC problem to an Intra-
Component Problem . 90

5.5.2 ApkCombiner: Reducing an IAC problem to an ICC problem 93
5.6 Evaluation . 94

5.6.1 RQ1: IccTA vs FlowDroid and Commercial Tool 94
5.6.2 RQ2: IccTA and Real-World Apps . 95
5.6.3 RQ3: Compare with Other academic Tools 98

5.7 Limitations . 98
5.8 Conclusion . 99

6 In Vivo 103
6.1 Introduction . 103
6.2 Motivation for Bytecode Instrumentation . 105

6.2.1 Advertisement Removal . 105
6.2.2 Fine-Grained Permission Policy . 106

6.3 Toolchain for In vivo Bytecode Instrumentation 106
6.3.1 Requirements . 106
6.3.2 Toolchain . 107

6.4 Use-case Design and Implementation . 109
6.4.1 Implementation of AdRemover . 109
6.4.2 BetterPermissions: A Fine-grained Permission Policy Management . . 109
6.4.3 Evaluation . 111

6.5 Performance of In Vivo Instrumentation . 113
6.5.1 Measures . 113
6.5.2 Experimental Material . 113
6.5.3 Dataset . 114
6.5.4 Dalvik to Java Bytecode Conversion 114
6.5.5 Performance of Bytecode Manipulation 115
6.5.6 Java Bytecode to Dalvik Conversion 117
6.5.7 Creating a New apk File . 118
6.5.8 Signing the Generated apk File . 118
6.5.9 Conclusion . 120

6.6 Conclusion . 122

7 Related Work 125
7.1 Local Typing for Dalvik . 125

7.1.1 Dalvik to Java Bytecode Converter . 125
7.1.2 Dalvik Assembler/Disassembler . 126

7.2 Permission Map Extraction . 126

iv Contents

7.2.1 On the Java Permission Model . 126
7.2.2 On the Android Permission Model . 127

7.3 Data Leak in Android Applications . 128
7.3.1 Static Analyses . 128
7.3.2 Dynamic Analyses . 129

7.4 In Vivo Instrumentation of Bytecode . 129
7.4.1 Monitoring Applications . 129
7.4.2 Advertisement Permissions Separation 130
7.4.3 Permission Policy . 130

8 Conclusions and Future Work 133
8.1 Conclusions . 133
8.2 Future Work and Open Research Questions 134

8.2.1 Framework Analysis . 134
8.2.2 The Future of Static Analysis for Android Applications 134

List of Figures

1.1 Generic Access Control . 2
1.2 Confused Deputy . 5
1.3 Application Collusion . 5
1.4 Dalvik to Jimple . 7
1.5 How to Analyze a Framework . 8
1.6 Android Components and their Lifecycles . 9

2.1 The Android Stack . 14
2.2 Android Application . 16
2.3 Example of Android Manifest. 17
2.4 Android Boot and Application Creation . 18
2.5 Android Processes after Boot . 20
2.6 Android Access Control . 21
2.7 Java Classes and Call Graph . 22
2.8 Inheritance and Polymorphism . 23
2.9 Sensitivities . 24
2.10 Example for the Reaching Definition Data-Flow Analysis 27
2.11 In, Out, Gen, Kill and Transfer Function . 27
2.12 Example for the Possibly Uninitialized Variable Problem 29
2.13 The Supergraph for the Possibly Uninitialized Variable Problem 30
2.14 The Exploded Supergraph for the IFDS Problem 32

3.1 Dalvik Dex and Java Class . 38
3.2 Zero and null Representations . 38
3.3 Typing Differences between Java and Dalvik 39
3.4 Type Information From Constant Initialization 40
3.5 Handling Dalvik Exceptions . 41
3.6 Dalvik Type Lattice . 42
3.7 Java Type Lattice . 42
3.8 Simplified Type Lattice for Dalvik . 43
3.9 Simplified Target Type Lattice . 43
3.10 From Dalvik Bytecode to Full Typed Jimple 44
3.11 Illustration of the null init problem. 44

vi List of Figures

3.12 Resulting Dalvik Bytecode from Figure 3.11 44
3.13 Ratio of Methods with Numerical Constants per Application 47

4.1 An Application on Top of a Permission-based Framework 55
4.2 Application to System Service Communication 57
4.3 Android Communication Overview . 59
4.4 Bytecode Processing Before Analyses . 60
4.5 Number of Edges Explosion for transact method 63
4.6 Missing Edges on null Objects . 68
4.7 Propagation of null with Spark . 69
4.8 Number of Methods per Permission Set Size 71

5.1 Explicit and Implicit Communication . 83
5.2 A Motivating Example Code . 86
5.3 Representation of a Tainted Path . 87
5.4 The architecture of IccTA . 88
5.5 Overview of IccTA and FlowDroid . 89
5.6 Code Modifications to Handle ICC . 90
5.7 Control-flow of startActivityForResult 92
5.8 FlowDroid-IccTA on an Example . 92
5.9 Instrumented Motivating Example CFG . 100
5.10 Path Matching Approach Problem . 101

6.1 Our Process to Instrument Android Applications 107
6.2 Redirecting API Calls . 111
6.3 The Policy Contains Allowed API Calls . 111
6.4 The Monitor Enforces the Policy . 112
6.5 Description of Applications in the Dataset . 114
6.6 Performance of In Vivo Dalvik to Java Bytecode Conversion. 115
6.7 Time to Transform Java Bytecode In Vivo using ASM 116
6.8 Influence of the Heap Size on Jimple Transformation 117
6.9 In Vivo Java Bytecode to Dalvik Conversion Time 118
6.10 In Vivo Creation Time of a New apk File . 119
6.11 In Vivo Apk Signing Performance . 119

List of Tables

2.1 Two Functions and their Compact Graph Representation. 31

4.1 List of Methods Checking for Permissions . 59
4.2 Permission Specifications Extracted by the Analysis 66
4.3 CHA-Android Permission Sets . 66
4.4 Spark-Android Permission Sets . 70
4.5 Comparison between Our Results and Pscout’s 72
4.6 Comparison between Our Results and Felt et al.’s ones 73

5.1 The top 8 used ICC methods . 82
5.2 DroidBench test results . 96
5.3 The top 5 used source methods and sink types 97

6.1 The Hardware used in our Experiment . 113
6.2 In Vivo Process Summary for Smartphone2 121
6.3 In Vivo Process Summary for Tablet1 . 121

Chapter 1

Introduction

In recent years, mobile devices, such as smart phones, have spread at an exponential rate. The
most used system running on these devices, accounting for almost 80% of market share for
smart-phones world-wide, is the Android software stackHowever, with popularity comes more
attacks tailored for the Android system.

In this thesis we claim that static analyses can help to prevent such attacks. We use static
analysis to extract permissions from a permission-based framework 1. This enables to check that
applications, running on top of the permission-based framework, adhere to the principle of least
privilege and do not declare too many permissions. Moreover, to evaluate if resources and user
data are well-protected, we statically analyze applications to find suspicious leaks that could
indicate a malicious behavior. Finally, we show that information extracted from a static analysis
of a framework can be leveraged at run-time to harden applications from a privacy point of view.
For instance, we implemented a user-driven dynamic policy enforcement which enables users to
enable or disable permissions for any applications.

To better understand the Android Permission System, let us briefly come back to the premise
of access control. Indeed, ever since multiple users can access the same computer, people have
had the need to protect their data from other users, be them malicious or clumsy, using access
control. In this chapter we introduce the notion of access control and motivate our choice of an-
alyzing one permission-based system called Android. Sections 1.1 and 1.2 introduce the notion
of access control starting from the first computer to introduce password to the latest permission-
based system, Android.

Section 1.3 illustrates shortcomings of permission-based systems. Section 1.4 explains the
challenges we face when studying and analyzing a permission-based system. Finally, Section
1.5 lists the contributions of this work.

1Android, for instance, is a permission-based system since it limits access to protected resources by checking that
applications have the required permission(s).

2 Introduction

Subject

Access Control Policy

Object

Figure 1.1: Generic Access Control: A subject (e.g., a user or process) is only authorized to
access an object (e.g., a file) if the access control policy allows the access to the object by the
subject.

1.1 A Brief History of Access-Control

One of the first computer to allow multiple users to work at the same time was the Compatible
Time Sharing System (CTSS) in 1963 [32]. Each user had access to the computer and could
send commands to it via a terminal and was given a personal directory to store files. As soon as
more than one user store information on the same machine, questions about privacy, safety and
security arise. Should anyone be able to see who created a file? What if someone erases another
user’s file by mistake? Should anyone be allowed to see any file of any user?

In the 1960’s users of the CTSS were concerned about other users modifying their files.
To deal with this problem, and CTSS was probably the first operating system introducing the
idea, passwords were used to authenticate users. Once the user is authenticated by the system,
she would only be authorized to access his/her files and not files of any other users [32, 112,
133]. The system makes sure that files are only accessed by authorized users. In other words,
it protects resources of the system and prevents malicious or clumsy users from accessing or
tampering with them. A user could share files with other users by allowing them to place a
special file called link, referencing the shared file, in their directory. This is a first approach for
access control. A generic model for access control is represented in Figure 1.1. Whenever a
subject (e.g., the user) tries to access an object (e.g., a file), the system checks the access control
policy to allow or deny the access.

The successor of CTSS introduced in 1965, called MULTICS (Multiplexed Information and
Computing Service) [33, 112], was designed from the start with information protection in mind.
As for CTSS, every user is given an identifier and authenticates herself to the system using a
password. However, MULTICS introduces the concept of group of users and the concept of
Access Control List (ACL). The ACL is an adaptable list of users who are permitted to read,
write, execute or append an object (e.g., a program). Objects are organized in a single hierarchy
tree of directories. If a user has access to modify directories, she can modify the ACL of all
objects under that directory. Since users can change access rights of the objects belonging to
them, the access control is called Discretionary Access Control (DAC).

Access Control for the Masses 3

Inspired by MULTICS came UNIX [108] in the late 1960’s early 1970’s. In UNIX the file-
system is a tree of files and directories. Every file and directory belongs to a user and a group.
Moreover, each file and directory has permission bits allowing the owner to activate or deactivate
read write or execute permissions for the user owning the file, the group to which the file belongs
or other users.

In the following years computers were already spreading and used in companies which could
afford one and by the military. This raised interest in computer security and particularly in access
control. Effort have been made to formalize access control into mathematical models. The Bell-
LaPadula access control model [16] was designed in 1973 and focuses on confidentiality, which
is especially useful in military applications. In this model, subjects (e.g., users) can observe, alter
or modify objects (e.g., files). A pair, defining the category and classification, called security
level (e.g., category “cryptography” and classification “unclassified”, category “nuclear” and
classification “secret”, category “chemical” and classification “top-secret”, ...) is assigned to
subjects and objects. A system implementing the Bell-LaPadula model must make sure that
some properties hold (e.g., a user at classification “secret” cannot read a “top-secret” document).
Those access rules are defined in a centralized policy by the administrator and cannot be modified
or bypassed by users. This kind of access control is called Mandatory Access Control (MAC).

The Bell-LaPadula focuses on confidentiality and thus only limit access to data but does
nothing to protect against corruption of data. In short it does not ensure data integrity. In 1977,
another model was designed to tackle this issue: the Biba model [21]. This model makes sure
that a subject cannot corrupt data at a higher level of security than the level of the subject.

In the late 1970’s, early 1980’s, the original UNIX system gave birth to many versions based
on the same philosophy. The most known systems are probably the GNU/Linux, BSD-based and
MAC X operating systems. Their basic access control type is DAC but MAC implementations
also exist, for instance SELinux [121] is a MAC extension for the Linux kernel.

1.2 Access Control for the Masses

Configuring security policies of a system (i.e., the set of all access control rules) is a complex
task that requires in-depth knowledge about the access control model of the system. Today,
computers are ubiquitous and are used both by novice and experts. Configuring access control
policies is not an easy task and may even be disregarded by novice users who only want the
system to work and do not care about security considerations.

Cell phones have a population coverage rate of nearly 100% in Europe [73]. They have
evolved from devices running a system whose main purpose was to give and receive phone calls
to fully fledged computers. These devices are able to connect to the Internet, watch high resolu-
tion movies and play the latest 3D game, bundled with a phone application. Those computers,
or smart-phones, run applications that users download from application markets available on the
Internet. For smart-phones, applications are usually limited in the actions they can perform on
system resources (e.g., GPS, Internet access, ...) by the set of permissions the developers defined
for them.

When downloading an application the user can see the list of permissions the application
requires and can decide to either allow the application to be granted all the permissions in the

4 Introduction

list and install the application or choose not install the application at all. This permission model
for access control puts the user in the position of administrator: he/she has to update the access
control policy of the device every time a new application is installed. We call such systems
permission-based system. The permission-based system we study in this work is Android.

1.3 Motivation for Permission-Based System Analysis

The three following Sections (1.3.1, 1.3.2 and 1.3.3) present examples motivating the need of
analyzing applications running on top of a permission-based system. Those examples represent
flaws in the design of a permission-based system and are thus independent of the permission-
based system under study. In addition, Section 1.3.4 illustrates the fact that developers may
unintentionally create vulnerabilities in the applications they develop because the documentation
is incomplete. This motivates the analysis of the permission-based system itself to improve the
documentation and/or the development process of applications. Finally, Section 1.3.5 highlights
a limitation of the Android system regarding the freedom given to users about permissions and
suggests an alternative which relies on results from the analysis of the Android permission-based
system.

1.3.1 Confused Deputy

Applications can communicate together. If one application is given a permission, another ap-
plication could exploit this application to misuse its authority. This kind of attack is called
confused deputy attack and is illustrated in Figure 1.2. This attack frequently occurs because
the confused deputy application wrongly assumes that only a limited and trusted application can
access its interface. For that reason its interface is not well-protected and can be abused by mali-
cious applications aware of the vulnerability. In the example of Figure 1.2 the confused deputy
application has the Network permission and is thus able to enable or disable the network. It
wrongly assumes that only trusted application can access its interface, and thus did not protect it
correctly. The attacker exploits this non-protected interface by making the confused deputy use
its authority to disable the network on behalf of the attacker.

1.3.2 Application Collusion

Applications are granted permissions and can communicate together. Thus, nothing prevents an
application to get data from a permission protected resource (e.g., GPS coordinates) and to share
this data with another application which may not have the permission to access the protected
resource. Multiple applications collude when they collaborate for a common malicious goal.

Application collusion is illustrated in Figure 1.3. The attacker has to have two (or more)
applications installed on the target device. Once applications are installed they communicate
together to share their permissions. When installing individual applications, the user only see
a limited set of permissions for each application. In the example of Figure 1.3, the first appli-
cation only has permission GPS and the second application only declares permission Internet.

Motivation for Permission-Based System Analysis 5

A

Attacker App.

No permission

Confused Deputy App.

Network permission

System

shutdown
network

Figure 1.2: Confused Deputy: The application with a permission is not protected enough. Other
applications can manipulate the interface of the application to misuse its authority. Despite the
fact that the attacker application does not have the required permission, it uses the confused
deputy application to shutdown access to the network.

A

Attacker App.1

GPS permission

Meta-Application

A

Attacker App.2

Internet permission

Internet

share GPS
coordinates

send GPS
data

Figure 1.3: Application Collusion: An attacker could develop multiple applications which share
permissions. Users installing applications separately do not see those as a meta-application with
a big list of permissions.

However, application1 can share data it obtain with its GPS permission with application2. Ap-
plication2 having permission Internet, it can send the GPS coordinate to a remote host on the
Internet.

1.3.3 Data Leakage

The example of Figure 1.3 illustrates two applications sharing GPS coordinates and sending it to
the Internet. We say that the GPS data is leaked from the statement in App1 retrieving the GPS
coordinates (the source) to the statement in App2 sending the coordinates to the Internet (the
sink). This particular data leak occurs between two applications which is not common among
malware applications. To be more efficient, most malware leak data within a single application.

6 Introduction

1.3.4 Incomplete Documentation

An Android application contains a list of permissions describing which resources the application
can have access to (e.g, access to the GPS). Developers of Android applications are responsible
of writing this list of permissions. To achieve this, they rely on the documentation which, unfor-
tunately, is incomplete [53]. In addition, they rely on code snippets that come with a permission
list that they found on forums or websites [53]. However, a permission list may contain more
permissions than necessary. Thus, a developer may write a permission list containing more
permissions than what the application need, increasing the attack surface (i.e., all manners an
attacker can enter the system and potentially cause damage [85]) of the application. Indeed, if
an attacker compromises the application she has access to more resources than she would have
access to with a reduced permission list.

In this thesis, a permission gap is defined as a set of permissions an application declares but
does not use. To detect permission gaps, one has first to compute a set of permissions for all
API methods. A permission list can then be computed automatically from the application code
by looking at the API methods the application calls. Permissions mapped to those API methods
form the list of permissions the application needs in order to work properly. The difference in
permission between this automatically computed permission list and the permission list written
by the developer of the application is called permission gap.

1.3.5 Fine-Grained Protection of User Data

Users tend to store, voluntarily or involuntarily, considerable amount of information they con-
sider private on their device such as pictures, contact information, GPS coordinates, e-mail con-
versations or calendar information. On the first hand, they consider those information as private
and protected by the device. On the other hand, they would like to install applications from
remote repositories on the Internet (trusted and untrusted) and precisely control the permission
list of those applications. However, they do not have the possibility to configure a fine-grained
permission policy.

In this work, we explore the challenges of implementing such a system directly on the user
device. The new software modifies the bytecode of Android applications and weaves in the code
the access control policy. The policy can be defined at runtime by the user who can decide, for
instance, to disable a permission for all installed applications.

In a nutshell, we have seen in this Section that (1) the confused deputy, application collusion
and data leak examples motivate for leak detection in applications, (2) the incomplete documen-
tation suggests that the framework itself should be analyzed, and (3) to improve data protection,
users should be given more control over the security policy of the device.

In this thesis, we aim at analyzing Android applications and the Android framework from
the security point-of-view. From the motivating examples comes the following challenging ques-
tions that we will answer in this thesis: How can Android applications be analyzed? Are per-
missions well-defined for Android applications? Can applications leak protected data? How
can dynamic analysis complement static analysis? The next Section describes the technical
challenges that we face when answering those questions.

Challenges for Permission-Based System Analysis 7

void m() {
int a = 2;
a += 1;
}

Java
Source

iconst_2
istore_1
iload_1
iconst_1
iadd

Java
Bytecode

cst v0, 0x2
cst v1, 0x1
addi v0, v1

Dalvik
Bytecode

void m() {
int a;
a = 2;
a = a + 1;
}

Jimple

javac dx

Soot Soot
Soot + Dexpler

Figure 1.4: Even though Android applications are written in Java, which Soot can analyze, only
the Dalvik bytecode is available in practice. To Analyze it Dexpler converts it to Jimple, Soot’s
internal representation of code.

1.4 Challenges for Permission-Based System Analysis

In this Section we introduce the technical challenges that we face when analyzing the Android
framework and Android applications to answer to the research questions listed in Section 1.3.

Section 1.4.1 explains that Android applications use a special kind of bytecode that needs to
be transformed to an analyzable representation. Sections 1.4.2 and 1.4.3 describe the difficulties
to analyze the Android framework and Android applications, respectively. Finally, Section 1.4.4
highlights the challenges of running analysis of Android applications directly on a device.

1.4.1 Dalvik Bytecode

Android applications are written in Java then compiled to Java bytecode and finally compiled to
Dalvik bytecode. Existing static analysis tools can analyze Android applications when either the
source code or the Java bytecode of the application is available. However, this is not often the
case as most applications are distributed through markets which only provide the final Dalvik
bytecode. For instance there are more than one million applications available on the official
Google Play market 2 whereas there are only about a thousand applications available on the
F-Droid (Free and Open Source Android applications) website 3. This motivates the use of a
software module to converts Dalvik bytecode into an analyzable representation.

At the beginning of this thesis, in 2010, there was no available tool to perform complex static
analysis of Dalvik bytecode. In order to be able to analyze Android applications, we developed
a module called Dexpler to convert Dalvik bytecode into an analyzable representation. We
leverage an existing tool called Soot whose internal representation of code is called Jimple.
As represented in Figure 1.4, Soot is able to analyze Java source code and Java bytecode by

2http://www.appbrain.com/stats/number-of-android-apps
3https://f-droid.org/

http://www.appbrain.com/stats/number-of-android-apps
https://f-droid.org/

8 Introduction

entry point wrapper

ep1 ep2 ep3

srv1

srv1 entry point

Figure 1.5: Analyzing a Framework requires (1) to generate wrapper code to call all entry points
of the framework’s API and (2) to handle domain-specificities such as calls to services for An-
droid.

converting them to the Jimple representation. Dexpler converts Dalvik bytecode to Jimple in
order for Soot to be able to analyze Dalvik bytecode.

When converting Java bytecode to Dalvik bytecode some information about the type of
variables are lost. For every method of the bytecode having such information loss, Dexpler finds
those information back by analyzing the code of the method.

1.4.2 Analysis of the Framework

Static analysis has been initialy used on program or applications but not on APIs. With a program
there usually is a single entry point from where the analysis begins. With a framework or API,
however, there is no entry point: one has to construct wrapper code for all the entry points. The
role of the wrapper code is to construct the object on which the entry point method is called as
well as the parameters of the called entry point method. Moreover, constructing the wrapper
code is not an easy task since one has to take into account how the methods of the API are called
and how their parameters are initialized.

Static analysis of a framework starts by constructing a call graph from the wrapper code.
In the case of Android, the API code is an interface to other programs or applications run by
the system. Only constructing the call graph from the wrapper code would not work as system
programs (responsible for checking permissions) would not have been initialized properly. Since
system programs are launched and initialized when the Android device boots, the initialization
code is not reachable from entry point methods. The solution we adopt is to find all system
programs, initialize them separately from the entry points call graph, and refer to the initialized
program whenever they are encountered in the entry points call graph.

Figure 1.5 presents a framework with three entry points (e.g., ep1, ep2 and ep3). Analyzing
this framework requires to wrap those entry points. This is achieved by the “entry point wrapper”
node which handles entry points initialization and parameter instantiation. During the call graph
construction, ep3 calls code from service “srv1”. This service has been initialized separately
(Figure 1.5, right) and the call graph construction refers to the initialized service. Without service
initialization, the call graph is incomplete since the service would be supposed non-existent.

Challenges for Permission-Based System Analysis 9

s1

m1

m2

m3

s2

e1

m4

e2

m5

e3

m6

s3

e4

s4

e5 m7

e6

e7

(a) Component Lifecycle.

Application 1

C1

C2C3

C4

Application 2

C5 C6

(b) Links Between Components.

Figure 1.6: An Android Appication features Components. Each Component has its own Lifecy-
cle. Two Components can communicate and form links between them.

1.4.3 Analysis of Applications

Analyzing an Android application differs from analyzing a Java application where there is a
single entry point (i.e., the main method). Android application feature components, each of them
having a lifecycle managed the the Android system. Figure 1.6a represents a simplified view of
the lifecycle of an Android component called activity. The lifecycle features four states, s1 to s4,
and moves from one state to another after events are produced (e1 to e7). Events trigger specify
methods of the component (m1 to m7). The lifecycle of components is not present in Android
applications. The Android system handles the lifecycle of Android applications’ components.
Since it would be too costly to analyze the Android system for every application to take into
account the lifecycle of components, we use models of lifecycles instead.

Furthermore, any component could be called by another Android component from the same
application or another application. An Android application does not have a single entry point but
at least as many entry points as components. The components of an application are listed in the
application’s manifest file. In Figure 1.6b, black arrows with no source component represents
entry points for components C1 and C3 of application one and for components C5 and C6 for
application two.

Some components can be defined in the code of an application’s component and not in the
manifest. Thus, it is not sufficient to analyze the manifest, one also must check the code of com-
ponents to find dynamically registered components. Moreover, components can communicate
between one another. Components are loosely coupled in the sense that the connection between
them is done at runtime, and communication between them relies on abstract messages called
Intents. In Figure 1.6b, there are intra-application communication between components C1 and

10 Introduction

C2 and between C2 and C4 of application one and inter-application communication between C3

of application one and C5 of application two.
In a nutshell, when analyzing an Android application using static analysis, one has to model

the lifecycle of the components and compute the communication links between components.

1.4.4 Analysis Directly on Devices

While is it interesting to perform analysis and transformation of applications off the device, it
would be more interesting to perform them directly on the devices. For instance, users would
directly benefit from having software allowing them to have a fine-grained permission policy
(i.e., a policy allowing fine-tuning over the permissions. For instance instead of allowing full
network access, the INTERNET permission could limit network access to a user-defined list of
URLs). The main challenge is to be able to perform some analysis on devices with constraints
on available memory and processing power and hard-coded constraint on available heap for a
process. An analysis which requires 100MB of heap on the desktop cannot run on standard
Android device where the heap limit is fixed to 80MB or less.

1.5 Contributions

In this Section we present our contributions to answer the research questions presented in Sec-
tion 1.3 and tackle the associated challenges presented in Section 1.4. There are seven main
contributions in this work to advancing the state-of-the-art in Android and permission-based
system research:

• An algorithm to convert Dalvik bytecode Jimple. As Jimple is the internal represen-
tation of the static analysis framework Soot, Dexpler enables Soot to statically analyze
Android applications. We evaluate Dexpler on a set of 25 thousand applications. Dexpler
correctly transforms 99.9% of the applications’ methods.

• An algorithm to map API methods to permissions. We propose an algorithm that first
generates entry points from API methods then builds a call graph from API methods of a
permission-based framework and finally use depth-first search to find permission checks
and extract permission names.

• An empirical analysis of the Android permission-based system. We have implemented
our algorithm to map API methods to permissions and tailored it to analyze the Android
framework. Android-specific modifications include service redirection, service identity
inversion, system services and managers initialization.

• An empirical analysis of permission gaps. The analysis is performed on two sets of
Android applications. In the first one from the official Android market 18% of the appli-
cations present a permission gap and the second one from an alternative market 12% have
a permission gap.

Roadmap of this Dissertation 11

• A tool to detect leaks within and between Android applications. Our tool called IccTA
links Android components at the Jimple level. This allows to detect inter-component and
inter-application data leaks.

• An empirical evaluation of IccTA to detect inter-component leaks. We evaluate IccTA
on DroidBench, a set of Android applications specially designed for testing tools which
find intra- and inter-component leaks. Our algorithm outperforms existing tools with a
precision 95% and a recall of 82%. We also evaluate our algorithm on a set of 3000
Android applications. It detects leaks in 450 of these applications.

• The first empirical analysis of in vivo instrumentation. This study shows the feasibility
of instrumenting Android applications directly on devices. We also present two use-cases:
the first use-case removes advertisement from application and the second use-case allows
users to compose a fine-grained permission policy which is not possible with a native
Android system. The use-cases show that the approach is possible and that the main
limitation for performing advanced analyses is the heap size imposed by the system.

1.6 Roadmap of this Dissertation

This dissertation is organized as follows. In Chapter 2, we go through the fundamentals of static
analysis, call graph construction, Android applications and the Android permission-based sys-
tem. In Chapter 3 we discuss Dexpler a software to convert Dalvik bytecode to Jimple in order
to analyze Android applications and the Android system. In Chapter 4 we analyze the Android
framework to map permission to entry point methods. We use this knowledge to find applica-
tions that declare too many permissions which increases the attack surface for the end user. In
Chapter 5, we describe a technique to find leaks of private data in Android applications. Next,
in Chapter 6 we present our first results regarding in vivo Android applications instrumentation
and analysis. Finally, in Chapter 8 we conclude the dissertation and discuss future work and
open research questions.

Chapter 2

Technical Background

This chapter introduces the main technical background required to understand this PhD thesis.
This chapter is divided into three Sections. Section 2.1 presents the Android system: it covers
Android applications and their components, system services and access control with permis-
sions. Then, Section 2.2 introduces the reader to static analysis and in particular call graph
constructions for Java-based programs and inter-procedural data-flow analysis.

2.1 Introduction to the Android Stack

Android is a software system developed for smart-phones, tablet devices and more generally for
a large palette of any kind of personal devices. It was originally developed at Android Inc. in
the early 2000’s [78]. Google bought the company in 2005 to further develop the system. The
first publicly available device appeared in 2008 [79] and was running Android 1.0. Since then,
there has been a new version released about every three months. At the time of writing (2014)
the latest Android version is 4.4.

In this Section, we first give an overview of the Android system in Section 2.1.1. Then, we
present the structure of an Android application in Section 2.1.2. Finally, in Section 2.1.3, we
detail system services, one major part of the Android system.

2.1.1 Overall Architecture

Android is a software stack meaning that it features four main software layers as presented in
Figure 2.1 (from top to bottom): the application layer, the framework layer, the runtime and
native libraries layer and the kernel layer.

The top layer features Android applications. Typical Android applications are: the Home
application which is the first running application that displays icons to start other applications;
the Contact application to manage the list of contact; the Phone application to give phone calls;
and the Browser application to visit web resources. Users of devices running Android can install
more applications on their device, usually by downloading them from a repository such as F-

14 Technical Background

Home Contacts Phone Browser ...
Applications

Activity Manager

Package Manager

Window Manager

Telephony Manager

Content Providers

Resource Manager

View System

Location Manager

Notification Manager

...

Application Framework

OpenSSL

OpenGL

Bionic Libc

SQLite

WebKit

...

Core Libraries

Dalvik VM

Android Runtime
Native Libraries

Display Driver

Keypad Driver

Camera Driver

Wifi Driver

Flash Memory Driver

Audio Driver

Binder Driver

Power Management ...

Linux Kernel

Figure 2.1: Android is a Software Stack.

Droid1 or the official Google market named Play Store2. Applications are mainly written in
the Java programming language but can also contain native code. Applications rely on the
framework layer to communicate with the system.

The framework layer is an interface written in Java between applications and the rest of the
system. It provides facilities to retrieve information from a system resource (e.g. the application
can retrieve GPS coordinates through the LocationManager) or to ask the system to call them
back when there is a new event (e.g. ask the TelephonyManager to notify the application when
there is a phone call).

The third layer features two distinct entities: the Android runtime and the native libraries.

• The Android runtime consists of the Dalvik virtual machine, which executes Android
applications’ Dalvik bytecode3, and Android core libraries, basically Java classes, which
applications can leverage (e.g. application can use the HttpsURLConnection class to
open a secure connection to a website). Some libraries contain wrappers around native
libraries. For instance Java classes for the core library handling secure connections to
websites such as HttpsURLConnection may use the OpenSSL native library depending
on the environment’s configuration.

• The native libraries4 provide basic building blocks that can be used by applications, the
framework layer or core libraries. Applications can have native code that directly use the

1https://f-droid.org/
2http://play.google.com
3applications are written in Java and compiled to Dalvik bytecode
4native because their instructions are directly executed by the CPU contrarily to the bytecode which requires to

be interpreted by a virtual machine

https://f-droid.org/
http://play.google.com

Introduction to the Android Stack 15

native OpenGL library for fast graphic processing. The framework layer can use the native
SQLite library to store data.

The lowest layer is the Linux kernel. From upper software layers it can be seen as an inter-
face to the hardware (CPU, memory, ...). Indeed, it is responsible for running programs on the
CPU5 and it has a number of drivers to handle different hardware such as the display, the au-
dio, and drivers to manager network communication. It also feature a special driver for efficient
Inter-Process Communication called the Binder driver [116].

As we have seen, the layers are not clearly separated. An Android application can use
elements from the framework layer, core and native libraries as well as directly communicate
with the kernel. The Android system implements security features to prevent applications from
having access to every part of the system. In short, developers give a list of permissions to every
application they write. This list specifies what the application is allowed to do on the system
and has to be validated by the user at installation time. When an application is installed, it is
given a User ID (UID). Every Android application can be seen as a Linux user. Moreover, the
Android system has a list mapping each permission to a Group ID (GID). For every permission
the application declares, the system adds the application (or more precisely the corresponding
Linux user) to the corresponding GID. So, if an application does not have the GPS permission
and wants to retrieve the GPS coordinates through the LocationManager or the Linux driver for
the GPS, the Android system detects that the application is not in the GPS group and prevents it
from accessing GPS data.

2.1.2 Structure of Android Applications

An Android application is a compressed zip file signed with the private key K of the developer.
It contains the Dalvik bytecode of the application (compiled from the Java source code), data the
application needs (pictures, sound, ...) and a manifest file describing the application’s structure
and permissions the application requires. In short,

Application = Sign(Zip(DalvikBytecode,Manifest,Data),K).

The fact that Android applications are signed with the private key of the developer ensures
that applications can only be updated by code signed by the same developer and that applications
signed with the same key have the possibility to share permissions and UID. However, it does
not guarantee the authenticity of the author of the application since certificates can be self-signed
(e.g., anyone could claim to be John Doe).

Components

Android applications are made of components. There exists four kinds of components: activity,
service, content provider and broadcast receiver. Activity components are used for the Graph-
ical User Interface (GUI). They display graphical elements such as buttons, lists or pictures.
Service components are used for computational intensive tasks or tasks that take a long time

5an instance of a program being executed is called a process

16 Technical Background

Activity1
IF:"view pdf"

Activity2
IF:"view txt"

Activity3 BroadcastReceiver1

Figure 2.2: An Android Application with Four Components: Three Activities and One Broadcast
Receiver.

such as playing an audio file. Content providers are used to share data between applications.
For instance, the list of contact is implemented as a content provider so that any application can
have access to it (if it has the proper permission). Finally, broadcast receiver components receive
messages from the system or other applications (e.g. an SMS has been received by the system).
Concretely, every component is a Java class which inherits from a specific super class such as
Activity, Service, etc. Figure 2.2 represents an Android application made of three activities and
one broadcast receiver.

Cummunication with Intent and URI

Components of an Android application usually communicate using special system methods
called Inter-Component Communication (ICC) methods. There are about forty ICC methods
which a component can use to communicate with another component. The most used ICC
method is startActivity(Intent). This method is used to tell the system to start a new
activity component described by the method’s parameter.

Intent. Components can communicate with one another using an abstract object called Intent.
Communications can take place between components of a single application or between compo-
nents of multiple applications. When component A wants to communicate with component B, it
initializes an Intent and sets component B as the destination. This kind of communication is said
to be explicit because the target component is explicitly specified. A communication can also be
implicit in which case the source component initializes the Intent with the action it would like to
perform (e.g. view a pdf document). When the component sends the Intent, the system checks
for components having the action in their intent filter. The selection of the target component can
be done automatically by the system or may require user intervention if multiple components
can handle the action. For instance, if Activity3 in Figure 2.2 sends an Intent with action "view
txt" the system starts Activity2 since it is the only component having the "view txt" intent filter.
Intents can encapsulate data in form of key/value pairs in objects called Bundles. Intents are
used for communications between activities, services and broadcast receivers.

URI. A URI, or Uniform Resource Identifier, identifies an abstract or physical resource [19].
In short a URI is used to communicate with content providers. They may also be used to ini-

Introduction to the Android Stack 17

<manifest package="com.android.providers.calendar">
<application android:process="com.android.calendar">
<provider android:name="CalendarProvider" />
<service android:name="CalendarSyncAdapterService" >
<intent-filter>
<action android:name="SyncAdapter" />

</intent-filter>
</service>
<activity android:name="CalendarContentProvider" >
<intent-filter>
<action android:name="MAIN" />
<category android:name="UNIT_TEST" />

</intent-filter>
</activity>
<receiver android:name="CalendarReceiver">
<intent-filter>
<action android:name="BOOT_COMPLETED" />

</intent-filter>
</receiver>

</application>
<uses-permission android:name="android.permission.INTERNET" />

</manifest>

Figure 2.3: Example of Android Manifest.

tialize Intents to target specific resource. Take the following URI: content://com.android.
calendar/events. It can be cut in three parts. The first one, content, called the scheme,
identifies how to access the resource. The reader may already know the http scheme for access-
ing web pages through the HTTP protocol. Here, content means that access to the resource
is done through a content provider. The second part, com.android.calendar, called the au-
thority identifies the holder of the resource. The reader may be familiar with authorities such as
mywebsite.com which identify a registered host on the Internet. In our example, the authority
identifies the content provider called com.android.calendar which has been register to the
Android system. Finally, events, called the path, is the part identifying the target resource. The
reader may be familiar with paths such as index.html identiying web page resources. In our
example, this is the database table events of the content provider.

The Manifest

The manifest describes the application’s structure in terms of components. A component can
be exported so that other applications can use it. It can also declare intent filters to specify to
the system what kind of action or data it handles. The manifest also lists all the permissions
that the application requests (e.g. INTERNET, GPS). An example of manifest is presented in
Figure 2.3. It declares an application with one content provider, one service, one activity and
one broadcast receiver. The service only accepts intent with action SyncAdapter, the activity
intents with action MAIN and category UNIT_TEST and the broadcast receiver intents with
action BOOT_COMPLETED. The manifest declares one permission for the application: the
INTERNET permission.

content://com.android.calendar/events
content://com.android.calendar/events

18 Technical Background

CPU Bootloader
- initialize RAM & HW
- load & jump to kernel

Kernel
- init. drivers
- mount root FS
- launch init process

Init
- mount FSes
- set up FS permissions
- start native daemons

Native Daemons
- servicemanager
- app_process -X Zygote
- bluetoothd, - . . .

Android Runtime
- start a Dalvik VM
- call Zygote’s main()

Zygote
- preload Java classes
- listen for connections
- start System Server

System Server
- initialize system services
- register system services
- starts Activity Manager

Activity Manager
- initialize itself
- start Home application

Launcher
- initialize itself
- wait for user input

user click

New ApplicationstartActivity()

sta
rtV

iaZ
ygote(

) fork()

Figure 2.4: Android Boot (solid arrows) and Application Creation (dashed arrows). (Figure
adapted from [139])

2.1.3 Structure of the Android System

Boot Process

The Android boot process is illustrated in Figure 2.4. When the Android device is switched on,
the CPU first executes the boot-loader which initializes the RAM (Random Access Memory)
and the hardware then loads the kernel and jumps to it. The kernel initializes drivers, mounts the
root file-system and launches the first process: init. The init process mounts all file-systems,
set up permissions on file-systems and starts native daemons. Native daemons are programs
running in the background. Such programs include bluetoothd (the bluetooth daemon) which
manages all bluetooth devices and rild (the radio interface layer daemon) an interface for radio
devices (e.g. Global System for Mobile communication radio devices). One native daemon,
app_process, starts an instance of the Dalvik virtual machine and initializes the Zygote, a
program used to fork new Android applications. When the Zygote starts it launches the System
Server, a process which initializes all system services 6 (e.g. the system service for GPS) and
starts the Activity Manager. Finally, the Activity Manager starts the Home application.

6there are about 50 system services

Introduction to the Android Stack 19

At this point the user faces the graphical interface of the Home application. This GUI
displays icons of Android applications installed on the device. When the user clicks an icon,
the Home application calls the startActivity method. The Activity Manager handles this
method call and asks the Zygote to fork itself to create and start the new Android application
corresponding to the icon the user clicked on.

Processes Right after Boot.

When the boot sequence is completed, the Android system has been initialized and its kernel
is running the processes shown in Figure 2.5. On the left is a stack of processes on top of
which is the bluetoothd process. Right of the bluetoothd process is the service manager
process which has been brought forward because it is used by the system server to register system
services. Those are all native daemons started by the init process. In the middle is the Zygote,
the process used to start new Android applications. The first process that the Zygote started is
the system server which initializes, registers to the service manager, and runs all system services.
Finally, on the right of the Figure is a stack representing Android applications. The first running
Android application is the Home application. Through the interface of the Home application,
the user can start other Android applications.

The Zygote, system server and the Android applications stack are running a process with
a Dalvik virtual machine executing Dalvik bytecode. The virtual machine can also execute
native code or shared libraries through the Java Native Interface (JNI). On the other hand, native
services do not run a Dalvik VM.

Native services and the Zygote run as the root user. The system server runs as the system
user to adhere to the principle of least privilege [113] (e.g., as a regular user, the system user
cannot access data of other users). As already mentioned in Section 2.1.2, Android applications
run as normal users and one user ID is assigned per application.

Android Access Control

The Android system runs Android applications. Those applications may access system resources
such as GPS, the contact list or the camera. Android protects system resources with permissions.
The system prevents applications from accessing a resource if they do not have the proper per-
mission(s).

Figure 2.6 illustrates how an Android application accesses the GPS resource. The GPS
resource requires specific hardware and thus a kernel driver to send commands to the hardware.
An Android application is running in a Dalvik VM and can execute native code through the JNI.
Theoretically, the application could use a native library to directly communicate with the device
using the appropriate kernel driver. This communication from the application to the device
driver is represented by dashed arrows in Figure 2.6. However, this direct communication is not
allowed by the Android system because the application is running as a normal user whereas the
driver can only be read and written to by the system user.

Instead, the application has to go through the binder driver and communicate with the system
server (technical details about the application accessing the binder are hidden by the Manager
class). Since the binder is running as a kernel module, it can certify to the system server the

20 Technical Background

Native
Code

bluetoothd
(root)

Shared Libs

System

Native
Code

servicemanager
(root)

Shared Libs

System

Dalvik VM

Dalvik
bytecode

zygote
(root)

Shared Libs

JNI

System

Dalvik VM

Dalvik
bytecode

system server
(system)

Shared Libs

JNI

System

Dalvik VM

Dalvik
bytecode

application 1
(user 1)

Shared Libs

JNI

System

Kernel

Figure 2.5: Android Processes after Boot. (Figure adapted from [57])

user ID of the calling application (i.e. the application cannot fake its ID). The system server
then checks that the calling application has the right to access the resource (i.e. has the correct
Android permission). If it has not, then the system server throws an Exception and the commu-
nication ends. If it has, the system server talks to the driver, retrieve the information and sends
it back to the caller application. Since the system server runs as the system user, access to the
driver is allowed.

Android Permissions

Permissions are classified into four categories or permission levels: normal, dangerous, signature
and signature or system. Normal permission protect resources that are at low risk for the user
(e.g., permission to read the battery status). Dangerous permissions protect resources that can
either harm the user if they are stolen from her/him (e.g. the contact list) or cost her/him money
(e.g. send SMS). The Android system only grants a signature permission to an application
if it has been signed with the same certificate as the one used to signed the application that
declared the permission. The Android system only grants a signature or system permission to an
application if it has been signed with the same certificate as the one used to signed the application
that declared the permission or if the application is in the Android system image.

Android 4.2 defines 200 permissions. Out of them, 29 are at permission level normal, 47 at
permission level dangerous, 63 at permission level signature and 61 at permission level signa-
ture or system. In practice, most of the time, developers only deal with normal and dangerous
permissions (29 + 47 = 76 permissions).

Introduction to Static Analysis 21

AppUsingGps

Dalvik VM
GpsConsumingActivity

GpsNative

libgps_jni

libgps

GpsManager

system server

Dalvik VM
GpsService

GpsNative

libgps_jni

libgps

Kernelbinder gps driver

Figure 2.6: Android Access Control. (Figure adapted from [57])

2.2 Introduction to Static Analysis

Popular programming languages such as Java use classes and methods to represent concepts of
the real world and manipulate those concepts (i.e., change their state), respectively. Statically an-
alyzing programs built using classes and methods can be done using a intra-procedural approach
(i.e, method by method) or using an inter-procedural approach (i.e, connecting the methods to-
gether and analyzing the program as a whole). This later approach requires to connect methods.
This is done by computing a call-graph of the program.

In this Section we introduce call graphs construction and focus on the case of object-oriented
languages, more particularly the Java language, since we analyze code from this language in
Chapters 4 and 5.

2.2.1 Call Graph

In Object-Oriented Programming a program is made of classes. Each class represents a concept
(e.g. a car) has a set of fields to represent other objects (e.g., wheels) and a set of methods
containing code to manipulate objects (e.g, drive the car forward). The code can call other
methods to create instances of objects or manipulate existing objects.

A program usually starts with a single entry point method called the main method. By
analyzing the code of the main method we can find out which method(s) it is calling. Then, by
analyzing the code of the called method(s) we can find out what method(s) it/they are calling.
The process can be repeated as long as there are methods calling other methods.

The result is a directed graph, called call graph, that links methods together. The graph
starts from the node representing the main method and expands by going down through the

22 Technical Background

1 public class MyOjbect {
2 public static void main(String[] args) {
3 MyOtherObject o = new MyOtherObject();
4 if (args.length == 2) {
5 o.method1(2);
6 } else {
7 o.method2("hi!");
8 }
9 }

10 }
11
12 public class MyOtherObject {
13 int a = 0;
14 public MyOtherObject() {
15 this.a = 3;
16 }
17 public void method1(int i) {
18 this.a += i;
19 if (i == 55)
20 this.method1(55)
21 }
22 public void method2(String s) {
23 this.a += s.size();
24 }
25 public void method3(int j) {
26 this.method2(j);
27 this.method2(j);
28 }
29 }

(a) Two Java Classes

main

<init> method1 method2

size

(b) Resulting Call Graph

Figure 2.7: Source Code of Two Java Classes and Call Graph Generated from main Method

called methods.
Figure 2.7 illustrates the call graph generation process on a Java program (a). There are

two Java classes, MyObject and MyOtherObject. The starting point of the program is the main
method in MyObject. This main method is also the starting point of the call graph (b). The main
method first creates an instance by calling the constructor method of MyOtherObject (<init>
method in Java). Then it calls methods method1 and method2 on the newly created object.
Method1 calls no other method but itself. Method2 calls only size. Method3 it not reachable
from the main method and thus does not appear in the callgraph.

Precision

Inheritance and Polymorphism Object-oriented languages such has Java [61] use concepts
such as inheritance and polymorphism. Figure 2.8 illustrates the two concepts. Inheritance is the
ability to model an abstraction (here the abstract Animal class) and then to extend this abstraction
to concrete elements of this abstraction (here classes Human and Cat). The abstraction defines a
behavior through method walk. The Humans and Cats both walk but in a different fashion that
they describe in their own walk method.

Suppose we model a world of Cats and Humans using the Java language. We would store
every reference to Cats and Humans in a container for Animals. Animals walk by iterating
through the elements of the container and calling the walk method on them. When executing
this code the method call walk on Animal will be redirected to Human.walk if the Animal
is a Human or to Cat.walk if the Animal is a Cat. Providing a single interface for entities of
different kinds is called polymorphism. When analyzing a Java program, the way polymorphism

Introduction to Static Analysis 23

1 public abstract class Animal {
2 public abstract void walk() {}
3 }
4
5 public class Human {
6 public void walk() {
7 // code to walk like a human
8 }
9 }

10
11 public class Cat {
12 public void walk() {
13 // code to walk like a cat
14 }
15 }

(a) Inheritance

1 List<Animal> animals = new ArrayList<Animal>();
2 animals.add(new Human());
3 animals.add(new Cat());
4
5 for (Animal a : animals) {
6 // humans walk like humans
7 // cats like cats
8 a.walk();
9 }

(b) Polymorphism

Figure 2.8: Inheritance and Polymorphism

is handled has a direct impact on the precision of the call graph.

Flow Sensitivity A flow-sensitive analysis takes the order of statements into account. Take the
code snippet of Figure 2.9a as an example. At line two, a new Human instance is created and
is referred to by the Animal reference a. At line three, method walk is called on a. This means
that at execution time only method Human.walk is called at line three. At line four, a now
refers to a new instance of Cat. At line three a flow-sensitive analysis gives that a only points
to a Human object and not a Cat object. Thus the flow-sensitive call graph contains a single
edge to Human.walk. On the other hand, a flow insensitive analysis gives that a may point to
either a Human or a Cat object since it does not take the order of statements into account. For
a flow-insensitive analysis a program with line four between line two and line three would give
the same result. Thus the flow-insensitive call graph contains two edges: one to Human.walk
and another to Cat.walk.

Path Sensitivity A path-sensitive analysis takes the execution path into account. Take the
code snippet of Figure 2.9b as an example. At line two the Animal reference a points to no
object. If the condition at line three is true, a points to a new Human object (line four). If the
condition at line three is false, a points to a new Cat object (line six). A path-sensitive analysis
would yield two paths for this example: path1, l2-l3-l4-l8, and path2, l2-l3-l6-l8. At
line eight, path1 has a pointing to a Human object and thus method Human.walk is in the call
graph. Path2 has a pointing to a Cat object and thus method Cat.walk is in the call graph. A
path-insensitive approach does not take paths into account and would have a pointing to both a
Human object and a Cat object at line eight. Thus, the path-insensitive call graph would contain
both method Human.walk and method Cat.walk. A path-sensitive approach can produce a
graph for every possible path. The number of path can explode exponentially and the approach
becomes not scalable.

Field Sensitivity A field-sensitive approach models each field of each object. Take the code
snipper of Figure 2.9c as an example. At line two, c1 points to a new C object. This object
contains two Animal fields. At line three, the first field, f1, points to a new Human object. At

24 Technical Background

Code Snippet
*-sensitive
call-graph

*-insensitive
call-graph†

1 public void flowSensitivity() {
2 Animal a = new Human();
3 a.walk();
4 a = new Cat();
5 }

flowSensitivity

Human.walk

flowSensitivity

Human.walk Cat.walk

(a) Flow Sensitivity

1 public void pathSensitivity() {
2 Animal a = null:
3 if (condition) {
4 a = new Human();
5 } else {
6 a = new Cat();
7 }
8 a.walk();
9 }

path1
(continue
is true)

Human.walk

path2
(continue

is false)

Cat.walk

pathSensitivity

Human.walk Cat.walk

(b) Path Sensitivity

1 public void fieldSensitivity() {
2 C c1 = new C();
3 C c2 = new C();
4 c1.f1 = new Human();
5 c2.f1 = new Cat();
6 c1.f1.walk();
7 }
8 public class C {
9 Animal f1;

10 }

fieldSensitivity

Human.walk

fieldSensitivity

Human.walk Cat.walk

(c) Field Sensitivity

1 public void contextSensitivity() {
2 Human h = new Human();
3 Cat c = new Cat();
4 Animal a = method(c);
5 a = method(h);
6 a.walk();
7 }
8 public Animal method(Animal a) {
9 return a;

10 }

contextSensitivity

Human.walk

contextSensitivity

Human.walk Cat.walk

(d) Context Sensitivity

1 public void objectSensitivity() {
2 Contains c1 = new Contains();
3 Contains c2 = new Contains();
4 c1.setAnimal(new Human());
5 c2.setAnimal(new Cat());
6 c1.animal.walk();
7 }
8 public class Contains {
9 Animal animal;

10 public void setAnimal(Animal a) {
11 this.animal = a;
12 }
13 }

objectSensitivity

Human.walk

objectSensitivity

Human.walk Cat.walk

(e) Object Sensitivity
† except for field-sensitivity where a field-based call graph and not a field-insensitive call graph is represented

Figure 2.9: Sensitivities

Introduction to Static Analysis 25

line four, the second field, f2, points to a new Cat object. A field-sensitive analysis models
each field of each object. Thus, at line five the model of f1 can only points to a Human object
and only method Human.walk is in the field-sensitive call graph. A field-based approach only
models each field of each class of objects. This means that in the example field c1.f1 and
c2.f1 have the same model. Thus, at line five f1 points to a Human object and a Cat object
and both method Human.walk and Cat.walk are in the field-insensitive call graph. Finally,
note that a field-insensitive approach only models “objects”. All fields are aggregated to their
corresponding objects. A field-insensitive approach is unlikely to be used with languages such
as Java, but only with languages featuring type-unsafe pointer operations such as C.

Context Sensitivity A context-sensitive approach models each context in which a method is
called. There are two main ways of modeling the context: modeling the call site, which is
described in this paragraph and modeling the allocation site of method calls, also called object-
sensitivity, described in the next paragraph. Take the code snipper of Figure 2.9d as an example.
At line two a Human object in instantiated. Variable h refers to this object. At line three, a
Cat object is instantiated. Variable c refers to this object. At line four, method is called with
c. The method returns an animal reference stored in a. At line five, method is called with h.
The method returns an animal reference stored in a. At line six, method walk is called on a. A
context-sensitive approach models each method call independently. That is for the first method
call the model of the parameter points to c and the return value model points to c. For the
second method call the model of the parameter points to h and the return value model points to
h. Thus, only method Human.walk is in the call graph. On the other hand, a context-insensitive
approach has only a single model of the parameter and a single model of the return value for
a given method. In a context-insensitive the model of the parameter points to c and h and the
return value to c and h. Thus, a context-insensitive approach has both method Human.walk and
Cat.walk in the call graph.

Object Sensitivity An object-sensitive approach is a context-sensitive approach that distin-
guishes invocations of methods made on different objects. Take the code snippet of Figure 2.9e
as an example. At line two and three, two Contains objects are instantiated. Variables c1 and
c2 refer to these objects. The class Contains has an instance field animal of type Animal and
an instance method setAnimal to associate a value with field animal. At line four, method
setAnimal is called on c1 with a Human object as parameter. At line five, method setAnimal
is called on c2 with a Cat object as parameter. Finally, at line six, method walk is called on the
animal field of object c1. At lines four and five, an object-insensitive approach would consider
c1 and c2 as the same receiver. The result would be that the method calls at line four and six
cannot distinguish between the receiver and model c1 and c2 as a unique object cu of type
Contains. Thus, method walk called on object cu at line six is represented by two methods in
the call graph: Human.walk and Cat.walk. On the other hand, an object-sensitive approach
would have model c1 and c2 separately for each call of setAnimal. Thus, the call at line six
would only be represented by method Human.walk in the call graph.

26 Technical Background

Undecidability The problem of finding which pointers can refer to which objects at run-time
using a static analysis is undecidable [77]. This means that no exact solution (i.e., both sound
and complete) can be computed for all programs. However, many conservative solutions exist.
These solutions are sound because they compute an over-approximation of the “real” result. As
we have seen in the above paragraphs, they differ in precision (i.e., some approach generate
more false-positives than other). For instance, a context-sensitive approach is in general more
precise than a context-insensitive approach.

Algorithms to Compute a Call Graph for Java

Java is an object-oriented language which supports polymorphism. Thus, the exact types of the
object on which a method is called (this kind of object is also called receiver) may not be known
when performing the program static analysis. In the following paragraphs we briefly go through
some algorithms that statically construct a call graph for Java programs.

CHA The first approach called Class Hierarchy Analysis (CHA) was proposed by Dean et
al. [39]. The approach is very conservative and assumes that for a given receiver, the declaring
type T of the receiver as well as all the subtypes of T (e.g., all subclasses) are possible types
at runtime. For instance, when running CHA on a program having a method call walk() on a
receiver r of type Animal, CHA assumes that Animal, Human and Cat are possible types for r
at runtime. This will be the case even if no Cat object is instantiated in the analyzed program.

RTA A later approach called Rapid Type Analysis (RTA) was proposed by Bacon et al. [10].
This approach is similar to CHA, but only considers type T as possible type if an object of type
T is created in the analyzed program. For instance, when running RTA on a program having a
method call walk() on a receiver r of type Animal, RTA assumes that Animal, Human and Cat
are possible types for r at runtime if and only if objects of types Human and Cat are created
somewhere in the analyzed program.

VTA Sundaresan et al. [126] later proposed an other approach called Variable-Type Analysis
(VTA). This approach is more precise than CHA or RAT since it only considers types that can
reach a receiver as possible types.

Andersen The Java extensions [83, 110] of Andersen’s algorithm [2] perform field-sensitive
subset-based points-to analyses. A points-to analysis describes to what memory locations (i.e.,
local variables, global variables and dynamically allocated memory) a pointer expression may
refer to. A call graph can almost directly be computed from the result of a points-to analysis.
As described above, a field-sensitive approach models every field of every created objects sepa-
rately. Given a statement such as a = b a subset approach adds the following constraint: a ⊇ b.
This means that the points-to set of b is a subset of the points-to set of b. The algorithm collects
all such constraints and uses a worklist to solve the constraints and construct the points-to set
for all pointers. The worst-case complexity for Andersen-like pointer analyses on realistic Java
programs is quadratic [122].

Introduction to Static Analysis 27

1 public void rfMethod() {
2 int x = 1;
3 int y = 2;
4 x = 3;
5 y = 4;
6 }

Figure 2.10: Example for the Reaching Definition Data-Flow Analysis

S.in

x = 3;S: S.out = f(S.in) = S.gen ∪ (S.in \ S.kill)

S.out

Figure 2.11: In, Out, Gen, Kill and Transfer Function

Steensguard Contrarily to Andersen’s, Steensguard’s algorithm [124] is equality based. This
means that instead of subset constraints it uses equality constraints. Given the statement a =
b, the constraints is a = b. This constraint means that the points-to set of a is the same as the
points-to set of b. This approach is less precise than Andersen’s but is more scalable (near to
linear time complexity [124]).

Other Approaches Other points-to approaches have been developed [135, 119, 134, 64, 65]
to either improve the efficiency of the subset-based points-to analysis introduced by Andersen
or to improve the precision of the equality-based points-to analysis introduced by Steensguard.
The interested reader may refer to [80] for an overview of these approaches.

2.2.2 Data-Flow Analysis

Intra-Procedural Analysis

A data-flow analysis [1] is a technique to compute at every point in a program a set of possible
values. This set of values depends on the kind of problem that has to be solved using data-
flow analysis. For instance, in the reaching definition problem, one wants to know the set of
definitions (e.g., statements such as int x = 3;) reachable at every program point. In that
particular problem, the set of possible values at program point P is the set of definitions that
reaches P (i.e., the variable is not redefined before it reaches P). Take the example of Figure 2.10.
Definition at line two reaches lines three and four but not five since variable x is redefined at line
four. Definition at line three reaches lines four and five. Definition at line four reaches line five.

A data-flow analysis uses a system of equations to compute information at each program
point or statement. Each statement has a set of possible values called in, which represents

28 Technical Background

the information valid before the statement. Each statement has a set of possible values called
out, which represents the information valid after the statement. Each statement has an equation
describing the effect of the statement on the in set. A statement Stmt can create new possible
values represented by Stmt.gen and kill existing values, represented by Stmt.kill.

Figure 2.11 represents the statement at line four of Figure 2.10. This statement S has an in
set containing the two definitions x = 1; and y = 2; which are the definitions that reach the
statement at line four. Note that for a statement with multiple predecessors, the set in is defined
as the union of the out sets of all the predecessors: S.in = ∪p ∈ predecessorsp.out. The statement
S generates a new definition, x = 3;, and kills definitions for variable x in the in set. This
behavior of statement S is represented by an equation S.out = S.gen ∪ (S.in \ S.kill). The
function f S.out = f(S.in) is called the transfer function (it can also be called flow function or
data-flow function).

Forward and Backward The reaching definition problem is solved using a forward analysis.
This means that the analysis starts at the first statement of the program and goes forward until it
reaches the end of the program. Other problems are solved using a backward analysis where the
analysis starts at the last statement and goes backward up to the first statement.

Inter-Procedural Analysis

So far we have been looking at intra-procedural (i.e. within a single method) data-flow analy-
ses. An inter-procedural analysis performs the analysis on connected procedures (or methods in
Java). As we have seen in Section 2.2.1, computing a call-graph gives information about how
methods are connected.

To illustrate an inter-procedural analysis we rely on the Inter-procedural Finite Distributive
Subset (IFDS) framework [106]. The IFDS framework solves problems in polynomial time by
transforming them in a graph-reachability problem. The algorithm used to solve the problem
is called the “tabulation” algorithm. It is an improvement over previous approaches such as the
“iterative” or the “call-strings” algorithms [87] which can take exponential time in the worst
case.

IFDS Take Figure 2.12 as an example. The example is taken from [106] and illustrates
the inter-procedural possibly uninitialized variables data-flow problem. Figure 2.12a repre-
sents a Java class with two methods, main and p. In this example, we suppose that method
read(a), is a system method reading an integer and storing it in local variable a, and that
method print(a,b) is a system method printing the value of integers a and b on the screen.
Figure 2.12b represents the control flow graphs of methods main and p, respectively.

A call graph for the code of Figure 2.12 would show that method main calls method p at line
six and that method p calls itself at line 13. Each method call is represented by two nodes: the
call node c and the return-site node r. Connecting the methods is done by adding three edges:
one intra-procedural from c to r, one inter-procedural from c to the called method start node
and one inter-procedural from the called method exit node to r. Individual method CFGs and
connections between the methods using two nodes for the each call site and three edges form

Introduction to Static Analysis 29

1 public class C {
2 public int g;
3 public void main() {
4 int x;
5 read(x);
6 p(x);
7 return;
8 }
9 public p(int a) {

10 if (a > 0) {
11 read(g);
12 a = a - g;
13 p(a);
14 print(a, g);
15 }
16 return;
17 }
18 }

(a) Java class C contains two
methods main and p.

Enter main

read(x)

p(x)

return

Enter p

if (a > 0)

read(g)

a = a - g

p(a)

print(a, g)

return

(b) CFG of methods main (left) and p (right).

Figure 2.12: Example for the Possibly Uninitialized Variable Problem (Figure adapted
from [106]).

30 Technical Background

Enter main

read(x)

p(x)

return from p

return

Enter p

if (a > 0)

read(g)

a = a - g

p(a)

return from p

print(a, g)

return

Figure 2.13: The Supergraph for the Possibly Uninitialized Variable Problem (Figure adapted
from [106]).

the supergraph. The supergraph for example in Figure 2.12 is represented in Figure 2.13.
The set of data-flow facts for the possibly uninitialized variables is the set of local and

global variables available in each method. Method main has local variable x and global variable
g. Method p has local variable a and global variable g. The effect of each statement on the
set of data-flow facts is represented by functions at every edge of the graph. For instance, the
effect of read(x) is to initialize variable x. The function is represented by λS.(S − {x}). This
means that the output set of data-flow facts is the input set S from which element x is removed.
Indeed, since x in now initialized by the current statement, it can be removed from the set of
potentially uninitialized variables. Similarly, statement a = a - g is represented by function
λS. if ((a ∈ S) or (g ∈ S)) then (S∪a) else (S−{a}). This means that if either a or g is in the
input set, the output set is the input set plus element a (i.e., a is also undefined). Otherwise, the
output set is the input set from which element a is removed (i.e., neither a nor g are undefined,
so the new value of a cannot be undefined).

The IFDS framework represents every flow function f as a graph containing the following
set of edges: {(0, 0)} ∪ {(0, y) | y ∈ f(∅)} ∪ {(x, y) | y ∈ f(x) and y /∈ f(∅)}. The two
functions described in the previous paragraph are represented as graphs in Table 2.1. Once all

Conclusion 31

λS.(S − {x}) λS. if ((a ∈ S) or (g ∈ S)) then (S ∪ a) else (S − {a})
0 x g

0 x g

0 a g

0 a g

Table 2.1: Two Functions and their Compact Graph Representation.

functions have been represented as compact graphs, they can be assembled to form the exploded
supergraph. The exploded supergraph is illustrated in Figure 2.14. This graph converts an IFDS
problem to a graph-reachability problem. In brief, if a node of the exploded supergraph is
reachable from the enter node of the main method, it means that the data-flow fact associated
with it holds. For instance, node for variable g for statement p(x) in method main is reachable
from node 0 of the enter node of the main method. This means that at statement p(x) in method
main, variable g is potentially uninitialized.

IDE The IFDS frameworks handles problems where the set of data-flow facts D is finite and
where data-flow functions are in 2D → 2D. This framework is enough for problems such as
“reaching definitions”, “available expressions” or “possibly uninitialized variables”. However,
some problems such as the “linear constant propagation” problem cannot be encoded with the
IFDS framework because the set of data-flow facts would be infinite.

The Inter-procedural Distributive Environment (IDE) framework [111] solves problems in
which the data-flow information at a program point is represented by an “environment”. In other
words, the data-flow facts are maps from a finite set of symbols D to a set of values L. This
mapping is called the environment and is denoted Env(D,L). Data-flow functions are called

“environment transformers” and are of the form Env(D,L)
d−→ Env(D,L).

The IDE framework is a generalization of the IFDS framework: all IFDS problems can be
represent as IDE problems, but not all IDE problems can be represented as IFDS problems. An
IDE problem can be represented by a supergraph G∗ (for a given program the IDE supergraph
is the same as the IFDS supergraph), a set of program symbols D, a semi-lattice L and an
assignment of environment transformers to the edges of G∗: M : E∗ → (Env(D,L)

d−→
Env(D,L)).

2.3 Conclusion

In this chapter, we have first introduced the Android system and the structure of Android appli-
cations. This domain-specific knowledge is necessary to fully understand Chapters 4, 5 and 6
where approaches are always applied either on the Android framework or on Android applica-
tions. Then, we have introduced concepts of static analysis such as call graph construction or
inter-procedural analysis. Call graph construction is the basic of the Android framework analysis

32 Technical Background

Enter main
0 x g

read(x)

p(x)

return from p

return

Enter p
0 a g

if (a > 0)

read(g)

a = a - g

p(a)

return from p

print(a, g)

return

Figure 2.14: The Exploded Supergraph for the Possibly Uninitialized Variable IFDS Problem
(Figure adapted from [106]).

Conclusion 33

presented in Chapter 4 while Chapter 5 heavily relies on inter-procedural analyses.

Chapter 3

Dexpler: Converting Dalvik Bytecode
to Jimple to Enable Static Analysis of
Android Applications

The goal of the chapter is to make possible the static analysis of Android applications. This
Chapter describes Dexpler a software module which transforms Dalvik bytecode (i.e., the code
of Android applications) to Jimple. Jimple is the internal representation of code of Soot, one of
the most popular static analysis tool for Java-based programs. Converting Dalvik bytecode to
Jimple enables to perform static analyses and transformations on Android applications.

This chapter is based on work that has been published in the following paper:

•Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. Dexpler: converting
android dalvik bytecode to jimple for static analysis with soot. In Proceedings of the ACM
SIGPLAN International Workshop on State of the Art in Java Program analysis (SOAP@PLDI),
2012.

3.1 Introduction

Android applications are written in Java. However, they are not distributed as Java bytecode but
rather as Dalvik bytecode. One possibility to analyze Android applications, would be to use a
Dalvik disassembler such as Smali [62] or Androguard [41]. However, they are not designed
to perform advanced static analysis such as data-flow analysis and they generally use their own
representation of the bytecode which prevents them to use existing tools to perform the analysis.

Furthemore, analyzing Android applications with existing Java static analysis tools means
that the Java source code or the Java bytecode of the Android application must be available.
Most of the time, Android applications developers do not distribute the source code of their
applications making the analysis of Android applications impossible with existing tools for ana-
lyzing Java programs. This is especially true for malware applications for which the source code
is almost never available.

36 Dexpler: Converting Dalvik Bytecode to Jimple

Another possibility to analyze Android applications is to first convert the Dalvik bytecode
to Java bytecode, using Ded [47], Dex2jar [99] or undx [115], and then use a Java tailored
static analysis tool such as Soot [131], BCEL [35] or WALA [70]. Tools which generate Java
bytecode can leverage existing Java bytecode analyzers. However, the conversion from Dalvik
to Java bytecode takes time and could be avoided by directly converting Dalvik bytecode to the
internal representation of a tool.

To overcome these limitations, we introduce Dexpler1, a module for Soot which directly
reads Dalvik bytecode converts it to Jimple, Soot’s internal representation of code, and fully
type local variables of the Jimple representation. Any static analysis and/or transformation can
then be applied on the Jimple representation. Using this method eliminates the intermediate
Dalvik to Java bytecode conversion step and enables to use a faster and simpler tool chain for
static analysis.

The contributions of this chapter are the following:

• we describe a Dalvik to Jimple converter tool called Dexpler

• we describe an algorithm to type the Dalvik bytecode

• we evaluate Dexpler on more than 25 thousand Android applications

The reminder of this chapter is organized as follows. Section 3.2 is an overview of the Dalvik
bytecode. In Section 3.3 we describe Dexpler, the software which enables Soot to analyze Dalvik
bytecode. In Section 3.4 we evaluate Dexpler on more than 25 thousand Android applications,
present and discuss the results. Section 3.5 explains the current limitation of our tool. Finally
we conclude the chapter and discuss open research challenges in Section 3.6.

3.2 Dalvik Bytecode and its Peculiarities

An Android application comes as a zip file containing the bytecode of the application, the An-
droid manifest describing the structure of the application in terms of components and permis-
sions it require, and data files (e.g., pictures, sounds). In this Section, we focus on the file
containing the Dalvik bytecode of the application, also called the dex file in reference to the
extension of the file name. Even if the original Android application is written in Java, no Java
bytecode is found within an Android application. The Java code is first compiled into Java byte-
code which is then transformed into Dalvik bytecode by the dx tool2. The reason behind the use
of Dalvik bytecode it that it is register based and optimized to run on devices where memory
and processing power are scarce. The structure of the dex file is described in Section 3.2.1.
Dalvik instructions are presented in Section 3.2.2. Then, specificities of the Dalvik bytecode are
explained in Section 3.2.3.

1Dexpler webpage: http://www.abartel.net/dexpler/
2dx is part of the Android SDK available at http://developer.android.com/sdk/index.html

http://www.abartel.net/dexpler/
http://developer.android.com/sdk/index.html

Dalvik Bytecode and its Peculiarities 37

3.2.1 Overall Structure

In this Section we first describe the structure of Java classes. Then, we describe the process to
generate the dex file, containing all Dalvik classes, from Java files.

Java Classes As represented in Figure 3.1a, there is only a single place where literal constant
values are stored (constant pool) per Java class. In Java, the constant pool is heterogeneous since
different kind of Objects are mixed (e.g., Class, reference to Method, Integer, String). Every
Java class contains a constant pool.

Dalvik Classes A single Dalvik executable is produced from N Java bytecode classes pro-
cessed by the dx compiler. The resulting Dalvik bytecode is stored in a .dex file as represented
in Figure 3.1b. A dex file contains description of Dalvik classes (name, fields, methods, ...) and
Dalvik bytecode (a structure representing the code of concrete methods). Moreover, a dex file
contains four homogeneous constants pools: for Strings, Class, Fields and Methods. All Dalvik
classes share those four constant pools. Furthermore, a .dex file contains multiple Class Defini-
tions each containing one or more Method definition. Each Method definition is linked to Dalvik
bytecode instructions present in the Data section.

3.2.2 Dalvik Instruction

The Java virtual machine is stack based. This means that operands are pushed and popped from
the stack according to the instructions semantic. On the other hand, the Dalvik virtual machine is
register based. This means most instructions specify the name of registers they manipulate. This
makes the Dalvik bytecode syntactically close to Jimple code since Jimple also uses a register-
based representation of code. Figure 3.2.a represents Java bytecode where values are pushed to
the stack whereas Figure 3.2.b represents Dalvik bytecode where values are assigned to registers
v0 and v1. The corresponding Jimple code would be v0 = 0; v1 = 0 which is syntactically
close to the Dalvik bytecode.

There are 237 opcodes present in the Dalvik opcode constant list. However, 12 odex (opti-
mized dex) instructions cannot be found in Android applications’ Dalvik bytecode as they are
unsafe instructions generated within the Android system to optimize Dalvik bytecode. More-
over, 8 instructions were never found in application code [94]. According to those numbers, it
is highly probably to only find 217 instructions in Android applications in practice.

The set of instructions can be divided between instructions which provide the type of the
registers they manipulate (e.g., sub-long v1, v2, v3 adds two long registers and stores the
results to a long register) and those which do not (e.g., const v0, 0xBEEF stores a value with
undefined type in register v0). Moreover, there is no distinction between null and 0 which are
both represented as the 0 value.

3.2.3 Primitives and Null

In this Section we highlight the characteristics of the Dalvik bytecode which have an impact on
the typing resolution of bytecode registers. Note that we use the term register when we refer to

38 Dexpler: Converting Dalvik Bytecode to Jimple

Header

Constant Pool

Class Definition

Field List

Method List

Data

class 1

...

Header

Constant Pool

Class Definition

Field List

Method List

Data

class N

Header

String Constant Pool

Class Constant Pool

Field Constant Pool

Method Constant Pool

Class 1 Definition

Class 1 Field List

Class 1 Method List

...

Class N Definition

Class N Field List

Class N Method List

Data

dex

(b) Dex File(a) Class Files

Figure 3.1: Dalvik Dex and Java Class

int i = 0;
Object o = null;

(a) Java Source

iconst_0
istore_2
aconst_null
astore_3

(b) Java bytecode

const/4 v0, 0x0
const/4 v1, 0x0

(c) Dalvik Bytecode

Figure 3.2: Zero and null Representation in Java Source Code, Java Bytecode and Dalvik Byte-
code.

Dalvik Bytecode and its Peculiarities 39

int i = 2;
i = i + 1;

float f = 3.3f;
f = f + 1.1f;

(a) Java Source

iconst_2
istore_1
iload_1
iconst_1
iadd

ldc 3.3f
fstore_1
fload_1
ldc 1.1f
fadd

(b) Java bytecode

const v0, 0x2
const v1, 0x1
add-int v0, v1

const v0, 0x40533333
const v1, 0x3f8ccccd
add-float v0, v1

(c) Dalvik Bytecode

Figure 3.3: Typing Differences between Java and Dalvik Bytecode Instructions

Dalvik bytecode variable and the terms local or variables when referring to Jimple variables.

Primitives

In Java bytecode a primitive variable is initialized by an instruction which specifies its type (e.g.,
int, float, long, double). This is not the case in Dalvik where constants initializations have no
type information. The code snippet on Figure 3.3 highlights those differences between Java and
Dalvik bytecodes. In Java the type can be determined at every instruction: integer constants are
initialized with specific instructions for integers while float constants are loaded from the con-
stant pool in which they are tagged with the appropriate type (float in the example). In Dalvik
however, the type information cannot be determined at a constant initialization instruction. How-
ever, for arithmetic operations, Dalvik uses instructions specifying the type of the operands. The
type of a register can also be determined when it is given as a method parameter since the signa-
ture of every called method indicate the type of its parameters. In brief, when analyzing Dalvik
bytecode the type of a register initialized by a constant can only be determined when the register
is used.

Furthermore, in Dalvik, float and integer constants are both encoded on 32-bits. As illus-
trated in Figure 3.4, if a register is initialized with a 32-bits constant, the uses of the register
have still to be analyzed to determine the register type. Similarly, long and double constants are
both encoded on 64-bits. Therefore, a 64-bits constant assigned to a register does not directly
give the type of the register. However, analyzing how the register is used will give the register
type.

Null

Null is assigned to an object reference to indicate that it has no reference. In Java bytecode null
is handled through a special load constant instruction (see Figure 3.2.b) and two if instructions
to check whether an object reference is null or is non-null. In Dalvik bytecode there are no such
instructions: null is represented as the integer value zero. Checking whether an object reference
is null or is non-null consists in checking whether the object reference is an integer equal to
zero or different than zero, respectively. Figure 3.2 illustrates that in the Java source code (a)

40 Dexpler: Converting Dalvik Bytecode to Jimple

32 bits

null int float

(a) 32-bits constant = 0

32 bits

int float

(b) 32-bits constant != 0

64 bits

long double

(c) 64-bits constant

Figure 3.4: Type Information From Constant Initialization

and bytecode (b) there is a clear difference between 0 and null whereas in Dalvik bytecode
(c) there is no difference at all. As we will see in Section 3.3, the lack of type and the null
representation becomes problematic when translating the Dalvik bytecode to Jimple.

3.2.4 Exceptions

In Dalvik as in Java bytecode, the bytecode contains exception handlers. A handler is a special
set of instructions from a method’s bytecode which is called by the virtual machine when a
portion of the code throws an exception. Not handling peculiarities of Dalvik exceptions leads
to untypable code. This is why we use a Dalvik specific exception model during the typing
process and not the original Java exception model.

When constructing the CFG for a method, one has to add edges from instructions which
could throw an exception to the first instruction of the correct exception handler. Exceptions in
Dalvik are almost handled the same way as in Java but there are a few differences. Instructions
returning from a method can throw an exception in Java but not in Dalvik. Instructions to store a
class constant and a string constant can throw an exception in Java but not in Dalvik. Regarding
arrays, Dalvik only throws exceptions for array instructions when the index is out-of-bound or
if there is a null pointer on the array reference.There is no exception for instructions storing data
into an array in Dalvik whereas there is in Java.

Exception handling could be considered as a technical detail. However, if not handled cor-
rectly it can break the typing of the code’s variables. Consider the code presented in Figure
3.5. If an instruction between label1 and label2 can throw an exception, the handler instruction
at label handler is called. This is the case for the throw v4 instruction. If the Dalvik return
instruction is handled as a Java bytecode return instruction, there would be an edge in the CFG
from the instruction before the return instruction (i.e. v1 = <Object getObject>) to the ex-
ception handler. This edge is represented as a dashed arrow in Figure 3.5. In that case, when
register v1 is used in the handler its type could be both int (from getInt method) and Object
(from getObject method). It would not be possible to obtain a typing for this code.

3.3 From Dalvik to Typed Jimple Code

This section describes Dexpler, the Dalvik to Jimple converter tool. It leverages the dexlib2
library from the Smali disassembler [62] to parse Dalvik bytecode and the Soot fast typing, a
Jimple component implementing a type inference algorithm [17], to type local variables. How-
ever, the type inference algorithm does not work on Jimple code naively generated from Dalvik

From Dalvik to Typed Jimple Code 41

v1 = <int getInt()>
label_1:
...
throw v4
...
v1 = <Object getObject()>;
return v1;
label_2:

handler:
v0 = @exception
v3 = v1 + 2;
...

v1 = getInt()

throw v4 v1 = getObject()

return v1

v0 = @exception

v3 = v1 + 2

Figure 3.5: Incorrectly Handling Dalvik Exceptions in the CFG Introduces Typing Inconsisten-
cies.

bytecode. We describe this typing problem in Section 3.3.1. Then, we describe how Dexpler
solves this problem in Section 3.3.2.

3.3.1 Requirements of the Translation

Figure 3.6 represents the type lattice of Dalvik bytecode. Note that 32-bits and 64-bits ab-
stractions are present since the type of constants is not known in the Dalvik bytecode: 32-bits
constants could be either of type float, char, short, byte, boolean or int (recall from Figure 3.3
that initialization instructions do not give type information) and 64-bits constants of type double
or long. Figure 3.7 represents the type lattice of Java bytecode. In Java bytecode constants for
float, double, long and int are initialized with instructions specifying their type. Furthermore,
there is a clear distinction between null that can only be assigned to objects and the value int 0
that can be assigned to int-like types.

Our aim is to convert Dalvik bytecode to Jimple and then remove type ambiguities so that
existing typing algorithms can fully type the code. In order to achieve that goal we consider
a simplified version of the the Dalvik type lattice represented in Figure 3.8. Existing typing
algorithm such as [18] can type objects and sub-types of int, so we do not fully represent them
in the simplified lattice. We want to go from the lattice in Figure 3.8, representing types in
Dalvik bytecode, to the lattice in Figure 3.9 where there can be no ambiguity between types.

More precisely, we want to distinguish (1) between 0 used as null and 0 used as the
integer value zero, (2) between 32-bits constants used as integers and 32-bits constants
used as floats (3) between 64-bits constants used as double and 64-bits constants used
as long.

Once the typing of variables matches the lattice represented in Figure 3.9, the typing ambi-
guities have been removed and the full typing algorithm can be used to fully type variables.

The process of converting Dalvik bytecode to Jimple and typing the code is illustrated in
Figure 3.10. First, the original Dalvik bytecode file (1) is parsed by the dexlib23 library and

3http://code.google.com/p/smali/

http://code.google.com/p/smali/

42 Dexpler: Converting Dalvik Bytecode to Jimple

⊤

Object int float double long

short char

bytearrayobj. refs

boolean

32-bits 64-bits

0

⊥

Figure 3.6: Dalvik Type Lattice

⊤

Object int float double long

short char

bytearrayobj. refs

boolean

null

⊥

Figure 3.7: Java Type Lattice

From Dalvik to Typed Jimple Code 43

⊤

Object int float double long

32-bits 64-bits

0

⊥

Figure 3.8: Simplified Type Lattice for Dalvik

⊤

Object int float double long

null

⊥

Figure 3.9: Simplified Target Type Lattice

44 Dexpler: Converting Dalvik Bytecode to Jimple

Dalvik
Bytecode

classes.dex

(1)

Disassembled
Dalvik

Instructions

dexlib2

(2)

Untyped
Jimple

Jimple

(3)

Ambiguous
Type

Resolution

Jimple

(4)

Full
Typing

Jimple

(5)

Figure 3.10: From Dalvik Bytecode to Full Typed Jimple

Coordinate newCoord = null;
while (newCoord != null) {
newCoord = new Coordinate(1, 1);
}
if (newCoord == null) {
[...]
}

Figure 3.11: Illustration of the null init problem.

every instruction is disassembled (2). From this intermediate representation, untyped Jimple
statements are generated and connected together to from a Control Flow Graph (CFG) (3). The
next step (4) resolves ambiguous types. Finally, in step (5), all Jimple locals are typed using
the efficient local type inference algorithm presented by Bellamy et al. [18]. Step (5) is used to
validate our approach. The next section describes step (4) in detail.

3.3.2 Ambiguous Type Resolution

We have seen in Section 3.2.3, that the following instructions lack type information: zero value
constant initialization instructions (is it zero or null?) and constant initialization instructions
(32 bits: integer or float?, 64 bits: long or double?). The following illustrates how we type the
registers of these instructions by looking at how they are used in the code.

Null Initialization Figure 3.12 illustrates the problem with a bytecode snippet generated from
the Java code of Figure 3.11. Register v0 is initialized with 0 at line 01. At this point we

00: const/4 v1, #int 1
01: const/4 v0, #int 0
02: if-eqz v0, 000a
04: new-instance v0, LCoordinate;
06: invoke {v0, v1, v1}, LCoordinate;.<init>:(II)V
09: goto 0002
0a: if-nez v0, 0013
[...]
13: ...

Figure 3.12: Resulting Dalvik Bytecode from Figure 3.11

From Dalvik to Typed Jimple Code 45

do not know if v0 is an integer, a float or a reference to an object. At line 02 we still do not
have the answer. We have to wait until instruction at line 04 to known that the type of v0 is
Coordinate. At this point, the Jimple instruction generated for 01 has to be updated to be
a null constant instead of the default integer constant with value zero. If this is not handled
correctly, the typing component fails. Indeed, it is not possible for register v0 to be both an
integer and an object of type Coordinate.

Numeric Constant Initialization Similarly, initialization of float constants cannot be distin-
guished from initialization of int constants and initialization of double constants from initializa-
tion of long constants. Thus, we go through the graph of Jimple statements to find how constants
are used and correct the initializations Jimple statements when needed. For instance, if a float/int
constant (initialized by default to int in the Jimple statement) is later used in a float addition, the
constant initialization changes from int constant to float constant.

Algorithm

Our algorithm can be divided in three steps executed sequentially:

1. an array type propagation step

2. a null versus zero differentiation step

3. an integer version float differentiation and long versus double step

Step 1: Array Type Propagation For every untyped constant we are looking at uses of local
variables initialized with a constant value. The local can be stored in a field, used as a method
parameter and stored in an array. For fields and methods, the type of the constant is known
because the field signature and the method signature provide enough typing information. For an
array on the other hand, the type information is not always known. A typical example would be
when the array is aliased (i.e. assigned to another local).

To propagate type information we start at array initialization statements. For every such
statement we find where the array is used. If the array is aliased we transfer the type information
from the array to the new local. When a fix point is reached all local referencing arrays are
typed.

Step 2: null and Zero For this step we designed Algorithm 1 on page 50. The algorithm starts
at method nullOrZero (line 1). The algorithm starts by collecting statements that initialize
local variables with an integer whose value is zero (line 3). Then, for every use of the local
variable, method forEveryUse adds a type, either ”used as object” or ”used as integer”, to the
set of types (lines 5-6) for the local variable. If not all types for a local variable are consistent
(i.e. they are not all the same), there is a type inconsistency in the method’s bytecode making it
impossible to type the bytecode. In that case, the algorithm ends with an error code (line 8) and
the code executing the algorithm replaces the method code by a default code block which would
throw a runtime exception. On the other hand, if all types are consistent, the local variable

46 Dexpler: Converting Dalvik Bytecode to Jimple

definition(s) is/are updated accordingly: if the constant is used as an object, the zero value is
replaced by null (line 10).

More precisely, method forEveryUse first collects all uses of the local defined by defini-
tion d (line 16). For every use, it checks wether the use type is an object or not an object. If
the use type can be determined, the type is added to the set of types defined previously (line
19). If the use type cannot be determined there are three possibilities. The first possibility is
that the statement under consideration is an alias statement. In that case the alias local variable
is fetched and method forEveryUse is called again for that variable. The second possibility
is that the statement under consideration is an if statement. If the if statement’s condition con-
tains another local, the method collectDefinitionsWithAliases is called with the other
local. As its name suggests, this method collects all definitions of the local given as parameter.
It checks the type for all definitions and also for all uses of the definitions. The last possibility
is that the algorithm did not find any valid type for the statement. In that case the type is set to
UnknownType. Just before the end of the loop over the use statements, the method collect-
DefinitionsWithAliases is called. This is useful in the case where there is not enough
information to type the current analyzed local variable. Indeed, the algorithm may get more
information about its type by looking at all of the definitions of the local variable and also by
looking at how those other definitions are used.

Method collectDefinitionsWithAliases is called with a local variable as only param-
eter. It first collects all definitions of the local variable (line 38). For each definition, it checks
if the local is defined as an object or not (line 40). If a type has been found it adds it to the set
of types (line 42). Otherwise, it checks if the definition is an alias statement. It it is, it retrieves
the alias and recursively calls collectDefinitionsWithAliases with the alias (line 44-45).
Otherwise, if the statement is a zero constant definition, no type is added, since at this point types
of zero constants are unknown (line 47). In all other case, the unknown type is added to the set
of types. Finally, the method calls forEveryUse to check the types of all uses of all definitions
(line 51).

Step 3: Float vs. Int and Long vs. Double After step 1 and step 2, the zero integer constants
have been converted to null if they are used as objects. At this point we still have to correctly
type 32-bits constants (float and int) and 64-bits constants (long and double). The approach is
very similar to step 2. Algorithm 1 can be reused with slight changes. Method getZeroDefs is
replaced by method getNumDefs which returns definitions where local variables are assigned
a numerical constant (line 3). Methods isObjectOrNot_Use and isObjectOrNot_Def are
replaced by methods checkNumType_Use and checkNumType_Def, respectively (lines 19 and
40). Those two new methods return the local variable use type and def type, respectively. Method
areTypesConsistent checks that all types are the same, either all float, all int, all long or all
double (line 7). Finally, method correctDefs update the definition according to the correct
use type.

Step 4: Full Type Resolution Once ambiguities among constant definitions are resolved, a
traditional typing algorithm for Java code is run. We use the one introduced by Bellamy et
al. [17]. At the end of this process the code for a method is fully typed.

Evaluation 47

0

10

20

30

40

50

60

70

80

0 10000 20000 30000

%
of

m
et

ho
ds

w
ith

nu
m

er
ic

al
co

ns
ta

nt
s

Applications (ranked by the ratio of methods using numerical cosntants they contain)

Figure 3.13: Ratio of Methods with Numerical Constants per Application

3.4 Evaluation

We evaluate Dexpler on 27,846 Android applications downloaded from Google Play. Together
those applications account for 135,289,314 methods. Among them, 37,720,245 (28%) methods
have a numerical zero constant definition statement. Figure 3.13 represents, for each application,
the ratio of methods containing numerical zero constants. In total, 27,682 (99.41%) applications
contain numerical constants. This results indicate that handling numerical constants is a must
when analyzing Android applications.

The 27,846 applications are distributed on 100 nodes of the University of Luxembourg’s
High Performance Computing (ULHPC) [132]. The processing time plus the storage of meta-
data (e.g., size of each method, processing time per method) in a database requires 36 hours.

Dexpler correctly types variables for 135,288,415 (99.99%) methods. Dexpler fails to ana-
lyze 56 (0.20%) applications and all their methods due to exceptions generated by Soot. For 135
methods, step (5) did not run successfully.

3.4.1 Discussion on Failed Apks

Out of 27,682 applications, 56 (0.20%) were not correctly handled by Dexpler. Thirteen (23%)
are non-valid Android applications produced by a bug in our application crawler or by an invalid
magic number. Five (9%) because of out-of-memory exception. Six (11%) because of invalid
field reference and 32 (57%) because of bytecode containing invalid instructions (e.g., virtual-

48 Dexpler: Converting Dalvik Bytecode to Jimple

invoke instead of interface-invoke or interface-invoke instead of virtual-invoke 4).
The 135 methods that did not pass step (5) have a similar characteristic: they all have vari-

ables used with different types in multiple branches. For instance, a variable initialized with zero
could be used in the first branch as an integer and in the second as a null reference. One way of
solving this would be to propagate the definition of the variable along the branches and remove
the original definition. This would generate two variables each having its own type.

3.5 Limitations

Although our algorithm works in more than 99% of the 25 thousand applications we analyzed,
they are situations (other than those in Section 3.4.1) that it does not handle yet.

3.5.1 Invalid Bytecode Never Executed and Never Checked by the VM

The Dalvik Virtual Machine (DVM) does only check the validity of classes as they are needed at
runtime. Thus, the attacker could create a fake class containing methods with invalid bytecode.
This class would never be used by the application itself so it will never be checked by the DVM
and the application could be successfully installed on a device. However, a tool analyzing the
application’s bytecode, such as Dexpler, will analyze the invalid bytecode since it does not know
if this class is used or not at runtime. If Dexpler does not find a valid typing for a method it
replaces the code by instructions throwing an exception.

3.5.2 Invalid Dalvik Bytecode Bypassing the VM Verification

Bremer [24] has shown that is is possible to write Dalvik bytecode which is not checked by the
DVM. The proof of concept exploits a bug in the DVM which does not check the bytecode if the
class has a particular flag turned on. This kind of bytecode may be invalid in respect to typing
constraints normally enforced by the DVM. This bug impacts all Android versions up to 4.3.
The consequence is that it may be impossible to correctly type this kind of bytecode. During our
experiments we checked the particular class flag used in the bug and did not find any application
using this bug.

3.5.3 Hidden Bytecode

Outside the Bytecode. A Dalvik program can dynamically load Dalvik bytecode at runtime.
An attacker could then hide the bytecode in a file (e.g. picture) and load it at runtime. Since
this bytecode is not present in the dex file finding where convert it. Dexpler only converts the
portion of code responsible for loading the hidden bytecode. Statically finding where the hidden
bytecode is located is out of scope.

4even if these instructions are semantically wrong, it seems that the Dalvik Virtual Machine executes them any-
way. We thus updated Soot to correct the wrong instructions.

Conclusion 49

Within the Bytecode. Schulz [117] presents a technique to hide Dalvik bytecode in a Dalvik
bytecode array. This may confuse linear bytecode parsers which may not correctly interpret
the array content as valid Dalvik bytecode. We check for every branch instruction that the
destination is a valid instruction and not data in an array. We have never found a case where a
branch instructions pointed to data in an array: this kind of obfuscation has not been used in any
of the applications used to evaluate Dexpler. Currently Dexpler does not handle this obfuscated
bytecode.

3.6 Conclusion

Dalvik bytecode cannot be analyzed by existing Java tools. In this chapter, we have presented
Dexpler 5, a Soot modification with converts Dalvik bytecode to Jimple and allows to statically
analyze Android applications. Dexpler leverages a model of Dalvik exceptions for constructing
precise control flow graphs of methods’ code as well as an algorithm to resolve variables with
ambiguous types. The algorithm starts by identifying variables with an ambiguous type and
then deduce their actual type by looking at use of these variables in the code. Dexpler has been
evaluated on 135,289,314 methods from 27,846 Android applications and fully types variables
for 99.9% of the analyzed methods.

5Dexpler webpage: http://www.abartel.net/dexpler/

http://www.abartel.net/dexpler/

50 Dexpler: Converting Dalvik Bytecode to Jimple

Algorithm 1: Correctly Type null and 0 value.
1 int nullOrZero(Method m)
2 begin
3 defs = getZeroDefs(m)
4 for d ∈ defs do
5 types = Set()
6 forEveryUse(d);
7 if ! areTypesConsistent(types) then
8 return -1
9 end

10 correctDef(def, types)
11 end
12 return 0
13 end

14 forEveryUse(Def d)
15 begin
16 uses = getUses(d)
17 l = getLocalFromDef(d)
18 for use ∈ uses do
19 type = isObjectOrNot_Use(use)
20 if type != UnknownType then
21 types.add(type)
22 else if use is AliasStatement then
23 alias = getAlias(use)
24 forEveryUse(alias)
25 else if use is IfStmt then
26 if ifCondition contains other local then
27 other = other local
28 collectDefinitionsWithAliases(other)
29 end
30 else
31 types.add(UnknownType)
32 end
33 collectDefinitionsWithAliases(use, l)
34 end
35 end

36 collectDefinitionsWithAliases(local)
37 begin
38 defs = getDefs(local)
39 for def ∈ defs do
40 type = isOjbectOrNot_Def(def)
41 if type != Unknown then
42 types.add(type)
43 else if def is AliasStatement then
44 alias = getAlias(def)
45 collectDefinitionsWithAliases(alias)
46 else if def in ConstantZeroDef then
47 // do nothing
48 else
49 types.add(UnknownType)
50 end
51 forEveryuse(def)
52 end
53 end

Chapter 4

Finding and Removing Permission
Gaps to Reduce the Attack Surface of
Android Applications

The objective of this chapter is to check that developers do not give too many permissions to
the Android applications they develop. Reducing the number of permission reduces the attack
surface of an malicious user exploiting an application. We leverage Dexpler to analyze the code
of applications to check which permissions they really require. This requires to deeply analyze
the Android framework to extract a mapping between API methods (that Android application
call) and required permissions. We present an Andersen-like field-sensitive approach using novel
domain-specific optimizations to extract the mapping from the Android framework.

This chapter is based on work that has been published in the following papers:

• Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon. Automatically
Securing Permission-Based Software by Reducing the Attack Surface: An Application to An-
droid. In Proceedings of the 27th IEEE/ACM International Conference On Automated Software
Engineering (ASE), 2012. Short paper.
• Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon. Static Analysis for
Extracting Permission Checks of a Large Scale Framework: The Challenges And Solutions for
Analyzing Android. In IEEE Transactions on Software Engineering (TSE), 2014.

4.1 Introduction

The security architecture of the mobile operating systems Android and Blackberry as well as
other systems such as the Google Chrome browser extension system, use a similar security
model called the permission-based security model [11]. A permission-based security model can
be loosely defined as a model in which 1) each application is associated with a set of permissions

52 Permission Gaps

that allows accessing certain resources1; 2) permissions are explicitly accepted by users during
the installation process and 3) permissions are checked at runtime when resources are requested.

In Android, the permission model is embedded into the “Android framework“. The frame-
work exposes an Application Programming Interface (API) that contains classes and methods
for developers to interact with the system resources. For instance, the API contains a method
getGPSLocation2 which gives the current GPS location of the smartphone, if available. This
API method, and many others, are sensitive with respect to security or privacy. Consequently, in
response to a call to getGPSLocation, the framework checks that the caller has been explicitly
granted the GPS permission.

This permission model has an impact on the development process of applications. To write
an application, developers must identify, for each API method they use, the permissions that
must be declared for the application to work correctly. They need a mapping between the API
methods and the required permissions.

In the case of Android, the mapping is given by the official documentation. However, the
documentation is not always up-to-date or clear and, consequently, question-and-answers web-
site are full of questions regarding the use of permissions3. This results in that developers often
either under- or over-estimate the required permissions. Missing a permission causes the appli-
cation to crash. Adding too many of them is not secure. In the latter case, injected malware can
use those declared, yet unused permissions, to achieve malicious goals. We call those unused
permissions, “permission gap”. Any permission gap results in insecure, suspicious or unreliable
applications.

To sum up, having a a clear and precise mapping that links API methods and required per-
missions is of great value in a permission-based system such as Android. It enables developers
to easily declare the permissions they actually need: not more, not less.

To extract this map, we explore in this chapter the use of statical analysis to extract the per-
mission checks. On a framework of the scale and sophistication of Android, naive approaches
using off-the-shelf static analysis fail miserably. This chapter discusses the building blocks that
must be put together to extract a valuable mapping between API methods and permissions with
two kinds of analysis: based on class hierarchy (CHA) and a field-sensitive, Andersen [2] like
one called Spark [81]. Technically, we describe five components required for extracting per-
mission checks in Android. The first one is a generic String analysis, yet essential for Android
where permissions are not static constants but dynamic strings. The remaining ones are specific
to Android. Of those four, the last two components specifically target Spark. Service Redirec-
tion redirects call to services to a properly initialized service (Android-specific). Service Identity
Inversion avoids analyzing irrelevant system calls to services (Android-specific). Service Initial-
ization properly initializes services for overcoming null values (Spark specific). Entry Points
Initialization initializes all entry point methods and their parameters (Spark specific). The main
difficulty of this research is that, due to the scale and complexity of Android, no building-block
yields acceptable result in isolation. Eventually, we show that Spark can produce a good map-

1Contrary to the traditional Unix permission system where permissions are at the level of users, not applications.
2simplified view of the API
3e.g. http://stackoverflow.com/questions/2378607/what-permission-do-i-need-to-access-

internet-from-an-android-application/2378619

http://stackoverflow.com/questions/2378607/what-permission-do-i-need-to-access-internet-from-an-android-application/2378619
http://stackoverflow.com/questions/2378607/what-permission-do-i-need-to-access-internet-from-an-android-application/2378619

The Permission Gap Problem 53

ping of API methods to permissions, and we compare it against the related work [53, 6].
To sum up, the contributions of this chapter are:

• the empirical demonstration that off-the-shelf static analysis does not address the extrac-
tion of permission checks for a framework of the caliber of Android;

• three static analysis components (generic and Android-specific) to be put together in order
to use Class Hierarchy Analysis (CHA) on Android;

• two static analysis components that allows one to use field-sensitive static analysis (Spark
[81]) for analyzing Android’s permissions;

• a comparison of our results against PScout [6], a static analysis designed in parallel as
ours and against Felt et al.’s results based on dynamic analysis [53];

• an application of the extracted mapping on two sets of 1421 real Android applications
showing that 129 (9%) applications suffer from a permission gap, i.e., they have more
permissions that necessary.

The reminder of this chapter is organized as follows. In Section 4.2 we explain why reducing
the attack surface is important and present a short study supporting our intuition. In Section 4.3
we propose a formalization for permission-based software. In Section 4.4 we describe the An-
droid system and its access control mechanisms. Then, in Section 4.5 we extract the permission
map from the Android system using static analysis. Experiments we conducted and results are
presented and discussed in Section 4.6. In Section 4.7 we propose a generic methodology for
deriving correct application permission sets. Finally we conclude the chapter and discuss open
research challenges in Section 4.8.

4.2 The Permission Gap Problem

Let us now detail the permission gap problem introduced in Section 1. We also present short
empirical facts showing that this problem actually happens in practice.

Possible Consequence of a Permission Gap Let us consider appwrong, an Android appli-
cation which is able to communicate with external servers since it is granted the INTERNET
permission. Moreover, appwrong has declared permission CAMERA while it does not use any
code related to the camera. The CAMERA permission allows the application to take pictures
without user intervention, i.e., the permission gap consists of a single permission: CAMERA. Un-
fortunately, appwrong uses a native library on which a buffer-overflow exploit has recently been
discovered.

As a result, an attacker can execute the code of its choice in the process of appwrong by
exploiting the buffer-overflow vulnerability. The code executed by the attacker in appwrong is
granted all permissions defined in appwrong, INTERNET but also CAMERA. This effectively
increases the attacker’s privileges. In this particular example the attacker would be able to (1)
write code to use the camera, take a picture and send the picture to a remote host on the Internet

54 Permission Gaps

and (2) execute this code in the target application by exploiting the buffer overflow vulnerability.
This kind of attack is described in detail by Davi et al. [36].

On the contrary, if appwrong does not declare CAMERA, this attack would not have been
possible, and the consequences of the buffer-overflow exploit would have been mitigated. As
noted by Manadhata [85], reducing the attack surface does not mean no risks, but less risks. In
order to show that this example of misconfigured application is not artificial, we now discuss a
short empirical study on the declaration of two permissions on 1,000+ Android applications.

Declaration and Usage of Permissions “camera” and “record audio” We conducted a short
empirical study on 1000+ Android applications downloaded from the Freewarelovers application
market4. For permissions CAMERA and RECORD_AUDIO, we grepped the source code of the An-
droid framework to approximate the set of methods requiring one of them. These two sets of
methods are noted MCAM and MREC_AUDIO. Then, we computed the list A of all the applications
which declare CAMERA or RECORD_AUDIO. Next, we took each application app ∈A individually
and we checked whether the application uses at least one method of MCAM and MREC_AUDIO by
analyzing the application’s bytecode. If not, it means that app is not using the corresponding
permission. When this happened, we modified the application manifest that declares the permis-
sion and run the application again to make sure that our grepping approximation did not yield
false positives.

There are 7/82 applications that declare CAMERA while not using it. Similarly, 3/35 appli-
cations declare but do not use RECORD_AUDIO . Those results confirm our intuition: declared
permission lists are not always required, and permission gaps indeed exist. Developers would
benefit from a tool that automatically infers the set of required permissions and approximates
permission gaps.

4.3 Definitions

Permission-based software is conceptually divided in three layers: 1) the core platform (the op-
erating system) which is able to access all system resources (e.g., change the network policy); 2)
a middleware responsible for providing a clean application programming interface (API) to the
OS resources and for checking that applications have the right permissions when they want ac-
cessing them; 3) applications built on top of the middleware. They have to explicitly declare the
permissions they require. Layers #2 and #3 motivate the generic label “permission-based soft-
ware”. Since the middleware also hides the OS complexity and provides an API, it is sometimes
called, as in the case of Android, a “framework”. Let us now define those terms.

Framework A frameworkF is a layer that enables applications to access resources available
on the platform. We model it as a bi-partite graph where each node in the set of API method
nodes connects a node in the set of resource nodes (this set also contains a ’no resource’ node).
Example: In Figure 4.1 the framework is composed of nine methods (four of them being public).
Applications access the framework through four API methods. In the case of Android, F is the
Android 4.0.1 Java Framework composed of 4,071 classes and 126,660 methods. To access a

4http://www.freewarelovers.com/android/

http://www.freewarelovers.com/android/

Definitions 55

fa

fb fc fd

fe

e1 e2 e3 e4

The application de-
clares permissions p1
and p2

f1 f2 f3

f4 f5

f6

f8

f9

ck1

ck2

p3

p2

p1

p1 p2

Application

Framework

Figure 4.1: A Bird’s Eye View of An Application Written on Top of a Permission-based Frame-
work. (en are entry points, fn are functions and methods, ckn represent checks of permissions
pn)

resource, an Android application has to make a method call that goes through F .
Permission A permission is a token that an application needs to access a specific resource.

Example: In Figure 4.1, the application declares two permissions. The framework defines three
permissions but only checks two. We make no assumptions on permissions, and we consider
them as independent (neither grouped, nor hierarchical).

Permission-based system A permission-based system is composed of at least one frame-
work, a list of permissions and a list of protected resources. Each protected resource is associated
with a fixed list of permissions.

Entry point An entry point of a framework is a method that an application can use (e.g.,
public or documented). Constructors are also considered as entry points. We denote EntryF as
the set of all entry points of F .
Example: In Figure 4.1, there are four entry points (e1 to e4). An application can call any
public method of the framework. Some methods accessing system resources (like an account)
are protected by one or more permissions. In the case of Android 4.0.1, there are 50,029 entry
points.

Declared permission A declared permission for an application app is a permission which is
in the permission list of app. The set of all declared permission for an application app is noted
Pd(app).
Example: In Figure 4.1, the application declares p1 and p2. In the case of Android, the permis-
sions of an application are declared in a file called manifest.

Required permission A required permission for an application app is a permission asso-
ciated with a resource that app uses at least once. The set of all required permissions for an
application app is noted Preq(app).
Example: In Figure 4.1, the application requires permission p1.

56 Permission Gaps

Inferred permission An inferred permission for an application app is a permission that an
analysis technique found to be required for app.
Depending on the analysis technique used, the inferred permission list may be either an over-
or an under- approximation of the required permission list. When developers write manifests,
they write Pd(app) by trying to guess Preq(app) based on documentation and trial-and-errors.
In Section 4.7, we propose to automatically infer a permission list Pifrd(app) in order to avoid
this manual and error-prone activity.

4.4 Overview of Android

This section gives an overview of the architecture of Android. It briefly reminds the reader of
Section 2.1 and then focuses on the parts related to permissions.

4.4.1 Software Stack

Android is a system with different layers. It consists of a modified Linux kernel, C/C++ libraries,
a virtual machine called Dalvik, a Java framework compiled to Dalvik bytecode, and a set of
applications. Applications for Android are written in Java and compiled into Dalvik bytecode.
Dalvik bytecode is optimized to run on devices where memory and processing power are scarce.
An Android application is packaged into an Android package file which contains the Dalvik
bytecode, data (pictures, sounds ...) and a metadata file called the “manifest”.

4.4.2 Android Permissions

Application vendors define a set of permissions for each application. For installing an appli-
cation, the user has to approve as a whole all the permissions the application’s developer has
declared in the application manifest. If all permissions are approved, the application is installed
and receives group memberships. The group memberships are used to check the permissions at
runtime. For instance, an application Foo is given two group memberships net_bt and inet
when installed with permissions BLUETOOTH and INTERNET, respectively. In other terms, the
standard Unix ACL is used as an implementation means for checking permissions.

Android 2.2 defines 134 permissions in the android.Manifest$permission system in-
ner class, whereas Android 4.0.1 defines 166 permissions. This gives us an upper-bound on the
number of permissions which can be checked in the Android framework.

Android has two kinds of permissions: high level and low level permissions. High-level
permissions are only checked at the framework level (that is, in the Java code of the Android
SDK). Android 2.2 declares eight low-level permissions which are either checked in C/C++
native services (RECORD AUDIO for instance) or in the kernel (e.g., when creating a socket).

In this chapter, we focus on the high-level permissions that are only checked in the Android
Java framework.

Overview of Android 57

Application Code

r = getSystemService();
p = r.getPassword();

Service Call

Binder

getPassword() {
checkPermission();
return password;

}

Account System Service

1
2

3

4

5

Figure 4.2: A Simplified Illustration of the Communication between an Android Application
and a Permission Protected Service through the so-called “Binder”.

4.4.3 Services and Permissions

An Android application is made of components which can be: an Activity that is a user interface;
a Service that runs in background; a BroadcastReceiver (or Receiver) that listens for “intents”
(a kind of message for inter process communication); a ContentProvider which is a kind of
database used to store and share data. Most permissions are checked at the service level.

Android applications communicate with the operating system using a special kind of service
called system service. System services are specific services running in a specific scope (called
the “system server”) and allow applications to access system resources (ex: GPS coordinates).
Those resources may be protected by Android permissions to prevent access by unauthorized
applications. Permission checks associated to services are mostly implemented in Java. Hence,
the scope of the chapter consists of analyzing Android permissions that are enforced in services
in the Java framework. The impact of this focus is discussed in Section 4.6.

It is important to understand the inner working of system services to devise good static anal-
yses (that will be presented later in Section 4.5.2). We now describe how the applications com-
municate with system services. Applications synchronously communicate with system services
through a mechanism called Binder as presented in Figure 4.2. The first step to communicate
with a remote service is to dynamically get a reference (interface) to the service by calling Con-
text.getSystemService() (step 1 in Figure 4.2). The next step is to call a method (method
getPassword from the AccountManager Service in Figure 4.2) from the interface on the ob-
ject reference r (step 2 in Figure 4.2). A special component, called “binder” is responsible for
intercepting and redirecting that service calls to the remote service that performs the actual com-
putation (steps 3 in Figure 4.2). The system service is responsible for enforcing permission
checks (step 4 in Figure 4.2). To check that the caller’s application declares the permission in its
manifest (Section 4.4.1), the service calls one of the methods listed in appendix (Table 4.1) with
the permission to be checked as parameter (not shown in the Figure). This specific point in the
program is called Permission Enforcement Point or PEP. In Figure 4.2, if the application has the
correct permission, the password is returned to the calling application (step 5).

58 Permission Gaps

4.4.4 Android Boot Process

It is important to know how to initialize system services when performing precise static anal-
ysis with Spark (Section 4.5.3). If services are not properly initialized, the analysis may be
incomplete.

Let us briefly recall Section 2.1.3 and detail further the Android boot process. The first
program to run on the device is the bootloader which provides support for loading, recovering
or updating system images. The early startup code for loading the Linux kernel is very hardware
dependent: it first initializes the environment and only then starts the architecture-independent
Linux Kernel C code by jumping to the start_kernel() function. Then, high-level kernel
subsystems are initialized (scheduler, system calls, process and thread operations ...) the root
filesystem is mounted and the init process is started.

The init process creates mountpoints and mount filesystems, sets up filesystem permissions
and starts daemons such as the network daemon, the zygote or the service manager. The zygote
is a core process from which new Android processes are forked. The initialization of zygote
starts the system server which in turn initializes system services and managers. System services
include the input manager service and the wifi service. Managers include the activity manager
which handles user interfaces (activities).

Android’s boot process indicates that system services and managers are instantiated and
initialized at boot time.

4.4.5 Android Communication

As presented in more detail in Section 2.1.2, components communicate with one another through
the binder, the Android-specific Inter Process Communication (IPC) mechanism, and Remote
Method Invocation (RMI) system. Components do not communicate with the binder directly but
instead rely on three high-level abstractions of communication called intent, query and proxy.
Figure 4.3 focuses on those communications at the Java level of the Android framework. It shows
that an application communicate with the system server (and thus system services) through prox-
ies and stubs (abstraction on top of the binder).

Intent Intents describe operations to be performed. They are used to start a new user interface
screen (Activity), trigger a component which listens to intents (BroadcastReceiver) or commu-
nicate with services.

Query/Uri Queries are used to communicate with content provider components (which share
data for instance through a database). Queries use Uniform Resource Identifier (URI) to indicate
the target provider component on which the query must be performed.

Proxy/Stub System services extend stub classes which describe methods they must imple-
ment. System services are mainly used by application to access system resources. They are
accessed by other components through their public interface called proxy. System services are
running in the system server and are registered to the service manager. An application can get

Static Analyses for the Android Framework 59

int checkPermission (String, int, int)
int checkCallingPermission (String)
int checkCallingOrSelfPermission (String)
void enforcePermission (String, int, int, String)
void enforceCallingPermission (String, String)
void enforceCallingOrSelfPermission (String, String)

Table 4.1: List of Permission Check Methods of the android.content.Context Class (since
Android 1.0 / API Level 1)

Binder

Activity|Service|Provider|Receiver

Service Manager

System ServerAndroid Application

Intent Query Proxy/Stub

Figure 4.3: Android Communication Overview

a reference to a registered service through the service manager and can then communicate with
the service through its proxy (which uses the binder).

4.5 Static Analyses for the Android Framework

Our goal is to define static analyses for extracting permission checks. In essence, each analysis
constructs a call graph from the bytecode, finds permission check methods and extracts permis-
sion names.

Obtaining a meaningful call graph is challenging. We ran the default Soot’s CHA-Naive
(Class Hierarchy Analysis) on 50, 029 entry points methods of Android 4.0.1. It takes more than
one week and outputs 31, 458 (64%) methods with no permissions, one method with a single
permission5 and 18, 381 (36%) entry points (methods) that each needs more than 100 high-
level permissions. This is not meaningful. The reason is that Android has been implemented
using the object-oriented paradigm and there are many subclasses of the core classes (e.g., of
Service6 , Activity7, etc.). By construction, CHA outputs that all clients of those classes call
all their subclasses. This results in an explosion of edges in the call graph and consequently

5 this is the INTERNET permission checked in class android.webkit.WebSettings
6https://developer.android.com/reference/android/app/Service.html
7https://developer.android.com/reference/android/app/activity.html

https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/app/activity.html

60 Permission Gaps

A
PI

B
ytecode

E
ntry

Points
G

eneration

Section
11

E
ntry

Points
Initialization

Section
4.5.3

Fram
ew

ork
B

ytecode
Service

R
edirection

Section
11

Service
Identity

Inversion

Section
11

B
ytecode

C
leaning

Section
4.5.3

Services
Initialization

Section
4.5.3

M
anager

Initialization

Section
4.5.3

N
ecessary

steps
before

running
C

H
A

A
ndroid

N
ecessary

steps
before

running
Spark

A
ndroid

Figure
4.4:

B
ytecode

Processing
B

efore
C

H
A

-A
ndroid/Spark-A

ndroid
A

nalyses.
E

ntry
points

are
generated

using
m

ethods
from

the
A

ndroid
SD

K
A

PIbytecode.B
ytecode

from
the

fram
ew

ork
is

transform
ed

to
redirectcallto

services
to

actualservice
classes,bypassing

the
IC

C
glue

code.C
H

A
-A

ndroid
requiresentry

pointgeneration,service
redirection

and
service

identity.Spark-A
ndroid

ism
ore

precise
and

thus
require

properentry
points,services,and

m
anagers

initialization.

Static Analyses for the Android Framework 61

an explosion of required permissions. The main challenge for defining static analyses for
extracting permission checks is to get a precise call graph.

We still aim at using CHA, but we need to customize it for Android. We also aim at using
Soot’s Spark [81], an Andersen-like points-to analysis. Our motivations for running CHA are
as follows. First, it enables us to identify key Android-specific analysis components. Those
components can be reused with benefits in more sophisticated analyses such as Spark. Second,
it gives us a baseline for assessing the improvements given by Spark. Third, it gives a list of
API methods with no permission which do not require to be analyzed by Spark. Eventually, the
best-of-breed of Android-specific analysis components and Spark enable us to obtain a precise
permission map.

Figure 4.4 represents Android-specific components that manipulate the framework bytecode,
and generate and initialize entry points. CHA-Android, the customized version of CHA for
Android, requires generation of the entry point, presented in Section 11, service redirection,
described in Section 11, and service identity inversion, detailed in Section 11. In addition to
those components, Spark-Android, the customized version of Spark for Android, requires proper
entry point initialization as well as services and managers initialization. Those components are
described in Section 4.5.3.

In our experiments, the call graphs are generated from the 50,029 entry points found in the
Android API version 4.0.1. All the analyses use Soot [76], a widely used framework for the
static analysis of Java programs. The experiments run on a Intel(R) Xeon(R) CPU E5620 @
2.40 GHz running GNU/Linux Debian 3.11; the Java virtual machine 1.7.0 is given 4 Gb of heap
memory. The Android version used in the experiments is 4.0.1 unless otherwise specified.

Section 4.5.1 presents the different components to modify the bytecode and to extract per-
missions from the call graph. Section 4.5.2 describes the CHA-Android analysis and Section
4.5.3 the Spark-Android analysis.

4.5.1 Common Components for CHA and Spark

In this section we present three techniques that are required for both CHA and Spark. String
analysis is used to extract the permission names from the call graph. Service redirection enables
the call graph construction algorithm to link the service caller to the service itself by bypassing
the ICC glue code. Finally, service identity inversion removes code from the call graph which is
executed as a system service itself and thus is not relevant from the entry point caller’s point of
view.

String Analysis for Extracting Permissions from Permission Enforcement Points

A basic call graph can only give the number of permission checks but not the actual names of
the checked permissions because of the lack of string analysis to extract permission names from
the bytecode. As explained in Section 4.4.3, Permission Enforcement Points (PEPs) are method
calls to 6 methods of classes Context and ContextWrapper (see Table 4.1, in appendix, for a
list of PEPs). Those method calls can be resolved statically. However, the actual permission(s)
that are checked are dynamically set by a String parameter or sometimes, an array of strings.
Thus, when a check permission method is found in the call graph, a basic analysis is only able to

62 Permission Gaps

Algorithm 2: The Algorithm that Extracts The Concrete Permissions Names (String Anal-
ysis)

Input: Method Call Stack, Target Method, Target Method Parameter
Result: Set of Permission Strings

1 stack←Method Call Stack;
2 tm← Target Method;
3 tp← Target Parameter;
4 pSet← set ();
5 pSet← findPermission (tm, tp);
6 if pSet is empty then
7 tp← getCurrentMethodParameter ();
8 N← size(stack)− 1;
9 r← StringAnalysis (stack[1...N], stack[N], tp);

10 pSet← pSet ∪ r;

11 return pSet;

tell that a permission check occurs, but not which precise permission is checked because a call
graph does not handle literal and variable resolution by itself.

To overcome this issue, we have implemented a String analysis as a Soot plugin whose
pseudo code is shown in Algorithm 2. Once PEPs are found, it extracts the corresponding
permission(s) (line 5). This plugin performs an intra-method analysis and manages the following
scenarios: either (1) the permission is directly given as a literal parameter, or (2) the permission
value is initialized in a variable which is given as a parameter, or (3) an array is initialized with
several permissions and is given as a parameter. In every case we do a backward analysis of
the method’s bytecode using Soot’s unit graphs which describe relations among statements of
a method. In the case where only a single permission is given to the method, statements in
the unit graph containing a reference to a valid Android permission String is extracted and the
permission added to the list of the permissions needed by the method under analysis. In case of
an array, all permissions of references to Android permission Strings are added to the list.

It can happen that the permission string cannot be found in the current method Mi’s body.
This happens when it is referenced from a local variable initialized with one of the current
method’s parameter P. The solution is for the analysis to go one method down in the method
call-stack (lines 6-10). At this point the analysis goes through the statements of Mi−1 looking for
a call to M. When a call is found the parameter P is extracted and the string analysis starts again
from there.

Service Redirection: Handling Binder-based Communication

Permission Size Explosion A call to a service method usually goes through a manager which
gets a reference to a system service called proxy. It is always a method call on a proxy
which results in data marshaling from the proxy through the binder to the stub on top of
which lays the real system service method. All data transfers between the proxy and stub go
through the transact() method which calls the onTransact() method. This method calls

Static Analyses for the Android Framework 63

API
methods

Binder
transact

method

Services
onTransact

methods

Services
target

methods

ApiS1.1

S1

Sg

Sh
Si...

S1m1 p0S1m2 p0S1m3 p1S1m4 −
S1m5 p2S1m6 p0

S2m1 p3...

S3m1 p6...

...

Figure 4.5: The number of edges explodes when an API method reaches the transact method
of the Binder class. This node leads to an explosion in the number of permissions since it
reaches all services’ onTransact methods and each of those reaches all methods of their ser-
vice. Those methods check for different permissions. Solving this problem boils down to short-
circuit the low level transact and onTransact methods to directly reach the method of inter-
est. The solution is represented by the dashed arrow which directly links an API method to its
corresponding method in the right service. Thus, the API method is not mapped to permissions
{p0, p1, p2, p3, p6, . . . } but only to permission p0.

the right method on the system service side according to an integer value. This integer value is
not determined when doing a static analysis. Thus, as illustrated in Figure 4.5, all methods of
system services are added as edges in the call graph. Moreover, as all system services implement
a stub, when constructing the call graph using CHA, all system services stubs’ onTransact()
methods are potential method calls from every method call on a proxy object and are thus added
to the graph. A consequence of this is the explosion of the permission set size we observe when
running CHA. In short, when doing a naive analysis from the point of view of services, any
system service method call does have edges to all methods of every system service.

Service Redirection Figure 4.2 illustrates a communication between an application and a ser-
vice. The communication is done through the binder. As explained in the previous paragraph,
the problem is that analyzing binder based communications leads to an explosion in the number
of permissions. The solution, illustrated Figure 4.5, is to bypass the binder (proxy/stub) mecha-
nism by directly connecting a call to a service method to the corresponding method within the
remote service. In Figure 4.2 edges from method r.getPassword() to the binder and from the
binder to service method getPassword() are removed. Only the direct edge from the calling
method to the called method (not shown in the Figure) is kept. As presented in Figure 4.4 this is

64 Permission Gaps

the first transformation done on the bytecode of the Android framework.

Service Identity Inversion

In Android, services can call other services either with the identity of the initial caller (by de-
fault) or with the identity of the service itself. In the later case, remote calls are within clearI-
dentity() and restoreIdentity() method calls. When using the service’s own identity,
permission checks are not done against the caller’s declared permissions, but against the ser-
vice’s declared permissions. Since our goal is to compute the permission gap of an application
(and not of system services), we can safely discard all permission checks that occur between
calls to clearIdentity() and restoreIdentity().

For instance, let us assume that service S requires and declares permission θ which is not
declared by application A. If A calls S, the code of S is executed with the identity of A itself
which would require A to declare θ. To avoid this, the portion of code requiring θ is executed
with S’s identity. When we encounter calls to clearIdentity() or restoreIdentity(), we
use an intra-procedural flow-sensitive analysis to discard permission checks that occur between
those calls.

Figure 4.4 shows that the Service Identity Inversion step is done after the Service Redirection
transformation.

Entry Points Handling for CHA

In the case of an API (such as the Android API), the problem is that there is no “main” but
N classes totalizing M entry point methods. Our solution is to build one call graph per public
method of the Android API by creating one fake method mclassi (i ∈ (1, . . . , N)) per public
class of the framework (for Android, android.* and com.android.*). The role of method
mclassi is to create an instance o of classi and to call all methods of classi on o. We also build
a unique artificial main calling all mclassi methods. This main method is the unique start point
of the analysis. As presented in Figure 4.4, entry points are constructed using methods from the
Android API.

Section 4.5.2 presents CHA-Android which leverages the service redirection, service iden-
tity inversion and entry point construction components.

4.5.2 CHA-Android

We perform the map construction with CHA because it enables us to identify key Android-
specific analysis components that can be reused with benefits in more sophisticated analyses
such as Spark, it gives us a baseline for assessing the improvements given by Spark and, more
importantly, it gives a list of more than 30k API methods with no permission which do not
require to be analyzed by Spark.

CHA-Android is a CHA-based static analysis for extracting permission checks on the An-
droid framework. It uses the string analysis presented in Section 4.5.1, the service redirection
(Binder) of Section 11, and the service identity inversion explained in Section 11. We enrich it
with an optimization that we now describe.

Static Analyses for the Android Framework 65

Algorithm 3: The Algorithm that Extracts and Propagates the Permissions
Input: Call Graph
Result: Set of Methods with their Permission Sets

1 g1← Call Graph;
2 DephtFirstSearchAndPermissionExtraction (g1);
3 SCC← TarjanFindSCC (g1);
4 g2← ReplaceSCC (g1, SCC);
5 PropagatePermissions (g2);

Call Graph Search Optimization

Section 4.5.1 describes how to extract permission names. This Section explains how permis-
sion names are propagated through the graph from PEPs. Algorithm 3 propagates permission
sets through the graph. It proceeds in three steps. The first step (line 2) traverses the graph
using depth first search and keeps track of the methods already visited. During the traversal
it finds where permissions are checked and extracts the permission names (see string analysis
above). This first step makes the analysis much faster than the naive approach since no method
is analyzed more than once. Steps two and three make sure that permissions of already analyzed
method are propagated in the graph. During the second step (lines 3-4) we use Tarjan’s algorithm
[tarjan:connectedComponents] to replace Strongly Connected Components (SCC) from the
graph by a single node. This essentially removes loops from the graph and simplifies the propa-
gation of permission names. During this step one has to be careful not to remove essential parts
of the graph such as methods that check permissions since permissions are not propagated at this
stage. Concretely, if a check permission method is part of an SCC it must not be removed from
it otherwise permissions mapped to this method would not be propagated and thus be lost. The
third and last step (line 5) propagates permissions throughout the graph.

This algorithm has a linear complexity in the number of nodes and edges. During the first
step the graph is searched using depth-first search and methods are never analyzed twice: this
step is bound linear in the number of edges and nodes. Tarjan’s algorithm is bound linear in the
number of nodes and edges. The last step propagates permissions through a depth first search of
the graph where SCCs are replaced.

Empirical Results

Permission Strings Resolution Let us now analyze the efficiency of the string analysis. The
distribution of the results of string analysis is presented in Table 4.2. We observe that 91.89%
of the permission string analyses only check a single permission and that 83.25% of the analysis
the permission string can directly be determined as a literal parameter. Hence, it is a common
practice in the Java codebase of Android to (1) protect a method with only one or two permis-
sions and (2) to make reference to permission strings and call the check permission method in
the same method body. Those results show that for 99.08% of permission checks the permission
string is found using a string analysis.

Sometimes (0.92%), it is not possible to resolve permission strings: in 12 cases permissions

66 Permission Gaps

Total # analyses 1,516 (100.00%)
String found

total 1,502 (99.08%)
with 1 permissions 1,393 (91.89%)
with 2 permissions 109 (7.19%)
with only direct strings 1,262 (83.25%)
with flow analysis 183 (12.07%)
with strings in array 57 (3.76%)

String not found
total 14 (0.92%)
with URI read perm. 6 (0.40%)
with URI write perm. 6 (0.40%)
with read from parcel 2 (0.13%)

Table 4.2: The Kinds of Permission Specification as Found by Our String Extraction Analysis

are related to URIs; in two cases permissions are read from the Binder (Parcel).

Execution time On Android, CHA-Android analyzes 50,029 entry points in 4 minutes user
time or 10 minutes real time. This shows that CHA-Android is able to scale on a large scale real
world Framework.

Permission Set # entry points
with 0 permissions 32,924 (65.8%)
with 1 permissions 39 (0.08%)
with 2 permissions 55 (0.12%)
with > 65 permissions 17,011 (34.0%)

50,029 (100%)

Table 4.3: CHA-Android Permission Sets

Entry Point Permission Sets Running CHA-Android yields Table 4.3 which shows the per-
mission set size for the entry points. As CHA-Android correctly models system service com-
munications, the number of entry points requiring no permissions increases from 64% to 65.1%
(31,458 to 32,429) (some service methods are not protected by permissions) and the number of
entry points with one and two permissions increases from less than 0.01% to 0.08% (1 to 39)
and from 0% to 0.12% (0 to 55) respectively (service method redirection avoids explosion in the
number of edges in the call graph and thus the number of permissions).

Nevertheless, 34% (17,011) of entry points still have an over-approximated permission set.
This is caused by the imprecision of the points-to set of CHA. This results in an explosion

Static Analyses for the Android Framework 67

in the number of permissions. An improvement would be to develop other domain-specific
optimizations: handling other Android-specific points (e.g. content providers, handlers and
messages) is similar to handling service communications and would not have an impact on the
contributions of this chapter.

The following Section 4.5.3 presents the Spark based analysis. The analysis tackles Spark
specific issues such as entry point initialization or Android-specific issues such as service initial-
ization.

4.5.3 Spark-Android

We run Spark in context-insensitive, path-insensitive, flow-insensitive, field-sensitive mode to
generate the call graph. Recall from Section 2.2 that in context-insensitive mode, every call to a
same method is merged to a single edge independently of the context (receiver and parameters
values). A path-insensitive analysis ignores conditional branching hence takes into account all
paths of method bodies. The call graph construction is flow-insensitive since it does not consider
the order of executions of instructions. It is also field-sensitive because it uses and propagates
initialization data (e.g., constructor calls) to reduce the number of edges.

We first run a naive version of Spark-Android in Section 4.5.3 to illustrate the need to cor-
rectly initializing objects on which API methods are called as well as method’s parameters.

Section 4.5.3 describes how we initialize entry points. It also explain another Spark subtlety:
why and how system services must be initialized.

Naive Usage of Spark

As for CHA, we “naively” run off-the-shelf Spark to get a first understanding of the main prob-
lems that occur when analyzing the Android API. This gives us a key insight, Spark discards
96% of the API methods to be analyzed. The reason is that Spark is, field-sensitive, it only
processes static methods and does not process the methods called on uninitialized references
(e.g., initialized by default with null). This means it is not possible to run a Spark based analysis
without correctly initializing entry points. Even with key Android-specific static analyses of
CHA, a naive usage of Spark completely fails. Consequently, we need Spark specific analysis
components.

Spark Specific Analysis Components

Processing Time Our first experiments show that Spark does not scale to the size of the An-
droid framework. As we experience that Spark is time consuming when processing some entry
points, we empty specific methods of certain classes to be able to compute permissions sets in a
realistic amount of time (i.e., less than one day).

Analyzing time consuming entry points always leads to the windowing system classes. The
windowing system is at the heart of Android components such as activities. It is responsible
for the GUI (Graphical User Interface) management, and has relationships with numerous GUI
abstractions such buttons or text fields and methods to start Android components such as other
activities. When the call graphs hits a component of the windowing system it can grow in such

68 Permission Gaps

huge proportion, because of the imprecision in the point-to-sets, that the search in it triggers a
timeout.

We make the hypothesis that classes responsible for GUI rendering and the windowing sys-
tem management do not link to any permission check. Thus, we remove code of their methods
and launch the experiments again. Removing the code means that (1) Spark does not construct
the call graph for this code and thus that (2) the traversal of the call graph is much faster. With
those modifications, the computation time of the permission map is much faster, terminates in
less than 11 hours and does not trigger any timeout.

Entry Points Handling for Spark Spark-Android leverages artificial methods generated for
CHA (see Section 11). However, it must initialize parameters of the 50,029 entry point meth-
ods of the Android API. Each receiver object o on which to call Android API methods as
well as every method parameter p are initialized by calling generateo() and generatep(),
respectively. This tailor made method generates all possible instances of type P (i.e., over-
approximation). Parameter initialization is necessary since one does not know a priori the effect
of parameters on permission checks. Since Spark is field-sensitive, non-initialized parameters
result in missing edges in the call graph.

AccountManager m = getSystemService("account");
m.getPassword(a);

public class AccountManager {
IAccountManager mServ;
public String getPassword(Account a) {
// the callgraph stops here because
// mService is null (see Figure 4)
return mServ.getPassword(a);

}
}

Application code API/System code

Figure 4.6: How Spark Discards Call Graph Edges Because of ”null” Objects.

Importance of Service Initialization for Spark A Spark based approach does require proper
initialization of the analyzed modules of the Android framework. The reason is that, as presented
in Figures 4.6 and 4.7, skipping the initialization phase may result in important fields, containing
references to system services for instance, to only point-to null. Spark does not generate edges
for method calls on references which can only point to null.

Figure 4.6 represents a code snippet which retrieves an AccountManager object and calls
method getPassword() on it. At this point AccountManager’s service reference mServ
can only point to null. Thus, mServ.getPassword() cannot be executed and would not be
represented in a field-sensitive call graph. In other words, Spark generates an edge for the Ac-

Static Analyses for the Android Framework 69

AccountManager m = getSystemService("account");

public class ContextImpl {
public Object getSystemService(String ts) {
if (ts.equals("account") {
return getAccountManager();

} else ...
}
private AccountManager getAccountManager() {
IBinder b; IAccountManager mServ;
// returns null
b = ServiceManager.getService("account");
// returns null because b is null
mServ = IAccountManager.Stub.asInterface(b);
// is null
return new AccountManager(this, mServ);

}
}

public class ServiceManager {
// sCache initialized at boot time
HashMap<String, IBinder> sCache;
public static IBinder getService(String name) {
// statically, getService() returns null
return sCache.get(name);

}
}

Application code API/System code

Figure 4.7: How Spark Propagates "null" Due to Initialization that is not Statically Visible.

countManager object but not for the service method call within it because the service reference
(mServ) points to null.

This AccountManager object is created by the Context class as described in Figure 4.7.
To simplify, only AccountManager objects are created in method getSystemService(). To
create an AccountManager object a reference to the AccountManagerService is required. This
reference is fetched through a call to getService(). However, since ServiceManager has
not been initialized, ServiceManager’s sCache map is empty. So, getService() always
returns null.

Service Initialization for Static Analysis As detailed in Appendix, system services are ini-
tialized in the SystemServer class. Methods from this class are not present in the call graph
generated from entry points of the Android API since they are only called at system boot time.

To simulate system services initialization we create a static object and an initialization
method for each concrete system service. Those objects are initialized by adding edges to the
service initialization methods to the call graph. Moreover, the original bytecode is modified to
replace calls to getService by a reference to the newly created static objects.

70 Permission Gaps

Manager Initialization for Static Analysis Android applications have two possibilities to
communicate with system services

• The first possibility is to directly get a reference to the service8 through the service man-
ager and then to call remote procedures of the service

• The other possibility is to use another interface called Manager. The manager is cre-
ated from the system Context class and has itself a reference to the service to directly
communicate with it and acts as a proxy for the application (as show in Figure 4.6).

Managers are wrappers to ease communication with system services. We redirect calls to
getSystemService(String s) to our own methods. To be able to do that, we used string
analysis to compute a mapping between strings given to getSystemService and the code
which initializes the corresponding manager. Each call to getSystemService is analyzed to
extract the string parameter to know to which method it must be redirected. To each string
corresponds one Manager and thus one method whose role is to initialize the manager.

We also provide our own getService() method that returns properly initialized services
as presented in Section 4.5.3. All calls to the original getService() are redirected to our own
methods. Method getSystemService returns a manager whereas method getService()
returns an interface to a service.

The original bytecode of the Android framework is modified to reflect services and managers
initialization. The resulting bytecode can be analyzed by any static analysis tool and is not
specific to Soot.

Empirical Results

Spark-Android runs in 11 hours. Permission set sizes for entry points when running Spark-
Android are described in Table 4.4. The number of entry points with a single permission is 471.
Furthermore, 48 entry points have a permission set of two, 10 of 3 and three have more than
three permissions. The total number of entry points is less than the one for CHA since abstract
classes cannot be initialized with Spark. No method associated with those classes is represented
in the set of entry point methods.

Permission Set # entry points
with 0 permissions 42,895 (98.77%)
with 1 permissions 471 (1.08%)
with 2 permissions 48 (0.11%)
with 3 permissions 10 (0.02%)
with > 3 permissions 3 (< 0.01%)

43,427 (100%)

Table 4.4: Spark-Android Permission Sets

8also called a binder to the service

Discussion 71

0 1 2 3

32,000

34,000

36,000

38,000

40,000

42,000

44,000

of permissions

#
of

en
tr

y
po

in
tm

et
ho

ds

CHA-Naive
CHA-Android
Spark-Android

Figure 4.8: Cumulative Plot of the Number of Methods per Permission Set Size (The higher, the
better).

4.5.4 Recapitulation

We have presented the core technical issues we encountered while implementing our approach.
We think that those problems may arise in other permission-based platforms than Android, and
that identifying them and their solutions can be of great help for future work. Last not but not
least, those points are crucial for replication of our results.

Section 4.6 evaluates the CHA and Spark based analyses.

4.6 Discussion

How do the 6 analyses presented in section 4.5 perform compared to others? What are their
limitations? This section answers those questions.

72 Permission Gaps

Permission set Number of Methods
#API Methods in PScout 593
#API Methods in Spark and PScout 468 (100%)
Identical 289 (61.75%)
we find more precise permission checks 176 (37.60%)
we find more permission checks 3 (0.64%)

Table 4.5: Comparison between Our Results (Spark-based analysis) and Pscout’s ones [6] (CHA-
based analysis) using Android 4.0.1.

4.6.1 CHA versus Spark

Figure 4.8 is a cumulative plot of the number of entry point methods in function of their permis-
sion set size. By cumulative we mean that at each permission set size the number of methods is
added to the number of methods at the previous permission set size. It first shows that the more
precise an analysis is, the bigger the set of entry points with zero permission will be. This result
reflects the fact that with precision, "false positive" edges are removed from the graph. Then, the
plot (Spark-Android) highlights that, when only system services communication are handled,
Spark yields the best results as it finds more methods with a permission set of one, two or three
than all other analyses. Moreover, Spark never finds an entry point with more permission than
CHA. It finds the same permission set (with one or more permission) than with CHA for 91
entry points. Spark finds a smaller permission set for 428 entry points.

4.6.2 Comparison with PScout

PScout [6] relies on a CHA based approach and generates a permission list for classes in the
Android framework. We only consider classes of the Android 4.0.1 API. There are 593 methods
in the results of PSCout that have more than one permission and 468 methods that are both in
PSCout and Spark. Among those 468 methods, 289 (61.75%) have the same permission size in
both PSCout and Spark and 176 (37.60%) have a smaller permission set size with our approach.

For instance, for method KeyguardManager.exitKeyguardSecurely(), PScout finds
five permissions whereas Spark only one, DISABLE_KEYGUARD. The official documentation con-
firms that only one permission is required as well as the runtime data from Felt [53] . Spark also
misses a permission for method AudioManager.setMicrophoneMute(boolean). It is be-
cause we do not handle C/C++ native code where this permission check is done. Table 4.5
summarizes the results of this comparison. Our analysis yields more precise results than a pure
CHA-based approach.

Interestingly we also find three methods (0.64%) for which our Spark approach finds more
methods than PSCout’s approach. We manually checked the Vibrator class where the involved
methods are defined and there is a path to a method checking permission WAKE_LOCK. PScout
probably did not correctly link those specific entry point methods to all methods they can reach,
thus missing the WAKE_LOCK permission.

Discussion 73

Permission set Number of Methods
#Methods analyzed in [53] 1282
#Methods with HL perm. only 673
Identical 552 (82.3%)
we find more permission checks 119 (17.7%)

one more 118 (17.6%)
two more 1 (0.1%)

we find less permission checks 0 (0%)

Table 4.6: Comparison between Our Results and Felt et al.’s ones [53] (Based on Testing) using
Android 2.2. Only methods with high-level permissions are considered.

4.6.3 Comparison with Felt et al.

Let us now compare our results obtained with static analysis [15] with the results of Felt et al.’
obtained through testing [53]. Both extract a list of required permissions for each method of the
Android 2.2 framework. Android 2.2 features 134 permissions, eight of them being low-level
permissions that we do not analyze. Felt et al.’s results contain 673 methods mapped to high-
level permissions. We analyze only 671 methods because 2 methods are related with application-
specific objects provided in Felt’s approach that are not available in our static analysis approach.

For a given method, we either find the same permission set, or a larger one. Our method
never misses a permission that Felt et al. describe, this is piece of evidence of the soundness of
our approach.

More precisely, we infer the same permission set per method signature for 552 methods
(82.3% of commonly analyzed methods). There is one additional permissions for 119 methods
(1 additional permission for 118 methods, 2 for 1 method). There is no method for which we
miss a permission, Table 4.6 summarizes those results. Let us now discuss the discrepancy
between our results.

The additional permissions are due to either analyzing irrelevant code or to missing input
data in Felt et al.’s approach. In the latter case, we are able to find permissions that are checked
within specific contexts that were not taken into account by the generated tests of Felt et al. For
instance, MOUNT_UNMOUNT_FILESYSTEMS is only checked for method MountService.shut-
down() if the media (storage device) is “present not mounted and shared via USB mass storage”
(from the API documentation). Another permission, READ_PHONE_STATE is needed for method
CallerInfo.getCallerId() only if the phone number passed in parameter is the voice mail
number. Those test cases were not generated by Felt’s testing approach. In real applications, test
generation techniques cannot guarantee a comprehensive exploration of the input space.

To us, these findings are typical when comparing a static analysis approach against a testing
one: static analysis sometimes suffers from analyzing all code (including debugging and dead
code, or code run in specific runtime environments), but is strong at abstracting over input data.
On the other hand, testing must simulate as close as possible the production environment, but is
cursed to always miss very specific usage scenarios.

Those results highlight the complementarity between static analysis and testing in the con-
text of permission inference. We think that the static analysis approach is complementary to
the testing approach. Indeed, the testing approach yields an under-approximation which misses

74 Permission Gaps

some permission checks whereas the static analysis approach yields an over-approximation in
which those missing permission checks are found. Using both approaches in conjunction would
enable developers to obtain a lower and an upper bound of the permission gap. In particular, for
a given Android applications, if both testing and static analysis approaches yield the same list of
permissions, this strongly suggests that this list is the “correct” list of required permissions. As
testing could miss permissions and static analysis may not model all Android specificities this
cannot be a strong claim.

4.6.4 Soundness

We have shown in this chapter that the Android framework has many specificities that may
threaten the soundness of static analysis. In this context, soundness refers to having no false
negatives (no missed permission checks). Furthermore, the concept of soundness refers to a
specific scope: in our cases, checks of high-level permissions inside Android services.

For CHA and Spark-based analysis, such as PScout, CHA-Android or Spark-Android, the
manipulation of the call graph based on domain-specific knowledge (such as the bytecode redi-
rection, and windowing system methods emptying) is sound if and only if all cases are envi-
sioned. Given the complexity and scale of a framework such as Android, this completeness is
hard to prove.

For Spark-based analysis, the analysis is sound if and only if the object and static fields
are correctly initialized. Hence the analysis may be sound for some entry-points and unsound
for others. For a framework such as Android, there is no oracle for formally answering those
questions. However, for those entry points when the CHA-based results and the Spark-based
results are identical it is a strong piece of evidence of soundness. For the rest, comparison with
documentation or runtime data is required.

Finally, our results hold as far as there is no serious bug in the implementation of any part
of the static analyses (e.g., entry point initialization and bytecode redirection), as well as in the
glue and measurement code we wrote.

4.6.5 The Impact of Service Identity Inversion

A legitimate question to ask is whether or not service identity inversion has an impact on the
resulting permission set. To answer that question, we ran Spark-Android with and without acti-
vating service identity inversion. Within the set of entry points that did not time out, two have
a bigger permission set when service identity inversion is turned off. For instance, method an-
droid.net.ConnectivityManager boolean requestRouteToHost(int,int) has one
more permission when service inversion is disabled CONNECTIVITY_INTERNAL. This permis-
sion is not required for the entry point according to the official documentation9 which validates
the usefulness of the service identity inversion building block.

Service inversion may only impact a few entry points but not taking it into account leads to
wrong permission sets.

9http://developer.android.com/reference/android/net/ConnectivityManager.html

http://developer.android.com/reference/android/net/ConnectivityManager.html

Computing Permission Gaps 75

4.6.6 Limitations

Native Code

The Android framework is a real-world large-scale framework, featuring heterogeneous layers
written in different languages. For Android 2.2 most Android permissions (126/134) are checked
in the Android Java framework only. Our approach is complete for these 126 permissions, but
incomplete for the eight permissions checked in native C/C++ code. These eight permissions are:
BLUETOOTH_ADMIN, BLUETOOTH, INTERNET, CAMERA, READ_LOGS, WRITE_EX-
TERNAL_STORAGE, ACCESS_CACHE_FILESYSTEM and DIAGNOSTIC.

Reflection in the Framework

If the framework uses reflection, then the call graph construction is incomplete by construction.
Fortunately, the Android framework uses reflection in only 7 classes. We manually analyzed
their source code. Five of those classes are debugging classes. The View class uses reflection
for handling animations. Finally, the VCardComposer uses reflection in a branch that is only
executed for testing purpose. In all cases, the code is not related to system resources hence
no permission checks are done at all. This does not impact the static analysis of the Android
framework.

Dynamic Class Loading

The Java language has the possibility to load classes dynamically. Static analysis cannot deal
with this since the loaded classes are only known at runtime. We found that eight classes of
the Android system are using the loadClass method. After manual check, six of them are
system management classes and are either not linked to permission checks (ex: instrumenting
an application) or have to be accessed through a service. Two are related to the webkit package.
They are used in the LoadFile and PluginManager classes. In both cases, permissions are
checked before loading classes, and not inside the loaded classes. Thus, there is no missed
permission enforcement point either.

Spark

Our model of the Android framework focuses on services and missed the initialization of other
Android components (e.g., content providers). In other words Spark is sounds with regards with
our model of Android components.

4.7 Computing Permission Gaps

We now have static analyses to compute the mapping between Android API methods and their
required permissions. This section first presents a method to efficiently compute the required
permission set and the corresponding permission gap (permissions declared but not used), if
any. Then we present the results of an empirical study that show the existence of permission
gaps in the wild.

76 Permission Gaps

4.7.1 A Calculus for Permission Analysis

This section describes the permission gap inference as a calculus on top of a boolean matrix
algebra. Permission inference is at heart a reachability analysis (does the application reach a
permission check?), the goal of this calculus is to "factorize" the static analysis, so as to be
much more efficient.

Let app be an application. The access vector for app is a boolean vector AVapp representing
the entry points of the framework under study. Thus, the length of vector AV is the number of
entry points of framework F . An element of the vector is set to true if the corresponding entry
point is called by the application. Otherwise it is set to false. Let us consider a framework with
four entry points (e1, e2, e3, e4), and an application foo that reached e1, e2 and e3 but not e4.
AVapp reads:

AVfoo = (1, 1, 1, 0)

We define the permission access matrix M as a boolean matrix which represents the relation
between entry points of the framework and permissions. The rows represent entry points of the
framework and the columns represent permissions. A cell Mi,j is set to true if the corresponding
entry point (at row i) accesses a resource protected by the permission represented by column j.
Otherwise it is set to false. For a framework with four entry points (e1, e2, e3 and e4) and three
permissions (p1, p2 and p3), the permission access matrix reads:

M =


p1 p2 p3

e1 1 0 0
e2 1 0 0
e3 0 0 0
e4 0 1 0


. . . meaning that e1 and e2 require permission p1, e3 requires no permission and e4 requires
permission p2.

Let app and F be an application and a framework respectively. The inferred permissions
vector, IPapp, is a boolean vector representing the set of inferred permissions for application
app. By using the boolean operators AND and OR instead of arithmetic multiplication and
addition in the matrix calculus, we have:

IPapp = AVapp ×M

A cell IPapp(k) equals to true means that the permission at index k is required by app.
Using AVapp and M from the previous examples, the inferred permissions vector for app is:

IPapp =
(
1 1 1 0

)
·


1 0 0
1 0 0
0 0 0
0 1 0


IPapp =

(
1 0 0

)
. . . meaning that the application should declare and only declare permissions p1.

Computing Permission Gaps 77

4.7.2 Extraction of M and AV

The permission access matrix M is based on a static analysis of framework F . As shown in Sec-
tion 4.5, we first compute a call graph for every entry point of the framework and then to detect
whether or not permission checks are present in the call graph. A permission enforcement point
(PEP) is a vertex of a call graph whose signature corresponds to a system method that checks
permission(s). Each PEP is associated with a list of required permissions permsPEP . Matrix
M is constructed as follows: it is a matrix of size (|entry points| × |high level permissions|); all
elements of M are initialized to false; for each ei that reaches one or more PEP, and for each
permission j in permsPEP , M(i, j) = true. In other terms, M is a condensed version of the
reachability information that is latent in call graphs.

Let’s take the example of Figure 4.1 in Section 4.3. It shows a framework with four entry
points (e1, e2, e3, e4), and three permissions (p1, p2, p3). For every of those entry points a call
graph is constructed. Three of those call graphs have a PEP node: e1 and e2 have PEP ck1 which
checks permission p1 and e4 has PEP ck2 which checks permission p2. On the figure a dashed
arrow connects each PEP to the permission(s) it checks. The framework matrix is then matrix
M presented above (see Section 4.7.1).

Extracting AV simply means listing the list of entry points of a framework F called by an
application app. The application example in Figure 4.1 uses a single entry point, and AVex =
(1, 1, 1, 0).

4.7.3 Computing the Permission Gap

The permission gap is the difference between the permissions extracted from IPapp and the
declared permissions Pd(app). In Figure 4.1, using matrix Mex and vector AVex of the example
framework and application, we obtain a list of inferred permissions only containing p1. If the
application declares p1 and p2, the permission gap is {p2}.

We ran our tool on two datasets of Android applications. The first comes from an alternative
Android Market10 and contains 1329 Android applications. For the second one, we consider the
top 50 downloaded applications of all 34 top-level categories of the Official Android Market, as
well as the top 500 of all applications and the top 500 of new applications (on February, 23rd

2012). After removal of duplicates (the applications appearing in several rankings), the second
dataset contains 2057 applications.

Alternative Android Market: We discard 587 applications that use reflection and/or class
loading. Of the 742 remaining applications, 94 are declaring one or more permissions which they
do not use. Consequently, we identify a permission gap for 94 Android applications. We define
the “area of the attack surface” with respect to permission gaps, as the number of unnecessary
permission. In all, among applications suffering from a permission gap, 76.6% have an attack
surface of 1 permission, 19.2% have an attack surface of 2 permissions, 2,1% of 3 permissions
and also 2,1% of 4 permissions.

Official Android Market: We discard 1378 applications that use reflection and/or class
loading. On the 679 remaining applications, 124 are declaring one or more permissions which

10www.freewarelovers.com/android

78 Permission Gaps

they do not use. In all, among applications suffering from a permission gap, 64.5% have an
attack surface of 1 permission, 23.4% have an attack surface of 2 permissions, 12.1% of 3 or
more permissions.

To sum up, those results show that permission gaps exists, and that our approach allows
developers to fix the declared permission list in order to reduce the attack surface of permission-
based software.

4.8 Conclusion

In this chapter, we have used static analysis to extract permissions from the Android framework.
At least three static analysis components must be put together in order to use Class Hierachy
Analysis (CHA) and field-sensitive static analysis (Spark) for analyzing Android’s permissions.
Those are (1) a string analysis, (2) service identity inversion and (3) entry point and service
initialization for Spark.

The approach has been fully implemented for Android, a permission-based platform for mo-
bile devices. Our prototype implementation is able to automatically find 9562 Android frame-
work entry points which check permissions. Concurrent work such as PScout [6] and Felt [53]
confirm our results.

The approach has been fully implemented for Android, a permission-based platform for
mobile devices. For end-user applications, our evaluation revealed that 94/742 and 35/679 appli-
cations crawled from Android application stores indeed suffer from permission gaps.

The security architecture of permission-based software in general and Android in particular
is complex. In this chapter, we abstracted over several characteristics of the platform such as
low-level permissions.

Chapter 5

Data Leakage in Android Applications

We have seen in the previous chapter that permissions protect sensitive data. Nevertheless, appli-
cations having the right permission(s) to access the data could leak the data. This is for instance
the case with malware or application packaged with aggressive advertisement libraries. The ob-
jective of this chapter is to statically analyze Android applications to detect such leaks. Android
applications are different from traditional Java applications. One of the most important differ-
ences is that Android applications are made of components. Analyzing Android applications to
find leaks requires to link components that communicate together and to model every compo-
nent. We developed IccTA to detect privacy leaks. It connects components at the code level to
perform inter-component and inter-application data-flow analysis.

This chapter is based on work published in the following technical report:

• Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric
Bodden, Damien Octeau and Patrick McDaniel: I know what leaked in your pocket: uncovering
privacy leaks on Android Apps with Static Taint Analysis, ISBN 978-2-87971-129-4, 2014.

5.1 Introduction

With the growing popularity of Android, thousands of applications (also called apps) emerge
every day on the official Android market (Google Play) as well as on some alternative markets.
As of May 2013, 48 billion apps have been installed from the Google Play store, and as of
September 3, 2013, 1 billion Android devices have been activated [3]. Researchers have shown
that Android apps frequently send the user’s private data outside the device without the user’s
prior consent [141]. Those applications are said to leak private data. Android applications
are made of different components; most of the privacy leaks are simple and operate within a
single component. More recently, cross-component and also cross-app privacy leaks have been
reported [136]. Analyzing components separately is not enough to detect such leaks. Therefore,
it is necessary to perform an inter-component analysis of applications. Android app analysts
could leverage such a tool to identify malicious apps that leak private data. For the tool to be
useful, it has to be highly precise and minimize the false positive rate when reporting applications

80 Data Leakage in Android Applications

leaking private data.
Privacy leaks. In this chapter, we use a static taint analysis technique to find privacy leaks,

i.e., paths from sensitive data, called sources, to statements sending the data outside the ap-
plication or device, called sinks. A path may be within a single component or cross multiple
components and/or applications.

State-of-the-art approaches relying on static analysis to detect privacy leaks on Android apps
mainly focus on detecting intra-component sensitive data leaks. CHEX [84], for example, uses
static analysis to detect component hijacking vulnerabilities by tracking taints between sensi-
tive sources and sinks. DroidChecker [29] uses inter-procedural Control-Flow Graph (CFG)
searching and static taint checking to detect exploitable data paths in an Android application.
FlowDroid [5] also performs taint analysis within single components of Android applications
but with a better precision. In this chapter, we not only focus on intra-component leaks, but
we also consider Inter-Component Communication (ICC) based privacy leaks, including Inter-
Application Communication (IAC) leaks.

Other approaches use dynamic tracking to find privacy leaks. For instance, TaintDroid [45]
leverages Android’s virtualized execution environment to monitor Android apps at runtime in
which it tracks how application leaks private information. CopperDroid [105] dynamically ob-
serves interactions between the Android components and the underlying Linux system to recon-
struct higher-level behavior.

A dynamic approach must send input data to the app at runtime to trigger code execution.
The input data may be incomplete and thus not execute all parts of the code. Furthermore, some
code may only be executed if precise conditions are met at runtime such as a data. In this chapter,
we focus on static analysis to avoid these drawbacks. The counterpart of static analysis is that
it may yield an over-approximation since it analyzes all code even the one that could never be
executed.

Static taint analysis for Android is difficult. Despite the fact that Android applications
are mainly programmed in Java, off-the-shelf static taint analysis tools for Java do not work on
Android applications. The tools need to be adapted mainly for three reasons. The first reason
is that, as already mentioned, Android applications are made of components. Communications
between components involve two main artifacts: Intent Filter and Intent. An Intent Filter is
attached to a component and “filters” Intents that can reach the component. An Intent is used
to start a new component by first dynamically creating an Intent instance, and then by calling a
specific method (e.g. startActivity, startService) with the intent previously created as parameter.
The intent is used either explicitly by specifying the new component to call, or implicitly by for
instance only specifying the action1 to perform. The launch of a component is performed by
the Android system which “resolves” the matching between Intent and Intent Filter at runtime.
This dynamic resolution done by the Android system induces a discontinuity in the control-flow
of Android applications. This specificity makes static taint analysis challenging by requiring
pre-processing of the code to resolve links between components.

The second reason is related to the user-centric nature of Android applications, in which a
user can interact a lot through the touch screen. The management of user inputs is mainly done
by handling specific callback methods such as the onClick method which is called when the user

1Such as android.intent.action.VIEW or .CALL or .EDIT

Introduction 81

clicks on a button. Static analysis requires a precise model that stimulates users’ behavior.
The third and last reason is related to the lifecycle management of the components. There is

no main method as in a traditional Java program. Instead, the Android system switches between
states of a component’s lifecycle by calling callback methods such as onStart, onResume or
onCreate. However, these lifecycle methods are not directly connected in the code. Modeling
the Android system allows to connect callback methods to the rest of the code.

Our Proposal. The above challenges will unavoidably cause some discontinuities in the
control-flow graph. To overcome these issues, we present an Inter-component communication
Taint Analysis tool named IccTA2. IccTA allows a sound and precise detection of ICC and IAC
links. This approach is generic and can be used for any data-flow analysis. In this chapter we
focus on using IccTA to detect privacy leaks.

IccTA is based on three software artifacts: Epicc-IccTA, FlowDroid-IccTA and ApkCom-
biner.

Epicc-IccTA extends Epicc [92] which computes ICC links between Android components.
Epicc-IccTA leverages Epicc to incrementally store the computed ICC links to a database for con-
veniently analyzing a large set of apps. FlowDroid-IccTA extends FlowDroid [5]. FlowDroid
only finds privacy leaks within single components of Android applications but not between com-
ponents.

FlowDroid-IccTA uses ICC links computed by Epicc to improve FlowDroid. Based on these
computed links, FlowDroid-IccTA modifies Android applications’ code to directly connect com-
ponents to enable data-flow analysis between components. By doing this, we build a complete
control-flow graph of the whole Android application. This allows propagating the context be-
tween Android components and yielding a highly precise data-flow analysis. To the best of our
knowledge, this is the first approach that precisely connects components for data-flow analysis.

Finally, ApkCombiner helps analyzing multiple Android applications by combining multiple
apps into one when there exist data-flows between these apps. This results in having a complete
control-flow graph of the combined apps. This allows to propagate the context not only between
components of a single app but also between components of different apps.

To verify our approach, we run IccTA on 3000 real-world Android applications and on 26
apps containing ICC-based privacy leaks that we developed. We have added these 26 applica-
tions to DroidBench [43], an open test suite for evaluating the effectiveness and accuracy of
taint analysis tools specifically for Android apps. The 26 apps cover the top 8 used ICC methods
illustrated in Table 5.1.

Contributions. To summarize, we present the following original contributions in this chap-
ter:

• A novel methodology to resolve the ICC problem by directly connecting the discontinu-
ities of Android apps at the code level.

• IccTA, a tool for inter-component data-flow analysis.

• An improved version of DroidBench with 26 new apps to evaluate tools detecting ICC-
based privacy leaks.

2Our experimental results and IccTA itself are available at https://sites.google.com/site/icctawebpage.

82 Data Leakage in Android Applications

Table 5.1: The top 8 used ICC methods†

ICC Method Counts(#.) Used Apps(#.)
startActivity 55802 (61.44%) 2765 (92.2%)
startActivityForResult 11095 (12.21%) 1980 (66.0%)
query 6606 (7.27%) 1601 (53.4%)
startService 3942 (4.34%) 1077 (35.9%)
sendBroadcast 3472 (3.82%) 790 (26.3%)
insert 2100 (2.31%) 615 (20.5%)
bindService 1515 (1.67%) 644 (21.5%)
delete 1238 (1.36%) 350 (11.7%)
Other ICC Methods 5058 (5.57%) -
Total 90828 (100%) -

† Methods with higher counts are selected when overload methods exist

• An empirical study to evaluate IccTA over an augmented version of the DroidBench test
suite (available online3) and 3000 real-world Android applications.

The rest of this chapter is organized as as follows. Section 5.2 explains the necessary back-
ground on Android security. Section 5.3 gives a motivating example and Section 5.4 introduces
some essential definitions. In Section 5.5, the paper discusses the implementation details of Ic-
cTA, while Section 5.6 evaluates IccTA. The limitations of IccTA are described in Section 5.7.
Finally, Section 5.8 concludes the chapter.

5.2 Background

5.2.1 Android ICC Methods

As explained in Section 2.1, an Android application is made of basic units, called components,
described in a special file, called Manifest, stored in the application. There are four types of
components: a) Activities that represent the user interface and are the visible part of Android
applications; b) Services which execute tasks in background; c) Broadcast Receivers that re-
ceive messages from other components or the system, such as incoming calls or text messages;
and d) Content Providers which act as the standard interface to share structured data between
applications.

Some specific Android system methods are used to trigger inter-component communication.
We call them Inter-Component Communication (ICC) methods. Those methods take as parame-
ter a special kind of object, called Intent, which specifies the target component(s). We perform a
short study to compute the usage rate of ICC methods. We analyzed 3000 Android applications
randomly selected from Google Play and other third party markets. Table 5.1 shows the top 8
most used ICC methods. The third column represents the number of apps using at least once the
corresponding ICC method. The most used ICC method is startActivity, used to launch a
new Activity component, which accounts for 59.2% of the total detected ICC methods.

3github.com/secure-software-engineering/DroidBench

Background 83

Activity1

Activity2

Application 1

Activity3
IF: Actionb

Activity4
IF: Actionb

Application 2

Activity5
IF: Actionc

Application 3

Explicit ICC

to Activity2

Implicit ICC

for actionb

Figure 5.1: Explicit and Implicit ICC between Components of Android Applications.

All ICC methods4 take at least one Intent in their parameters to specify the target compo-
nent(s). There are two ways to specify ICC method’s target components. The first one is by
explicitly specifying them by setting the name of the target components through an Intent. The
second one is by implicitly specifying them by setting the action, category and data fields of an
Intent. In order to receive implicit Intents, target components need to specify an Intent Filter in
their application’s manifest file. Note that Intents can transfer data between components.

Again, we performed a short study on the 3000 apps to compute the ratio between explicit
and implicit Intents for the startActivity ICC method. Among the 55,802 startActivity
method calls, 27978 use explicit intents and 27824 use implicit Intents.

Figure 5.1 represents three Android apps made of Activity components. There is an explicit
ICC from Activity1 to Activity2 in Application 1. There are two implicit ICCs from
Activity2 to Activity3 in Application 1 and from Activity2 to Activity4 between
Application 1 and Application 2. Note that the target components of implicit ICC, Ac-
tivity3 and Activity4, have an Intent Filter with the same action and category value as the
Intent used in Activity2. Each time there is an ICC, there may be a flow of data between
components and potentially a privacy leak.

5.2.2 FlowDroid

FlowDroid [5] is a context-, flow-, field-, object-sensitive and lifecycle-aware static taint analysis
tool for Android applications. The context-, flow-, field-, object-sensitives of FlowDroid are
guaranteed by the precise call graph of Soot [75] and the IFDS [106] based data-flow analysis
of Heros [22]. The sources and sinks used by FlowDroid are provided by SuSi [4], also an open
sourced tool used to fully automatically classify and categorize Android sources and sinks.

4Except Content Provider related methods such as query or insert

84 Data Leakage in Android Applications

Precise Modeling of Lifecycle

Android applications’ components can be started independently and run in parallel. FlowDroid
is path-insensitive (see Section 2.2.1) and assumes that components within an application can
run in an any sequential order. A special main method, which considers all combinations of
lifecycles (e.g., method onPause() which is executed when the corresponding Activity compo-
nent is paused), callbacks (e.g., method onClick() which is executed when a button is clicked
by the user) and entry points (e.g., method onCreate() which is executed when an Activity
component is launched) of Android components is generated to model data-flows within the
application.

IFDS Problem

FlowDroid does a taint-analysis and uses the IFDS framework. The analysis starts at statements
assigning the result of a source method (e.g., getDeviceId()) in a variable. This variable is
tainted since it contains data from the source method. The analysis then uses an idea introduces
by Andomeda [129] and goes backward to find aliases of the tainted variable. During the forward
analysis, if aliases reach the original assignemnt with the source, they are also tainted. Finally,
if a tainted variable reaches a sink method, a leak is detected. As presented in Section 2.2.2, the
analysis relies on flow functions applied on statements to compute the data-flow facts. In this
analysis data-flow facts are the set of variables that are tainted at each program statement. For
instance, the normal flow functions applied on statement x = y kills x if it was tainted and y is
not tainted or progagate the taint of y to x if y was tainted before the statement.

Experimental Results

FlowDroid achieves 93% recall and 86% precision when detecting data leaks on DroidBench.
FlowDroid has been mainly used to analyze data leaks within single components. However, with
slight modifications, FlowDroid could also be used when multiple components are involved, i.e.,
for ICC analyses. Indeed, it is possible to use FlowDroid to compute paths for all individual com-
ponents and then combines all those paths together, whether there is a real link or not between
these components. A major drawback of this approach is that it yields many false positives. The
next Section presents Epicc, a tool which statically resolves ICC links.

5.2.3 Epicc

Epicc [92] is a static analysis tool, also based on Soot and Heros, which computes ICC (Inter-
Component Communication) links. In other words, it finds links from ICC methods to their
target components.

IDE Problem

ICC methods take an object called Intent as parameter. This Intent object describes the desti-
nation component. Epicc statically analyze applications’ code to reconstructs these objects at
every statement calling an ICC method. Epicc reduces the discovery of ICC in Android to an

Motivating Example 85

instance of the Inter-procedural Distributive Environment (IDE) problem [111]. An IDE prob-
lem propagates environments. In the case of Epicc, an environment can be seen as the mapping
between one variable representing an object that is being reconstructed and the current value of
that reconstructed object. For instance, when a new Intent object is created, the variable refer-
encing this new object will be mapped to an empty Intent. During the analysis, environment
transformers (on every edge of the supergraph) will update environments. For example, the en-
vironment transformer for statement i.setAction(“A1”) changes the enviroment of variable
i by putting the string “A1” as the action value of the corresponding reconstructed object. Other
objects used within Intent objects, such as ComponentName or Bundle objects, are reconstructed
using the same process.

Experimental Results

Experiments show that when applied on a set of 1,200 Android applications, Epicc identifies
93% of all ICC links and finds ICC vulnerabilities with far fewer false positives than the next best
tool. In this chapter we use the links generated by Epicc to improve the precision of FlowDroid
ICC analyses. The following Section motivates our approach to find ICC leaks.

5.3 Motivating Example

This section motivates our approach and illustrates the problem we solve through a concrete
example. This example is detailed in Figure 5.2, which presents code of Application 1 intro-
duced in Figure 5.1. The app has three Activity components represented by Activity1, Activ-
ity2 and Activity3 classes. It also features ButtonOnClickListener a listener class used
to handle button click events. Activity1 registers a button listener for the to2 button (lines
6-11) and Activity2 registers one for the to3 button (line 15).

When button to2 and to3 are clicked, the onClick method is executed and the user interface
will change to Activity2 and to Activity3, respectively. In both cases, an Intent containing
the device ID (lines 7 and 32), considered as sensitive data, is sent between two components by
first attaching the data to the intent with the putExtra method (lines 9, and 35) and then by
invoking either startActivity or startActivityForResult (lines 10 and 36). Note that
Figure 5.2 exemplifies both the use of explicit and implicit intents. At line 8, the intent is
created by explicitly specifying the target class (Activity2). At line 34, only the intent action
is specified with no explicit reference to the target.

In this example, sendTextMessage is directly executed when Activity2 or Activity3
is loaded since onCreate is the first method in the lifecycle of an Activity. It sends the data
retrieved from the Intent as a SMS to the specified phone number.

In this code, two privacy leaks occur: one when button to2 is clicked, the other when button
to3 is clicked. When to2 is clicked, the device ID is transferred from Activity1 to Activity2
(line 10) and then Activity2 sends it outside the application (line 18).

When button to3 is clicked, the device ID is transferred from Activity2 to Activity35

(line 36). Actually, the device ID (the source) is retrieved in class ButtonOnClickListener

5As illustrated in Figure 5.1, Activity3 has the appropriate Intent Filter to catch the implicit Intent

86 Data Leakage in Android Applications

//TelephonyManager telMnger; (default)
//SmsManager sms; (default)
class Activity1 extends Activity {
void onCreate(Bundle state) {
Button to2 = (Button) findViewById(to2a);
to2.setOnClickListener(new OnClickListener(){
String id = telMnger.getDeviceId();
Intent i = new Intent(Activity1.this,Activity2.class);
i.putExtra("sensitive", id);
Activity1.this.startActivity(i);
});}}

class Activity2 extends Activity {
void onCreate(Bundle state) {
Button to3 = (Button) findViewById(to3a);
to3.setOnClickListener(new ButtonOnClickListener(this));
Intent i = getIntent();
String s = i.getStringExtra("sensitive");
sms.sendTextMessage(number,null,s,null,null);
}
void onActivityResult(int,int,Intent){
//log all the Extras of Intent
}}
class Activity3 extends Activity {
void onCreate(Bundle state) {
Intent i = getIntent();
String s = i.getStringExtra("sensitive");
sms.sendTextMessage(number,null,s,null,null);
}}
class ButtonOnClickListener extends OnClickListener{
//Activity act; (construct)
void onClick(View view) {
String id = telMnger.getDeviceId();
Intent i = new Intent();
i.setAction("test.ACTION"); //Action b
i.putExtra("sensitive", id);
act.startActivityForResult(i, 1);
}}

Figure 5.2: A Motivating Example Code

Definitions 87

Source

s0 s1 s2 s3 s4
. . .

s11 s12

Sink

Tainted Path

Stmt Sequence

Figure 5.3: Representation of Statements, Source, Sink, Statement Sequence and Tainted Path.

instantiated by Activity2. Finally, Activity3 sends the device ID outside the application
(line 27).

The sensitive data leaks described above crosses two components: they cannot directly be de-
tected since there is no real code connection between startActivity and onCreate (lines 10
and 13) or between startActivityForResult and onCreate (lines 36 and 24). Section 5.5
describes our approach to connect components to analyze paths between components and even
between applications.

5.4 Definitions

In order to better describe our approach, some Android and taint analysis related concepts need
to be defined.

Control-Flow Graph (CFG) We detect data leaks by analyzing control-flow graphs of An-
droid applications. An application CFG consists of a collection of method CFGs linked together
according to how they call one another.

Source Method. A source method returns data considered as private from the user’s point of
view into the application code. For example, method getDeviceId (line 76) is a source method
returning the device ID.

Sink Method. A sink method sends data out of the application. For example, method send-
TextMessage (line 27) is a sink method sending data to another phone using SMS. We use
sources and sinks computed for Android by the SuSi tool [4].

ICC Method. An ICC method is used to trigger communication between two components.
For example, method startActivity (line 10) is an ICC method which triggers component
communication from Activity1 to Activity2.

Tainted Stmt. A tainted statement contains at least one tainted piece of data. For example,
i.putExtra("sensitive ",id) (line 9) is a statement containing the tainted data id.

Tainted Stmt Sequence. A tainted stmt sequence is a flow-sensitive sequence of tainted stmt.
For instance statements at line 9 and 10 form a tainted statement sequence.

Tainted Path. A tainted path is a tainted stmt sequence where 1) More than one stmt exist
in the tainted path; 2) The first stmt contains a source method; 3) The last stmt contains a sink
method. Tainted Stmt, Tainted Stmt Sequence and Tainted Path are illustrated in Figure 5.3.

6All the line numbers described in this section is referring to Listing 5.2

88 Data Leakage in Android Applications

ApkCombiner

Soot / Dexpler

Heros

Epicc-IccTA FlowDroid-IccTA

Figure 5.4: The architecture of IccTA

There are three types of tainted statement paths in Android: Intra-Component Communi-
cation, Inter-Component Communication (ICC) and Inter-Application Communication (IAC)
based tainted paths.

Intra-Component Tainted Path. An intra-component tainted path is a tainted path within a
component. In our motivating example, there is no intra-component tainted path. But if the
startActivity call was replaced with a call to sendTextMessage which sends the device id
out of the application, there would be an intra-component tainted path (line 7-10).

ICC-based Tainted Path. An ICC-based tainted path is a tainted path among two or more
components, i.e., there is at least one ICC method in the path. In our motivating example, there
is an ICC-based tainted path from source method getDeviceId in Activity1 to sink method
sendTextMessage in Activity2 through the startActivity ICC method (line 10).

IAC based Tainted Path. An IAC based tainted path is a tainted path between two or among
more applications, i.e., it has at least one ICC method between two components of different ap-
plications. There is no IAC based tainted path in our motivating example. But if the Activity4
in Figure 5.1 sends the device id transferred from Activity2 out of the application, then there
is an IAC based tainted path from Application 1 to Application 2.

Privacy Leaks. If a tainted path is detected, it means that a privacy leak has been found. In
other words, some private data obtained from a source method can flow through the tainted path
to a sink method.

5.5 IccTA

In this Section we describe IccTA, our tool to detect privacy leaks in Android applications. It
uses static taint analysis to detect privacy leaks. The main challenge for this is to solve the
discontinuities problem introduced by the Android system.

We present the architecture of IccTA in Figure 5.4 where new or modified component are
surrounded by a dashed line. IccTA is the combination of Epicc-IccTA and FlowDroid-IccTA.
Epicc-IccTA relies on Epicc to incrementally compute ICC links from Android apps. Both
FlowDroid and Epicc are based on Soot [75] and Heros [22]. Soot is a framework to analyze
Java-based applications. It uses the Dexpler [14] plugin to convert Android Dalvik byte code
to Soot’s internal representation called Jimple and relies on Spark [82] to build accurate call
graphs. Heros is a scalable implementation of IFDS [107] and IDE [111], two frameworks to

IccTA 89

A
pk

Ji
m

pl
e

Ta
in

te
d

Pa
th

s

A
pk

∗

IC
C

L
in

ks

A
pk

1

A
pk

2

Ji
m

pl
e

L
in

ks
D

B

Ji
m

pl
e

+
IC

C
+

L
if

ec
yc

le
+

C
al

lb
ac

k

Ta
in

te
d

Pa
th

s

(1
.1

)
So

ot

(1
.2

)
Fl

ow
D

ro
id

A
na

ly
si

s

(2
.1

)
A

pk
-

C
om

bi
ne

r

(2
.2

)
So

ot
(2

.5
)

Fl
ow

D
ro

id
-

Ic
cT

A

(2
.6

)
Fl

ow
D

ro
id

A
na

ly
si

s
(2

.4
)

E
pi

cc
-I

cc
TA

(2
.3

)
E

pi
cc

(2
.3

)
E

pi
cc

Fi
gu

re
5.

5:
O

ve
rv

ie
w

of
Ic

cT
A

(d
ow

n)
an

d
Fl

ow
D

ro
id

(u
p)

.

90 Data Leakage in Android Applications

perform data-flow analysis. Analyzing multiple applications is done using ApkCombiner. It
combines multiple apps to a single one to ease the analysis of IccTA.

Figure 5.5 is a comparison between IccTA and FlowDroid. FlowDroid (5.5 up) first converts
the Android bytecode to Jimple in step (1.1). Then, in step (1.2), it analyzes the Jimple code to
detect tainted paths in single Android components.

IccTA (5.5 down) can analyze one or multiple Android applications. If more than one appli-
cation is analyzed, it uses ApkCombiner to merge the Android applications in a single applica-
tion in step (2.1). The Android application’s bytecode is then converted to Jimple in step (2.2).
In parallel, Epicc-IccTA analyzes all the input applications (Apk1 and Apk2 in the Figure) to
generate ICC Links in step (2.3) and stores the results to a database in step (2.4). IccTA uses
ICC links generated by Epicc-IccTA to connect Android components in the Jimple code in step
(2.5). Steps (2.2) and (2.6) correspond to FlowDroid’s steps (1.1) and (1.2): the Jimple code
is updated to take into account lifecycles and callbacks of components and the taint analysis is
launched to generate a list of tainted paths.

5.5.1 FlowDroid-IccTA: Reducing the ICC problem to an Intra-
Component Problem

Since there is no direct code connection between two Android components, FlowDroid cannot
detect ICC-based privacy leaks with precision. In this section, we describe how FlowDroid-
IccTA reduces the ICC problem to an intra-component problem on which FlowDroid can per-
form an highly precise data-flow analysis. Our approach instruments the Jimple code of Android
applications to connect components directly in the code.

As mentioned in the introduction, there are three types of discontinuities in Android: (1)
ICC methods, (2) lifecycle methods and (3) callback methods. We first describe how FlowDroid-
IccTA tackles ICC methods in Section 5.5.1. Then, we detail how FlowDroid-IccTA resolves
lifecycle and callback methods in Section 5.5.1. Finally, using our motivating example of List-
ing 5.2, we illustrate the code instrumentation process in Section 5.5.1.

ICC Methods

// modifications of Activity1
Activity1.this.startActivity(i);
IpcSC.redirect0(i);

(A)

// creation of a helper class
class IpcSC {
static void redirect0(Intent i) {
Activity2 a2 = new Activity2(i);
a2.dummyMain();
}
}

(B)

// modifications in Activity2
public Activity2(Intent i) {
this.intent_for_ipc = i;

}
public Intent getIntent() {
return this.intent_for_ipc;
}
public void dummyMain() {
// lifecycle and callbacks
// are called here
}

(C)

Figure 5.6: Code Modifications to Handle ICC Communication between Activity1 and Activity2.
The startActivity ICC method is replaced (A) by a call to code that instantiates and calls the
“main” method of Activity2 (B). The target component class is updated to handle Intent objects
directly, by modeling the Android system behavior (C).

IccTA 91

As shown in Figure 5.5, the ICC problem is solved at step 2.5. This is where the Jimple code
is updated by FlowDroid-IccTA to connect components. This code modification is required
for all ICC methods (listed in Table 5.1). We detail these modifications for the two most used
ICC methods: startActivity and startActivityForResult. We handle ICC methods
for Services and Broadcast Receivers in a similar way.

StartActivity. Figure 5.6 shows the code transformation done by FlowDroid-IccTA for the
ICC link between Activity1 and Activity2 of our motivating example. FlowDroid-IccTA
first creates a helper class named IpcSC (B in Figure 5.6) which acts as a bridge connecting the
source and destination components. Then, the startActivity ICC method is removed and
replaced by a statement calling the generated helper method (redirect0) (A).

In (C), FlowDroid-IccTA generates a constructor method taking an Intent as parameter,
a dummyMain method to call all related methods of the component (i.e., lifecycle and callback
methods) and overrides the getIntent method. An Intent is transferred by the Android sys-
tem from the caller component to the callee component. We model the behavior of the Android
system by explicitly transferring the Intent to the destination component using a customized con-
structor method, Activity2(Intent i), which takes an Intent as its parameter and stores
the Intent to a newly generated field intent_for_ipc. The original getIntent method asks
the Android system for the incoming Intent object. The new getIntent method models the An-
droid system behavior by returning the Intent object given as parameter to the new constructor
method.

The helper method redirect0 constructs an object of type Activity2 (the target compo-
nent) and initializes the new object with the Intent given as parameter to the helper method.
Then, it calls the dummyMain method of Activity2.

To resolve the target component, i.e., to automatically infer what is the type that has to be
used in the method redirect0 (in our example, to infer Activity2), Flowdroid-IccTA uses
the ICC links computed by Epicc-IccTA. Epicc-IccTA resolve the target component not only
for explicit intents, but also for implicit intents. Therefore, there is no difference for Flowdroid-
IccTA to handle explicit or implicit intent based ICCs.

StartActivityForResult. There are some special ICC methods in Android, such as star-
tActivityForResult. A component C1 can use this method to start a component C2. Once
C2 finishes running, C1 runs again with some result data returned from C2. The control-flow
mechanism of startActivityForResult is shown in Figure 5.7. There are two discontinu-
ities: one from (1) to (2), similar to the discontinuity of the startActivity method, and the
other from (3) to (4).

The startActivityForResult ICC method has a more complex semantic compared to
common ICC methods that only trigger one-way communication between components (e.g.,
startActivity). Figure 5.8 shows how the code is instrumented to handle the startAc-
tivityForResult method in our motivating example. To stay consistent with common ICC
methods, we do not instrument the finish method of Activity3 to call onActivityResult
method. Instead, we generate a field intent_for_ar to store the Intent which will be trans-
ferred back to Activity2. The Intent that will be transfered back is set by the setResult
method. We override the setResult method to store the value of Intent to intent_for_ar.
The helper method IpcSC.redirect0 does two modifications to link these two components

92 Data Leakage in Android Applications

directly. First, it calls the dummyMain method of destination component. Then, it calls the
onActivityResult method of the source component.

Activity2 Entry Point

startActivityForResult

Activity2

onActivityresult

Android
System

Activity3 Entry Point

setResult

Activity3

finish

1

2

34

Figure 5.7: The control-flow mechanism of startActivityForResult

Lifecycle and Callback Methods

act.startActivityForResult(i);
IpcSC.redirect0(act, i);

(A)

void setResult(Intent i) {
this.intent_for_ar = i;
a2.dummyMain();
}
public Intent getIntentFAR() {
return this.intent_for_ar;
}

(C)

class IpcSC {
static void redirect0(Activity a2,

Intent i) {
Activity3 a3 = new Activity3(i);
a3.dummyMain();
Intent retI = a3.getIntentFAR();
a2.onActivityResult(retI);
}
}

(B)

Figure 5.8: An Example about running FlowDroid-IccTA to startActivityForResult ICC
method. (A) represents the modified code of ButtonOnClickListener and (C) the modified
code of Activity3. (B) is the glue code connecting ButtonOnClickListener and Activ-
ity3. Some method parameters are not represented to simplify the code.

One challenge when analyzing Android applications is to tackle the callback methods and
the lifecycle methods of components. There is no direct call among those methods in the code of
applications since the Android system handles lifecycles and callbacks. For callback methods,
we need to take care of not only the methods triggered by the User Interface (UI) events (e.g.,
onClick) but also of callbacks triggered by Java or the Android system (e.g., the onCreate
method). In Android, every component has its own lifecycle methods. To solve this problem,
IccTA generates a dummyMain method for each component in which we model all the meth-
ods mentioned above so that our CFG based approach is aware of them. Note that FlowDroid
also generates a dummyMain method, but it is generated for the whole app instead of for each
component like we do.

The CFG of instrumented motivating example

Figure 5.9 represents the CFG of the instrumented motivating example presented in Listing 5.2.
In the CFG, getDeviceId is a source method in the anonymous OnClickListener class (line

IccTA 93

6) called by Activity1. Method sendTextMessage is a sink in Activity2. There is an intra-
component tainted statement path from the source method to sink method (represented by edges
1 to 12).

Figure 5.9 also shows that IccTA builds a precise cross-component control-flow graph. Since
we use an technique instrumenting the code to build the CFG, the context of a static analysis is
kept between components. This enables IccTA to analyze data-flows between components and
thereby enables IccTA to have a better precision than existing approaches.

5.5.2 ApkCombiner: Reducing an IAC problem to an ICC problem

In Android, Inter-Application Communication (IAC) is similar to Inter-Component Commu-
nication (ICC). Indeed, IAC also relies on component communication, except that the source
component and the destination component belong to different applications. If we can connect
applications, an IAC Problem becomes a standard ICC Problem.

Analyzing Multiple Applications. As shown in Figure 5.5, FlowDroid can only analyse
one application at a time. Therefore, we develop a tool, ApkCombiner, to combine multiple apps
into one. ApkCombiner combines all the parts of Android apps including bytecodes, assets,
manifest and all the resources. Then, we use IccTA to analyze the combined app to compute
IAC based privacy leaks. As FlowDroid-IccTA handles the combined application as a single
applications, it only detects ICC-based privacy leaks. To distinguish ICC leaks from IAC leaks,
IccTA checks if all statements of the tainted path belong to the same application or not.

Reducing the Number of Combined Apps to Analyze. In practice, when increasing the
number of applications to analyze, and if all those applications are combined with ApkCombiner,
the processing time and memory requirement of FlowDroid-IccTA also grows. To solve this
problem, we need to decrease the number of Android apps to combine. Our solution is to build
an IAC graph, where a node is an application and an edge a link, to represent the dependencies
between applications. The idea behind being that if there is no link between two applications
there is no need to combine them.

The IAC graph is made up of small independent IAC (sIAC) graphs (connected components).
Given a sIAC graph, ApkCombiner combines all the nodes (apps) in it into one app, then IccTA
extracts leaks from the resulting app. However, in some case, if a sIAC graph still contains a
lot of nodes. This will also limit our approach to be scalable. Our solution is to limit the length
(how many apps are involved) of an IAC leak7. For example, If a sIAC graph contains 10 nodes
(where Ai is connected to Ai+1, i ∈ {1, 9}) and the length limitation is set to five. Then, the
sIAC graph is split into five sIACs (e.g., one sIAC is from A2 to A6) that IccTA can analyze. The
trade-off limitation length enables our approach to become scalable.

Another good point of building an IAC graph is that new applications can be added to the
graph in an iterative and incremental manner. When new apps are involved, we only run them
against Epicc-IccTA and add them to the existing IAC graph. We do not need to run the previ-
ously computed apps again when adding the new apps to the IAC graph.

In short, by building an IAC graph, the original set of Android applications is split into
multiple small sets that IccTA can analyze.

7In practice we have not seen a leak going through more than 2 apps.

94 Data Leakage in Android Applications

5.6 Evaluation

Our evaluation addresses the following research questions:

RQ1 How does IccTA compare to commercial taint-analysis tools for Android and FlowDroid
in terms of precision and recall?

RQ2 Can IccTA find leaks in real-world applications and how fast is it?

RQ3 How do IccTA compare to other academic ICC leak detection approaches?

5.6.1 RQ1: IccTA vs FlowDroid and Commercial Tool

We evaluate and compare IccTA with FlowDroid and IBM AppScan Source 9.0 on DroidBench
to test for ICC and IAC leaks. Unfortunately, we were unable to compare IccTA to other static
analysis tools as their authors did not make them available.

DroidBench. DroidBench [43] is a set of hand crafted Android applications for which all
leaks are known in advance. The fact of knowing all leaks in the applications is called the
ground truth and is used to evaluate how well static and dynamic security tools find data leaks.
DroidBench version 1.2 contains 64 different test cases with different privacy leaks. However,
all the leaks in DroidBench are intra-component privacy leaks. Thus, we developed 26 apps
and 23 test cases to extend DroidBench with ICC and IAC leaks. A test case is applied on one
application to test for ICC and on two applications to test for IAC. In total, 18 apps contain
inter-component privacy leaks and 6 apps contain inter-app privacy leaks. The new set of test
cases covers each of the top 8 ICC methods in Table 5.1. Moreover, among the 26 new apps,
two of them do not contain any privacy leaks. If a tool detects privacy leaks on these two apps,
the detected leaks are false alarms. Finally, for each test case application we add an unreachable
component containing a sink. These unreachable components are used to flag tools that do not
properly construct links between components.

The 23 test cases are listed in the first column of Table 5.2.
IccTA. We run IccTA on all the 23 test cases. The results are shown in Table 5.2. IccTA

successfully passes 18 test cases, with 17 test cases containing 19 privacy leaks and one test case
(startActivity5) with no leak.

Among the detected privacy leaks, three of them are IAC based privacy leaks and the remain-
ing ones are ICC-based privacy leaks. In the startActivity5 test case, the source component
uses an implicit intent with data type text/plain to start another activity. However, no other ac-
tivity in this test case declares that it can receive an intent with data type text/plain. That means
there is no connection among the components in startActivity5 test case. As IccTA takes
into consideration the data type of an intent it does not report any privacy leak for this test case.

The startActivity4 test case does not contain any leaks. However, IccTA does report a
false warning. The reason is that the source component uses an implicit intent with an URI to
start another activity. Since IccTA relies on Epicc which does over-approximate URIs links, it
reports a false leak.

The current version does not take into account Content Providers. This is why IccTA
misses leaks for the insert1, delete1, update1, and query1 test cases. All the four test

Evaluation 95

cases are related to Content Provider.
FlowDroid. FlowDroid has been evaluated on the first version of DroidBench in [5]. In

table 5.2, we present the results of FlowDroid on the new 23 test cases. As already explained,
FlowDroid has been initially proposed to detect leak in single Android component. However,
we can use FlowDroid in a way that it computes paths for all individual components and then
combines all those paths together (whatever there is a real link or not). As a result, we expect
that FlowDroid detects most of the leaks but yields several false positives. Results of Table 5.2
confirm this expectation: FlowDroid has a high recall (69.6%) and a low precision (23.9%).
FlowDroid misses three more leaks than IccTA in bindService{2,3,4}. After investigation,
we discover that FlowDroid does not consider some callback methods for service components.

AppScan. AppScan Source 9.0 requires a lot of manual initialization work since it has
no default sources/sinks configuration file and is unable to analyze Android applications with-
out specifying the entry points of every components. We define the getDeviceId and log
methods, that we always use in DroidBench for ICC and IAC leaks, as source and sink, re-
spectively. We also add all components’ entry point methods (such as onCreate for activities)
as callback methods so AppScan knows where to start the analysis. AppScan is natively un-
able to detect inter-component data-flows and only detects intra-component flows. AppScan has
the same drawbacks as FlowDroid and should have a high recall and low precision on Droid-
Bench. We use an additional script to combine the flows between components. As expected
AppScan’s recall is high (56.5%) and its precision low (21.0%). Compared to FlowDroid, App-
Scan does worse. Indeed, AppScan does not correctly handle startActivityForResult and
thus misses leaks going through methods receiving results from the called activities in start-
ForResult{2,3,4}.

Conclusion. IccTA outperforms both the commercial taint-analysis tool AppScan 9.0 and
FlowDroid in terms of precision and recall.

5.6.2 RQ2: IccTA and Real-World Apps

We run the experiments on a Core i7 CPU running a Java VM with 8 Gb of heap. To evalu-
ate our approach, we use IccTA to analyze 3000 Android apps downloaded from the Google
Play market as well as some third-party markets (e.g., wandoujia). IccTA process 3000 apps in
about 100 hours. IccTA does not detect any leak for 2575 (85.83%) applications. IccTA reports
425 applications containing privacy leaks. Among the 425 apps, 411 apps only contain intra-
component leaks and 14 apps contain at least one ICC leak. From those 14 apps, 13 contain
both intra-component leaks and ICC leaks. IccTA detects 6989 IAC links. Among those IccTA
detects one IAC leak. This result indicates that components do communicate and share data, but
it is rare that an inter-application leak occurs.

For intra-app leaks, IccTA detects 5986 leaks in the 425 apps. Among the detected leaks,
147 (2.5%) are ICC privacy leaks. We manually check the 147 reported ICC leaks and found
out that 17 (11.6%) are false positives. In other words, IccTA achieves a precision of 88.4%
on real-word apps. The false positives comes from Epicc that generates false positives for links
between components.

We summarize the frequently used source methods and sink types (Java classes) in Table 5.3
from the 425 apps having at least one leak. Note that we only count such source and sink

96 Data Leakage in Android Applications

Table 5.2: DroidBench test results

⋆ = correct warning, ⋆ = false warning, = missed leak
multiple circles in one row: multiple leaks expected

all-empty row: no leaks expected, none reported
† C/A: # of Components / # of Applications

Test Case (C/A)† FlowDroid AppScan IccTA
Inter-Component Communication

startActivity1 (3/1) ⋆ ⋆ ⋆ ⋆ ⋆

startActivity2 (4/1) ⋆ (4 ⋆) ⋆ (4 ⋆) ⋆

startActivity3 (6/1) ⋆ (32 ⋆) ⋆ (32 ⋆) ⋆

startActivity4 (3/1) ⋆ ⋆ ⋆ ⋆ ⋆

startActivity5 (3/1) ⋆ ⋆ ⋆ ⋆

startForResult1 (3/1) ⋆ ⋆ ⋆

startForResult2 (3/1) ⋆ ⋆

startForResult3 (3/1) ⋆ ⋆ ⋆

startForResult4 (3/1) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

startService1 (3/1) ⋆ ⋆ ⋆ ⋆ ⋆

startService2 (3/1) ⋆ ⋆ ⋆ ⋆ ⋆

bindService1 (3/1) ⋆ ⋆ ⋆ ⋆ ⋆

bindService2 (3/1) ⋆

bindService3 (3/1) ⋆

bindService4 (3/1) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

sendBroadcast1 (3/1) ⋆ ⋆ ⋆ ⋆ ⋆

insert1 (3/1)
delete1 (3/1)
update1 (3/1)
query1 (3/1)

Inter-App Communication
startActivity1 (4/2) ⋆ ⋆ ⋆ ⋆ ⋆

startService1 (4/2) ⋆ ⋆ ⋆ ⋆ ⋆

sendBroadcast1 (4/2) ⋆ ⋆ ⋆ ⋆ ⋆

Sum, Precision, Recall and F1

⋆ , higher is better 16 13 19
⋆ , lower is better 51 49 1

, lower is better 7 10 4
Precision ⋆/(⋆ + ⋆) 23.9% 21.0% 95.0%
Recall ⋆/(⋆ +) 69.6% 56.5% 82.6%
F1 2 ⋆/(2 ⋆ + ⋆+) 0.36 0.31 0.88

methods that appear in the detected leaks. The most used source method is openConnection
and it is used 601 times in 169 apps. The most used sink types is Log and it is used 2755 times
in 261 apps. The reason why we study sink types instead of sink methods is that there are a lot
of sink methods in a same sink type. Take the Log sink type as an example, there are eight sink
methods which log the private data to disk.

Let us describe in details three leaks, one for each type of leak.

Intra-component leak: bz.prana.myphonelocator. IccTA detects an intra-component
privacy leak starting from the getLongitude source method in method onLocationChanged

Evaluation 97

Table 5.3: The top 5 used source methods and sink types

Method/Type Counts(#.) Detail
Source Methods

openConnection 601 http connection
getLongitude 514 longitude
getLastKnownLocation 448 Location
getDeviceId 403 IMEI or ESN
getCountry 265 country code

Sink Types
Log 2755 error or warn
URL 821 execute
SharedPreferences 717 putInt, putString
Message 339 sendTextMessage
File 9 write(string)

of class .SMSReceiver$MyLocationListener8. The location is sent out of the app through
SMS by the sendTextMessage sink method in method smsReply of class .SMSReceiver.
The app is designed to send the location outside the device through SMS. However, to distinguish
the intention of detected privacy leaks is out of scope of this chapter. We take it as our further
work.

ICC leak: com.dikkar.ifind. An ICC-based privacy leak is detected by IccTA on this
application. In method onLocationChanged of class .iFindPlaces, the getLongitude
source method is called and returns the location of the Android phone. Then, the location is
transferred to another component, .PlaceDetail, where method b of class j is called. In
method b, a sink method Log.d logs the location into disk with ServiceHandler tag name. To
verify the detected leaks, we developed an Android application named LogParser. By giving the
permission android.permission.READ_LOGS 9, LogParser reports all the locations logged
by Find Places.

IAC leak: com.bi.mutabaah.id to jp.benishouga.clipstore. An IAC leak is
reported by IccTA between application com.bi.mutabaah.id and application jp.benishou-
ga.clipstore. The source method findViewById is called in component com.bi.mutaba-
ah.id.activity.Statistic, where the data of a TextView is obtained. Then, the data is
stored into an intent with two extras named extra.SUBJECT and extra.TEXT. After that, the
startActivity ICC method is called to send the data to the jp.benishouga.clipstore
application, which extracts the data from the intent with the same extra names and writes all the
data to a file.

Conclusion. IccTA finds leaks in real-world apps in a reasonable amount of time. Neverthe-
less, IccTA only detects a single IAC leak. This is an indication that inter-application leaks are
rare.

8The package name is omitted when the class name starts with the package name
9Starting from Android 4.1 it is no more granted to regular apps, but it can still be granted to either vendor apps

or apps running on rooted phones.

98 Data Leakage in Android Applications

5.6.3 RQ3: Compare with Other academic Tools

We identify two academic tools able to deal with ICC leaks: SCanDroid [56] and SEFA [136].
However, ScanDroid fails to report any leaks and SEFA is not available. As a result, we were
not able to evaluate them on DroidBench.

To answer the research question, we focus and discuss some key aspects of the various
approaches. SCanDroid and SEFA both use a path matching approach, which computes paths
for all individual components and then combines some paths together, the decision of combining
two paths or not is given by a matching algorithm. A path matching approach presents at least
two main drawbacks.

First, even if the taint analysis is done for each component, the context of the analysis is
lost when SCanDroid and SEFA combine the taint paths, since the analysis is performed before
the combination of the paths. IccTA does not present this problem because it connects the com-
ponents at the code level and then performs the analysis. Thus, it keeps the data-flow between
two components. Losing the context decreases the precision of the tool. Indeed, an Intent can
carry data, i.e., it may contain a lot of extras key/value pairs but only part of them are sensitive.
A precise tool needs to distinguish them to avoid false positive. For a path matching approach,
it is not easy to distinguish them because they do not keep the state of Intent when matching
two available paths.

Second, some specific ICC methods such as startActivityForResult are difficult to
handle with a matching algorithm. It will become even worse when the special ICC meth-
ods exist in a class which is invoked by multiple components. Suppose a component Activ-
ity4 also uses the class ButtonOnClickListener shown in Listing 5.2 to communicate with
other components. We present this scenario in Figure 5.10. A path matching approach would
first find a path from the startActivityForResult ICC method to Activity3. After the
finish method of Activity3 is called, the onActivityResult method of the source com-
ponent is invoked by the Android system. The problem is that it is difficult to know which
component (Activity2 or Activity4) is the source because they both use the same class
ButtonOnClickListener where the Intent is created. In fact, It is very difficult to statically
resolve this problem since it is caused by the mechanism of dynamic binding of Android (or
Java). In our approach, IccTA resolves this problem by explicitly calling the appropriate on-
ActivityResult method (see Figures 5.7 and 5.8) of the source component (Activity2 or
Activity4) thanks to the helper class IpcSC.

Conclusion. Even if we were not able to evaluate state-of-the-art tools detecting ICC leaks
(SCanDroid and SEFA), IccTA seems to be more precise mainly because it keeps the context
between components unlike path matching approaches.

5.7 Limitations

In this section, we discuss the limitations of IccTA.
FlowDroid. IccTA is based on FlowDroid to perform static taint analysis and thereby shares

the same limitations of FlowDroid. IccTA resolves reflective calls only if their arguments are
string constants. It is also oblivious to multi-threading. We experienced that FlowDroid cannot

Conclusion 99

properly analyze some apps (too much memory consumption or hangs). We start by analyzing a
set of 5000 and keep only 3000 apps that work with FlowDroid. Running IccTA on a big server
could significantly decrease the number of falling analysis. Moreover, we are very confident that
the next release of FlowDroid will resolve this problem.

Epicc. IccTA relies on Epicc to compute links between components. Since Epicc does not
handle URIs, it fails to find ICC links for ContentProvider and yields false positives for the
other three types of components when they communicate using URIs. In practice the number of
links is huge due to the false positives. We check the links (intents and intent filters) and only
keep the ones not using URIs.

IccTA. At the moment IccTA does not handle some rarely used ICC methods such as
sendActivities or sendOrderedBroadcastAsUser. Data send between component with
an intent, is represented as key/value pairs. When a tainted data is put in the intent, IccTA taints
all key/value pairs. This could result in false positives if a tainted data is put in an intent and, in
the receiving component, a non-tainted data is retrieved from the intent and flows to a sink.

Native Code. Some Android application are packaged with native code. IccTA only ana-
lyzes the dex file containing the Dalvik bytecode.

5.8 Conclusion

This chapter addresses the major challenge of performing data-flow analysis across multiple
components or multiple applications. We have presented IccTA10, an ICC-based taint analysis
tool able to perform such analysis. In particular, we demonstrate that IccTA can detect ICC-
based privacy leaks by providing a highly precise control-flow graph through instrumentation
of the code of applications. Unlike previous approaches, IccTA enables a data-flow analysis
between two components and adequately models the lifecycle and callback methods to detect
ICC-based privacy leaks. When running IccTA on DroidBench, it reaches a precision of 95.0%.
When running IccTA on three thousands applications randomly selected from the Google Play
store as well other third-party markets, it detects 130 inter-component based privacy leaks in 12
applications.

10Our experimental results and IccTA itself are available at https://sites.google.com/site/icctawebpage.

100 Data Leakage in Android Applications

String
id

=
telM

nger.getD
eviceId();

i.putE
xtra("sensitive",id);

ipcSC
.redirect0(i);

return-site;

A
ctivity2

a2
=

new
A

ctivity2(i);

return-site;

a2.dum
m

yM
ain();

return-site;

this.intent_for_ipc
=

i;

onC
reate(null);

return-site;

return
this.intent_for_ipc;

Intenti=
getIntent();

return-site;

String
s

=
i.getStringE

xtra("sensitive");

sendTextM
essage(s);

norm
aledge

call-to-startedge
call-to-return

edge
exit-to-return

edge

(1)

(2)

(6)
(11)

(12)

(3)

(4)

(7)

(8)

(9)

(10)
(5)

Figure
5.9:T

he
control-flow

graph
ofthe

instrum
ented

m
otivating

exam
ple

Conclusion 101

Activity2

ButtonOnClickListener

startActivityForResult

Activity4

finish

Activity3

Figure 5.10: The problem of using path matching approach for startActivityForResult

Chapter 6

In Vivo: Dynamic Approaches for
Security and Privacy

Analyzing Android applications statically enables to find security issues such as the GPS coor-
dinates leaking out of the device. However, static analyses do not run directly on users’ devices
and thus do not take the device’s context into account. The objective of this chapter is to have
an insight of how dynamic approaches can complement static analyses. We were the first1 to
present a tool-chain to dynamically instrument Android applications in vivo, i.e. directly on the
device. We present two use cases instrumenting applications to show that dynamic approaches
are feasible, that they can leverage results from static analyses, and that they are beneficial for
the user from the point of view of security or privacy. One of the use case is a fine-grained
permission system prototype enabling the user to disable or enable application permissions at
will.

This chapter is based on work published in the following technical report:

• Alexandre Bartel, Jacques Klein, Martin Monperrus, Kevin Allix and Yves Le Traon: Im-
proving Privacy on Android Smartphones Through In-Vivo Bytecode Instrumentation, ISBN
978-2-87971-111-9, 2012.

6.1 Introduction

On the official market of Google (Google Play, formerly AndroidMarket), more than 10 000
new applications are available every month.2 For the end user, downloading an application on
her smartphone is similar to choosing an apple on an apple tree: she only sees the surface and
has no evidence that there is no worm in it. Unfortunately there are many worms of different
kinds waiting to infect smartphones such as malware leaking private data and adware calling
premium-rate numbers.

1Improving Privacy on Android Smartphones Through In-Vivo Bytecode Instrumentation, Tech. Report, ISBN
978-2-87971-111-9, May 22, 2012

2http://www.appbrain.com/stats/number-of-android-apps

104 In Vivo

In this chapter we claim that an efficient and readily applicable means to improve privacy
of Android applications is to perform runtime monitoring and interception of the application
interactions with the Android stack by instrumenting the application bytecode directly on the
smartphone (in vivo). Before further introducing our contribution let us defend our key claim.

Why performing runtime monitoring and interception? We want to allow or disallow be-
haviors of an application at runtime. We use runtime monitoring as it consists of observing
the behavior of an application during execution. It collects certain metrics or intercepts all ex-
changes at the interface between the application and the rest of the system. In this chapter, we
discuss two case-studies involving runtime monitoring and interception, including an implemen-
tation of a fine-grained permission model on top of the Android software stack as proposed in
[123].

Why performing bytecode instrumentation? There are at least two ways to perform runtime
monitoring and interception: modification of the Android software stack or bytecode instrumen-
tation. Modification of the software execution stack consists in altering the operating system
or the core libraries to intercept the required information. On Android, it means changing the
underlying kernel, the Dalvik virtual machine or the Android framework. Unless convincing the
Android consortium, this is rather limited in deployment since normal end-users have neither
the rights (jailed phones) nor the ability to do so. Also, this solution would require users to
change their firmware which is a non-trivial task, further complicated by the so called fragmen-
tation problem of the Android system as there is not a single Android system but many different
Android systems each customized to run on a specific device (tablet, smartphone, . . .). If the
operating system is modified, one would need to create a custom instrumented version for every
possible Android version which is not easily doable in practice. Bytecode instrumentation how-
ever, is one of the lightest way to perform runtime monitoring on top of execution platform that
cannot be modified. In the context of a fine-grained policy enforcement for improving privacy,
we are able – thanks to bytecode instrumentation – to enforce a fine-grained permission model of
already deployed applications on Android smartphones without any modification of the Android
software stack.

Why performing in vivo instrumentation directly on smartphones? Bytecode instrumentation
could be done outside the device for instance using a remote service on the Internet. However,
many countries forbid distributing binaries to third-party services (e.g. France). Also, terms
of service of several markets (e.g. Google Play for Android) do not allow this. Instrumenting
applications directly on the device keeps the application within the device.

To sum up, we believe that the most efficient and practical way for ensuring security and
privacy on mobile devices is to instrument the application bytecode directly on the smartphone
(in vivo), the instrumentation being tailored for a given security or privacy concern. Our main
contributions are that:

• We have built a toolchain to automatically repackage Android applications directly on an
Android device;

• We have built a toolchain to automatically analyze Android applications directly on an
Android device;

• The toolchain has been tested by implementing two prototypes which increase the end-

Motivation for Bytecode Instrumentation 105

user privacy. One removes advertisement and the other gives the user total control over
the applications’ runtime permissions.

• The feasibility of such a tool chain has been evaluated. Limitations and challenges have
been pinpointed.

To the best of our knowledge, we were the first3 to present a tool chain to automatically
transform Android applications directly on a device.

The chapter is organized as follows: Section 6.2 provides the reader with two scenarios mo-
tivating the need of bytecode instrumentation of Android applications. Section 6.3 describes
a tool chain for instrumenting Android applications directly on Android devices (smartphones,
tablets, ...). Section 6.4 presents the design and implementation of valuable bytecode instrumen-
tations for the security and privacy of smartphones. Section 6.5 demonstrates the feasibility of
running the whole tool chain in a reasonable amount of time. Finally, Section 4.8 concludes the
chapter.

6.2 Motivation for Bytecode Instrumentation

There are different scenarios in which it would be beneficial to manipulate and analyze Android
applications’ bytecode directly on smartphone devices (in vivo). In this Section we present two
valuable use cases: AdRemover and BetterPermissions.

Both of them improve the privacy for the user. AdRemover hinders advertisement libraries
to work and thus, at the same time, prevents them from sending private information related to
localization (GPS coordinates,...) or of the device itself such as the IMEI (International Mobile
Equipment Identity). BetterPermissions gives users the power to enable or disable applications’
permissions. In an extreme case where the user would like no application to have access to her
contact list, she would remove the contact permission from all applications on the phone. The
result is a better privacy for the user.

6.2.1 Advertisement Removal

Nearly half of the Android applications embeds third-party code to handle in-app advertisement
[101]. A significant proportion of ad-supported apps include at least two advertising libraries
[120].

Furthermore, Android applications are distributed as self-sufficient packages, bundling to-
gether both specifically developed code and the third-party libraries they may need, such as
binary-only advertisement modules.

Android enforces a per-application policy-based security model: either all parts of an appli-
cation benefit from a given permission, or none of its parts. It means that when a user grants
permissions to an application, she actually grants permissions to components potentially written
by different entities, including the ad libraries.

For example, a newspaper app may be allowed to send its location back to the app publisher
so that she is presented with local news. However, from a privacy perspective the embedded

3we published a technical report in May 2012 [13]

106 In Vivo

advertisement library should not be allowed to send the location data to the ad companies. Cur-
rently, the user faces a dilemma: she either has to reduce her privacy level expectation, or refrain
from using an otherwise valuable application.

A workaround of this limitation of the platform is to disable the use of the ad library in vivo.
This may have positive side-effects, since advertisement libraries also have a significant im-

pact on the battery usage. According to a recent study [100], third-party advertisement modules
can be held responsible for up to 65%-75% of energy spent in free applications .

6.2.2 Fine-Grained Permission Policy

The Android framework relies on a permission-based model and follows an “all or nothing”
policy. At installation time, users must either accept or reject all permissions requested by the
application. An application is installed only if all the requested permissions are accepted. There
is no way to accept only some permissions (such as accessing the localization data) and not
others (such as connecting to the Internet). Users are doomed to completely trust the application
developers who write the list of permission. Enck et al. [48] have pointed out that an application
with several sensitive permissions is a real security threat. For instance if an application requests
the permission to send SMS and a permission to read the contact list, the contact list could
potentially be sent to a remote phone by sending it through SMS.

A fine-grained permission model consists in giving users the ability to specify their own
set of permissions to applications, according to their own usage. All sets of permissions for
all applications on the device constitutes the security policy. The underlying permission-based
system would then enforce this user-defined policy.

Running such user-level security policy is impossible on a unmodified Android platform
with unmodified application code. However, as we show later, it is indeed possible by manipu-
lating the application bytecode at installation time, in vivo.

6.3 Toolchain for In vivo Bytecode Instrumentation

This section presents our proposal for performing bytecode instrumentation of Android applica-
tions in vivo, i.e. directly on smartphones. The reader may refer to Section 2.1 for more detail
on the Android stack and Android applications.

6.3.1 Requirements

Instrumenting and repackaging a fully-runnable Android application is not straightforward. It
consists of extracting the executable code from the application code, analyzing and instrument-
ing it, rebuilding a new working Android application and signing it again, since the OS requires
applications to be signed.

Our toolchain has the following requirements:

1. The Android OS must be unmodified (for the sake of a broad applicability as presented in
Section 6.1);

Toolchain for In vivo Bytecode Instrumentation 107

classes.dex
AndroidManifest

Data

Signatures

(a) Original Apk

Class1.class
Class2.class
Class3.class
. . .

ClassN.class

(b) Jar File

Class1.class∗

Class2.class

Class3.class∗

. . .

ClassN.class

(c) Modified Jar File

Class1∗

Class2

Class3∗

. . .

ClassN

(d) New Dex File

classes.dex∗

AndroidManifest

Data

(e) New Apk File

classes.dex∗

AndroidManifest

Data

Signatures∗

(f) New Signed Apk

dex2jar Soot
ASM

dx

zipkeytool
jarsigner

Figure 6.1: Our Process to Instrument Android Applications

2. The Dalvik virtual machine that runs Android applications must be unmodified, in partic-
ular in terms of configuration values such as the maximum heap size (for the sake of a
broad applicability, see Section 6.1);

3. The hardware that is used to instrument bytecode must be representative of common smart-
phones on the market.

6.3.2 Toolchain

The bytecode instrumentation process features the following steps: 1) Extract code from Android
application apk files; 2) Modify the extracted code with bytecode manipulation tools; 3) Rebuild
a new Android application containing the modified code.

Those three steps can be broken down into five elementary steps, as shown in Figure 6.1: i)
Extracting and converting the Dalvik bytecode into Java bytecode (step a-b), ii) Manipulating
the bytecode (steps b-c), iii) Translating this representation back to Dalvik bytecode (step c-d),
iv) Rebuilding a new apk file (step d-e) and v) Finally signing all files with a new private key
(step e-f). Let us now discuss the tools that are used in each step.

i) Extracting the Dalvik Bytecode The first step, as shown in Fig. 6.1.(a-b), is to extract
the classes.dex file from the apk file and convert it to Java bytecode classes which can be
analyzed with standard unmodified Java bytecode analysis toolkits. For this step, we use the
tool dex2jar4.

ii) Instrumenting the Bytecode In this step, we experiment with two different tools which
manipulate bytecode. Recall that bytecode manipulation is the step from (b) to (c) at illustrated
in Figure 6.1. Using different tools gives us the opportunity to measure the difference in terms

4available at http://code.google.com/p/dex2jar/

http://code.google.com/p/dex2jar/

108 In Vivo

of execution time and memory consumption between them and decide which one is more appro-
priate to manipulate bytecode in a memory constrained system.

ii.a) Soot. Classes are transformed to Jimple with the Soot analysis toolkit. Soot [75] is an
open-source analysis toolkit for Java programs. It operates either on Java source code or byte-
code. It allows developers to analyze and transform programs. For instance, an intra-procedural
flow analysis could determine if a variable can be null at some point in the code. Soot can also
perform different call graph analyzes, useful for specific bytecode instrumentation. Most analy-
ses and transformations in Soot use an internal representation called Jimple. Jimple is a simple
stack-less representation of Java bytecode. We ported Soot on the Android system by convert-
ing its Java bytecode to Dalvik and creating a wrapper Android application. To our knowledge
there is no previous work which represent Android bytecode as an abstraction on which on could
perform static analysis directly on the smartphone.

ii.b) ASM. We experienced that Soot is sometimes slow and requires a lot of resources (espe-
cially memory). Thus, we also run ASM for bytecode instrumentation. ASM [25] is a Java byte-
code engineering library. One of its characteristics is that it is lightweight hence more suitable
for running on systems constrained in term of memory or processing resource. It is primarily
designed to manipulate and transform bytecode although it can also be used to perform some
program analysis. It features a core API to perform simple transformations as well as a tree API
to perform more complex bytecode transformations (which requires more CPU processing and
memory space).

iii) Translating the Modified Bytecode back to Dalvik Bytecode Once the classes are ana-
lyzed and modified by the analysis toolkit, they are transformed back into Dalvik bytecode using
dx5 which generates the classes.dex file from Java class files. This step is illustrated in Fig.
6.1 as the edge c-d.

iv) Rebuilding Application As presented in Fig. 6.1.(d-e), after the fourth step, a new Andoid
application is built. The newly generated classes.dex, the data and the Android manifest
from the original application are all inserted in a new zip6 file.

v) Signing the Modified Application Android requires applications to be cryptographically
signed. Hence, all files of the generated zip file are signed using a newly created couple of
public/private keys (not represented on the figure), The new public key is added to the zip (not
represented on the figure). We used the keytool and jarsigner Java programs to sign appli-
cations (Fig. 6.1.(e-f)).

Signing applications with new keys may cause compatibility problems between applications.
For instance two or more applications signed with the same key can share the same process. In
order for this feature to continue working a one-to-one mapping between old keys and new ones
needs to be maintained in order to sign two transformed applications (originally signed with the
same keys) with the same new generated keys. Maintaining this mapping and handling such
compatibility between applications is out of scope of this chapter.

5using com.android.dx.command.Main from the Android SDK
6using the java.util.zip library

Use-case Design and Implementation 109

We have devised a bytecode manipulation process on Android using standard tools. The
following presents the design and implementation of two concrete bytecode instrumentation
prototypes.

6.4 Use-case Design and Implementation

Any use-case leveraging the toolchain presented in Section 6.3 analyzes or modifies the bytecode
of an application. Analyzing or modifying the bytecode is represented by step (b-c) in Figure
6.1. We now present how we have implemented and evaluated the two use-cases of Section 6.2.
Thy both modify the bytecode of applications. AdRemover modifies the bytecode to remove
advertisement. BetterPermissions modifies the bytecode to enable a fine-grained permission
policy system for the user.

6.4.1 Implementation of AdRemover

We focus on two widely used Android advertisement modules: AdMob and AdSense. Adver-
tisement is not part of the Android system but is present in the application’s bytecode. Thus,
applications do not share ad library code. However, they each have a copy of the library code.
Disabling advertisement requires to instrument every application containing an ad library.

Advertisement requires I/O operations for fetching the ad data. An Android application de-
veloper using an ad library do not want her app to crash because of the ad library. This is the
reason why developers of ad libraries take special care of exceptions when designing the ad li-
brary. They expect I/O operations to fail on a regular basis, depending on unpredictable contexts.
For example, an exception can be thrown if the device has no network coverage anymore.

Building on this observation, we make the assumption that I/O code has been placed by
ad developers inside a Try/Catch block to recover for exceptions raised by I/O failures. Our
tool leverages this assumption and inhibits every Try/Catch section of the ad packages of the
application. For every Try/Catch block it encounters, our tool extracts the type of the handled I/O
exception, creates such an exception object, and inserts an instruction that throws this exception
at the very beginning of the try block.

For this, we collected the Java package names used by these libraries and we configured
AdRemover to operate only on classes that are part of those packages. We wrote two implemen-
tations of AdRemover: One using Soot and one using ASM.

6.4.2 BetterPermissions: A Fine-grained Permission Policy Management

In this context a fine-grained policy is a file in which the user specifies which permissions are
granted to applications. In the real world users are only familiar with permissions and applica-
tions, so it makes perfect sense to limit policies at the level of applications and not a lower level
(such as Android component or Java methods). However, for explanatory purposes the policies
in this Section contain a mapping between Java methods and permissions.

For a user-centric policy to exist, we need to instrument the bytecode of every application
one wishes to control. Recall from Section 2.1 that Android applications communicate to the

110 In Vivo

Android system through the Android API. The instrumentation detects all API calls protected
by one or more permissions and redirected every of those calls to a policy service. The policy
service is a Android service component part of independent Android application. Base on the
user defined policy it authorizes or not the application to call the protected method.

When the instrumented application runs, the user-defined policy is enforced by the policy
service. Indeed, for every instrumented method, the running instrumented application calls the
policy service and the policy is checked. If the policy allows the original API method call, the
API call is performed. Otherwise, a fake implementation is executed and returns a fake default
value.

Our prototype tool enforces a user-defined policy at the user level (also called application
level). It allows users who previously could not modify the system policy to enforce their own
policy for a set of applications. Modifying code to insert security check is known as Inline
Reference Monitoring (IRM) and has been first introduced by Erlingsson et al. and Evans et al.
[50, 51, 52].

Instrumenting the Application To control or limit an application’s permission it’s bytecode
has to be instrumented. This is illustrated in Figure 6.2 where application NewsReader is
represented as a graph of method calls starting from node s. All method calls that require one or
more permissions [bartel2012automatically, 53] are wrapped with code which in order:

1. asks the policy service if the application is authorized to call the method

2. according to the answer from the policy service either invokes the original method or the
fake method.

For instance, the getLocation(p1) method invocation of node 7 (which requires permis-
sion GPS) has been wrapped in the figure by a call to the policy service. If the policy approves
this call, the original getLocation(p1) is executed, otherwise a fake method is invoked, re-
turning a fake default value.

In total, there are N instrumentations where N is the number of API calls under considera-
tion present in the application bytecode.

Defining the Policy The next step, as shown in Figure 6.3, is to define the policy regarding the
instrumented applications. The user defines a set of allowed permissions for each application.
Behind the scene, the policy generates a list of all Java methods which require the enabled
permissions. Those methods are set as authorized. In Figure 6.3, only method getLocation()
is allowed for application Instrumented NewsReader.

Note that this step could be performed first to instrument only method calls which are not
authorized by the policy. However, instrumenting every API method calls which requires one or
more permissions makes it possible to change the policy at runtime.

Policy Service Finally, when the instrumented application runs, the policy is enforced by the
Policy service as shown in Figure 6.4. For every instrumented method (here the original/instru-
mented method is getLocation and its associated permission GPS) the running application

Use-case Design and Implementation 111

s

2 3 4

5

6 7 8

r = obj.getLocation(p1);

s

2 3 4

5

6 7 8

if (policyAccepts(getLocation))
r = obj.getLocation(p1);

else
r = stub.getLocation(p1);

step1

NewsReader Instrumented NewsReader

Figure 6.2:]
Step 1: Wrapping and Redirection of Android API Calls For Fine-Grained Permission

Management

Instrumented NewsReader {
getLocation();

}

Policy file

Figure 6.3: Step 2: The Policy File Defines that InstrumentedNewsReader is Allowed to Use
API Method getLocation

calls policyAccepts() (step A) and the policy is checked by calling policyHas() (step B).
Method policyAccepts() returns true if the policy allows the original method or false if it
does not. If the original method is allowed in the policy, the original method is called (this is the
case in Figure 6.4, since step C returns true). Otherwise, the stub method corresponding to the
original method is executed. Here, the stub handling method getLocation is not executed. We
implemented the policy service as an Android service and the instrumentation code as a plugin
for the static analysis tool Soot.

6.4.3 Evaluation

We now check whether our use-case implementations work. For both of them, we run the instru-
mentation against a real-world application and runs the resulting modified application.

112 In Vivo

s

2 3 4

5

6 7 8

if (policyAccepts(getLocation);)
r = obj.getLocation(p1);

else
r = stub.getLocation(p1);

policyAccepts(Method m)
if (policyHas(m))
return True;

else
return False;

code stub 1

code stub 2

. . .

code stub N

Instrumented
NewsReader {

getLocation();
}

Policy file

Instrumented NewsReader Policy service

A

B
C

Figure 6.4: Step 3: The Policy Monitor Enforces the Fine-Grained Permissions by Returning
Default Values for Unauthorized API Calls

AdRemover We test that our tool is functional by selecting a random application on the An-
droid Market. We make sure that the test application uses one of the two advertisement modules
currently handled by AdRemover.

First we run the unmodified test application on an Android devices, and make sure that it is
a working application, and that it actually displays advertisements.

We then send this application to our toolchain (with the Soot implementation) running on a
PC. The modified application is still functional, and no more advertisements are displayed. We
monitor the network connection during the test and found out that it the application does not
send any ad request anymore.

Finally, we process the unmodified application again, this time running the bytecode manip-
ulation directly on the smartphone. Running the modified application yielded the same results
as with the application modified on a standard PC.

BetterPermissions For evaluating the fine-grain policy, we select another random application
and instrument it to wrap every permission sensitive API call related to the GPS. The application
is instrumented and then repackaged into a new signed application. We run the instrumented
application on an Android device, and test it with different policies. The user-defined policy is
enforced as expected.

To sum up, the two bytecode transformations result in applications that correctly runs. Those
first results are important as the two use cases illustrate what can be achieved using the bytecode
instrumentation toolchain. What also matters for us is to know whether the toolchain under
consideration can be run in vivo on a large dataset of Android applications given the memory
and CPU limitations of current smartphones. The next section answers to this questions by
measuring execution time and memory consumption of in vivo instrumentation.

Performance of In Vivo Instrumentation 113

Name Processor Memory Android Heap Size
smartphone1 ARM 800MHz, 1 core 512MiB 2.2 24MiB
smarthpone2 ARM 1.2GHz, 2 cores 768MiB 2.3.4 32MiB
tablet1 ARM 1.4GHz, 4 cores 1GiB 4.0.3 48MiB

Table 6.1: The Hardware used in our Experiment

6.5 Performance of In Vivo Instrumentation

In this section we present the results of applying the instrumentation process presented in Section
6.3 and summarized in Fig. 6.1. The goal is to know: 1) whether it is possible to manipulate
bytecode on smartphones given the restricted resources of the hardware. 2) whether it takes a
reasonable amount of time.

6.5.1 Measures

We measure the execution time of the five steps of the instrumentation process on a set of 130
Android applications. This set is described in Section 6.5.3. We run the instrumentation process
on three different Android smartphones whose configurations are presented in Section 6.5.2.

The feasibility of the whole process is measured by the time to pass every step of the
toolchain (1: dex2jar, 2: Soot/ASM , 3: dx, 4: customZip, 5: signature). The time to
run each step and the number of applications that successfully go through each step are mea-
sured as well.

For the second step of the process (Step: Instrumenting the bytecode), we evaluate both
ASM and Soot. For ASM , we measure the time required to instrument Java bytecode on the
AdRemover case study. The AdRemover transformation leverages the ASM tree API to perform
the try/catch block manipulation described in 6.4.1. Soot is evaluated by measuring the time
required to generate Java classes for both AdRemover and BetterPermissions case studies (Ad-
Remover is implemented with ASM and Soot).

6.5.2 Experimental Material

We conduct the experiment on three Android-based smartphone devices. Their configuration is
detailed in Table 6.1. The main differences are the processor clock speed (0.8, 1.2 and 1.4 GHz),
the total amount of main memory (512, 768 and 1024 MiB), the Android version (2.2, 2.3.4 and
4.0.3) and the maximum heap size of the Dalvik virtual machine (24, 32 and 48). Since the heap
size controls the maximum memory that can be allocated by a single process it also controls the
maximum number of objects that can be allocated simultaneously.

The number of cores also differs. However, we do not take advantage of multiple cores
during the experiments. This hardware complies with requirement #3 mentioned in 6.3.1.

114 In Vivo

2

2.2

2.4

2.6

2.8

3

3.2

3.4

(a) degree Avg

0

200

400

600

800

1000

1200

1400

1600

(b) dex Size (KiB)

0

200

400

600

800

1000

1200

(c) Classes Number

0

10

20

30

40

50

60

70

80

90

100

(d) API Calls

Figure 6.5: Descriptive Statistics of the 130 Applications of our Dataset

6.5.3 Dataset

We apply the whole experimental protocol on a set of 130 Android applications randomly se-
lected among the top 500 applications from the Android market7. They span various domains
such as finance, games, communications, multimedia, system or news. This dataset is not artifi-
cial as it only consists of real world applications.

To give a better overview on these applications, Figure 6.5 shows the key application metrics
as boxplots. They indicate that most (75%) of Android applications have less than 614 KiB of
Dalvik bytecode, less than 602 classes, an average method degree smaller than 3. Haft of the
applications have more than 30 calls to a method of the Android API which require a permission.

6.5.4 Dalvik to Java Bytecode Conversion

The conversion time from the Dalvik executable code to Java bytecode using dex2jar is shown
in Fig. 6.6.

Observation 1 The time to convert dex files to jar does not exceed 60 seconds on smartphone2
and tablet1 for 75% of the applications. The conversion time does not exceed 250 seconds on
our dataset of Android applications.

Observation 2 The application with the biggest Dalvik bytecode file (4000 KiB) is successfully
converted both on smartphone2 and on tablet1.

Observation 3 We notice that the conversion time is linear with the size of the dex file (of the
form a · X + b) for a Dalvik bytecode size less than 4000 KiB. Using linear regression, we
find that for smartphone2 a equals 0.069 and b equals 0.3. For tablet1 we have, 0.049 and -0.4.
The linear relation between the conversion time and the size of the Dalvik bytecode enables us
to theoretically predict the necessary amount of time to convert any size of Dalvik bytecode (if
we extrapolate for size bigger than 4000 KiB). For instance, the time to process the Android

7http://play.google.com

http://play.google.com

Performance of In Vivo Instrumentation 115

0

50

100

150

200

250

300

0 500 10001500200025003000350040004500

C
on

ve
rs

io
n

tim
e

(s
)

Dalvik bytecode size (KiB)

Time to convert Dalvik bytecode to Java bytecode using dex2jar

smartphone2
tablet1

sm2 linear approximation
tablet1 linear approximation

Figure 6.6: Performance of In Vivo Dalvik to Java Bytecode Conversion.

application with 10 MiB of Dalvik bytecode would be 700 seconds for smartphone2 and 500
seconds for tablet1.

Conclusion 1 Converting Dalvik bytecode to Java bytecode in vivo is feasible within minutes.
Limitations: smartphone1 is unable to process any dex file. Also, when using smartphone2

and tablet1, 26 and 11 dex files, respectively, cause the conversion Android application dex2jar
to crash. This crash is either an OutOfMemory or a StackOverflow exception.

Result of smartphone1 is explained by the hard-coded maximum heap size of Android (32
MiB or 48 MiB). For the two other devices, crashes are to be attributed to the default 8 KiB
stack size. In total, 104 (80%) Android applications were successfully converted to a jar file on
smartphone2 and 119 (91%) on tablet1.

However, since Android devices become more and more powerful the default heap size of
the Android system grows. Indeed, in Android 2.2 the heap size is 24 MiB, in Android 2.3.4 32
MiB and in Android 3.0 48 MiB. This continued growth would allow our tool chain to convert
Android applications which have bigger Dalvik bytecode size.

Also, some applications may be obfuscated to prevent Dex2jar to convert Dalvik bytecode
to Java classes. We did not encounter any obfuscation during the experiment. Our toolchain
relies on independent components. Thus, if Dex2jar cannot handle some obfuscation techniques
it could easily be replaced by an equivalent component which handles them.

6.5.5 Performance of Bytecode Manipulation

This section presents our performance measures of in vivo bytecode manipulation using two
different instrumentation libraries: ASM and Soot.

116 In Vivo

0

100

200

300

400

500

600

0 500 10001500200025003000350040004500

C
on

ve
rs

io
n

tim
e

(s
)

Dalvik bytecode size (KiB)

Time to convert Dalvik bytecode to Java bytecode using dex2jar

smartphone2
tablet1

sm2 linear approximation
tablet1 linear approximation

Figure 6.7: Transformation Time of In Vivo Java Bytecode Manipulation with ASM

Manipulation With ASM

Transformation time of Java bytecode using ASM is represented in Figure 6.7. In this experiment
the AdRemover transformation described in 6.2.1 is implemented using ASM.

Observation 4 All 104 applications successfully transformed with dex2jar on smartphone2 are
successfully processed by ASM in vivo. It processes every jar (up to 4MiB in size) in less than
600 seconds.

Observation 5 We notice that the transformation time is linear with the size of the jar files (of
the form a ·X + b) for a Dalvik bytecode size less than 4000 KiB. Using linear regression, we
find that for smartphone2 a equals 0.146. For tablet1 we have, 0.025.

Conclusion 2 Manipulating bytecode on smartphones using ASM is feasible. Given our trans-
formation and our dataset, ASM does not have specific memory or CPU requirements that are
incompatible with smartphone resources.

Manipulation With Soot

We now consider the Soot implementation of the AdRemover transformation. Out of the 130 An-
droid applications, only 3/130 are correctly processed on smartphone2 and 19/130 are correctly
processed on tablet1.

Observation 6 Only the smallest applications (in terms of Dalvik bytecode) can be converted.
For instance, it takes less than 30 seconds to convert any jar which size is less or equal to 20
KiB on smartphone2. However, larger, yet small applications (in the 25% quartile), take up to
18 minutes for being instrumented with Soot.

Performance of In Vivo Instrumentation 117

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60C
or

re
ct

ly
Pr

oc
es

se
d

A
pp

lic
at

io
ns

Java Heap Size (MiB)

Heap Size Influence on the Number of Correctly Processed Applications

Figure 6.8: Influence of the Heap Size on Jimple Transformation

Conclusion 3 Using Soot in vivo is feasible only for the smallest applications. We assume that
the heap size is the main blocking factor of using Soot in vivo. To check this assumption, we
conducted an experiment on a desktop computer consisting of analyzing our dataset of Android
applications with different maximal heap sizes (from 5 Mib to 50 Mib by steps of 5 Mib).
Results are presented Fig. 6.8. Soot was able to process 67 applications with a heap size of
50 Mib. Those results clearly indicate that maximum half of the Android applications could
be processed with a heap size of 50 MiB. Under the assumption that the heap usage (hence the
maximum required size) is similar on the Java and Dalvik virtual machines, it means that the
memory is actually the main blocking factor of using Soot on Android.

6.5.6 Java Bytecode to Dalvik Conversion

Once an application has been instrumented at the Java bytecode level, it has to be transformed
back into Dalvik bytecode. Conversion time from Java classes to the dex file using the dx tool is
shown in Fig. 6.9.

Observation 7 Java bytecode of 33/130 on smartphone2 and and 39/130 applications on tablet1,
respectively, have been successfully converted to Dalvik bytecode.

Observation 8 Conversion time for jar files ranging from 20 to 400 KiB does not exceed 80
seconds.

Conclusion 4 The Dx tool is a bottleneck of the tool chain. It can only correctly process 25 to
30% of the applications. The reason is that it puts every Java class in memory and suffers from
the memory limitation of in vivo processing, similarly to Soot. This tool is used off the shelf
and could be optimized to run on devices where resources are limited, by processing class after
class to limit memory consumption. .

118 In Vivo

0
10
20
30
40
50
60
70
80
90

0 50 100 150 200 250 300 350 400 450

C
on

ve
rs

io
n

tim
e

(s
)

Java jar size (KiB)

Time to convert Java jar classes using dx

smartphone1
tablet1

Figure 6.9: Conversion Time of In Vivo Java Bytecode to Dalvik Translation.

6.5.7 Creating a New apk File

The time taken to create an apk file from the instrumented Dalvik bytecode is shown in Fig.
6.10. Note that for this step, the input set is not the output of the previous step. We only have
39/130 applications that have been correctly processed in the previous steps. At every step, some
applications failed. For the remaining 91/130 applications where the final instrumented Dalvik
bytecode could not be computed, we take as input the original Dalvik dex file of the application.
In this way, the problems of the previous step do not interfere with the results of this fourth step.

Observation 9 121/130 inputs were successfully processed. There is no clear relation between
the size of the previous apk file and the creation time of the new apk. Only 9/130 applications
generate an exception because their size is too big and can thus not be processed by the zip
utility.

Observation 10 For 95% of the applications it takes less than five seconds regardless of the
device and of the size of the original apk file.

Conclusion 5 It is feasible to create apk files on smartphones. The time to create a new apk file
is negligible compared to the time to convert bytecode or to manipulate bytecode with Soot.

There is no linear relation with the Dalvik size as it is the case in Fig. 6.6 and 6.9. This
is probably due to the fact that when generating apk files, others factors than the bytecode size
come into play, such as handling the media files (images, sound, etc.), which sometimes domi-
nate the Dalvik bytecode size.

6.5.8 Signing the Generated apk File

Signing time of applications is represented in Figure 6.11.

Performance of In Vivo Instrumentation 119

0

5

10

15

20

25

0 5000 10000 15000 20000 25000

C
re

at
io

n
tim

e
(s

)

Previous apk size (KiB)

Time to create new .apk

smartphone1
tablet1

Figure 6.10: In Vivo Creation Time of a New apk File

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000

Si
gn

in
g

tim
e

(s
)

Previous apk size (KiB)

Time to sign new .apk

smartphone1
tablet1

Figure 6.11: Performance of In Vivo Signature of the Instrumented Apk File

120 In Vivo

Observation 11 120/130 Android applications were successfully signed on tablet1. There is no
clear relation between the size of the apk file and the signature time of the apk file. 14/130
applications generate an exception because their size is too big and can thus not be processed
(14 on smartphone2 and 10 on tablet1).

Observation 12 For 95% of the applications a maximum of 12 seconds is required to sign the
application regardless of the device and the size of the apk file.

Conclusion 6 It is feasible to sign apk files on smartphones. Similarly to the apk file creation
step, the computation time is negligible. The difference observed between smartphone1 and
smartphone2 reflects the difference in their CPU clock frequencies.

6.5.9 Conclusion

We now recapitulate the results of our experiments of in vivo modification of Android applica-
tions.

Feasibility

Table 6.3 summarizes all the experiments for smartphone2 and highlights the feasibility of the
whole approach.

Total execution times for all steps of the toolchain are computed for the Soot and ASM ver-
sion. For an ASM-based instrumentation it takes a median time of 120 seconds, that is 2 minutes,
to process an application. We think that users would agree with waiting 2 minutes before start-
ing using an application, if they are provided more guarantees with this instrumentation process
enabling better privacy. During those 2 minutes the phone is still usable since only once core
is used (most smartphones feature multi-core CPUs) and only the maximum amount of heap
memory allowed by the virtual machine can be used (and not all memory).

Those experiments show that it is feasible to manipulate bytecode directly on Android de-
vices. The most expensive steps of the process are the conversion of Dalvik to Java bytecode
and vice versa, and the Soot bytecode manipulation step.

hopsasa

How to Improve Performance of In Vivo Instrumentation?

According to our analysis, the main blocking factor is the memory. The maximum heap size
required to analyze and transform applications is an issue for many transformation steps. We
think that this issue can easily be solved by 1) the next generation of more powerful hardware
and 2) the upcoming versions of the Android OS and virtual machines which will likely have a
significantly higher maximum heap size (e.g. Android 4 heap size is set to 48 MiB).

Dalvik to Java conversion and Java to Dalvik conversion are two very time expensive steps.
They use unmodified versions of Dex2jar and dx. There are two ways to overcome those
resource-hungry tools.

First, those tools were never optimized to run on platforms with limited resources. We be-
lieve that there are many optimization opportunities in terms of CPU and memory consumption.

Performance of In Vivo Instrumentation 121

Step Name Min.
Time
(s)

Avg.
Time
(s)

Median
Time
(s)

Max.
Time
(s)

App. Feasibility

Conversion .dex to
.jar (a-b)

0.22 43.76 28.9 250.2 104/130 (80%) ⋆⋆⋆

Analyzing .jar with
Soot(b-c)

25.8 76 26 187.7 3/130 (2.3%)

Analyzing .jar with
ASM(b-c)

1.55 90.45 65.1 594.67 129/130 (99.2%) ⋆⋆⋆⋆

Conversion class to
dex (c-d)

0.09 28.07 22.8 71 39/130 (30%) ⋆⋆

Creating new .apk
(d-e)

0.06 1.89 0.87 15.1 119/130 (91.5%) ⋆⋆⋆⋆

Signing new .apk
(e-f)

0.71 3.85 3.0 21.67 116/130 (89.2%) ⋆⋆⋆⋆

All Steps with Soot
(a-b-c-d-e-f)

26.88 153.57 81.57 545.67 3/130 (2.3%) ⋆

All Steps with
ASM (a-b-c-d-e-f)

2.63 168.02 120.67 952.64 39/130 (30%) ⋆⋆⋆

Table 6.2: Summary Metrics of Our In Vivo Instrumentation Process for Smartphone2. There
are problematic steps but the overall process is feasible.

Step Name Min.
Time
(s)

Avg.
Time
(s)

Median
Time
(s)

Max.
Time
(s)

App. Feasibility

Conversion .dex to
.jar (a-b)

0.19 25.6 17.85 158.9 119/130 (91.5%) ⋆⋆⋆

Analyzing .jar with
Soot(b-c)

24.2 76 352 1054 19/130 (14.6%) ⋆

Analyzing .jar with
ASM(b-c)

1.55 11.3 7.06 65.5 119/130 (91.5%) ⋆⋆⋆⋆

Conversion class to
dex (c-d)

0.09 29.5 20.2 80.2 33/130 (25.3%) ⋆⋆

Creating new .apk
(d-e)

0.03 1.6 0.5 20.9 121/130 (93.1%) ⋆⋆⋆⋆

Signing new .apk
(e-f)

0.4 3.4 1.91 27.3 120/130 (92.3%) ⋆⋆⋆⋆

All Steps with Soot
(a-b-c-d-e-f)

24.91 136.1 392.46 1341.3 19/130 (14.6%) ⋆

All Steps with
ASM (a-b-c-d-e-f)

2.26 71.4 47.52 352.8 33/130 (25.3%) ⋆⋆⋆

Table 6.3: Summary Metrics of Our In Vivo Instrumentation Process for Tablet1

122 In Vivo

Second, one could replace those tools by better alternatives. For instance, an ASM-like li-
brary for manipulating Dalvik bytecode would allow to skip Dalvik-to-Java and Java-to-Dalvik
conversion. Such tools are emerging such as ASMdex8. Another solution would consist of per-
forming bi-directional transformations directly from Dalvik bytecode to Jimple bytecode which
are both register based. We are indeed working on a Dalvik to Jimple translation prototype called
Dexpler [12].

To sum up, our results show that we can reasonably imagine to manipulate the bytecode on
100% of our dataset applications within at most 5 minutes.

Threats to Validity

Let us now discuss the threats to validity of our experimental results.

Implementation Bug: Our results hold as far as there is no serious bug in the implementation of
any of the five programs involved in the five steps, as well as in the glue and measurement
code we wrote.

Dataset Generalizability: Our dataset may not be representative of the Android applications
used in the real-world.

Linear Extrapolation: The linear relations we establish for the Dalvik to Java and the Java to
Dalvik conversions holds for bytecode size less or equal to 300 KiB. It may not hold for
bytecode whose size is bigger. In the presence of non-linear singularities, it may not be
possible to analyze large applications.

Bytecode Manipulation Time: Our results on the bytecode manipulation time were obtained
with relatively simple transformations. It may be the case that complex transformations
are not of the same order of magnitude and consume much more memory. However, for
the use cases presented in Section 6.2, the instrumentation only consists in monitoring and
proxying Java methods.

6.6 Conclusion

The toolchain we propose and evaluate in this chapter is a milestone that respond to the recent
claim of Stravou et al. [123] about the urgent need for bytecode analysis to perform in vivo
security checks on mobile phones. We have 1) proposed a tool chain allowing the manipulation,
instrumentation and analysis of Android bytecode and 2) shown that it is possible to run the
tool chain in a reasonable amount of time directly on unmodified smartphones with unmodified
Android software stack. Concretely, our experiment shows that with ASM, 39 (30%) applica-
tions of our dataset can be instrumented in less than 952 seconds (with a median time of 120s).
Moreover, we discuss specific limitations that we observed, such as the hard-coded heap size of
Android systems.

We believe that those various limitations could be quickly overcome, at least for two main
reasons. First, we used off-the-shelf Java tools that are not optimized to run on environments

8See http://asm.ow2.org/asmdex-index.html

http://asm.ow2.org/asmdex-index.html

Conclusion 123

where resources (memory/CPU) are limited, and there may be possibilities of significant op-
timization. Second, the hardware and OS evolution of smartphones will make it possible to
process ever bigger Android applications (for instance, on Android 4, the default size of the
heap is twice as large as in the previous version).

We are currently working on other use cases. In particular, we are implementing a behavioral
malware detection approach that is set up and run on the smartphone. This approach involves
instrumenting the bytecode to redirect API method calls to stubs responsible for detecting mali-
cious behavior.

Chapter 7

Related Work

In the last four years, there has been a steep increase in research about the Android stack and
its applications. This could be explained by the fact that the Android stack is popular, open-
source, which eases analysis and modification of the system, and that millions of applications
are available to analyze.

The rest of this chapter is organized as follows. Section 7.1 describes research related to
Dalvik bytecode parsing and typing. Section 7.2 focuses on alternative techniques to extract
the permission map from the Android system. Section 7.3 summarizes the techniques used
to analyze inter-component and inter-application communications as well as techniques to find
leaks in Android applications. Finally, Section 7.4 describes research related to instrumentation
of Android applications directly on a device.

7.1 Local Typing for Dalvik

In practice the Java source code or Java bytecode of an Android application is not available,
only the Dalvik bytecode is. The Java language appeared in 1995 and since them tools have
been developed to analyze Java source code and bytecode. This is the reason why there has
been an interest in tools to convert Dalvik bytecode back to Java bytecode so that existing tools
could be used to analyze Android applications. In Section 7.1.1, we discuss tools to convert
Dalvik bytecode to Java bytecode and in Section 7.1.2, we discuss tools that disassemble and/or
assemble Dalvik bytecode using an intermediate representation.

7.1.1 Dalvik to Java Bytecode Converter

Ded [47] and Dare [91] are Dalvik bytecode to Java bytecode converters. Once the Java bytecode
is generated, Soot is used to optimize the code. Dex2jar [99] also generates Java bytecode from
Dalvik bytecode but does not use any external tool to optimize the resulting Java bytecode.
Undx [115] was also a Dalvik to Java bytecode converter but seems to be unavailable.

Our approach, on the other hand, does not directly generate Java bytecode but Jimple code.
To our knowledge no existing tool directly converts Dalvik bytecode to Jimple code. From the
Jimple code, and since the Jimple code is Soot’s internal representation of code, we can generate

126 Related Work

Java bytecode as well. Analyzing an Android application with our approach requires only one
step (i.e., Dalvik bytecode to Jimple) and not two steps as for all the existing approaches (i.e.,
Dalvik bytecode to Java bytecode and Java bytecode to Jimple).

7.1.2 Dalvik Assembler/Disassembler

Radare [96], Dedexer [95], Smali [62] are Dalvik disassemblers. They use their own representa-
tion of the Dalvik bytecode: they cannot leverage existing analysis tools. For instance, Dedexer
generates a format close to Jasmin but containing Dalvik instructions which hinders Java byte-
code generation. Our tool uses Soot’s internal representation which allows existing tools to
analyze/transform the Dalvik bytecode.

Androguard [40] is a Dalvik bytecode analyzer. It features a disassembler and modules to
analyze the Dalvik bytecode. Redexer [104] and AsmDex [90] are Dalvik bytecode instrumen-
tation frameworks. They enable to instrument Android applications at the bytecode level.

None of those approaches can perform advanced static analyses such as data-flow analysis.
On the other hand, our approach converts Dalvik bytecode to Jimple, the internal representation
of Soot. Existing tools performing data-flow analysis on Jimple code can leverage our tool to
analyze Android applications.

7.2 Permission Map Extraction

7.2.1 On the Java Permission Model

While the Android permission model is different from the one implemented in Java, the follow-
ing pieces of research present related and relevant points to put our contribution in perspective.

Koved et al. described a new static analysis [74] to generate a permission list for a Java2
program (in the Java permission model). An improved methodology was presented by Geay et
al. [58]. We also use static analysis but in the context of Android which differs from a Java
environment especially with respect to the binder mechanism linking Android API to services.
As shown in our evaluation, the binder prevents off-the-shelf Java static analysis tools to resolve
remote call to a service.

Pistoia et al. [103] presented a static analysis to identify portions of the code which should
be made privileged. This issue does not arise in the Android framework since code is not priv-
ileged per se, the access control is instead done at entry points. This means that the Android
framework designers must be careful of creating unique entry points protected by permission
enforcement points, but does not impact our static analysis.

Role-based access control (RBAC) mechanisms are analyzed using static analysis by Cen-
tonze et al. [28]. When a protected operation manipulates data, this data should not be directly
or indirectly accessible by a path not defined in the policy. If not, the operation is said to be
location-inconsistent. The tool they developed can check whether or not an RBAC policy for
JavaEE programs is location consistent or present some flaws. The Android system defines per-
missions which protect operation which in turn manipulate protected data. Our goal consists

Permission Map Extraction 127

of computing permission gaps which may reveal a violation of the principle of least privilege.
Whether Android protected operations are location consistent is out of scope of our approach.

Also related to role-based access control, Pistoia et al. [102] formally model RBAC and
statically check the consistency of a JavaEE-based RBAC system. We check that permission
lists of Android applications respect the principle of least privilege. The concepts are the same
(Android permissions could be approximated to roles, and we check which roles are needed at
every point of the Android framework) but the target systems are not. Interestingly, we use a
similar approach for solving the Binder problem as they do for solving the remote method invo-
cation problem: instead of statically analyzing the Binder/RMI code which would not resolve
the method, a mapping is computed from the call to a remote method to the remote method itself.
A major difference though is that in the case of Android system services and context must be
initialized beforehand to simulate a correct system state.

7.2.2 On the Android Permission Model

The Android security model has been described as much in the gray literature [49, 118] as in
the official documentation [128]. Different kinds of issues have been studied such as social en-
gineering attacks [66], collusion attacks [86], privacy leaks [59] and privilege escalation attacks
[55, 36]. In contrast, our approach does not describe a particular weakness but rather a software
engineering approach to reduce potential vulnerabilities.

However, we are not describing a new security model for Android as done by [89, 93, 42,
31, 26]. For instance, Quire [42] maintains at runtime the call chain and data provenance of
requests to prevent certain kinds of attacks. In our work, we do not modify the existing Android
security model and we devise an approach to mitigate its intrinsic problems.

Also, different authors empirically explored the usage of the Android model. For instance,
Barrera et al. [11] presented an empirical study on how permissions are used. In particular, they
used visualizing techniques such as self-organizing maps to identify patterns of permissions de-
pending on the application domain and patterns of permission grouping. Other empirical studies
include Felt’s one [54] on the effectiveness of the permission model, and Roesner’s one [109]
on how users react to permission-based systems. While our approach also contains an empirical
part, it is also operational because we devise an operational software engineering approach to
tame permission-based security models in general and Android’s one in particular.

Enck et al [48] presented an approach to detect dangerous permissions and malicious permis-
sion groups. They devised a language to express rules which are expressed by security experts.
Rules that do not hold at installation time indicate a potential security problem hence a high
attack surface. Our goal is different: we don’t aim at identifying risks identified from experts,
but to identify the gap between the application’s permission specification and the actual usage
of platform resources and services. Contrary to [48], our approach is fully automated and does
not involve an expert in the process.

128 Related Work

PScout [6] is a static analysis designed in parallel as ours. It also uses Soot but only relies
on CHA and do not use Spark. Our works compares and validates part of their results in Section
4.6.2.

Finally, Felt et al. [53] concurrently worked on the same topic as us. They published a
very first version of the map between developer’s resources (e.g., API calls) and permissions.
Interestingly, we took two completely different approaches to identify the map: while they use
testing, we use static analysis. As a result, our work validates most of their results although we
found several discrepancies that we discussed in details in Section 4.6.3. But the key difference
is that our approach is fully automated while theirs requires manually providing testing “seeds”
(such as input values). However, in the presence of reflection, their approach works better if the
tests are appropriate. Hence, we consider that both approaches are complementary, both at the
conceptual level for permission-based architectures, and concretely for reverse-engineering and
documenting Android permissions.

Mustafa et al. [88] worked on the analysis of system services. Their approach is to extract a
sub-call graph using a context-sensitive backward slicing method starting from permission check
methods. Their analysis is more precise since they capture conditions under which permissions
are checked. However, they only consider independent system services and do not handle RPC.
We, on the other hand, start the analysis from the Android API entry points and handle services
RPC links.

7.3 Data Leak in Android Applications

As far as we know, our tool called IccTA is the first approach to seamlessly connect Android
components through code instrumentation in order to perform Inter-Component Communica-
tion (ICC) based static taint analysis. By using a code instrumentation technique, the state of the
context and data (e.g. an Intent) is transferred between components. To the best of our knowl-
edge, there is no other existing static approach to detect Android privacy leaks tackling the ICC
problem and keeping state between components.

7.3.1 Static Analyses

There are several approaches using static analysis to detect privacy leaks. PiOS [44] uses pro-
gram slicing and reachability analysis to detect the possible privacy leaks. TAJ [130] uses the
same taint analysis technique to identify privacy leaks in web applications. However, these ap-
proaches introduce a lot of false positives. CHEX [84] is a tool to detect component hijacking
vulnerabilities in Android applications by tracking taints between sensitive sources and exter-
nally accessible interfaces. However, it is limited to at most 1-object-sensitivity which leads
to imprecision in practice. LeakMiner and AndroidLeaks state the ability to handle the An-
droid Lifecycle including callback methods, but the two tools are not context-sensitive which
precludes the precise analysis of many practical scenarios. FlowDroid [5] introduces a highly
precise taint analysis approach with low false positive rate, but it does not identify ICC-based
privacy leaks. IccTA performs an ICC-based static taint analysis by instrumenting the code of
the original app while keeping the precision high.

In Vivo Instrumentation of Bytecode 129

ComDroid [30] and Epicc [92] are two tools that tackle ICC problem, but they mainly focus
on ICC vulnerabilities and do not taint data.

SCanDroid [56] is a tool for analyzing ICC-based privacy leaks. It prunes all call edges
to Android OS methods and conservatively assumes the base object, the parameters and the
return value to inherit taints from arguments. This approach is much less precise than our tool
since we model all the Android OS methods (except native methods) with our dummy main
method in the control-flow graph. Another tool SEFA [136] also resolves the ICC problem.
It performs a system-wide data-flow analysis to detect possible vulnerabilities (e.g., passive
content leaks). Both SCanDroid and SEFA use a matching approach to analyze inter-component
leaks. SCanDroid defines all the methods importing data to an app as inflow methods and all
the methods exporting data from an app as outflow methods. Then, it matches the inflow and
the outflow methods to connect two components. SEFA defines ICC methods as bridge-sinks
to distinguish with the sensitive-sinks. It uses the bridge-sinks to match with other components
and thereby connecting two components. As we mentioned before, the matching approach has
some drawbacks compared to our instrumenting approach. Therefore, even if we were not able
to evaluate SCanDroid and SEFA on DroidBench, it comes that IccTA is more precise by design.

AsDroid [69] and AppIntent [140] are another two tools using static analysis to detect pri-
vacy leaks in Android apps. Both of them try to analyze the intention of privacy leaks. Analyzing
the leaking intention is out of scope of our approach. However, we think it is necessary to distin-
guish whether a privacy leak is intended or not. We take this as our further work.

7.3.2 Dynamic Analyses

Dynamic taint analyses techniques, on the other hand, track sensitive data at runtime. Taint-
Droid [45] is one of the most sophisticated dynamic taint tracking systems. It tracks flows of
private data of third-party apps. CopperDroid [105] is another dynamic testing tool which ob-
serves interactions between the Android components and the Linux system to reconstruct high-
level behavior and uses some special stimulation techniques to exercise the app to find malicious
activities. Several other systems, including AppFence [67], Aurasium [138], AppGuard [8] and
BetterPermission [13] try to mitigate the privacy leak problem by dynamically monitoring the
tested apps.

However, those dynamic approaches can be fooled by special designed methods to circum-
vent security tracking [114]. Thus, dynamic tracking approaches may miss some data leaks
and yield an under-approximation. On the other hand, static analysis approaches may yield an
over-approximation because all the application’s code is analyzed even code that will never be
executed at runtime. Both approaches are complementary when analyzing Android applications
for data leaks.

7.4 In Vivo Instrumentation of Bytecode

7.4.1 Monitoring Applications

Monitoring smartphone applications at runtime is an idea which recently emerged, due to the
explosion of “mobile” malware and the increasing sophistication of mobile OS.

130 Related Work

Bose et al. [23] aimed at detecting malware based on their behavior at runtime. For this,
they added hooks in the Symbian OS emulator to track OS and API calls. In other words,
malware detection is only achieved in the emulator, in vitro. On the contrary, we aim for malware
detection in live user environments, in vivo and showed that is it is feasible in the mid-term.

Enck et al. [46] presented a runtime monitoring framework called TaintDroid, which allows
taint tracking and analysis to track privacy leaks in Android. Their prototype is based on a
modified version of the Dalvik virtual machine which runs Android applications. Similarly,
Costa et al. [34] extends the Java virtual machine for mobile devices (Java ME) for adding
runtime monitoring capabilities. On the contrary, our feasibility study indicates that it is possible
to achieve runtime monitoring in an unmodified Android system.

Recently, Burgera et al. [27] presented an approach to detect malware based on collected
operating system calls. Runtime monitoring can be done at different granularity levels. While
the approach described by Burgera et al. is at the OS call level, we aim at providing runtime
monitoring at the API call level, i.e. much more fine-grained and closer to the application domain
of mobile applications.

Davis et al. [37] presented an Android Application rewriting framework prototype, and dis-
cussed its use for monitoring an application, and for implementing fine-grained Access Control.

Finally, Shabtai et al. detects malware based on the collection and analysis of various system
metrics, such as CPU usage, number of packets sent through the Wi-Fi, etc. This is an indirect
way of detecting malware behavior. Again, by monitoring API calls, we observe the applica-
tion behavior directly. The empirical results presented in this thesis shows that this is actually
possible.

7.4.2 Advertisement Permissions Separation

Shekhar et al. [120] proposed a new Android advertisement system that would allow to have an
application and its advertisement module to run in different processes, and hence have a different
permission set. This new system has to be manually inserted into the application during the
development phase, since no automated application modification is provided.

Pearce et al. [101] made the case for an advertisement framework that would be integrated
inside the Android platform. Every developer would be able to use the custom-built API that
would be available on Android devices. This approach requires a modification of the Android
framework, and that a given user has a device with a Android version embeding this advertise-
ment system.

7.4.3 Permission Policy

Erlingsson et al. and Evans et al. [50, 51, 52] were the first to manipulate bytecode to weave
a security policy directly in Java programs. Their Inline Reference Monitor (IRM) technique
allows (1) to completely separate the program development from the policy definition and (2)
to have a policy mechanism independent of the Java Virtual Machine on which the program is
running. We also weave the security policy directly in Android applications, obtaining robust
Android applications whose security policy is independent of the Android system on which they
are running.

In Vivo Instrumentation of Bytecode 131

Closest to our work are two Dalvik bytecode manipulation systems: I-Arm Droid [38] and
Mr. Hide [72]. The main difference is that our approach runs in vivo whereas theirs do not.

In vivo bytecode manipulation is also achieved by AppGuard [7, 9]. However, the approach
is based on dexlib a bytecode manipulation library which does not offer an abstract represen-
tation like Jimple with Soot. Thus, more advanced reasoning on the bytecode (on graphs for
instance) is difficult with their approach.

Redirecting methods of interest to a monitor is the basic of IRM. Von Styp-Rekowsky et
al. present a novel approach by modifying the equivalent of Dalvik function pointers at runtime
[125]. Such an approach reduces the overhead and could easily be adopted by our fine-grained
permission system.

Xu et al. present Aurasium [137], another permission management system. It does operate
at the level of C libraries and redirect low level functions of interest to the monitor. Operating
at this low level makes it difficult to inject fake values and to differentiate between normal and
Java-level security relevant operations.

Reddy et al. [104] claim that security of the Android platform would be improved by creating
"application-centric permissions", i.e. permissions expressing what an application can do rather
than current Android permissions that express what resource an application can use. They wrote
a library that allows the so-called "application-centric permissions" to be managed. In addition,
they started developing a tool called "redexer" whose aim is to automatically rewrite existing
applications in order for them to use these new permissions.

Nauman et al. [89] extended the Android policy-based security model so that it can enforce
constraints at runtime. The tool they created, called Apex, allows a user to express limits im-
posed to an application’s use of any permission: For example, it becomes possible with Apex
to grant the SEND_SMS permission to any given application while ensuring that this application
will not be able to send more than a user-defined amount a text message each day. The user
also has the possibility to change her mind, and to totally prevent the application from sending
short messages. This is an important improvement over the stock Android OS because it allows
users to specify a much finer-grained policy, instead of having to choose between either granting
an application every permission it may request at installation time or not installing this applica-
tion. However, this approach requires modifications deep inside the Android framework, and
hence would need to be supported by Google and integrated into future versions of Android to
be widely used.

Usually a permission protects access to a raw resource such as raw pictures taken from the
camera. The approach presented by Jana et al. [71] allows to have an even finer-grained policy
by filtering the raw data before it reaches an application. Suppose you install an application rec-
ognizing faces from picture taken by the camera. With the classical permission-based system,
the application would be given the CAMERA permission. With their approach, the application
could be given only a new FACE_RECOGNITION fine-grained permission. The raw data from the
camera would then be filtered to only keep information about faces and not about the context
where the picture was taken. Since the application has only information about faces, it cannot re-
trieve privacy-sensitive context information anymore (e.g., name of streets on walls, text written
on black boards).

132 Related Work

The work described in this document is unique and the thesis a significant contribution. We
have improved the state-of-the art in the following areas: (1) Dalvik bytecode analysis with
Dexpler, a tool to fully type Dalvik bytecode through the Jimple representation, (2) Permission-
based analysis with a generic methodology to analyze permission-based framework and extract
permissions. as well as a generic methodology to analyze permission-based applications and
find permission gaps. (4) Data leak analysis for Android with IccTA and (5) Dynamic analysis
with in vivo instrumentation of Android applications through two use cases.

Chapter 8

Conclusions and Future Work

This chapter is organized as follows. Section 8.1 summarizes the contributions of this PhD
thesis. Section 8.2 describes potential directions for future work.

8.1 Conclusions

In this work we have analyzed the Android permission-based system and its applications from
the security point of view. Android applications have a different structure and encoding com-
pared to traditional Java applications. New tools and abstraction techniques are required to
correctly analyze Android applications.

We presented Dexpler, a tool to convert Dalvik bytecode to Jimple which is the internal
representation of Soot. Dexpler has been evaluated on more than 25 thousand apps containing
135 millions of methods and finds a correct typing for 99.99% of the methods.

Second, we analyzed the Android system itself to extract a mapping between API methods
and permissions. Our tool models Android specificities such as system services communication
and service identity inversion. It extracts a permission matrix with 4962 entry points linked to
permissions. We analyzed how developers write the permission list for Android application. We
presented a tool to statically analyze Android application to check for non-required permission.
We found that over 18% of applications declare at least one useless permission.

Third, we analyzed Android applications to find data leaks. We presented IccTA, a tool to
find data leaks between components of Android applications and between Android applications.
IccTA outperforms existing tools performing taint-analysis of Android applications by reaching
a precision of 95% and a recall of 82%.

Finally, we examined how dynamic analysis can be use in conjunction with results from
static analysis. We presented a toolchain to automatically transform Android applications in
vivo, i.e. directly on a device running Android. We used the toolchain in two prototypes. The
first one allows the user to choose a fine-grained permission policy and relies on the permis-
sion mapping obtained by statically analyzing the Android system. The second one removes
advertisements from applications.

134 Conclusions and Future Work

8.2 Future Work and Open Research Questions

This section describes potential future research directions.

8.2.1 Framework Analysis

Extracting a Generic Model of Permission Checks

It could be worth exploring how to express permission enforcement as a cross cutting concern, in
order to automatically add or remove permission enforcement points at the level of application
or the framework, according to a security specification. Such work would answer the following
questions: Are permission checks always inserted in the code the same way? Is it possible to
bypass a permission check? How can a permission-based system be validated?

Improving Precision

We are now working on a modular approach that would be able to analyze native code and byte-
code in concert and to combine the permission information from both. The precision of the
results are limited by the precision of the call graph construction and by the type of Android
components that are handled. Moreover, improving the precision could also improve the scala-
bility of the approach since a more precise call graph could contain less edges and thus require
less computation to extract permission information.

Empirical Evaluation Revisited

Also, since our methodology is generic we could apply it to other permission-based systems
such as FirefoxOS or Google Chrome.

8.2.2 The Future of Static Analysis for Android Applications

Can we Still Automate Application Analysis?

We only use static analysis to analyze Android applications. However, there are ways to hinder
static analysis such code obfuscation, intensive use of reflection to hide method calls, encryption
of the bytecode, encryption of strings, execution of the code in a virtual machine, etc. During
our analyses we would miss leaks in such applications. Taking a step back, we see that those
techniques only slow down the process of statically analyzing Android applications. They force
us to perform the analysis in two steps: (1) run the application to find out what method values
and string values are and (2) run the static analysis again with information extracted in step
one. It remains to be seen to what extent the first step can be automated. The reader may think
that only malware applications use this kind of techniques to hide their malicious code, so it
would be easy to detect malware in a group of applications. However, some authors of benign
applications do not wish to make their code understandable and also use obfuscation techniques.
As obfuscation techniques become more and more common, static analysis alone is not enough.
New tools must be developed to dynamically analyze applications is conjunction to statically
analyzing applications.

Future Work and Open Research Questions 135

New Obfuscation Techniques

A good place to start is to have a look at the limitations of all tools analyzing Android applica-
tions. For instance, tools computing links between components may fail if strings used to create
Intent objects are constructed using complex operations (e.g., concatenation, flow through mul-
tiple methods). Tools statically analyzing Android application may not work properly if deep
access-path are often used in the application. Finally, those tools work at the bytecode level
and do not analyze native code: transforming the bytecode to native code would make them
useless. Like for a hash function that is easy to compute but very expensive to reverse, are there
limitations that are easy to exploit for an attacker but very hard and expensive to analyze?

Leak Categorization

Our approach to find leaks in Android applications has the following limitation: it gives no
information about the leaks it founds. Indeed, it does not tell whether a leak is a feature of the
application (e.g., the application is for instance supposed to send the list of contact to your own
remote server) or whether it is malicious (e.g., a malware is sending the list of your contact
on remote server somewhere on the Internet). One way of resolving this problem would be to
analyze the textual description of application and match it with leaks given by our approach.
An Android application would then only be flagged if a leak does not match the description.
Recently, there has been interest in approaches mining the description of applications [60, 97,
63].

Market of Safe Applications

Instead of mining applications’ descriptions, developer could provide a list of expected behavior
for every application. This list could then be checked dynamically when running the application
(and the app be stopped if its behavior is inconsistent) or statically when analyzing the code.
Furthermore, to simplify the analysis reflection methods, class loading and native code should be
limited or banned from applications. Existing approaches extract specification from the official
documentation or textual information coming with programs [127, 68, 98]. Furthermore, instead
of asking developer to write the list of specifications, automatic techniques could be developed.

Scalable Analysis for a Market of Applications

Our approach to find leaks works on small sets of applications. An open research question
is to find a scalable approach to analyze a market of thousands of applications. A possible
direction would be to consider the analysis of the market as a two-step process. In the first
step, every application would be analyzed individually and an abstraction of the application
computed. The abstraction would depend on the kind of problem that one wants to solve (e.g.,
inter-application leak). In the second step, abstractions are combined to solve the problem. The
following challenges would have to be resolved: How to precisely connect applications? How
to handle data-flows in abstractions when communication is possible is both directions? There
has been little work for Android in this topic [20].

136 Conclusions and Future Work

In this dissertation, we have (1) presented Dexpler which allows the analysis and instrumen-
tation of Android applications, (2) analyzed the Android framework to extract the permission
map and we have leveraged the permission map to find permission gaps in Android applications,
(3) developed IccTA to detect leaks in Android applications, and (4) shown that results of static
analysis can be useful for dynamic analysis. In brief, in this thesis we have laid the foundations
for analysis of the Android framework, Android applications and more generally any permission-
based framework or application. Those analyses are the first step to understand permission-based
systems and their applications. They pave the way for the creation of permission-based system
secure by design in which security issues would be reduced to a minimum.

Bibliography

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: principles techniques and
tools. Massachussets, 1988.

[2] Lars Ole Andersen. “Program analysis and specialization for the C programming lan-
guage”. PhD thesis. University of Cophenhagen, 1994.

[3] Android (operating system). Url: http://en.wikipedia.org/wiki/Android_
(operating_system). February Last accessed: 2014.

[4] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Susi: A tool for the fully automated
classification and categorization of android sources and sinks. 2013.

[5] Steven Arzt, Siegfried Rasthofer, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. “FlowDroid: Precise Context, Flow,
Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps”. In: Pro-
ceedings of the 35th annual ACM SIGPLAN conference on Programming Language De-
sign and Implementation (PLDI 2014). 2014.

[6] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. “PScout: analyzing
the Android permission specification”. In: Proceedings of the 2012 ACM conference on
Computer and communications security. 2012, pp. 217–228.

[7] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp Styp-
Rekowsky. “Appguard-real-time policy enforcement for third-party applications”. In:
(2012).

[8] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von
Styp-Rekowsky. “AppGuard: enforcing user requirements on android apps”. In: Proceed-
ings of the 19th international conference on Tools and Algorithms for the Construction
and Analysis of Systems. TACAS’13. Rome, Italy: Springer-Verlag, 2013, pp. 543–548.

[9] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von
Styp-Rekowsky. “AppGuardEnforcing User Requirements on Android Apps”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 2013, pp. 543–
548.

[10] David F Bacon and Peter F Sweeney. “Fast static analysis of C++ virtual function calls”.
In: ACM Sigplan Notices 31.10 (1996), pp. 324–341.

http://en. wikipedia.org/wiki/Android_(operating_system)
http://en. wikipedia.org/wiki/Android_(operating_system)

138 Bibliography

[11] David Barrera, Hilmi Günes Kayacik, Paul C. van Oorschot, and Anil Somayaji. “A
methodology for empirical analysis of permission-based security models and its applica-
tion to android”. In: ACM Conference on Computer and Communications Security (CCS
2010). Chicago, Illinois, USA, October 4-8, 2010, pp. 73–84.

[12] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. “Dexpler: con-
verting android dalvik bytecode to jimple for static analysis with soot”. In: Proceedings
of the ACM SIGPLAN International Workshop on State of the Art in Java Program anal-
ysis. 2012, pp. 27–38.

[13] Alexandre Bartel, Jacques Klein, Martin Monperrus, Kevin Allix, and Yves Le Traon.
Improving privacy on android smartphones through in-vivo bytecode instrumentation.
Tech. rep. http://hal.archives-ouvertes.fr/docs/00/70/03/19/PDF/
article.pdf. may 2012.

[14] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon. “Dexpler: Con-
verting Android Dalvik Bytecode to Jimple for Static Analysis with Soot”. In: ACM Sig-
plan International Workshop on the State Of The Art in Java Program Analysis. Beijing,
China, June 2012.

[15] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves Le Traon. “Automatically
Securing Permission-Based Software by Reducing the Attack Surface: An Application
to Android”. In: Proceedings of the 27th IEEE/ACM International Conference On Auto-
mated Software Engineering. Essen, Germany, September 2012.

[16] D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: Mathematical foun-
dations. Tech. rep. 1973.

[17] Ben Bellamy, Pavel Avgustinov, Oege de Moor, and Damien Sereni. “Efficient local
type inference”. In: OOPSLA. Ed. by Gail E. Harris. Proceedings of the 23rd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA. ACM,
2008, pp. 475–492.

[18] Ben Bellamy, Pavel Avgustinov, Oege de Moor, and Damien Sereni. “Efficient local
type inference”. In: ACM Sigplan Notices. Vol. 43. 10. 2008, pp. 475–492.

[19] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource Identifiers
(URI): Generic Syntax. August 1998.

[20] Amar Shirish Bhosale. “Precise Static Analysis of Taint Flow for Android Application
Sets”. PhD thesis. Carnegie Mellon University, 2014.

[21] Kenneth J. Biba. Integrity considerations for secure computer systems. Tech. rep. 1977.

[22] Eric Bodden. “Inter-procedural data-flow analysis with IFDS/IDE and Soot”. In: Pro-
ceedings of the ACM SIGPLAN International Workshop on State of the Art in Java Pro-
gram analysis. SOAP’12. 2012, pp. 3–8.

[23] Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon Park. “Behavioral detection of mal-
ware on mobile handsets”. In: MobiSys. 2008, pp. 225–238.

http://hal.archives-ouvertes.fr/docs/00/70/03/19/PDF/article.pdf
http://hal.archives-ouvertes.fr/docs/00/70/03/19/PDF/article.pdf

Bibliography 139

[24] Jurriaan Bremer. Abusing Dalvik Beyond Recognition. Url: http://archive.hack.
lu/2013/AbusingDalvikBeyondRecognition.pdf, Last accessed: May 5, 2014.
2013.

[25] Eric Bruneton. ASM 3.0, a Java bytecode engineering library. Url: http://download.
forge.objectweb.org/asm/asm-guide.pdf. 2007.

[26] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-Reza
Sadeghi. XManDroid: A New Android Evolution to Mitigate Privilege Escalation At-
tacks. Tech. rep. TR-2011-04. Apr 2011.

[27] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. “Crowdroid: behavior-based
malware detection system for Android”. In: Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices. SPSM’11. Chicago, Illinois,
USA: ACM, 2011, pp. 15–26.

[28] Paolina Centonze, Gleb Naumovich, Stephen J. Fink, and Marco Pistoia. “Role-Based
access control consistency validation”. In: ISSTA 2006, pp. 121–132.

[29] Patrick P. F. Chan, Lucas C. K. Hui, and S. M. Yiu. “DroidChecker: analyzing android
applications for capability leak”. In: Proceedings of the fifth ACM conference on Security
and Privacy in Wireless and Mobile Networks. WISEC’12. Tucson, AZ, USA: ACM,
apr 2012, pp. 125–136.

[30] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. “Analyzing inter-
application communication in Android”. In: Proceedings of the 9th international confer-
ence on Mobile systems, applications, and services. MobiSys’11. Bethesda, Maryland,
USA: ACM, 2011, pp. 239–252.

[31] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. “CRePE: context-related pol-
icy enforcement for android”. In: Proceedings of the 13th International Conference on
Information security. 2011.

[32] Fernando J. Corbató. The Compatible Time-Sharing System: A Programmer’s Guide.
The MIT Press, 1963.

[33] Fernando J. Corbató and Victor A. Vyssotsky. “Introduction and overview of the Multics
system”. In: Proceedings of the November 30December 1, 1965, fall joint computer
conference, part I. 1965, pp. 185–196.

[34] Gabriele Costa, Fabio Martinelli, Paolo Mori, Christian Schaefer, and . Thomas Walter
R. “Runtime monitoring for next generation Java ME platform”. Anglais. In: Computers
& Security / Computers and Security 29.1 (2010), pp. 74–87.

[35] M. Dahm. “Byte Code Engineering”. In: Proceedings of Java-Informations-Tage (JIT’
99). Düsseldorf, Deutchland, sep 1999, pp. 267–277.

[36] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. “Priv-
ilege escalation attacks on android”. In: Information Security. Springer, 2011, pp. 346–
360.

http://archive.hack.lu/2013/AbusingDalvikBeyondRecognition.pdf
http://archive.hack.lu/2013/AbusingDalvikBeyondRecognition.pdf
http://download.forge.objectweb.org/asm/asm-guide.pdf
http://download.forge.objectweb.org/asm/asm-guide.pdf

140 Bibliography

[37] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. “I-ARM-Droid:
A Rewriting Framework for In-App Reference Monitors for Android Applications”. In:
IEEE Mobile Security Technologies (MoST). San Francisco, CA, 2012.

[38] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. “I-arm-droid: A
rewriting framework for in-app reference monitors for android applications”. In: IEEE
Mobile Security Technologies (MoST), San Francisco, CA (2012).

[39] Jeffrey Dean, David Grove, and Craig Chambers. “Optimization of object-oriented pro-
grams using static class hierarchy analysis”. In: ECOOP’95—Object-Oriented Pro-
gramming, 9th European Conference, Åarhus, Denmark, August 7–11, 1995. Springer.
1995, pp. 77–101.

[40] Anthony Desnos. Androguard. Url: https://code.google.com/p/androguard/,
Last accessed 2011.

[41] Anthony Desnos and Geoffroy Gueguen. “Android: From reversing to decompilation”.
In: Proc. of Black Hat Abu Dhabi (2011).

[42] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach. “Quire:
Lightweight Provenance for Smart Phone Operating Systems”. In: 20th USENIX Secu-
rity Symposium. aug 2011.

[43] DroidBenchBenchmarks. http://sseblog.ec- spride.de/tools/droidbench/. Feb. 2014.

[44] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. “PiOS: Detect-
ing Privacy Leaks in iOS Applications.” In: The Network and Distributed System Secu-
rity Symposium (NDSS 2011). 2011.

[45] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol Sheth. “TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones.” In: OSDI. Vol. 10. 2010, pp. 255–270.

[46] William Enck, Peter Gilbert, Byung-gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. “TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones”. In: Proc. of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 2010.

[47] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. “A study of
android application security”. In: Proc. USENIX Security’11. San Francisco, CA, 2011,
pp. 21–21.

[48] William Enck, Machigar Ongtang, and Patrick McDaniel. “On lightweight mobile phone
application certification”. In: Proceedings of the 16th ACM CCS. New York, NY, USA,
2009, pp. 235–245.

[49] William Enck, Machigar Ongtang, and Patrick McDaniel. “Understanding Android Se-
curity”. In: IEEE Security and Privacy (2009).

[50] Ulfar Erlingsson. The inlined reference monitor approach to security policy enforcement.
Tech. rep. 2003.

https://code.google.com/p/androguard/

Bibliography 141

[51] Ulfar Erlingsson and F. B. Schneider. “IRM Enforcement of Java Stack Inspection”. In:
(2000), pp. 246–255.

[52] David Evans and Andrew Twyman. “Flexible Policy-Directed Code Safety”. In: Pro-
ceedings of the IEEE Symposium on Security and Privacy. 1999, pp. 32–45.

[53] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. “An-
droid permissions demystified”. In: ACM CCS 2011.

[54] Adrienne Porter Felt, Kate Greenwood, and David Wagner. “The effectiveness of appli-
cation permissions”. In: Proceedings of the 2nd USENIX conference on Web application
development. WebApps’11. Portland, OR: USENIX Association, 2011, pp. 7–7.

[55] Adrienne Porter Felt, Helen Wang, Alex Moshchuk, Steven Hanna, and Erika Chin.
“Permission Re-Delegation: Attacks and Defenses”. In: Proceedings of the 20th USENIX
Security Symposium. 2011.

[56] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. “SCanDroid: Automated security
certification of Android applications”. In: Manuscript, Univ. of Maryland, http://www.
cs. umd. edu/ avik/projects/scandroidascaa (2009).

[57] Aleksandar Gargenta. Deep Dive Into Android Security. San Francisco, USA, 11 2011.

[58] Emmanuel Geay, Marco Pistoia, Takaaki Tateishi, Barbara G. Ryder, and Julian Dolby.
“Modular string-sensitive permission analysis with demand-driven precision”. In: ICSE.
IEEE, 2009, pp. 177–187.

[59] Clint Gibler, Jonathan Crussel, Jeremy Erickson, and Hao Chen. AndroidLeaks Detect-
ing Privacy Leaks in Android Applications. Tech. rep. 2011.

[60] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. “Checking app
behavior against app descriptions.” In: ICSE. 2014, pp. 1025–1035.

[61] James Gosling. The Java language specification. Addison-Wesley Professional, 2000.

[62] Ben Gruver. Smali: An assembler/disassembler for Android’s dex format. Last ac-
cessed: March 20, 2012.

[63] Mark Harman, Yue Jia, and Yuanyuan Zhang. “App store mining and analysis: MSR for
app stores”. In: Mining Software Repositories (MSR), 2012 9th IEEE Working Confer-
ence on. IEEE. 2012, pp. 108–111.

[64] Rebecca Hasti and Susan Horwitz. “Using static single assignment form to improve
flow-insensitive pointer analysis”. In: ACM SIGPLAN Notices. Vol. 33. 5. ACM. 1998,
pp. 97–105.

[65] Nevin Heintze and Olivier Tardieu. “Demand-driven pointer analysis”. In: ACM SIG-
PLAN Notices. Vol. 36. 5. ACM. 2001, pp. 24–34.

[66] Stefanie Hoffman. “Zeus Banking Trojan Variant Attacks Android Smartphones”. In:
CRN (2011). http://goo.gl/xAEGr.

142 Bibliography

[67] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall.
“These aren’t the droids you’re looking for: retrofitting android to protect data from
imperious applications”. In: Proceedings of the 18th ACM conference on Computer and
communications security. 2011, pp. 639–652.

[68] Einar W Høst and Bjarte M Østvold. “Debugging method names”. In: ECOOP 2009–
Object-Oriented Programming. Springer, 2009, pp. 294–317.

[69] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. “AsDroid: Detect-
ing Stealthy Behaviors in Android Applications by User Interface and Program Behavior
Contradiction”. In: Proceedings of the IEEE/ACM International Conference on Software
Engineering (ICSE). may 2014.

[70] IBM. The T.J. Watson Libraries for Analysis (Wala). Last accessed: March 20, 2012.

[71] Suman Jana, David Molnar, Alexander Moshchuk, Alan M Dunn, Benjamin Livshits,
Helen J Wang, and Eyal Ofek. “Enabling Fine-Grained Permissions for Augmented Re-
ality Applications with Recognizers.” In: USENIX Security. Citeseer. 2013, pp. 415–
430.

[72] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Nikhilesh Reddy, Yixin Zhu,
Jeffrey S. Foster, and Todd Millstein. “Dr. Android and Mr. Hide: Fine-grained security
policies on unmodified Android”. In: (2011).

[73] A. T. Kearney. European Mobile Industry Observatory 2011. 2011.

[74] Larry Koved, Marco Pistoia, and Aaron Kershenbaum. “Access Rights Analysis for
Java”. In: ACM SIGPLAN Notices 37.11 (nov 2002), pp. 359–372.

[75] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. “The Soot framework
for Java program analysis: a retrospective”. In: Cetus Users and Compiler Infastructure
Workshop (CETUS 2011). 2011.

[76] Patrick Lam, Eric Bodden, Ondej Lhoták, and Laurie Hendren. “The Soot framework
for Java program analysis: a retrospective”. In: Cetus Users and Compiler Infastructure
Workshop (CETUS 2011). oct 2011.

[77] William Landi. “Undecidability of static analysis”. In: ACM Letters on Programming
Languages and Systems (LOPLAS) 1.4 (1992), pp. 323–337.

[78] Estimation lemma. Android Inc. - Wikipedia, The Free Encyclopedia. [Online; accessed
03-March-2014]. 2014.

[79] Estimation lemma. HTC Dream - Wikipedia, The Free Encyclopedia. [Online; accessed
03-March-2014]. 2014.

[80] Ondrej Lhoták. “Spark: A flexible points-to analysis framework for Java”. In: (2002).

[81] Ondej Lhoták and Laurie Hendren. “Scaling Java Points-to Analysis Using Spark”. In:
12th International Conference on Compiler Construction. 2003.

[82] Ondej Lhoták and Laurie Hendren. “Scaling Java Points-to Analysis Using Spark”. En-
glish. In: Compiler Construction. Ed. by Gorel Hedin. Vol. 2622. Springer Berlin Hei-
delberg, 2003. Chap. LNCS, pp. 153–169.

Bibliography 143

[83] Donglin Liang, Maikel Pennings, and Mary Jean Harrold. “Extending and evaluating
flow-insenstitive and context-insensitive points-to analyses for Java”. In: Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering. ACM. 2001, pp. 73–79.

[84] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. “CHEX: statically
vetting Android apps for component hijacking vulnerabilities”. In: Proceedings of the
2012 ACM conference on Computer and communications security. CCS’12. Raleigh,
North Carolina, USA: ACM, 2012, pp. 229–240.

[85] P. K. Manadhata and J. M. Wing. “An Attack Surface Metric”. In: IEEE Transactions
on Software Engineering 37.3 (may 2011), pp. 371–386.

[86] Claudio Marforio, Aurélien Francillon, and Srdjan Capkun. Application Collusion At-
tack on the Permission-Based Security Model and its Implications for Modern Smart-
phone Systems. Tech. rep. 724. April 2011.

[87] Sharir Micha and Pnueli Amir. “Two approaches to interprocedural data flow analysis”.
In: Program flow analysis: Theory and applications (1981), pp. 189–234.

[88] Tanveer Mustafa and Karsten Sohr. Understanding the Implemented Access Control Pol-
icy of Android System Services with Slicing and Extended Static Checking. Tech. rep.
2012.

[89] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. “Apex: extending Android per-
mission model and enforcement with user-defined runtime constraints”. In: Proceedings
of the 5th ACM Symposium on Information, Computer and Communications Security.
2010.

[90] Julien Nevo. ASMDEX 1.0, a Dalvik bytecode engineering library. Url: http://asm.
ow2.org/asmdex-index.html. 2012.

[91] Damien Octeau, Somesh Jha, and Patrick McDaniel. “Retargeting Android applications
to Java bytecode”. In: Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering. 2012, p. 6.

[92] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques
Klein, and Yves Le Traon. “Effective inter-component communication mapping in an-
droid with epicc: An essential step towards holistic security analysis”. In: Proceedings
of the 22nd USENIX Security Symposium. 2013.

[93] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDanie. “Seman-
tically Rich Application-Centric Security in Android”. In: Journal of Security and Com-
munication Networks (2011).

[94] Gabor Paller. Dalvik opcodes. http : / / pallergabor . uw . hu / androidblog /
dalvik_opcodes.html, Last accessed: March 20, 2012.

[95] Gabor Paller. Dedexer. Url: http://dedexer.sourceforge.net/. Last accessed:
March 20, 2012.

[96] Pancake. “Radare, the reverse engineering framework”. In: Phrack magazine 66 (2009).

http://asm.ow2.org/asmdex-index.html
http://asm.ow2.org/asmdex-index.html
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
http://dedexer.sourceforge.net/

144 Bibliography

[97] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. “WHYPER: To-
wards Automating Risk Assessment of Mobile Applications.” In: USENIX Security.
Vol. 13. 2013.

[98] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit Paradkar.
“Inferring method specifications from natural language API descriptions”. In: Proceed-
ings of the 2012 International Conference on Software Engineering. IEEE Press. 2012,
pp. 815–825.

[99] Panxiaobo. Dex2Jar: Tools to work with android .dex and java .class files. Last accessed:
March 20, 2012.

[100] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. “Where is the energy spent inside my
app?: fine grained energy accounting on smartphones with Eprof”. In: Proceedings of the
7th ACM european conference on Computer Systems. EuroSys’12. Bern, Switzerland:
ACM, 2012, pp. 29–42.

[101] Paul Pearce, Adrienne P. Felt, Gabriel Nunez, and David Wagner. “AdDroid: Privilege
Separation for Applications and Advertisers in Android”. In: Proceedings of AsiaCCS.
Seoul, Korea, may 2012.

[102] Marco Pistoia, Stephen J. Fink, Robert J. Flynn, and Eran Yahav. “When Role Models
Have Flaws: Static Validation of Enterprise Security Policies”. In: ICSE. 2007.

[103] Marco Pistoia, Robert J. Flynn, Larry Koved, and Vugranam C. Sreedhar. “Interpro-
cedural Analysis for Privileged Code Placement and Tainted Variable Detection”. In:
ECOOP. 2005.

[104] Nikhilesh Reddy, Jinseong Jeon, Jeffrey A. Vaughan, Todd Millstein, and Jeffrey S.
Foster. Application-centric security policies on unmodified Android. Tech. rep. 2011.

[105] Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. “A system call-centric anal-
ysis and stimulation technique to automatically reconstruct android malware behaviors”.
In: EuroSec, April (2013).

[106] Thomas Reps, Susan Horwitz, and Mooly Sagiv. “Precise interprocedural dataflow anal-
ysis via graph reachability”. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. 1995, pp. 49–61.

[107] Thomas Reps, Susan Horwitz, and Mooly Sagiv. “Precise interprocedural dataflow anal-
ysis via graph reachability”. In: POPL’95. 1995, pp. 49–61.

[108] Dennis M. Ritchie and Ken Thompson. “The UNIX time-sharing system”. In: Commu-
nications of the ACM 17.7 (1974), pp. 365–375.

[109] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno, Helen J.
Wang, and Crispin Cowan. User-Driven Access Control: Rethinking Permission Grant-
ing in Modern Operating Systems. Tech. rep. MSR-TR-2011-91. 2011.

[110] Atanas Rountev, Ana Milanova, and Barbara G Ryder. “Points-to analysis for Java using
annotated constraints”. In: ACM SIGPLAN Notices. Vol. 36. 11. ACM. 2001, pp. 43–55.

Bibliography 145

[111] Mooly Sagiv, Thomas Reps, and Susan Horwitz. “Precise interprocedural dataflow anal-
ysis with applications to constant propagation”. In: TAPSOFT’95. 1996, pp. 131–170.

[112] Jerome H. Saltzer. “Protection and the control of information sharing in Multics”. In:
Communications of the ACM 17.7 (1974), pp. 388–402.

[113] Jerome H. Saltzer and Michael D. Schroeder. “The Protection of Information in Com-
puter Systems”. In: Proceedings of the IEEE. 1975.

[114] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Dali Kaafar. “On the effectiveness
of dynamic Taint analysis for protecting against private information leaks on android-
based devices”. In: 10th International Conference on Security and Cryptography (SE-
CRYPT). 2013.

[115] Marc Schönefeld. “Reconstructing Dalvik applications”. In: Hack In The Box Security
Conference (2010).

[116] Thorsten Schreiber. Android binder. 2011.

[117] Patrick Schulz. Dalvik Bytecode Obfuscation on Android. Url: http://dexlabs.org/
blog/bytecode-obfuscation, Last accessed: May 5, 2014. 2012.

[118] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, and Shlomi Dolev. “Google
Android: A State-of-the-Art Review of Security Mechanisms”. In: CoRR abs/0912.5101
(2009).

[119] Marc Shapiro and Susan Horwitz. “Fast and accurate flow-insensitive points-to analy-
sis”. In: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM. 1997, pp. 1–14.

[120] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. “AdSplit: Separating smartphone
advertising from applications”. In: CoRR abs/1202.4030 (2012).

[121] Stephen Smalley, Chris Vance, and Wayne Salamon. “Implementing SELinux as a Linux
security module”. In: NAI Labs Report 1 (2001), p. 43.

[122] Manu Sridharan and Stephen J Fink. “The complexity of Andersen’s analysis in prac-
tice”. In: Static Analysis. Springer, 2009, pp. 205–221.

[123] Angelos Stavrou, Jeffrey Voas, Tom Karygiannis, and Steve Quirolgico. “Building Secu-
rity into Off-the-Shelf Smartphones”. In: Computer 45-2 (2012).

[124] Bjarne Steensgaard. “Points-to analysis in almost linear time”. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM. 1996, pp. 32–41.

[125] Philipp von Styp-Rekowsky, Sebastian Gerling, Michael Backes, and Christian Ham-
mer. “Idea: callee-site rewriting of sealed system libraries”. In: Engineering Secure Soft-
ware and Systems. Springer, 2013, pp. 33–41.

[126] Vijay Sundaresan, Laurie J. Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick
Lam, Etienne Gagnon, and Charles Godin. “Practical virtual method call resolution for
Java”. In: Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA ’00). 2000, pp. 264–280.

http://dexlabs.org/blog/bytecode-obfuscation
http://dexlabs.org/blog/bytecode-obfuscation

146 Bibliography

[127] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. “/* iComment: Bugs or bad
comments?*”. In: ACM SIGOPS Operating Systems Review. Vol. 41. 6. ACM. 2007,
pp. 145–158.

[128] The Android Developer’s Guide, Last-accessed: 2011-09. Last accessed: March 20,
2012.

[129] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore Guarnieri.
“Andromeda: Accurate and scalable security analysis of web applications”. In: Funda-
mental Approaches to Software Engineering. Springer, 2013, pp. 210–225.

[130] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. “TAJ:
effective taint analysis of web applications”. In: ACM Sigplan Notices. Vol. 44. 6. 2009,
pp. 87–97.

[131] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Etienne Gagnon Patrick Lam, and
Phong Co. “Soot - a Java Optimization Framework”. In: Proceedings of CASCON 1999.
1999, pp. 125–135.

[132] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. “Management of an Academic
HPC Cluster: The UL Experience”. In: Proc. of the 2014 Intl. Conf. on High Perfor-
mance Computing & Simulation (HPCS 2014). Bologna, Italy: IEEE, July 2014.

[133] David C. Walden, Tom Van Vleck, and F. J. Corbató. The Compatible Time Sharing
System (1961-1973): Fiftieth Anniversary Commemorative Overview. IEEE Computer
Society, 2011.

[134] John Whaley and Monica S Lam. “Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams”. In: ACM SIGPLAN Notices. Vol. 39. 6. ACM. 2004,
pp. 131–144.

[135] Robert P Wilson and Monica S Lam. Efficient context-sensitive pointer analysis for C
programs. Vol. 30. 6. ACM, 1995.

[136] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. “The impact of
vendor customizations on android security”. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. 2013, pp. 623–634.

[137] Rubin Xu, Hassen Saïdi, and Ross Anderson. “Aurasium: Practical policy enforcement
for android applications”. In: Proceedings of the 21st USENIX Security Symposium.
2012.

[138] Rubin Xu, Hassen Saïdi, and Ross Anderson. “Aurasium: practical policy enforcement
for Android applications”. In: Proceedings of the 21st USENIX conference on Security
symposium. Security’12. Bellevue, WA: USENIX Association, 2012, pp. 27–27.

[139] Karim Yaghmour. Embedded Android: Porting, Extending, and Customizing. O’Reilly
Media, Inc., 2013.

[140] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang. “Ap-
pintent: Analyzing sensitive data transmission in android for privacy leakage detection”.
In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 2013, pp. 1043–1054.

Bibliography 147

[141] Yajin Zhou and Xuxian Jiang. “Dissecting android malware: Characterization and evo-
lution”. In: Security and Privacy (SP), 2012 IEEE Symposium on. 2012, pp. 95–109.

	Introduction
	A Brief History of Access-Control
	Access Control for the Masses
	Motivation for Permission-Based System Analysis
	Confused Deputy
	Application Collusion
	Data Leakage
	Incomplete Documentation
	Fine-Grained Protection of User Data

	Challenges for Permission-Based System Analysis
	Dalvik Bytecode
	Analysis of the Framework
	Analysis of Applications
	Analysis Directly on Devices

	Contributions
	Roadmap of this Dissertation

	Technical Background
	Introduction to the Android Stack
	Overall Architecture
	Structure of Android Applications
	Structure of the Android System

	Introduction to Static Analysis
	Call Graph
	Data-Flow Analysis

	Conclusion

	Dexpler: Converting Dalvik Bytecode to Jimple
	Introduction
	Dalvik Bytecode and its Peculiarities
	Overall Structure
	Dalvik Instruction
	Primitives and Null
	Exceptions

	From Dalvik to Typed Jimple Code
	Requirements of the Translation
	Ambiguous Type Resolution

	Evaluation
	Discussion on Failed Apks

	Limitations
	Invalid Bytecode Never Executed and Never Checked by the VM
	Invalid Dalvik Bytecode Bypassing the VM Verification
	Hidden Bytecode

	Conclusion

	Permission Gaps
	Introduction
	The Permission Gap Problem
	Definitions
	Overview of Android
	Software Stack
	Android Permissions
	Services and Permissions
	Android Boot Process
	Android Communication

	Static Analyses for the Android Framework
	Common Components for CHA and Spark
	CHA-Android
	Spark-Android
	Recapitulation

	Discussion
	CHA versus Spark
	Comparison with PScout
	Comparison with Felt et al.
	Soundness
	The Impact of Service Identity Inversion
	Limitations

	Computing Permission Gaps
	A Calculus for Permission Analysis
	Extraction of M and AV
	Computing the Permission Gap

	Conclusion

	Data Leakage in Android Applications
	Introduction
	Background
	Android ICC Methods
	FlowDroid
	Epicc

	Motivating Example
	Definitions
	IccTA
	FlowDroid-IccTA: Reducing the ICC problem to an Intra-Component Problem
	ApkCombiner: Reducing an IAC problem to an ICC problem

	Evaluation
	RQ1: IccTA vs FlowDroid and Commercial Tool
	RQ2: IccTA and Real-World Apps
	RQ3: Compare with Other academic Tools

	Limitations
	Conclusion

	In Vivo
	Introduction
	Motivation for Bytecode Instrumentation
	Advertisement Removal
	Fine-Grained Permission Policy

	Toolchain for In vivo Bytecode Instrumentation
	Requirements
	Toolchain

	Use-case Design and Implementation
	Implementation of AdRemover
	BetterPermissions: A Fine-grained Permission Policy Management
	Evaluation

	Performance of In Vivo Instrumentation
	Measures
	Experimental Material
	Dataset
	Dalvik to Java Bytecode Conversion
	Performance of Bytecode Manipulation
	Java Bytecode to Dalvik Conversion
	Creating a New apk File
	Signing the Generated apk File
	Conclusion

	Conclusion

	Related Work
	Local Typing for Dalvik
	Dalvik to Java Bytecode Converter
	Dalvik Assembler/Disassembler

	Permission Map Extraction
	On the Java Permission Model
	On the Android Permission Model

	Data Leak in Android Applications
	Static Analyses
	Dynamic Analyses

	In Vivo Instrumentation of Bytecode
	Monitoring Applications
	Advertisement Permissions Separation
	Permission Policy

	Conclusions and Future Work
	Conclusions
	Future Work and Open Research Questions
	Framework Analysis
	The Future of Static Analysis for Android Applications

