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A PRELIMINARY AND PROBABLY VERY RAW VERSION.

OLEKSANDR IENA

1. Lecture 1

1.1. Some prerequisites for the whole lecture course. The following is assumed known.

1) Holomorphic functions in one variable.

2) Basics on topology: topological spaces, continuous maps.

3) basics on topological manifolds: definition.

4) Definition of a complex manifold.

1.2. Definition of a Riemann surface. Since this course is called “Riemann surfaces”, the

first and main definition of the course is the one of a Riemann surface.

Definition 1.1. A Riemann surface is a connected 1-dimensional complex manifold.

Convention. We will usually write RS for Riemann surface.

Let us clarify the meaning of Definition 1.1.

Let X be a 2-dimensional real topological manifold.

Definition 1.2. Let U ⊂ X be an open subset. Let V ⊂ C be an open subset of the set

of complex numbers (equipped with the standard Euclidean topology). Let ϕ : U → V be a

homeomorphism. Then ϕ : U → V is called a complex chart on X.

X
U

C

V

ϕ

Definition 1.3. Two complex charts ϕ1 : U1 → V1 and ϕ2 : U2 → V2 are called holomorphically

compatible if

ϕ2 ◦ ϕ−1
1 |ϕ1(U1∩U2) : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2)

is a holomorphic map. By abuse of notation we will often denote it by ϕ2 ◦ ϕ−1
1 .

1
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X

U1 U2

V1

ϕ1(U1 ∩ U2)

V2

ϕ2(U1 ∩ U2)

ϕ1 ϕ2

ϕ2 ◦ ϕ−1
1

Exercise. ϕ2 ◦ ϕ−1
1 is then automatically biholomorphic.

Definition 1.4. A system of holomorphically compatible complex charts on X

A = {ϕi : Ui → Vi, i ∈ I}

such that
⋃
i∈I Ui = X is called a complex atlas on X.

Definition 1.5. Two atlases A1 and A2 on X are called holomorphically compatible if every

chart from A1 is holomorphically compatible with every chart from A2.

Exercise. Holomorphic equivalence is an equivalence relation.

Definition 1.6. A complex structure on X is an equivalence class of complex atlases.

Remark 1.7. In order to define a complex structure on X it is enough to give a complex

atlas on X. Then two complex structures are equal if and only if the corresponding atlases are

equivalent.

Definition 1.8. Let A be a complex atlas on X. Put

Amax = {complex charts on X holomorphically compatible with the charts from A}.

Then Amax is the maximal atlas holomorphically compatible with A.

Therefore, two atlases A and B are equivalent if and only if Amax = Bmax.
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Definition 1.9. A RS is a pair (X,Σ), where X is a connected 2-dimensional real topological

manifold and Σ is a complex structure on X.

Equivalently: a RS is a pair (X,A), where X is a connected 2-dimensional real topological

manifold and A is a complex atlas on X.

For those who remember the definition of a complex manifold is clear now that the last

definition is just the definition of a 1-dimensional complex manifold.

Convention. If (X,Σ) is a RS, then “a chart on X” means a chart in the maximal atlas on

X corresponding to Σ.

Examples 1.10 (of Riemann surfaces). 1) X = C, A = {C id−→ C}.

In order to define the same complex structure one can also take the complex atlas given

by A′ = {Un
id−→ Un | n ∈ N}, where Un = {z ∈ C | |z| < n}.

2) Any domain in U ⊂ C (open connected subset of C) , A = {U id−→ U}. More generally,

let X be a RS and let U ⊂ X be a domain. Then U is a RS as well. As an atlas one can

take the restrictions to U of the complex charts on X.

3) Complex projective line P1 = P1(C) = {(a : b) | (a, b) ∈ C2 \ {(0, 0)}}, where (a : b)

denotes the line in C2 through (0, 0) and (a, b). Define

U0 = {(a : b) | a 6= 0} = {(1 : b) | b ∈ C}, U1 = {(a : b) | b 6= 0} = {(a : 1) | a ∈ C}.

Define

ϕ0 : U0 → C, (1 : b) 7→ b,

and

ϕ1 : U1 → C, (a : 1) 7→ a.

Then A = {U0
ϕ0−→ C, U1

ϕ1−→ C} is a complex atlas on P1. The transition function

ϕ1 ◦ ϕ−1
0 |ϕ0(U0∩U1) is

ϕ0(U0 ∩ U1) = C∗ −→ C∗ = ϕ1(U0 ∩ U1), a 7→ 1

a
.

4) Riemann sphere Ĉ. As a set Ĉ = C t {∞}, where ∞ is just a symbol. The topology is

defined as follows. U ⊂ Ĉ is open if and only if either ∞ 6∈ U and U ⊂ C is open or

∞ ∈ U and C\U is compact in C. This defines a compact Hausdorff space homeomorphic

to the two-dimensional sphere S2. Put U0 = C and U1 = Ĉ \ {0} = V∗ t {∞}. Define

ϕ0 : U0 → C = id : C→ C and define ϕ1 : U1 → C by

ϕ1(z) =


1
z
, z 6=∞;

0, otherwise.
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Exercise. The complex charts ϕ0 and ϕ1 are holomorphically compatible and constitute

a complex atlas on Ĉ.

Indeed, it is enough to notice that the transition function ϕ1 ◦ ϕ−1
0 |ϕ0(U0∩U1) is given

by

ϕ0(U0 ∩ U1) = C∗ −→ C∗ = ϕ1(U0 ∩ U1), a 7→ 1

a
.

Remark. Notice that this is the same transition function as in the previous example.

5) Complex tori.

Consider C as a 2-dimensional vector space over R. Let {ω1, ω2} be its basis over R.

Let Γ = Z · ω1 + Z · ω2 = {nω1 + mω2 | m,n ∈ Z} be the corresponding lattice. It is a

subgroup in the abelian group C. Consider the quotient homomorphism C π−→ C/Γ and

introduce on C/Γ the quotient topology, i. e., U ⊂ C/Γ is open if and only if π−1(U) is

open in C.

For every a ∈ C put Va = {a + t1ω1 + t2ω2 | t1, t2 ∈ (0, 1)}, i. e., the interior of the

parallelogram with vertices at a, a+ ω1, a+ ω2, a+ ω1 + ω2.

a a+ ω1

a+ ω1 + ω2a+ ω2

Va are called standard parallelograms with respect to the lattice Γ.

Put Ua := π(Va). Note that π|Va : Va → Ua is bijective and moreover a homeomor-

phism. Put ϕa := (π|Va)−1 : Ua → Va. This gives a complex atlas on C/Γ.

Exercise. Check the details.

1.3. Definition of a holomorphic function of a Riemann surface. Structure sheaf.

Definition 1.11 (Holomorphic functions). Let X be a RS. Let Y ⊂ X be an open subset.

Then a function Y
f−→ C is called holomorphic on Y if for every chart ϕ : U → V on X the

composition f ◦ ϕ−1 : ϕ(U ∩ Y )→ C is a holomorphic function.

Let OX(Y ) denote the set of all holomorphic functions on Y .

Exercise. OX(Y ) is a C-algebra.

Remark 1.12. For every open subset U ⊂ X we obtain a C-algebra OX(U) of holomorphic

functions on U . For every two open subsets U and W in X such that U ⊂ W , the restriction
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map OX(W )→ OX(U), f 7→ f |U is a homomorphism of C-algebras. The collection of all these

data is denoted OX and is called the structure sheaf on X.
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1.4. Exercises.

Exercise 1. 1) Check that the complex charts on Ĉ introduced in the lecture are holomorphi-

cally compatible and constitute a complex atlas on Ĉ.

2) Prove that Ĉ is homeomorphic to the complex projective line P1 = P1(C).

Exercise 2. Let Γ = Zω1 + Zω2 be a lattice in C.

1) Fill in the gaps in the definition of the complex structure on C/Γ. How do the transition

functions ϕb ◦ ϕ−1
a look like?

2) Let S1 denote the real 1-sphere. Show that C/Γ is homeomorphic to S1 × S1.

Hint: Let p1, p2 be the R-basis of Hom(C,R) dual to ω1, ω2. Consider the map C/Γ →

S1 × S1, [z] 7→ (exp(2πip1(z)), exp(2πip2(z))). Here [z] denotes the equivalence class of a

complex number z in C/Γ.

Exercise 3. In this exercise all subsets of complex manifolds are equipped with the induced

topology.

1) Show that the following subspaces of C2 or C3 are complex submanifolds, hence they are

Riemann surfaces. Describe the complex structures on each of them.

X1 = {(z1, z2) ∈ C2 | 5z1 + 7z2 = 0}, X2 = {(z1, z2) ∈ C2 | 3z1 − 14z2
2 = 0},

X3 = {(z1, z2) ∈ C2 | z1z2 − 1 = 0}, X4 = {(z0, z1, z2) ∈ C3 | z1 − z2
0 = 0, z2 − z3

0 = 0}.

2) Are the following subsets of C2 complex submanifolds?

X5 = {(z1, z2) ∈ C2 | z2
1 − z3

2 = 0}, X6 = {(z1, z2) ∈ C2 | z1z2 = 0}.

Can you equip these subspaces of C2 with a structure of a Riemann surface?

Hint: Have a look at the map C → C2, t 7→ (t3, t2). Study the connected components of

X6 \ {(0, 0)}.

Exercise 4. 1) Describe all holomorphic functions on Ĉ.

Hint: Use the compactness of Ĉ and your knowledge about bounded holomorphic functions on

the complex plane C.

2) Let Γ be a lattice in C. Can you describe all holomorphic functions on the torus C/Γ using

a similar reasoning as in part 1) of this exercise?
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2. Lecture 2

2.1. Riemann removable singularities theorem for Riemann surfaces.

Theorem 2.1 (Riemann removable singularities theorem). Let X be a RS. Let U ⊂ X be an

open subset. Let a ∈ U , let f ∈ OX(U \{a}) be bounded. Then there exists a unique f̄ ∈ OX(U)

such that f̄ |U\{a} = f .

Proof. Let ϕ : U ′ → V ′ be a chart around a. Then f ◦ϕ−1 is a holomorphic bounded function on

ϕ(U ′∩U) \ {ϕ(a)} ⊂ C. Therefore, there exists a unique holomorphic function F on ϕ(U ′∩U)

such that

F |ϕ(U ′∩U)\{ϕ(a)} = f ◦ ϕ−1.

Therefore, there is a unique holomorphic function g on U ∩U ′ such that g|U∩U ′\{a} = f |U∩U ′\{a}.

Hence ∃! f̄ ∈ OX(U) with f̄ |U\{a} = f . �

Up to now we defined

• Riemann surfaces;

• for a RS X the sheaf OX of holomorphic functions on X (sheaf of C-algebras).

In other words, we defined the objects we are going to study.

In order to be able to “compare” the objects, one usually needs morphisms (maps) between

them.

Definition 2.2. 1) Let X and Y be RS. Then a map f : X → Y is called holomorphic if

for every charts ϕ : U → V on X and ψ : U ′ → V ′ on Y with f(U) ⊂ U ′ the composition

ψ ◦ f |U ◦ ϕ−1 : V → V ′ is a holomorphic map.
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C C
ψ ◦ f |V ◦ ϕ−1

fU

ϕ

V

U ′

ψ

V ′

X Y

2) Equivalently, the map f is holomorphic if for every open U ⊂ Y and for every h ∈ OY (U)

the function f ∗h := h ◦ f : f−1(U)→ C belongs to OX(f−1U).

Exercise. Prove the equivalence of the statements of Definition 2.2.

Convention. Holomorphic maps of RS and morphisms of RS are just different names for the

same notion.

Remark 2.3. It follows that the composition of morphisms is a morphism as well. Therefore,

Riemann surfaces constitute a full subcategory in the category of complex manifolds.

Theorem 2.4 (Identity theorem). Let X, Y be RS, let f1, f2 : X → Y be two morphisms.Let

A ⊂ X be a subset such that A contains a limit point a of itself. If f1|A = f2|A, then f1 = f2.

Proof. Let S ⊂ X be the set of points x ∈ X that have an open neighbourhood U 3 x such

that f1|U = f2|U . Then S is open by the construction. Note that S 6= ∅. Indeed, by the identity

theorem for C, a ∈ S. Our idea is to show that S is closed. Then by the connectedness of X

either S = X or S = ∅, hence S = X and f1 = f2.

So, let b be a limit point of S. Then by the continuity of f1 and f2 we conclude that f1(b) =

f2(b). By the identity theorem for C we conclude that f1 and f2 equal in a neighbourhood of

b, hence b ∈ S, which demonstrates that S is closed. �

Example 2.5 (Examples of morphism of RS). 1) The quotient map C → C/Γ, where Γ is a

lattice in C, is a holomorphic map.
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2) Let Γ and Γ′ be two lattices in C. Let α ∈ C∗ and assume that α · Γ ⊂ Γ′. Then the map

C/Γ→ C/Γ′, [z] 7→ [αz],

is a well-defined holomorphic map. Moreover, it is an isomorphism if and only if α · Γ = Γ′.

3) The map Ĉ→ Ĉ, given by

z 7→


1
z
, z 6∈ {0,∞},

0, z =∞,

∞, z = 0

is a holomorphic map from Ĉ to Ĉ.

4) Consider two submanifolds X3 and X2 of C2 from Exercise 3. The map

X3 → X2, (z1, z2) 7→ (z2
2 , z2)

is a morphism of RS.

Definition 2.6 (Meromorphic functions). 1) Let X be a RS. Let Y ⊂ X be an open subset.

A meromorphic function on Y is by definition a holomorphic function on Y \ P , where P ⊂ Y

is a subset of isolated points and and for every p ∈ P the limit lim
x→p
|f(x)| exists and equals ∞.

2) The points of P are called the poles of f .

3) MX(Y ) denotes the set of meromorphic functions on Y ⊂ X.

Exercise. Let X be a Riemann surface and let Y be an open subset in X. Check that the set

MX(Y ) of meromorphic functions on Y has a natural structure of a C-algebra and OX(Y ) is

naturally included in MX(Y ) as a C-subalgebra. This also defines a structure of an OX(Y )-

module on MX(Y ).

Example 2.7. 1) Consider Y = C = Ĉ \ {∞} as an open subset of Ĉ and let f be the identity

function of C → C, z 7→ z. Then f is a holomorphic function on Y . Since lim
z→∞
|f(z)| =

lim
z→∞
|z| =∞, we conclude that idC can be seen as an element of MĈ(Ĉ).

2) Let f ∈ C[z] be a polynomial in one variable. One can consider it as a function on C. This

function is holomorphic. Using arguments similar to the previous ones, one concludes that

every polynomial in one variable f(z) ∈ C[z] can be seen as an element of MĈ(Ĉ).

Theorem 2.8. Let X be a RS. There is a 1 : 1 correspondence

MX(X)←→ {morphisms X → Ĉ not identically ∞}.
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Proof. “→”. Let f ∈MX(X). Let P be the set of poles of f . Define f̂ : X → Ĉ by

f̂(z) =

f(z), z 6∈ P

∞, otherwise.

Then f̂ is a continuous map (notice that it is enough to check it at poles). So by Riemann

removable singularity theorem f̂ is holomorphic.

“←”. Consider g : X → Ĉ. If the set g−1(∞) contains a limit point, by identity theorem

g(z) =∞ for all x ∈ X, therefore g−1(∞) does not contain limit points and hence it is a subset

of isolated points. Denote f = g|X\g−1(∞) : X \ g−1(∞) → C. This is a holomorphic function

on X \ g−1(∞). For every p ∈ g−1(∞) one checks lim
z→p
|f(z)| =∞. This means f ∈MX(X).

One sees that the constructed maps are inverse to each other. �

Corollary 2.9. Non-trivial (non-zero) meromorphic functions may have only isolated zeroes

and poles.

Proof. Note that the poles of meromorphic function are isolated by definition.

Assume a is a non-isolated zero of f ∈MX(X), i. e., there exists a sequence ai with lim
i→∞

ai = a

such that f(ai) = 0, f(a) = 0. Then by the identity theorem f̂ = 0 as a morphism X → Ĉ.

Therefore, f = 0. �

Claim. MX(Y ) is a field.

Proof. If f ∈ MX(Y ) such that f 6= 0, then
1

f
∈ MX(Y ) as well since the zeroes of f become

the poles of
1

f
. �

Example 2.10. As mentioned in Example 2.7, polynomials in one variable can be seen as

meromorphic functions on Ĉ. By the Claim above we conclude that every rational function in

one variable f(z)
g(z)

, f, g ∈ C[z], g 6≡ 0, can be seen as a meromorphic function on Ĉ as well. So

the field of the rational functions in one variable

C(z) :=

{
f(z)

g(z)
| f, g ∈ C[z] (polynomials in z), g 6≡ 0

}
is a subfield in MĈ(Ĉ).

Exercise. Show that every meromorphic function on Ĉ is rational, i. e.,MĈ(Ĉ) coincides with

C(z).
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2.2. Exercises.

Exercise 5 (Examples of morphisms of Riemann surfaces). Check using the definition of a

holomorphic map that the following maps between Riemann surfaces are holomorphic.

1) The quotient map C→ C/Γ, where Γ is a lattice in C, is a holomorphic map.

2) Let Γ and Γ′ be two lattices in C. Let α ∈ C∗ and assume that α · Γ ⊂ Γ′. Then the map

C/Γ→ C/Γ′, [z] 7→ [αz],

is a well-defined holomorphic map. Moreover, it is an isomorphism if and only if α · Γ = Γ′.

3) The map Ĉ→ Ĉ, given by

z 7→


1
z
, z 6∈ {0,∞},

0, z =∞,

∞, z = 0

is a holomorphic map from Ĉ to Ĉ.

4) Consider two submanifolds X3 and X2 of C2 from Exercise 3.

X2 = {(z1, z2) ∈ C2 | 3z1 − 14z2
2 = 0}, X3 = {(z1, z2) ∈ C2 | z1z2 − 1 = 0},

The map

X3 → X2, (z1, z2) 7→
(

14

3
z2

2 , z2

)
is a morphism of RS.

Exercise 6. Show that the set of meromorphic functions on Ĉ coincide with the set of rational

functions {
f(z)

g(z)
| f, g ∈ C[z] (polynomials in z), g 6≡ 0

}
.

Hint: One could follow the following steps. Let F , F 6≡ 0, be a meromorphic function on Ĉ.

• Note that F has only finitely many zeros and poles.

• There are two possibilities: ∞ is either a pole of F or not.

• If ∞ is not a pole of F , consider the poles a1, . . . , an of F . Consider the principal parts

hν of F at aν , ν = 1, . . . , n, and observe that F −
n∑
ν=1

hν is a holomorphic function on Ĉ.

So it must be constant and hence F is a rational function.

• If ∞ is a pole of F , consider the function 1
F

and show as above that it is rational.
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Exercise 7. Let Γ be a lattice in C. Then a meromorphic function f ∈MC(C) is called doubly

periodic (or elliptic) with respect to Γ if f(z) = f(z + γ) for all z ∈ C and for all γ ∈ Γ.

1) Show that there is a one-to-one correspondence between elliptic functions on C with respect

to Γ and meromorphic functions on C/Γ.

2) Show that there are only constant holomorphic doubly periodic functions.
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3. Lecture 3

Let us study the local behaviour of holomorphic maps of Riemann surfaces.

Theorem 3.1 (Local behaviour of holomorphic maps). Let X, Y be RS. Let f : X → Y be a

non-constant holomorphic map. Let a ∈ X, b := f(a) ∈ Y . Then there exists an integer k > 1

such that locally around a the morphism f looks as

z 7→ zk,

i. e., there exist a chart U
ϕ−→ V , a ∈ U , ϕ(a) = 0, and a chart U ′

ψ−→ V ′, b ∈ U ′, ψ(b) = 0,

such that f(U) ⊂ U ′ and ψ ◦ f |U ◦ ϕ−1(z) = zk.

a

b

C

a

b

C

zk

fU

ϕ

V0

U ′

ψ

V ′ 0

X Y

Proof. There exists a chart ψ : U ′ → V ′ around b such that ψ(b) = 0. Then f−1(U ′) is open

and contains a.

There exists a chart around a mapping a to 0. Intersecting with f−1(U ′) we obtain a chart

Ũ
ϕ̃−→ Ṽ such that f(Ũ) ⊂ U ′ and ϕ̃(a) = 0.

Consider F̃ := ψfϕ̃−1 : Ṽ → V ′. Since F̃ (0) = 0, one can write F̃ as F̃ (z) = zk · G̃(z),

G̃(z) 6= 0 in a neighbourhood W of 0. Since G̃(0) 6= 0, shrinking W if necessary we may assume

that there exists a holomorphic function H on W such that Hk(z) = G̃(z). Indeed, shrinking

W if necessary we may assume that there exists a branch of the complex logarithmic function

defined around G̃(W ). Then H(z) := exp( 1
k

ln G̃(z)) has the required property.
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We obtain F̃ (z) = zk · Hk(z) = (zH(z))k. Consider ξ : W → V ′, z 7→ zH(z). It is a

biholomorphic map between W (possibly after shrinking W ) and some neighbourhood of 0

in V ′. Consider ϕ : ϕ̃−1(W )
ϕ̃−→ W

ξ−→ V ′. Then ψfϕ−1(z) = ψfϕ̃−1ξ−1(z) = F̃ (ξ−1(z)) =

(ξ−1(z)H(ξ−1(z)))k = (ξ(ξ−1(z)))k = zk. �

Definition 3.2. The number k from the previous theorem is uniquely determined for a given

holomorphic map f and a given point a ∈ X. It is called the multiplicity of f at the point a

and will be denoted by multa f .

Exercise. Prove that multa f is well defined.

Remark 3.3 (Geometrical meaning of multa f). In every neighbourhood U0 of a there exist a

neighbourhood U 3 a and a neighbourhood W 3 b such that for every y ∈ W \ {b}

#f−1(y) ∩ U = k,

i. e., U contains exactly k preimages of y.

Remark 3.4 (Computation of multa f). Note that in order to compute the multiplicity of

a holomorphic map at a point it is enough just to go through the first part of the proof of

Theorem 3.1 and to find the decomposition F̃ (z) = zkG̃(z), G̃(0) 6= 0.

Example 3.5. 1) Let f be the identity map Ĉ→ Ĉ. Then multa f = 1 for every a ∈ Ĉ because

f is bijective. Analogously, since Ĉ g−→ Ĉ, g(z) = 1
z
, is bijective, we conclude that multa f = 1

for every a ∈ Ĉ.

2) Let Ĉ f−→ Ĉ be given by f(z) = 1
z3

. Then mult0 f = 3 and multi f = 1.

Exercise. Let f(z) ∈ C[z] be a polynomial of degree k. This gives the holomorphic map

f̂ : Ĉ −→ Ĉ, f(z) =

f(z), z ∈ C

∞, z =∞.

Show that f̂ has multiplicity k at ∞. What is the multiplicity of f̂ at 0?

Corollary 3.6. Every non-constant holomorphic map of RS f : X → Y is open.

Proof. f is locally z 7→ zk, which is open. Since being open is a local property, f is open. �

Corollary 3.7. Let f : X → Y be an injective morphism of RS. Then f : X → f(X) is

biholomorphic.
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Proof. Injectivity implies that f is locally z 7→ z. Then the inverse of f is locally z 7→ z and

hence it is holomorphic. �

Corollary 3.8 (Maximum principle). Let f ∈ OX(X) be non-constant. Then |f | does not have

maximum on X.

Proof. Suppose that |f | has maximum on X. Then there exists a ∈ X such that

|f(a)| = sup
x∈X
|f(x)| =: M.

Consider K := {z ∈ C | |z| 6 M} ⊂ C. K is compact. Then f(X) ⊂ K, in particular

f(a) ∈ K. Therefore, f(a) ∈ ∂K (boundary of K). Since f(X) is open, f(a) must be contained

in K with some neighbourhood. This is a contradiction. Hence our assumption was false and

|f | does not have maximum on X. �

Theorem 3.9. Let X
f−→ Y be a non-constant morphism of RS. Let X be compact. Then f is

surjective and Y is compact as well.

Proof. Since f(X) is open and compact it is open and closed. Therefore, f(X) = Y since Y is

connected. �

Exercise. Let Γ be a lattice in C. Show that every non-constant elliptic function with respect

to Γ attains every value b ∈ Ĉ.

Corollary 3.10. Let X be a compact RS. Then OX(X) = C.

Proof. Let f ∈ OX(X) and consider it as a holomorphic map X
f−→ C. If f is non-constant,

then C must be compact, which is wrong. So f is a constant function. �

Remark 3.11. As we saw in Exercise 6 this implies that every meromorphic function on Ĉ is

rational.



16 OLEKSANDR IENA

3.1. Exercises.

Exercise 8. Let X
f−→ Y be a non-constant holomorphic map of Riemann surfaces and let

a ∈ X. Show that the multiplicity of f at a is uniquely determined, i. e., does not depend on

the choice of local charts.

Hint: Notice that k = multa f can be thought of as the smallest k such that the k-th derivative

of F = ψ ◦ f ◦ ϕ−1 does not vanish at 0, where ϕ is a chart around a and ψ is a chart around

b = f(a).

Exercise 9. Let f(z) ∈ C[z] be a polynomial of degree k. This gives a holomorphic map

f̂ : Ĉ −→ Ĉ, f̂(∞) =∞. Show that f̂ has multiplicity k at ∞. What is the multiplicity at 0?

Exercise 10. 1) Consider the holomorphic map f : C → C, f(z) = zk, where k is a positive

integer. Compute multa f for an arbitrary a ∈ C.

2) Consider the holomorphic map f : C→ C, f(z) = (z− 1)3(z− 2)7. Compute multa f for an

arbitrary a ∈ C.

Exercise 11. Let Ĉ f−→ Ĉ be a holomorphic map given by

f(z) =
(z − 3)3

(z + 1)(z − 2)2
.

Compute mult3 f , mult−1 f , mult2 f , mult1 f .
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4. Lecture 4

Definition 4.1 (Elliptic functions1). Let Γ be a lattice in C. Then a meromorphic function

f ∈ MC(C) is called doubly periodic (or elliptic) with respect to Γ if f(z) = f(z + γ) for all

z ∈ C and for all γ ∈ Γ.

Claim. There is a one-to-one correspondence between elliptic functions on C with respect to

Γ and meromorphic functions on C/Γ. In particular there are only constant doubly periodic

holomorphic functions on C.

Proof. Every elliptic function f : C → Ĉ uniquely factorizes through the canonical projection

C π−→ C/Γ and hence defines a holomorphic map C/Γ→ Ĉ.

C

C/Γ

Ĉ
f

//

π �� f̂

??

Every holomorphic map f̂ : C/Γ→ Ĉ defines f = f̂ ◦ π.

This gives the required one-to-one correspondence. �

Exercise. Try to invent a non-trivial elliptic function with respect to a given lattice.

Definition 4.2. Let X be a topological space. Then a path in X is a continuous map γ :

[0, 1]→ X. The point γ(0) is called the initial point of γ, the point γ(1) is called the end point

of γ.

If γ(0) = γ(1), then γ is called a closed path.

Definition 4.3. A topological space X is called path-connected if every two points a, b ∈ X

can be connected by a path.

Reminder 4.4. Path connectedness implies connectedness.

Exercise. Riemann surfaces are path connected.

Definition 4.5. Two paths γ, δ from a to b are called homotopic if there exists a continuous

map

H : [0, 1]× [0, 1]→ X

such that

H(t, 0) = γ(t), H(t, 1) = δ(t) for all t ∈ [0, 1]

1cf. Exercise 7
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H(0, s) = a, H(1, s) = b for all s ∈ [0, 1].

One writes γ ∼ δ if γ and δ are homotopic.

Claim. Homotopy is an equivalence relation on the set of all paths from a to b.

Definition 4.6 (Composition). Let X be a topological space. Let γ be a path from a to b.

Let δ be a path from b to c. Define

(γ · δ)(t) =

γ(2t), t ∈ [0, 1
2
]

δ(2t− 1), t ∈ [1
2
, 1].

Definition 4.7 (Inverse curve). Let X be a topological space. Let γ be a path from a to b.

Define

γ−1(t) = γ(1− t), t ∈ [0, 1].

Claim. The composition of paths and the inverse path are compatible with the homotopy equiv-

alence, i. e., if γ ∼ γ′, δ ∼ δ′, and if γ · δ, γ′ · δ′ are well-defined, then

γ · δ ∼ γ′ · δ′, and γ−1 ∼ γ′−1.

Definition-Theorem 4.8 (Fundamental group). Let x0 ∈ X. Let π1(X, x0) denote the set of

the homotopy classes of of closed paths from x0 to x0. Let [γ] denote the homotopy class of γ.

Let [x0] denote the homotopy class of the constant path

[0, 1]→ X, t 7→ x0.

Then π1(X, x0) is a group with respect to the multiplication

[γ] · [δ] := [γ · δ],

the constant class [x0] is the identity element with respect to this multiplication, for a class [γ]

its inverse is given by [γ]−1 = [γ−1].

π1(X, x0) is called the fundamental group of X with respect to the base point x0.

Proof. Exercise. �

Claim. If a, b ∈ X are connected by a path δ : [0, 1]→ X, then the map

π1(X, a)→ π1(X, b), [γ] 7→ [δ−1 · γ · δ]

is an isomorphism of groups.

Proof. Exercise. �
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Remark 4.9. Note that the isomorphism above depends on δ. It does not depend on δ if and

only if π1(X, a) is an abelian group.

Definition 4.10. A path-connected topological space X is called simply-connected if π1(X, a)

is trivial for some(equivalently: for every) a ∈ X. By abuse of notation we write π1(X, a) = 0

to say that π1(X, a) is trivial.

Remark 4.11. 1) The fundamental group is functorial. Namely, every continuous map f :

X → Y , induces a homomorphism of groups

f∗ : π1(X, x0)→ π1(Y, f(x0)), [γ] 7→ f∗([γ]) := [f ◦ γ]

such that for two continuous maps

X
f−→ Y

g−→ Z

it holds

(g ◦ f)∗ = g∗ ◦ f∗.

2) In particular this implies that homeomorphic path-connected topological spaces have iso-

morphic fundamental groups. Therefore, π1(X, a) (its isomorphism class to be more precise) is

a topological invariant.

Claim. Two non-homeomorphic compact RS have different fundamental groups.

Explanation. Compact RS are orientable compact 2-dimensional real manifolds, i. e, surfaces.

The latter are completely classified up to a homeomorphism.

Namely, for every non-negative integer p there is exactly one homeomorphism class.

For p = 0, X ∼= Ĉ ∼= S2, the corresponding fundamental group π(X) is trivial.

For p > 1, the fundamental group of X can be described as

π1(X) ∼= 〈a1, . . . , ap, b1, . . . , bp |
∏
i

aibia
−1
i b−1

i = 1〉.

We will discuss it in more details in the next lecture. �
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4.1. Exercises.

Exercise 12. Show that Riemann surfaces are path-connected.

Hint: For a point x0 of a Riemann surface X consider the set S of all points that can be

connected with x0 by a path. Show that S is non-empty, closed and open.

Exercise 13. 1) Let a and b be two points in a topological space X. Check that the homotopy

is an equivalence relation on the set of all curves from a to b.

2) Fill in the gaps and check the technical details in the definition of the fundamental group

from the lecture. You may consult the Algebraic topology book of Allen Hatcher [8].

Exercise 14. 0) Let X be an open disc in C of radius 1 with centre at zero. Show that

π1(X, 0) = 0.

1) Show that the fundamental group of Ĉ is trivial. Consult the Algebraic topology book of

Allen Hatcher [8] for some technical details.

2) Compute the fundamental group of of a complex torus C/Γ. Use that π1(S1) ∼= Z and the

fact that the fundamental group of the product of two path-connected topological spaces X

and Y is naturally isomorphic to the product of the corresponding fundamental groups:

π1(X × Y ) ∼= π1(X)× π1(Y ).

Exercise 15. The so called uniformization theorem states that up to an isomorphism there

are only 3 simply-connected Riemann surfaces, namely Ĉ, C, and the open disc in C.

Let H = {z ∈ C | Im z > 0} be the upper half plane. Show that H is simply-connected and

find out to which isomorphism class it belongs.

Hint: It may help looking at the meromorphic function z−i
iz−1

on C.
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5. Lecture 5

Last time we claimed that for every non-negative integer p there is exactly one homeomor-

phism class of 2-dimensional real oriented compact connected manifolds.

Explanation. For p = 0, X ∼= Ĉ ∼= S2, the corresponding fundamental group π(X) is trivial.

For p > 1, X is obtained as a result of gluing of a regular 4p-gon along its sides as shown in

the following picture.

α1

β1

α−1
1

β−1
1

α2

β2

α−1
2

β−1
2

αp

βp

α−1
p

β−1
p

Each edge can be seen as a path on a plain. The initial and the end points are indicated by

arrows. For every i one glues together inverting the orientations the edges αi with the edges

α−1
i and the edges βi with the edges β−1

i .

This means that the initial point of the edge labeled by αi or βi is glued together with the

end point of the edge labeled α−1
i or β−1

i respectively.

Analogously, the end point of the edge labeled by αi or βi is glued together with the initial

point of the edge labeled α−1
i or β−1

i respectively.

The images of α1, . . . , αp, β1, . . . , βp in X are denoted by abuse of notations by the same

symbols. Then the path α−1
i is indeed the inverse path to αi and the path β−1

i is indeed the

inverse path to βi. Notice that each of these paths becomes a closed path at the same point

(the one obtained by gluing all the vertices of the 4p-gon).

The fundamental group of X is generated by

{[α1], . . . , [αp], [β1], . . . , [βp]}
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with the only relation ∏
i

[αi][βi][αi]
−1[βi]

−1 = 1,

i. e.,

π1(X) ∼= 〈a1, . . . , ap, b1, . . . , bp |
∏
i

aibia
−1
i b−1

i = 1〉.

In this case X is homeomorphic to a pretzel with p holes

or equivalently to a sphere with p handles.

The relation between the generators mentioned above can be understood in the following

way. Let P denote the regular 4p-gon on a plane mentioned above. Consider the closed path

γ = α1 · β1 · α−1
1 · β−1

1 · α2 · β2 · α−1
2 · β−1

2 · . . . · αp · βp · α−1
p · β−1

p

Then it is contractible (in P ), i. e., homotopic to a constant path.

Let X be the topological space obtained as a gluing of the edges of P as explained above.

Consider the corresponding quotient map P → X, which is continuous by the definition of

quotient topology. By composing the homotopy contracting γ to a constant path with the

quotient map P → X we conclude that the image of γ in X is contractible as well, which gives∏
i[αi][βi][αi]

−1[βi]
−1 = 1. �

Exercise. Compute π1(Ĉ), π1(C/Γ), where Γ ⊂ C is a lattice.

Definition 5.1. Let f : X → Y be a non-constant holomorphic map. Then x ∈ X is called a

ramification point of f if there is no neighborhood U of x such that f |U is injective.

One says that f is unramified if it has no ramification points.
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Remark 5.2. Ramification points are those with multiplicities multx f > 1. This follows

immediately from Theorem 3.1.

Corollary 5.3. A non-constant holomorphic map of RS f : X → Y is unramified if and only

if it is a local homeomorphism.

Example 5.4. 1) C→ C, z 7→ zk. Here 0 is the only ramification point.

2) C exp−−→ C∗ is unramified.

3) The standard projection C→ C/Γ is unramified for every lattice Γ ⊂ C.

Theorem 5.5. Let f : X → Y be a non-constant holomorphic map of compact RS. Then for

every y ∈ Y its preimage f−1(y) is a finite set and the number

dy(f) :=
∑

x∈f−1(y)

multx f

does not depend on y.

Corollary 5.6. If Y = Ĉ, then f : X → Ĉ is a meromorphic function and the number of

zeroes of f is equal to the number of poles of f (counted with multiplicities).

Definition 5.7. In the notations of Theorem 5.5 the number d(f) := dy(f) (for some/every

y ∈ X) is called the degree of f : X → Y .

Example 5.8. Consider the meromorphic function f(z) = (z−2)
(z−3)2(z−7)3

on Ĉ. Let us compute

the number of zeroes of this function with multiplicities and thus the degree of the corresponding

holomorphic map Ĉ f̂−→ Ĉ.

Note that f̂−1(0) = {2,∞}. Since

f(z) = (z − 2) · 1

(z − 3)2(z − 7)3

and since
1

(z − 3)2(z − 7)3
does not vanish at z = 2, one concludes

mult2 f̂ = 1.

Since

f(z) =

(
1

z

)4

· z4(z − 2)

(z − 3)2(z − 7)3

and z4(z−2)
(z−3)2(z−7)3

does not vanish at ∞, we get

mult∞ f̂ = 4.
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Therefore, d0(f̂) = mult2 f̂ + mult∞ f̂ = 1 + 4 = 5 and hence d(f̂) = 5.

Notice that the set of poles of f is {3, 7}. Since mult3(f̂) = 2 and mult7(f̂) = 3, we get

mult3(f̂) + mult7(f̂) = 2 + 3 = 5 = 1 + 4 = mult2(f̂) + mult∞(f̂),

which illustrates the statement of Corollary 5.6.

Corollary 5.9. Let f ∈ M(C/Γ) be a non-constant meromorphic function on a torus. Then

f has at least 2 poles (counted with multiplicities).

Proof. Suppose f has less than 2 poles.

1) If f does not have poles at all, then f is a holomorphic function and hence by Corol-

lary 3.10 f is constant, which is a contradiction.

2) If f has only one pole, then for the corresponding holomorphic map X
f̂−→ Ĉ the point

∞ ∈ Ĉ has only one preimage. Therefore, for an arbitrary point p ∈ Ĉ

#f̂−1(p) = #f̂−1(∞) = 1,

which means that f̂ : X → Ĉ is a bijection. Hence f̂ is an isomorphism of RS (cf. Corol-

lary 3.7 and Theorem 3.9). In particular X and Ĉ must be homeomorphic as topological

spaces, which is not true, since, for example, they have non-isomorphic fundamental

groups.

�

Remark 5.10. In fact, we showed even more. Namely, on every compact RS non-isomorphic

to Ĉ, non-constant meromorphic functions must have at least 2 poles.

Proof of Theorem 5.5. First of all notice that f−1(y) must be a discrete set because of the

Identity theorem (Theorem 2.4). Since X is compact, it must be finite (again by the Identity

theorem). Consider now the function

Y → Z, y 7→ dy(f).

We shall show that this function is locally constant. Since Y is connected, it would imply that

dy(f) is a constant function.
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x1 U1W1

x2 U2W2

x3 U3W3

xn UnWn

Uy

Let y ∈ Y . Let f−1(y) = {x1, . . . , xn}. Put mi = multxi f . For every i = 1, . . . , n, let Ui be

an open neighbourhood of xi such that f |Ui : Ui → f(Ui) is of the form z 7→ zmi (in appropriate

charts). Shrinking Ui, we can assume that Ui ∩ Uj = ∅ for i 6= j.

Since X is compact, f is a closed map, i. e., the image of a closed set is closed. Therefore,

f(X \
n∐
i=1

Ui) is closed. Since y lies in its complement, which is open, there exists an open set

U , y ∈ U , such that U ⊂ Y \ f(X \
n∐
i=1

Ui). This implies that f−1(U) ⊂
n∐
i=1

Ui.

Put Wi = f−1(U) ∩ Ui, then f−1(U) =
n∐
i=1

Wi.

For every p ∈ U \ {y}, and for every x ∈ f−1(p) the multiplicity multx f equals 1. Therefore,

dp(f) =
∑

x∈f−1(p)

multx f =
n∑
i=1

#(f−1(p) ∩Wi) =
n∑
i=1

mi.

On the other hand dy(f) =
n∑
i=1

mi as well.

This shows that dp(f) is constant on U , so it is locally constant and hence constant, which

concludes the proof. �
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5.1. Exercises.

Exercise 16. Compute the degrees d(f̂), d(ĝ) of the holomorphic maps Ĉ→ Ĉ corresponding

to the following meromorphic functions on Ĉ:

f(z) =
(z − 17)2

z13 + 2
, g(z) =

(z − 1)3

z2 + 11
.

Exercise 17. As we already know every meromorphic function f on Ĉ is rational, i. e.,

f(z) =
P (z)

Q(z)
, P (z), Q(z) ∈ C[z], Q(z) 6= 0.

Show that the degree of the corresponding holomorphic map f̂ : Ĉ→ Ĉ equals

max{degP, degQ}.

Exercise 18. Find all ramification points of the morphism ĝ from Exercise 16.

Exercise 19. 1) Let a be a complex number. Let f be a meromorphic function on Ĉ with the

only pole of multiplicity 1 at a. Show that

f(z) = µ+
λ

z − a
for some non-zero complex number λ and some µ ∈ C.

2) Consider the meromorphic function f(z) = cos(z)
z

on C. Find all zeroes and poles of f and the

corresponding multiplicities. Compare your results with the statements from the last lecture.
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6. Lecture 6

6.1. Divisors. Let X be a compact RS.

Definition 6.1. Let Div(X) be the free abelian group generated by the points of X. It is

called the divisor group of X.

Elements of Div(X) are linear combinations∑
x∈X

nx · x, nx ∈ Z, finitely many nx 6= 0.

For a divisor

D =
∑
x∈X

nx · x

let D(x) := nx. This way, one can identify divisors with the functions X → Z with finite

support.

Let degD =
∑

x∈X nx be the degree of D.

Notice that

deg : DivX → Z, D 7→ degD

is a group homomorphism. Its kernel consists of all divisors of degree zero and is denoted by

Div0(X).

Let f ∈ MX(X) be a non-zero meromorphic function. Identify f with the corresponding

holomorphic map X → Ĉ and for p ∈ X define

ordp f :=


multp f, if f(p) = 0

−multp f, if f(p) =∞

0, otherwise.

Notice that this definition implies multp λ = 0 for a non-zero constant function λ ∈ C∗. It is

useful to put ordp 0 =∞.

The number ordp f is called the order of p with respect to f . So the points with positive

order are zeros of f , the points with negative order are poles of f , and the points with zero

order are neither zeroes nor poles of f .

Definition 6.2. For a meromorphic non-zero function f ∈MX(X) put

(f) :=
∑
x∈X

(ordx f) · x ∈ DivX.

Divisors of this form are called principal divisors.

Remark 6.3. Notice that (f) keeps all the information about the zeroes and the poles of f .
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Observation. (f · g) = (f) + (g), (1/f) = −(f).

Therefore, the set of the principal divisors is a subgroup in DivX, it is denoted by PDivX.

Since by Theorem 5.5 d0(f) = d∞(f), we conclude that deg(f) = 0 for every meromorphic

function f on X. Therefore, PDivX is a subgroup of Div0(X) and we have an inclusion of

groups

PDivX ⊂ Div0X ⊂ DivX.

The quotient group

Pic(X) := DivX/PDivX

is called the Picard group of X. Its elements are called divisor classes.

The group

Pic0(X) := Div0X/PDivX,

which is a subgroup of PicX, is called the restricted Picard group.

We say that two divisors D and D′ are linearly equivalent and write D ∼ D′ if D and D′

represent the same element in PicX, i. e., if D −D′ = (f) for some meromorphic function f .

Since PDivX lies in the kernel of the degree homomorphism, we get a factorization homo-

morphism

PicX → Z, [D] 7→ degD,

which is denoted (by abuse of notation) by deg as well.

DivX

PicX

Z
deg

//

�� �� ∃! deg

??

Let D,D′ ∈ DivX. Then we say D > D′ or D′ 6 D if

D(x) > D′(x) for all x ∈ X.

Let D ∈ DivX, let U ⊂ X be open. Put

OD(U) := OX(D)(U) := {f ∈MX(U) | ordx f > −D(x) for all x ∈ U}.

This defines a sheaf on X, denoted by OX(D). This is a sheaf of OX-modules, in particular

this means that OX(D)(U) is an OX(U) module for every open U ⊂ X.

Indeed, for f ∈ OX(D)(U) and u ∈ OX(U), it holds ordx(uf) = ordx u + ordx f . Since

ordx u > 0, one concludes that ordx(uf) > ordx f > −D(x), i. e., u · f ∈ OX(D)(U).
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If V ⊂ U are two open sets, then there is a restriction homomorphism

OX(D)(U)→ OX(D)(V ), f 7→ f |V

compatible with the module structure, i. e.,

(u · f)|V = u|V · f |V , u ∈ OX(U), f ∈ OX(D)(U).

Remark 6.4. OX(0) = OX , i. e., OX(0)(U) = OX(U) for all open subsets U ⊂ X.

Proposition 6.5. Let D,D′ ∈ DivX. Assume D ∼ D′, then the sheaves of OX-modules

OX(D) and OX(D′) are isomorphic.

Remark 6.6. OX(D) ∼= OX(D) means that for every open U ⊂ X there exists an isomorphism

of OX(U)-modules

OX(D)(U)
η(U)−−→ OX(D′)(U)

compatible with the restriction maps, i. e., for an inclusion of open sets W ⊂ U ⊂ X

η(U)(s)|W = η(W )(s|W ) for every s ∈ OX(D)(U),

or, equivalently, there is the commutative diagram

OX(D)(U) OX(D′)(U)

OX(D)(W ) OX(D′)(W ),

η(U)
//

η(W )
//

ρUW
��

ρUW
��

where ρUW denotes the restriction map s 7→ s|W .

Proof of Proposition 6.5. D ∼ D′ means D −D′ = (s) for some s ∈ MX(X). Then for every

open U ⊂ X and f ∈ OX(D)(U) (i. e. ordx f > −D(x) for all x ∈ X) we conclude that

ordx(s|U · f) = ordx(s) + ordx f > ordx s−D(x) = ordx s− (D′ + (s))(x) = −D′(x)

and hence the map

OX(D)(U)
η(U)−−→ OX(D′)(U), f 7→ s|U · f

is well defined. One sees that it is an homomorphism of OX(U)-modules and it possesses the

inverse map given by g 7→ s−1|U ·g. Therefore, η(U) is an isomorphism. The compatibility with

the restrictions follows as well. �

Remark 6.7. Even more is true. Let D,D′ ∈ DivX. Then the sheaves of OX-modules OX(D)

and OX(D′) are isomorphic if and only if D ∼ D′.

Exercise. Try to prove this. You could follow the following steps.
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1) Notice that for small enough U ⊂ X the OX(U)-module OX(D)(U) is isomorphic to

OX(U).

2) Let R be an arbitrary C-algebra. Notice that defining a homomorphism of R-modules

R→ R is equivalent to choosing r ∈ R (the image of 1 ∈ R).

3) Using the previous observations show that every isomorphism η(U) : OX(D)(U) →

OX(D′)(U) is of the form f 7→ s · f , s ∈MX(U), for small enough U .

4) Analyze the situation and obtain the required statement.

Definition 6.8. Let D ∈ DivX. Then

L(D) := OX(D)(X) = {f ∈MX(X) | ordx f > −D(x)} = {f ∈MX(X) | (f) > −D} ∪ {0}

is called the Riemann-Roch space of D. It is a vector space over C.

Example 6.9. 1) Let D = a for some a ∈ X. Then

L(D) = {f ∈MX(X) | (f) > −a} =

{
f ∈MX(X)

∣∣∣∣f has at most 1 pole of multiplicity 1

and this pole can only be at a

}
.

2) Let D = n · a for some a ∈ X and a positive integer n. Then

L(D) = {f ∈MX(X) | (f) > −n·a} =

{
f ∈MX(X)

∣∣∣∣f has at most 1 pole of multiplicity at

most n and this pole can only be at a

}
.

3) Let D = −n · a for some a ∈ X and a positive integer n. Then

L(D) = {f ∈MX(X) | (f) > n·a} =

f ∈MX(X)

∣∣∣∣∣∣∣
f does not have any poles and must

have a zero of multiplicity at least n at

a

 .

http://en.wikipedia.org/wiki/Bernhard_Riemann
http://en.wikipedia.org/wiki/Gustav_Roch
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6.2. Exercises.

Exercise 20. Compute the principal divisors (f), (g) of the following meromorphic functions

on Ĉ (cf. Exercise 16):

f(z) =
(z − 17)2

z13 + 2
, g(z) =

(z − 1)3

z2 + 11
.

Exercise 21. Show that Pic0 Ĉ = 0, i. e., PDivX = Div0X. Conclude that Pic Ĉ ∼= Z.

Exercise 22. Let X = Ĉ.

1) Compute the Riemann-Roch space LĈ(D) for

D = n · p, p = 0 ∈ X, n ∈ Z.

2) Notice that Exercise 21 says that two divisors on Ĉ are linearly equivalent if and only if they

have the same degree, in particular for every divisor D on Ĉ and every p ∈ Ĉ

D ∼ degD · p.

In the lecture we mentioned that two linearly equivalent divisors have isomorphic Riemann-

Roch spaces. If D −D′ = (s) for some s ∈MX(X), then the isomorphism is given by

L(D) −→ L(D′), f 7→ s · f.

Using this and your computations from part 1) of this exercise compute the Riemann-Roch

spaces L(D) for the following divisors.

D = p, p = 5 + 2i;

D = p− q, p = 3, q = 4− i;

D = 2p+ 3q − 18r, p = 6− 2i, q = 47i, r = 356− 3i;

D = 2 · x1 + 8 · x2 − 6 · x3 − 3 · x4, x1 = 11i, x2 = (2− i), x3 = 44, x4 =∞.

3) Check which of the following divisors on Ĉ are linearly equivalent and describe the isomor-

phisms of the corresponding Riemann-Roch spaces for the pairs of linearly equivalent divisors.

D1 = 3 · (5 + 8i) + 27 · (1− i)− 6 · (8i), D2 = 5 · (i), D3 = 7 · (28 + 3i)− 1 · (i)− 1 · (48),

D4 = 4 · (18) + 20 · (33i), D5 = 3 · (16 + 11i).

Exercise 23. Consider the complex torus X = C/Γ, Γ = Z + Z · 3i. Compute L(D) for

D = p, p = [4 + 5i] ∈ X;

D = p− q, p = [8], q = [2i].
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7. Lecture 7

It turns out that the Riemann-Roch spaces are finite dimensional.

Theorem 7.1. dimL(D) <∞ for all D ∈ DivX.

Notation. l(D) := dimC L(D).

Proof. Idea. We are going to follow the following steps.

1) l(D) = 0 for D with degD < 0, l(0) = 1.

2) For D′ = D+ a for some a ∈ X there is an inclusion of vector spaces L(D) ⊂ L(D′) and

dimL(D′)/L(D) 6 1.

3) Hence, by induction, dimL(D) <∞ for every divisor D.

Details.

1) Let degD < 0. Assume l(D) 6= 0, then L(D) 6= 0. Take some non-zero f ∈ L(D) ⊂

MX(X). Then (f) > −D and in particular deg f > deg(−D) = − degD > 0. This is a

contradiction.

Since L(0) = OX(X) = C, one gets l(0) = 1.

This gives a basis of the induction.

2) Let D ∈ DivX, let a ∈ X, let D′ = D + a. Then D′ > D and hence −D(x) > −D′(x)

and L(D) ⊂ L(D′).

Choose a chart ϕ : U → V around a such that ϕ(a) = 0. For every f ∈ L(D′) put

fϕ := f |U◦ϕ−1. Then fϕ is a meromorphic function on V . Consider its Laurent expansion

at 0. Since f ∈ L(D′), fϕ may have at 0 a pole of order at most D′(a) = 1+D(a) = 1+d,

where d = D(a).

So

fϕ(z) = a−d−1(f) · z−d−1 + a−d · z−d + · · · =
∞∑

i=−d−1

ai(f) · zi, ai(f) ∈ C

around 0.

Now consider the map L(D′)
ξ−→ C, f 7→ a−d−1(f). It is a linear map. Its ker-

nel coincides with L(D). So L(D′)/L(D) = L(D′)/ ker ξ ∼= Im ξ ⊂ C and hence

dimC L(D′)/L(D) > 1.

3) Notice that every divisor D′ can be written as D′ = D+a for some a ∈ X and D ∈ DivX.

Moreover degD < degD′. This provides the step of the induction.

This concludes the proof. �

Example 7.2. 1) Let p, q ∈ X, p 6= q.
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(a) If D = p, then l(D) 6 2 because D = 0 + p and l(0) = 1.

(b) If D = −p, then l(D) = 0.

(c) If D = p− q, then l(D) 6 1 because D = (−q) + p and l(−q) = 0.

2) Let X = C/Γ be a complex torus. Then l(p) = 1 for every p ∈ X.

3) Let X = Ĉ. Then l(p) = 2 for every p ∈ X.

Stalks of the structure sheaf. Let a ∈ X. Consider the set of pairs

{(U, f) | U ⊂ X open, a ∈ U, f ∈ OX(U)}.

One defines the relation

(U, f) ∼ (V, g)
df⇐⇒ ∃ open W ⊂ U ∩ V , a ∈ W such that f |W = g|W .

Claim. “∼” is an equivalence relation.

Proof. Exercise. �

Definition 7.3. The set of the equivalence classes is denoted by OX,a and is called the stalk

of the structure sheaf OX at the point a.

We write [(U, f)] of [U, f ] for the equivalence class of (U, f). By abuse of notation one

also writes fa, which means the equivalence class of a holomorphic function f defined in some

neighbourhood of a. This equivalence class is called the germ of (U, f) (or simply the germ of

f) at a.

Claim. OX,a is a C-algebra with operations defined by

fa + ga = (f + g)a, fa · ga = (fg)a, λ · fa = (λf)a.

Proof. Exercise. �

Claim (Model example). OC,a ∼= C{z − a} ∼= C{z} (convergent power series).

Proof. Define

OC,a 7→ C{z − a}, [U, f ] 7→ Taylor expansion of f at a: f(z) =
∑
i>0

ci(z − a)i.

This gives the required isomorphism. �

Since every RS is locally isomorphic to C, we conclude that OX,a ∼= C{z} for every a ∈ X.

Indeed, fix a chart ϕ : U → V around a ∈ X. Then

OX,a → OC,ϕ(a), fa 7→ (f ◦ ϕ−1)ϕ(a)

gives an isomorphism of C-algebras OX,a ∼= OC,ϕ(a)
∼= C{z}.
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Exercises.

Exercise 24. Let D be a divisor on a compact Riemann surface. Let

L(D) = {f ∈MX(X) | (f) > −D} ∪ {0}

be its Riemann-Roch space. In the lecture we proved that L(D) is a finite dimensional vector

space over C. Assume that degD > 0 and using our proof obtain the following estimation for

the dimension l(D) of L(D):

l(D) 6 degD + 1.

Exercise 25. Let X = Ĉ and let D ∈ Div Ĉ be a divisor with non-negative degree. Show that

the inequality from the previous exercise becomes an equality, i. e.,

l(D) = degD + 1.

Hint: It is enough to find degD + 1 linear independent meromorphic functions from L(D).

Have a look at Exercise 22.

Exercise 26. Define X = {〈x0, x1, x2〉 ∈ P2 | x2
1 − x0x2 = 0}. Then X is a 1-dimensional

complex submanifold of P2. Let p = 〈0, 0, 1〉 ∈ X, let D = p. Compute l(D) = dimC L(D).

Hint: Study the map P1 −→ X, 〈s, t〉 7→ 〈s2, st, t2〉.

Exercise 27. (0) Let a be a point of a Riemann surface X. Show that the stalk OX,a is a

C-algebra with the operations defined in the lecture:

fa + ga := (f + g)a, fa · ga := (fg)a, λ · fa := (λf)a, fa, ga ∈ OX,a, λ ∈ C.

In particular check that the definitions given in the lecture are well-defined, i. e., do not depend

on the choice of representatives.

(1) Consider the evaluation homomorphism of C-algebras

OX,a
ev−→ C, [U, f ] 7→ f(a).

Show that its kernel is the only maximal ideal of OX,a.
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8. Lecture 8

Consider the evaluation homomorphism

ev : OX,a → C, fa 7→ f(a).

Its kernel is an ideal mX,a ⊂ OX,a given by

mX,a = {[U, f ] ∈ OX,a | f(a) = 0}.

Since OX,a/mX,a
∼= C and C is a field we conclude that mX,a is a maximal ideal of OX,a.

Claim. mX,a is the only maximal ideal of OX,a. One says that OX,a is the local algebra (or the

local ring) of X at a.

Remark 8.1. Recall that a ring with only one maximal ideal is called local.

Under the isomorphism OX,a ∼= C{z} the ideal mX,a corresponds to the ideal in C{z} consist-

ing of all convergent power series with trivial free term, i. e., the principal ideal 〈z〉 generated

by z.

Remark 8.2. Notice that C{z} is a principal domain,i. e., all ideals are principal, i. e., gener-

ated by a single element. Moreover, every ideal of C{z} is of the form 〈zm〉 for some m > 0.

Proof. Exercise. �

Let m2
X,a be the ideal generated by the products s1 · s2, s1, s2 ∈ mX,a. It corresponds to

the principal ideal 〈z2〉. Clearly m2
X,a ⊂ mX,a. Consider the quotient OX,a-module and the

corresponding quotient C{z}-module 〈z〉/〈z2〉. Then

mX,a/m
2
X,a
∼= 〈z〉/〈z2〉 ∼= C · [z],

where [z] denotes the class of z in 〈z〉/〈z2〉.

We see that though mX,a and m2
X,a are infinite dimensional vector spaces over C, their quotient

mX,a/m
2
X,a is a 1-one dimensional vector space over C.

Definition 8.3. The vector space mX,a/m
2
X,a is called the cotangent space of X at a and will

be denoted in this lecture by CTaX.

Its dual space

(mX,a/m
2
X,a)

∗ = HomC(mX,a/m
2
X,a,C)

is called the tangent space of X at a and is denoted by TaX.
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Definition 8.4. Let [U, f ] ∈ OX,a. Put daf := [f − f(a)] ∈ CTaX.

For every open U ⊂ X this defines the map

df : U →
⊔
a∈U

CTaX, a 7→ daf.

Definition 8.5. Let ϕ : U → V be a chart of a Riemann surface X. Let a ∈ U . We call ϕ a

local coordinate at a if ϕ(a) = 0.

We will often denote local coordinates by Latin letters, say z : U → V ⊂ C.

Let z : U → V ⊂ C be a local coordinate at a ∈ U . Then daz is a non-zero element in

CTaX. Therefore, it can be taken as a basis of CTaX.

In particular one should be able to write df(x) = g(x) · dz(x) for some function g : U → C.

Let us study this in more details.

Consider the composition F = f ◦ z−1. It is a holomorphic function in a neighbourhood V

of 0 ∈ C. For b ∈ U , take the Taylor expansion of F at z(b) ∈ V .

F (t) =
∑
i>0

ci(t− z(b))i.

Then

f(x) = f ◦ z−1 ◦ z(x) = F (z(x)) =
∑
i>0

(z(x)− z(b))i

and hence

dbf = [f − f(b)] = [
∑
i>1

ci(z − z(b))i] = [c1(z − z(b)) + (z − z(b))2
∑
i>2

ci(z − z(b))i−2] =

[c1(z − z(b))] = c1[z − z(b)] = F ′(z(b)) · dbz.

Definition 8.6. Let z : U → V be a local coordinate at a ∈ U . Let f ∈ OX(U). Put as above

F = f ◦ z−1 and define

∂f

∂z
(b) := F ′(z(b)) =

∂F

∂t
(z(b)).

In these notations dbf = ∂f
∂z

(b) · dbz and finally

(1) df =
∂f

∂z
· dz,

a formula which looks familiar.
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Sheaf of differential forms. Let U ⊂ X be an open subset of a RS X. We have just seen

that every f ∈ OX(U) gives us a map

df : U →
⊔
a∈U

CTaX, a 7→ daf.

Moreover, we computed that for a local coordinate z : W → C, W ⊂ U it holds df |W = ∂f
∂z
· dz.

Let now ω : U →
⊔
a∈U CTaX be an arbitrary map such that ω(a) ∈ CTaX. Then, as

above, for a local coordinate z : W → C, W ⊂ U , we conclude that

ω|W = g · dz

for some function g : W → C.

Definition 8.7. Let ω be as above. If g is a holomorphic function for every local coordinate

z : W → C, then ω is called a holomorphic differential form on U .

Equivalently, ω is a holomorphic differential form if U can be covered by open sets Ui with

local coordinates zi : Ui → C such that after representing the restrictions of ω as ω|Ui = fi ·dzi,

the functions fi : Ui → C are holomorphic.

The set of all holomorphic differential forms on U is denoted by ΩX(U). It is naturally

an OX(U)-module. This defines a sheaf of OX-modules. The sheaf ΩX is called the sheaf of

differential forms on X.

Example 8.8. As we saw above, df is a holomorphic differential form on U for every f ∈

OX(U).

Remark 8.9. For every open set U ⊂ X the map

OX(U)→ ΩX(U), f 7→ df

is a linear map of C-vector spaces, which gives a morphism of sheaves of C-vector spaces

OX → ΩX .

Example 8.10. Let us compute ΩĈ(Ĉ). Let ω ∈ ΩĈ(Ĉ). Let z0 : U0 → C and z1 : U1 → C be

the standard charts of Ĉ. Then ω|U0 = f0dz0 and ω|U1 = f1dz1 for some holomorphic functions

f0 and f1 on U0 and U1 respectively. It should also hold f0dz0|U0∩U1 = f1dz1|U0∩U1 . Since

z0 = 1/z1 on U0 ∩U1 = C∗, using (1) one gets dz0 = (−1/z2
1)dz1, hence f0(1/z1) · (−1/z2

1)dz1 =

f1(z1)dz1, and therefore f0(1/z1) = −z2
1f1(z1). Comparing the Laurent expansions of these two

holomorphic functions on C∗, one immediately concludes that f0 = 0, f1 = 0, which means

ΩĈ(Ĉ) = 0.
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Definition 8.11. Let U be an open subset of a Riemann surface X. A meromorphic differential

form on U is an element ω ∈ ΩX(U \ S) for some discrete set S such that for every chart

U ′
z−→ V ′ with U ′ ⊂ U the local expressions ω|U ′\S = fdz are given by meromorphic functions

f ∈MX(U ′).

Let KX(U) denote the set of all meromorphic differential forms on U .

Remark 8.12. KX(U) is naturally an MX(U)-module: for f ∈MX(U) and for ω ∈ KX(U)

(f · ω)(x) = f(x) · ω(x).

Moreover, KX is a sheaf of MX-modules. In particular, KX is a sheaf of OX-modules.

Analogously to the case of holomorphic differential forms, there is the homomorphism of

sheaves of vector spaces over C (note that it is not a homomorphism of OX-modules!)

MX
d−→ KX .

Namely, for every open U ⊂ X there is the linear map of vector spaces

MX(U)→ KX(U), f 7→ df

and the commutative diagram

OX(U) MX(U)

ΩX(U) KX(U),

� � //

� � //

d
��

d
��

f f

df df.

� //

� //

_

��

_

��

Definition 8.13. Let ω ∈ KX(U) for some open U ⊂ X. Let a ∈ U , let z : U ′ → V ′ be a local

coordinate at a. Write ω|U ′ = fdz for some f ∈MX(U ′). Define now the order of ω at a by

orda ω := orda f.

Claim. orda ω does not depend on the choice of z.

Proof. Exercise. �

Definition 8.14. Let X be a compact RS. Let ω ∈ KX(X). Define the divisor associated to

ω by

(ω) :=
∑
x∈X

ordx ω · x ∈ DivX.

Example 8.15. Let X = Ĉ. We know already (cf. Example 8.10) that there are no non-trivial

holomorphic differential forms on Ĉ.
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Let us mimic the reasoning from Example 8.10 in order to find a non-trivial meromorphic

differential form on Ĉ.

Let ω ∈ KĈ(Ĉ). Let z0 : U0 → C and z1 : U1 → C be the standard charts of Ĉ. Then

ω|U0 = f0dz0 and ω|U1 = f1dz1 for some meromorphic functions f0 and f1 on U0 and U1

respectively. It should also hold f0dz0|U0∩U1 = f1dz1|U0∩U1 . Since z0 = 1/z1 on U0 ∩ U1 = C∗,

using (1) one gets dz0 = (−1/z2
1)dz1, hence f0(1/z1) · (−1/z2

1)dz1 = f1(z1)dz1, and therefore

f0(1/z1) = −z2
1f1(z1). Take f0(z0) = 1. Then 1 = −z2

1f1(z1), i. e., f1(z1) = −1/z2
1 . Thus we

have just found a non-trivial meromorphic differential form ω on Ĉ. This form coincides with

dz0 on U0 and equals − 1
z21
dz1 on U1.

Let us compute the divisor corresponding to ω. Since orda ω = orda 1 = 0 for a ∈ C and

ord∞ ω = ord∞(− 1
z21

) = −2, we conclude that

(ω) = −2 · ∞.

In particular deg(ω) = −2.

Exercise. Find a non-trivial meromorphic differential form ω′ on Ĉ different from the one

presented in Example 8.15. Compute the corresponding divisor (ω′) ∈ Div Ĉ and its degree

deg(ω′).
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Exercises.

Exercise 28. Consider the following holomorphic functions on C.

f1(z) = (z − 3)(z + 5i)6 + 11, f2(z) = exp(z), f3(z) = sin(z2).

For a = 0, 3,−5i, find a generator of the cotangent space CTaC and express dafi, i = 1, 2, 3,

in terms of this generator.

Exercise 29. Consider the Riemann sphere Ĉ and let z0 = ϕ0 and z1 = ϕ1 be its standard

charts. Consider the meromorphic function

f(z) =
z(z + 1)

(z − 1)(z − 2)3
∈MĈ(Ĉ)

as a holomorphic function on Ĉ \ {1, 2}.

Compute

∂f

∂z0

(0),
∂f

∂z1

(∞),
∂f

∂z0

(−1),
∂f

∂z1

(−1),
∂f

∂z0

(3),
∂f

∂z1

(3).

For a = 0,∞,−1, 3 express if possible daf in terms of daz0 and daz1.

Exercise 30. Let X = C/Γ be a complex torus. Find a non-trivial holomorphic differential

form ω0 on X. Compute the corresponding divisor (ω0).

Exercise 31. Find two linear independent non-trivial meromorphic differential forms ω1 and

ω2 on Ĉ. Compute the corresponding divisors (ω1), (ω2) ∈ Div Ĉ and their degrees deg(ω1) and

deg(ω2).
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9. Lecture 9

Proposition 9.1. Let ω0 ∈ KX(X), ω0 6≡ 0. Then KX(X) = {f · ω0 | f ∈MX(X)}, i. e.,

MX(X)→ KX(X), f 7→ f · ω0

is an isomorphism of C-vector spaces.

Proof. Let ω ∈ KX(X) be an arbitrary meromorphic differential form on X. Let
⋃
Ui = X be

a covering of X by charts zi : Ui → Vi such that ω0|Ui is given by fidzi and ω|Ui is given by

gidzi for some meromorphic functions fi and gi on Ui.

Note that fi 6≡ 0 for every i. Otherwise, by an argument similar to the one from the proof

of Theorem 2.4 (identity theorem), ω0 ≡ 0. Consider hi = gi/fi ∈MX(Ui).

X

Ui Uj

Vj

zi(Ui ∩ Uj)

Vj

zj(Ui ∩ Uj)

zi zj

Gji := zj ◦ z−1
i

Using (1) we get

dzj =
∂zj
∂zi

dzi.

So on Ui ∩ Uj we obtain

ω0|Ui∩Uj = fjdzj = fj ·
∂zj
∂zi

dzi = fidzi, ω|Ui∩Uj = gjdzj = gj ·
∂zj
∂zi

dzi = gidzi.

Therefore,

fi = fj ·
∂zj
∂zi

, gi = gj ·
∂zj
∂zi

,

and finally

hi|Ui∩Uj = gi/fi =
gj · ∂zj∂zi

fj · ∂zj∂zi

= fj/gj = hj|Ui∩Uj .
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This means that there exists h ∈MX(X) such that h|Ui = hi.

We conclude that gi = hifi = hfi for every i. This means ω = h · ω0.

This concludes the proof. �

Definition 9.2. Let D ∈ DivX. Let U ⊂ X be an open subset. Define

ΩX(D)(U) := {ω ∈ KX(U) | orda ω > −D(a) for all a ∈ U}.

Then ΩX(D)(U) is an OX(U)-module, in particular ΩX(D)(X) = {ω ∈ KX(X) | (ω) > −D}

is a C-vector space.

Moreover, ΩX(D) is a sheaf of OX-modules.

Definition 9.3. Let ω0 ∈ KX(X), ω0 6= 0. Then the divisor K = (ω0) is called the canonical

divisor on X.

Remark 9.4. On a compact Riemann surface there always exists a non-zero meromorphic

differential form.

Note however that this fact is not at all trivial!

Remark 9.5. Note that K is not uniquely determined, it depends on ω0. However, its divisor

class

[K] ∈ PicX = DivX/PDivX

does not depend on the choice of ω0.

Proposition 9.6. Let X be a compact Riemann surface. Let K = (ω0). For every divisor

D ∈ Div(X) there is an isomorphism of OX-modules OX(D)→ ΩX(D −K) defined for every

open U ⊂ X by

OX(D)(U)→ ΩX(D −K)(U), f 7→ f · ω0.

Equivalently: OX(K +D) ∼= ΩX(D),

OX(K +D)(U)→ ΩX(D)(U), f 7→ f · ω0.

Corollary 9.7. ΩX(D)(X) ∼= OX(K +D)(X) = L(K +D), in particular

dimC ΩX(D)(X) <∞

for every divisor D ∈ DivX.

Definition 9.8. The dimension of L(K) ∼= ΩX(0)(X) = ΩX(X) is called the genus of X and

is denoted by

g = gX := dimC ΩX(X).
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Example 9.9. 1) Since by Example 8.10 ΩĈ(Ĉ) = 0, one concludes that gĈ = 0.

2) By Exercise 32 gC/Γ = 1 for every complex torus C/Γ.

Theorem 9.10 (Riemann-Roch).

l(D)− l(K −D) = degD + 1− g.

Equivalently,

l(D)− dim ΩX(−D)(X) = degD + 1− g.

Proof. No proof. �

Example 9.11. 1) Let D = 0. Then Theorem 9.10 reads as l(0)− l(K) = deg 0 + 1− g, hence

g = l(K), i. e., we get back the definition of the genus.

2) Let D = K. Then l(K)− l(0) = degK + 1− g and therefore

degK = 2g − 2.

3) If degD > 2g−1, then deg(K−D) = degK−degD = 2g−2−degD < 0, thus l(K−D) = 0

and finally

l(D) = degD + 1− g.

One can summarize this as follows.
l(D) = 0, if degD < 0;

l(D) > degD + 1− g, if 0 6 degD < 2g − 1;

l(D) = degD + 1− g, if degD > 2g − 1.

Theorem 9.12 (Riemann-Hurwitz formula). Let f : X → Y be a non-constant holomorphic

map of compact RS. Then

2gX − 2 = d(f)(2gY − 2) +
∑
x∈X

(multx f − 1)

Equivalently degKX = d(f) degKY + degRf , where KX and KY are canonical divisors on X

and Y respectively and Rf =
∑

x∈X(multx f − 1) · x is the so called ramification divisor of f .

Remark 9.13. Note that multx f > 1 only for finitely many points of X (ramification points,

cf. Definition 5.1).

http://en.wikipedia.org/wiki/Bernhard_Riemann
http://en.wikipedia.org/wiki/Adolf_Hurwitz
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Exercises.

Exercise 32. Let X = C/Γ be a complex torus.

1) Find a non-trivial holomorphic differential form ω0 on X. Compute the corresponding divisor

(ω0).

2) Let ω be an arbitrary holomorphic differential form on X. Then ω = fω0 for some mero-

morphic function f . Conclude that f must be holomorphic.

3) Conclude that ΩX(X) = C · ω0, i. e., vector space generated by ω0.

Exercise 33. 1) Let X be a compact Riemann surface of genus g. Let p ∈ X and let D =

(g+1)p. Apply the Riemann-Roch formula to D and conclude that l(D) > 2. The latter means

that there exists a non-constant meromorphic function f ∈ L(D).

2) Estimate the degree of the corresponding holomorphic map X
f̂−→ Ĉ?

3) Conclude that every compact Riemann surface of genus 0 is isomorphic to Ĉ.

Exercise 34. Using your computations from Exercise 32 compute the genus of a complex torus

X = C/Γ using two different methods.

(1) Compute the degree of the canonical divisor and use the the Riemann-Roch formula.

(2) Compute explicitly ΩX(X) and its dimension.

Exercise 35. 1) Let X ⊂ P2 be the subspace

X2 = {〈z0, z1, z2〉 ∈ P2 | z2
0 + z2

1 + z2
2 = 0}.

Show that X2 is a submanifold of P2, i. e., a Riemann surface. Consider the map

X2
f−→ Ĉ, 〈z0, z1, z2〉 7→

z1

z2

,

where a
0

is assumed to be∞. Show that this is a holomorphic map of RS. Apply the Riemann-

Hurwitz formula and compute the genus of X2. Conclude that X2 is isomorphic to the Riemann

sphere.

Hint: Compute the number of preimages of f−1(p) for every p ∈ Ĉ. Using that there can

be only finitely many ramification points, find the ramification points and obtain the value of

d(f).

2) Generalize the computations to the case of

Xd = {〈z0, z1, z2〉 ∈ P2 | zd0 + zd1 + zd2 = 0}, d ∈ N.
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What is the genus of Xd?
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10. Lecture 10

Let us consider some corollaries from the Riemann-Roch theorem.

Corollary 10.1. On every compact RS X there exists a non-constant meromorphic function

f ∈MX(X).

Proof. Let p ∈ X be an arbitrary point, take D = (g + 1) · p. Then l(D) > g + 1 + 1− g = 2.

This means that the dimension of the Riemann-Roch space L(D) is at least 2. Therefore, this

space must contain a non-constant meromorphic function. �

Observation. Take f ∈ L(D) as above. The only point that could be a pole of this meromor-

phic function is p. Its multiplicity is at most g + 1, therefore the degree of the corresponding

holomorphic non-constant map X
f̂−→ Ĉ is at most g + 1.

Corollary 10.2. Every compact RS of genus 0 is isomorphic to Ĉ

Proof. As above one gets a holomorphic map X
f̂−→ Ĉ of degree 1, which must be an isomorphism

(cf. Theorem 3.9 and Corollary 3.7). �

Some facts about coverings.

Definition 10.3. A continuous map of topological spacesX
f−→ Y is called a covering if for every

y ∈ Y there exists an open neighbourhood U of y such that f−1(U) =
⊔
i Vi and f |Vi : Vi → U

is a homeomorphism.

Observation. If Y is a RS and X
f−→ Y is a covering, then there is a unique complex structure

on X such that f is a holomorphic map.

Proof. Exercise. �

So every covering of a RS is then a locally biholomorphic map.

Remark 10.4. Not every local biholomorphism is a covering. For example, take X = B(0, 1) =

{z ∈ C | |z| < 1}, Y = C. Then the natural inclusion X ⊂ Y is locally biholomorphic but not

a covering.

Claim. Every locally biholomorphjic map of compact RS is a covering.

Proof. Use an argument similar to the one from the proof of Theorem 5.5. �

Definition 10.5. Let X̃
f−→ X be a covering of RS. Then it is called a universal covering if X̃

is simply connected, i. e., if π1(X̃) = 0.
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Proposition 10.6. 1) A universal covering exists for every RS.

2)(Universal propery): X̃
f−→ X is a universal covering if and only if for every covering Y

g−→ X

and every choice of points x0 ∈ X, y0 ∈ g−1(x0), x̃0 ∈ f−1(x0) there exists a unique holomorphic

map X̃
h−→ Y with h(x̃0) = y0 such that g ◦ h = f .

Y X

X̃

g
//

f
��{{

h

, y0 x0

x̃0

� g
//

_
f

��{{

h
7

Proof. Topology. �

Morphisms of complex tori. Let X = C/Γ and Y = C/Γ′ be two complex tori. Our aim is

to describe all holomorphic maps X → Y .

Reminder 10.7. Remind (cf. Example 2.5) that for α ∈ C∗ such that αΓ ⊂ Γ′ one obtains a

holomorphic map

X → Y, [z] 7→ [α · z].

Let X
f−→ Y be an arbitrary non-constant holomorphic map. Then by Riemann-Hurwitz

formula (Theorem 9.12), one concludes that f has no ramification points. So it must be a

covering.

Note that the canonical maps C π−→ C/Γ, z 7→ [z], and C π′−→ C/Γ′, z 7→ [z] are coverings and

even universal coverings. Then by the universal property of universal coverings there exists a

holomorphic map F : C→ C such that π′ ◦ F = f ◦ π.

X Y.

C C

f
//

π

��

π′

��

F
//

(2)

Consider now for a fixed γ ∈ Γ the function Φγ(z) = F (z+γ)−F (z). From the commutativity

of diagram (2) we get that Φγ(z) ∈ Γ′ for every z ∈ C. Since Φγ is continuous, there exists

γ′ ∈ Γ′ such that Φγ(z) = γ′ for all z ∈ C. Hence Φ′γ(z) = 0 and thus F ′(z+γ)−F ′(z) = 0. This

means that F ′ is a doubly periodic (elliptic) holomorphic function on C, therefore it must be

constant, i. e., there exists a ∈ C such that F ′(z) = a for all z ∈ C. This implies F (z) = az+ b

for some a, b ∈ C. Therefore, f([z]) = [az]+ [b]. This can only be well-defined if for every γ ∈ Γ

it holds f([z + γ]) = f([z]), which implies aΓ ⊂ Γ′.

On the other hand one sees that for every choice of a, b ∈ C such that aΓ ⊂ Γ′ the map

X → Y, [z] 7→ [az] + [b]
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is holomorphic. It can be represented as a composition of

X → Y, [z] 7→ [az]

with the automorphism of Y = C/Γ′

Y → Y, [z] 7→ [z] + [b].

We obtained the following.

Proposition 10.8. Every holomorphic map of complex tori C/Γ → C/Γ′ can be represented

as a composition of a holomorphic map

C/Γ→ C/Γ′, [z] 7→ [az], a ∈ C, aΓ ⊂ Γ′,

and an isomorphism

C/Γ′ → C/Γ′, [z] 7→ [z] + [b], b ∈ C.

Isomorphism classes of complex tori. Let Γ = Zω1 + Zω2 be a lattice in C. Let Γ′ =

Z + Z · ω2

ω1
. Then ω1Γ′ = Γ and

C/Γ′ → C/Γ, [z] 7→ [ω1z]

is an isomorphisms of complex tori.

So, while studying the isomorphism classes of complex tori, it is enough to consider only the

lattices

Z + Z · τ, Im τ 6= 0.

Moreover, if Im τ < 0, then Im τ−1 > 0 and τ(Z+Zτ−1) = (Z+Zτ), i. e., the lattices Z+Zτ−1

and Z + Zτ define isomorphic tori. Therefore, it is enough to consider only lattices

Z + Z · τ, Im τ > 0.

Notation. Let H denote the upper half-plane H := {τ ∈ C | Im τ > 0}.

For τ ∈ H denote Γ(τ) := Z + Z · τ .

Let now Γ1 = Γ(τ1) = Z + Z · τ1, Γ2 = Γ(τ2) = Z + Z · τ2. Assume they define isomorphic

tori C/Γ1
∼= C/Γ2. Then the isomorphism is given by [z] 7→ [az] + [b]. Since the translation

[z] 7→ [z] + [b] is an isomorphism, the map [z] 7→ [az] must be an isomorphism as well. So it

must hold aΓ1 = Γ2 (cf. Example 2.5).

In particular it means that a · τ1 and a · 1 belong to Γ2. Write

aτ1 = ατ2 + β, a = γτ2 + δ, α, β, δ, γ ∈ Z.
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In other words

a ·

τ1

1

 =

α β

γ δ

 ·
τ2

1

 .

Analogously, since the equality aΓ1 = Γ2 is equivalent to a−1Γ2 = Γ1, one concludes that

a−1 ·

τ2

1

 =

α′ β′

γ′ δ′

 ·
τ1

1


for some integer matrix

α′ β′

γ′ δ′

.

One hasτ2

1

 = aa−1

τ2

1

 =

α β

γ δ

 · [a−1 ·

τ2

1

]

 =

α β

γ δ

 ·
α′ β′

γ′ δ′

 ·
τ2

1

 =

c11 c12

c21 c22

τ2

1

 =

c11τ2 + c12

c21τ2 + c22

 ,

where c11 c12

c21 c22

 =

α β

γ δ

 ·
α′ β′

γ′ δ′

 .

Therefore, from the equalities τ2 = c11τ2 + c12 and 1 = c21τ2 + c22 we getc11 c12

c21 c22

 =

1 0

0 1

 ,

which means that

α β

γ δ

 and

α′ β′

γ′ δ′

 are invertible to each other integer matrices. There-

fore, their determinants equal either 1 or −1.

Since τ1 =
aτ1

a
=
ατ2 + β

γτ2 + δ
, we obtain

τ1 =
ατ2 + β

γτ2 + δ
=

(ατ2 + β)(γτ̄2 + δ)

|γτ2 + δ|2
=

αγ|τ2|2 + βδ + αδτ2 + βγτ̄2

|γτ2 + δ|2
.

Hence

(3) Im τ1 =
1

|γτ2 + δ|2
· (αδ − βγ) Im τ2

Since Im τ1 > 0 and Im τ2 > 0, one concludes that αδ − βγ = det

α β

γ δ

 > 0 and hence

det
(
α β
γ δ

)
= 1. We have shown that

(
α β
γ δ

)
∈ SL2(Z).
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So, if Γ1 and Γ2 define isomorphic tori, then τ1 =
ατ2 + β

γτ2 + δ
for
(
α β
γ δ

)
∈ SL2(Z).

On the other hand, if τ1 =
ατ2 + β

γτ2 + δ
for
(
α β
γ δ

)
∈ SL2(Z), then aΓ1 = Γ2 for a = γτ2 + δ. We

obtained the following result.

Theorem 10.9. Two lattices Γ(τ1) and Γ(τ2), τ1, τ2 ∈ H, define isomorphic complex tori if and

only if

τ1 =
ατ2 + β

γτ2 + δ

for
(
α β
γ δ

)
∈ SL2(Z).

In other words, if one defines an action of SL2(Z) on H by

(
α β
γ δ

)
· τ =

ατ + β

γτ + δ
,

the set of its orbits H/ SL2(Z) can be seen as the set of all isomorphism classes of complex tori.
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Exercises.

Exercise 36. Let Γ = Z + Z · τ , τ ∈ C, be a lattice in C. Let n be a natural number and let

Γ′ = Z + Z · (nτ). Put X = C/Γ and X ′ = C/Γ′ and consider the map

X → X ′, [z] 7→ [nz].

By Exercise 5 it is a holomorphic map of Riemann surfaces. Prove that it is a covering. What

is the number of points in the fibres?

Exercise 37. Let R = {z ∈ C | |z| > 1, |Re z| < 1
2
} and let

F = R ∪ {z ∈ C | Re(z) = −1

2
, |z| > 1} ∪ {z ∈ C | |z| = 1,−1

2
6 Re(z) 6 0}.

−1 1

ρ

−1
2

1
2

i

R

Let H/ SL2(Z) denote the space of the orbits of the action of SL2(Z) on H. Prove that the

restriction of the projection map

π : H→ H/ SL2(Z), τ 7→ orbit of τ = {τ ′ ∈ H | τ ′ = aτ + b

cτ + d
, ( a bc d ) ∈ SL2(Z)}

to F is a bijection. This means that the points of F are in one-to-one correspondence with the

isomorphism classes of complex tori.

Exercise 38. In the lecture we realized the group SL2(Z) as the group of transformations of

the upper half-plane H of the form

τ 7→ aτ + b

cτ + d
, ( a bc d ) ∈ SL2(Z).

(1) Show that this group is generated by the transformations

τ 7→ τ + 1 and τ 7→ −1

τ
.
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(2) What is the image of the region R from the previous exercise under the generators of SL2(Z)

from the first part of this exercise?

Exercise 39. Let Γ be a lattice in C and let C/Γ be the corresponding complex torus. In the

lecture we showed that the automorphisms of X must be of the form

[z] 7→ [az] + [b], a, b ∈ C, a · Γ = Γ.

Let Aut0(C/Γ) denote the subgroup in the group of all automorphisms of C/Γ consisting of the

automorphisms C/Γ f−→ C/Γ such that f([0]) = [0], i. e.,

Aut0(C/Γ) = {C/Γ→ C/Γ, [z] 7→ [az] | a ∈ C, a · Γ = Γ}.

(0) Show that a · Γ = Γ implies |a| = 1.

(1) Compute Aut0(C/Γ(i)) ∼= Z/4Z, where Γ(i) = Z + Z · i.

(2) Compute Aut0(C/Γ(ρ)) ∼= Z/6Z, where Γ(ρ) = Z + Z · ρ, ρ = e
2
3
πi = −1

2
+
√

3
2
i.

(3) Compute Aut0(C/Γ(τ)) ∼= Z/2Z, where Γ(τ) = Z + Z · τ , for τ = 2i and τ = 1
2

+ i.

(4) Try to compute Aut0(C/Γ(τ)), for an arbitrary τ ∈ F .



RIEMANN SURFACES. LECTURE NOTES. WINTER SEMESTER 2014/2015 53

11. Lecture 11

In the last lecture we obtained a description of the isomorphism classes of complex tori.

Consider now the quotient map

H π−→ H/ SL2(Z), τ 7→ orbit of τ .

Introduce on H/ SL2(Z) the quotient topology, i. e., call the set U ⊂ H/ SL2(Z) open if and

only if π−1U ⊂ H is open.

Exercise. π is a local homeomorphism outside of the orbits of the points i, ρ ∈ H, ρ =

exp(2π
3
· i) = −1

2
+
√

3
2
i. This allows us to introduce a structure of a Riemann surface on

(H/ SL2(Z)) \ {π(i), π(ρ)},

i. e., on the quotient space without the two points π(i) and π(ρ).

Remark 11.1. Notice that the restriction of π to every neighbourhood of i or ρ is never

injective. This shows that π can not be a local homeomorphism around these points.

Let us visualize the space H/ SL2(Z). Let

R = {z ∈ C | |z| > 1, |Re z| < 1

2
}

and take

F = R ∪ {z | Re z = −1

2
, |z| > 1} ∪ {z | |z| = 1,−1

2
6 Re z 6 0}.

−1 1

ρ

−1
2

1
2

i

R

Exercise. Then the restriction of π to F is a bijection, i. e., F can be seen as the set of all

isomorphism classes of complex tori.
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Proof of the surjectivity. Let τ ∈ H. Let us show that there exists A ∈ SL2(Z) such that

A · τ ∈ F . More details can be found in [5].

First of all notice that

Im

(
aτ + b

cτ + d

)
=

1

|cτ + d|2
· Im τ, ( a bc d ) ∈ SL2(Z).

This assures for a fixed τ the existence of

max
A∈SL2(Z)

{Im(A · τ)}.

Therefore, there exists A0 ∈ SL2(Z) such that for τ0 = A0 · τ

Im τ0 > A · τ, for every A ∈ SL2(Z).

Since Im(τ0 + n) = Im τ0 for every n ∈ Z, we may assume, possibly taking ( 1 n
0 1 ) ·A0 instead of

A0, that |Re τ0| 6 1
2
.

Since Im τ0 > ImAτ for every A ∈ SL2(A), let us apply this to the matrix ( 0 1
−1 0 ) · A0. We

get

Im τ0 > Im(( 0 1
−1 0 )A0 · τ) = Im(( 0 1

−1 0 ) · τ0) = Im(−1/τ0) =
Im τ0

|τ0|2
,

which implies |τ0| > 1.

If τ0 does not belong to F , then either Re τ0 = 1
2

or |τ0| = 1 and 0 < Re τ0 6 1
2
. One can

easily correct this. Namely, if Re τ0 = 1
2
, then ( 1 −1

0 1 )A0 · τ = τ0 − 1 ∈ F ; if |τ0| = 1 and

0 < Re τ0 6 1
2
, then ( 0 1

−1 0 )A0 · τ = −1/τ0 ∈ F . �

Figure 1. The interior of every triangular region (with one of the vertices lying

possibly “at infinity”) is the image of R under the action of some element from

SL2(Z).

By Fropuff (from en wikipedia) [GFDL (www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0

(http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons.

www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://commons.wikimedia.org/wiki/File:ModularGroup-FundamentalDomain-01.png
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Automorphism of complex tori. Let us study the automorphism of complex tori. By

Proposition 10.8 it is enough to study the automorphisms C/Γ f−→ C/Γ such that f([0]) = 0.

So let Aut0(C/Γ) denote the subgroup in the group of all automorphisms of C/Γ consisting of

the automorphisms C/Γ f−→ C/Γ such that f([0]) = [0]. Then, as already mentioned,

Aut0(C/Γ) = {C/Γ→ C/Γ, [z] 7→ [az] | a ∈ C, a · Γ = Γ}.

An automorphism from Aut0(C/Γ(τ)), τ ∈ H, is given by a matrix
(
α β
γ δ

)
∈ SL2(Z) such that

τ = ατ+β
γτ+δ

. Namely, the automorphism is given by the rule

[z] 7→ [az], a = γτ + δ.

Notice that (3) implies in this case |a| = 1.

If γ = 0, then this provides two different automorphisms of C/Γ(τ): the identity [z] 7→ [z]

and [z] 7→ −[z].

Analyzing the case of γ 6= 0 one can obtain the following statement.

Claim. Let τ ∈ F . If τ 6= i and τ 6= ρ, then

Aut0(C/Γ(τ)) = {± idC/Γ(τ)} ∼= Z/2Z.

It holds also

Aut0(C/Γ(i)) ∼= Z/4Z, Aut0(C/Γ(ρ)) ∼= Z/6Z.

Proof. Exercise. �

Remark 11.2. 1) Notice that the automorphism group of the Riemann sphere Aut(Ĉ) coincides

with the group of the transformations

Ĉ −→ Ĉ, x 7→ ax+ b

cx+ d
, ( a bc d ) ∈ GL2(C).

which is isomorphic to the quotient of the general linear group GL2(C) by the subgroup of the

matrices {( λ 0
0 λ ) | λ ∈ C∗}. This quotient is denoted by PGL2(C). Notice that PGL2(C) is an

infinite group. The subgroup Aut0(Ĉ) of the automorphisms preserving 0 ∈ Ĉ consists of the

transformations

Ĉ −→ Ĉ, x 7→ ax

cx+ d
, ( a 0

c d ) ∈ GL2(C).

This group is infinite as well.

2) Notice that though Aut0(C/Γ) is finite for every lattice Γ, the whole automorphism group

Aut(C/Γ) is infinite.
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3) The Hurwitz’s automorphisms theorem says that for a compact Riemann surface X of genus

g > 2 the automorphism group Aut(X) is finite and

|Aut(X)| 6 84(g − 1).

Meromorphic functions on complex tori. Consider the Riemann-Roch formula from The-

orem 9.10 for a complex torus X = C/Γ. We know that g = gX = 1, hence 2g − 1 = 1 and

thus for every divisor D on X with degD > 0 it holds degD > 2g − 1 and we obtain

l(D) = degD + 1− g = degD.

In particular for D = n · [0] we obtain

(4) l(D) =

1, if n = 0;

n, if n > 1.

This gives l(2 · [0]) = 2, i. e., there exists a non-constant meromorphic function on X with the

only pole at [0] or multiplicity 2.

Reminder 11.3. Recall that meromorphic functions on C/Γ are in one-to-one correspondence

with doubly periodic (elliptic) meromorphic functions on C with respect to Γ (Theorem 2.8).

So there must exist an elliptic function on C with respect to Γ with poles of order 2 at the

points of Γ.

A näıve attempt to construct such a function could be to consider the sum∑
γ∈Γ

1

(z − γ)2
,

but this sum is infinite and is not convergent in any reasonable sense. However one can slightly

modify this idea in order to get the required function. Put

℘(z) =
1

z2
+
∑

06=γ∈Γ

(
1

(z − γ)2
− 1

γ2
).

This infinite sum is summable (one can read about this (in German) in [11]) and defines an

elliptic function on C with respect to Γ with poles of order 2 at the points of Γ. Of course, this

function depends on a given Γ = Zω1 +Zω2 or Γ = Z+Zτ , so to indicate this dependence one

uses the notations

℘(z) = ℘(z; Γ) = ℘(z;ω1, ω2) = ℘(z; τ).

Definition 11.4. ℘ is called the Weierstraß ℘-function.

http://en.wikipedia.org/wiki/Karl_Weierstrass
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The derivative of the Weierstraß ℘-function

℘′(z) = −
∑
γ∈Γ

2

(z − γ)3

has clearly poles of order 3 at the points of Γ, so it defines a meromorphic function on C/Γ

with the only pole of multiplicity 3 at [0]. Note that ℘(z) and ℘′(z) are linearly independent.

Therefore, (4) implies

L([0]) = C · 1, L(2 · [0]) = C · 1 + C · ℘(z), L(3 · [0]) = C · 1 + C · ℘(z) + C · ℘′(z),

where we use the same notations for elliptic functions and the corresponding meromorphic

functions on C/Γ.

Combining ℘(z) and ℘′(z) with each other one easily produces examples of meromorphic

functions from L(n · [0]) for every n ∈ N. For example ℘2(z) ∈ L(4 · [0]), ℘(z)℘′(z) ∈ L(5 · [0]).

Of course, one can also take higher derivatives, then ℘′′(z) ∈ L(4 · [0]), etc.

Combining ℘(z) and ℘′(z) and using (4) one easily computes L(4 · [0]) and L(5 · [0]).

Exercise. L(4 · [0]) = C · 1 + C · ℘(z) + C · ℘′(z) + C · ℘2(z), L(5 · [0]) = C · 1 + C · ℘(z) + C ·

℘′(z) + C · ℘2(z) + C · ℘(z)℘′(z).

Let now n = 6. Then l(6 · [0]) = 6. However the functions

1, ℘, ℘′, ℘2, ℘℘′, ℘3, (℘′)2

all belong to L(6 · [0]). Therefore they must be linearly dependent. This means that there must

exist a polynomial in two variables f(x, y) ∈ C[x, y], with monomials 1, x, y, x2, xy, x3, y2 such

that

f(℘, ℘′) = 0.

Let us find this polynomial.

Algebraic relation between ℘ and ℘′.

Claim. The Weierstraß ℘-function can be given as

℘(z) =
1

z2
+
∞∑
n=1

(2n+ 1)G2(n+1) · z2n,

where the coefficients

Gm =
∑

0 6=γ∈Γ

γ−m, m > 3.

are called the Eisenstein series.

Proof. Exercise. �

http://en.wikipedia.org/wiki/Gotthold_Eisenstein
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One computes

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + . . . ,

℘′(z) = − 2

z3
+ 6G4z + 20G6z

3 + . . . ,

(℘′(z))2 =
4

z6
− 24G4

1

z2
− 80G6 + . . . ,

℘3(z) =
1

z6
+ 9G4

1

z2
+ 15G6 + . . . .

Therefore,

(℘′(z))2 − 4℘3(z) = −60G4
1

z2
− 140G6 + . . . ,

(℘′(z))2 − 4℘3(z) + 60G4℘(z) = −140G6 + . . . ,

which means that (℘′(z))2 − 4℘3(z) + 60G4℘(z) is holomorphic, thus it must be constant, i. e.,

(℘′(z))2 − 4℘3(z) + 60G4℘(z) = −140G6.

We obtained the following statement.

Proposition 11.5. Let g2 = 60G4, g3 = 140G6. Put

f(x, y) = y2 − 4x3 + g2x+ g3.

Then f(℘, ℘′) = 0.
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Exercises.

Exercise 40. Let π : H→ H/ SL2(Z) be the projection map and let the set of orbits H/ SL2(Z)

be equipped with the quotient topology.

(1) Let ρ = −1
2

+
√

3
2

= e
2π
3
i. Show that π is a local homeomorphism outside of the orbits of i

and ρ.

(2) Show that for every τ ∈ H from the orbit of i or ρ every open neigbourhood of τ contains

different points with the same image under π.

Hint: For small ε consider in the case τ = i the pair of numbers ei(
π
2

+ε) and ei(
π
2
−ε); for τ = ρ

consider the pair ei(
2π
3

+ε) and −1 + ei(
π
3
−ε).

Exercise 41. Let Γ be a lattice in C, let X = C/Γ be the corresponding complex torus, and

let ℘(z) be the corresponding Weierstraß function.

Notice that by the Riemann-Roch theorem l(4 · [0]) = 4. On the other hand the functions

1, ℘, ℘′, ℘2, ℘′′ belong to L(4 · [0]). Conclude that they are linear dependant and find a linear

relation between them. You could do it directly or using the relation

(℘′)2 = 4℘3 − g2℘− g3

from the lecture.

Exercise 42. Consider for a lattice Γ ⊂ C the Eisenstein series G4 = G4(Γ) =
∑

06=γ∈Γ γ
−4,

G6 = G6(Γ) =
∑

06=γ∈Γ γ
−6. Let Γ(τ) = Z + Z · τ . As in the lecture, denote ρ = ei

2π
3 . Compute

G4(Γ(ρ)) = 0, G6(Γ(i)) = 0.

Hint: Notice that one can exchange the order of the summands in the Eisenstein series.

For Γ = Γ(ρ) define the subset Γ′ ⊂ Γ by Γ′ = {γ ∈ Γ | γ = r · eiϕ with 0 6 ϕ < π
3
}. Observe

that Γ can be seen as the disjoint union of the rotations of Γ′, namely of the sets ei
πk
3 · Γ′,

k = 0, 1, . . . , 5. Notice that
∑5

k=0 e
−4iπk

3 = 0.

For Γ = Γ(i) define Γ′ = {γ ∈ Γ | γ = r · eiϕ with 0 6 ϕ < π
2
}. Observe that Γ is the disjoint

union of Γ′, iΓ′, −Γ′, and −iΓ′. Use that
∑3

k=0 e
−6iπk

2 = 0.

Exercise 43. Let Γ be a lattice in C and let ℘ be the corresponding Weierstraß function.

(1) Notice that ℘′(z) considered as a meromorphic function on C/Γ has its only pole at [0] of

multiplicity 3. How many zeroes could ℘′(z) have? Using that ℘′ is elliptic and odd, show that

the points [ω1

2
], [ω2

2
], [ω1+ω2

2
] are zeroes of ℘′(z). Are there any other zeroes of ℘′(z)?

(2) Show that ℘(z) = ℘(w) if and only if either z = w mod Γ or z = −w mod Γ.
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Hint: For a fixed w consider h(z) = ℘(z)− ℘(w) and study its set of zeroes using that ℘(z) is

an even function. How many zeroes can h(z) have? When can h(z) have a multiple zero?
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12. Lecture 12

Our next aim is to determine the fieldMX(X) of meromorphic functions on a complex torus

X.

Identify MX(X) with the field of elliptic functions on C with respect to Γ.

Let f(z) be an elliptic function, then

f(z) =
1

2
(f(z) + f(−z)) +

1

2
(f(z)− f(−z)).

Put g(z) = 1
2
(f(z)+f(−z)) and h(z) = 1

2
(f(z)−f(−z)), then f(z) = g(z)+h(z), g(−z) = g(z)

and h(−z) = −h(z), i. e., g is even and h is odd. This proves the following.

Claim. Every elliptic function on C can be represented as a sum of an even elliptic function

f with an odd elliptic function h.

Even elliptic functions. Our first observation is that ℘(z) is even.

Theorem 12.1. Let f(z) be an even elliptic function. Then there exists a rational function in

one variable Φ(t) ∈ C(t) such that f = Φ(℘). Moreover, if the poles of f are contained in Γ,

then Φ can be taken polynomial.

Proof. Assume that the poles of f are contained in Γ. Consider the Laurent expansion of f at

0. Since f is even, we get

f =
∑
i>−n

a2iz
2i.

Hence the poles of f must have an even order. Consider the principal part of f at 0:

a−2nz
−2n + · · ·+ a−1z

−2.

Note that the Laurent expansion of ℘(z) at zero is

1

z2
+ b2z

2 + b4z
4 + . . . .

Its principal part is 1
z2

. One concludes that the principal part of ℘l(z) is of the form

1

z2l
+ linear combination of

1

z2ν
with ν < l.

Then f − a−2n℘
n(z) has poles of smaller multiplicity that f . So, by induction one gets that

for some coefficients λi ∈ C the function f −
∑n

i>1 λi℘
i is holomorphic, hence constant, say λ0.

Then

f =
n∑
i>0

λi℘
i = Φ(℘), Φ(t) =

n∑
i>0

λit
i.
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Let now f be an arbitrary even elliptic function. Modulo Γ it can have only finitely many poles

outside Γ. Let p1, . . . , pr be the corresponding representatives of all poles not belonging to Γ.

Then ℘(z)− ℘(pi) has a zero at p1. Let νi be the multiplicity of the pole pi of f . Then

h(z) = f ·
r∏
i=1

(℘(z)− ℘(pi))
νi

does not have any poles outside of Γ and therefore there exists a polynomial Ψ(t) ∈ C[t] such

that Ψ(℘) = h(z). Then

f =
h(z)∏r

i=1(℘(z)− ℘(pi))νi
=

Ψ(℘)∏r
i=1(℘(z)− ℘(pi))νi

,

i. e., f = Φ(℘) for

Φ(t) =
Ψ(t)∏r

i=1(t− ℘(pi))νi
∈ C(t).

This concludes the proof. �

Odd elliptic functions. Notice that ℘′(z) is odd. Let f be an arbitrary odd elliptic function.

Then f
℘′

is an even elliptic function, hence there exists Φ(t) ∈ C(t) such that f = ℘′ · Φ(℘).

Finally we get

Theorem 12.2. Let X = C/Γ be a complex torus. Let ℘(z) = ℘(z; Γ) be the corresponding

Weierstraß ℘-function. Then MC/Γ(C/Γ) = C(℘) + ℘′(z)C(℘)

Remark 12.3. Notice that the proof of Theorem 12.2 is constructive

Corollary 12.4. MC/Γ(C/Γ) ∼= C(x)[y]/(y2 − 4x3 + g2x + g3), where g2 = 60
∑

06=γ∈Γ
1
γ4

,

g3 = 140
∑

06=γ∈Γ
1
γ6

Proof. Define a surjective homomorphism

C(x)[y]→MC/Γ(C/Γ), x 7→ ℘(z), 7→ ℘′(z).

Then by Proposition 11.5 y2 − 4x3 + g2x+ g3 lies in the kernel and we obtain a surjection

C(x)[y]/(y2 − 4x3 + g2x+ g3)→MC/Γ(C/Γ).

Since f is irreducible polynomial over C(x), we conclude that C(x)[y](y2 − 4x3 + g2x + g3) is

a field. Since non-zero field homomorphisms are injective, we conclude that MC/Γ(C/Γ) ∼=

C(x)[y]/(y2 − 4x3 + g2x+ g3). This concludes the proof. �
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Complex tori as smooth projective algebraic plane curves. Recall that the projective

plane

P2 = {〈x0, x1, x2〉 | (x0, x1, x2) ∈ C3 \ {0}},

has a natural structure of a complex manifold.

Definition 12.5. A plane projective curve C is the set of zeroes of a homogeneous polynomial

f ∈ C[z0, z1, z2]

C = Z(f) = {〈x0, x1, x2 ∈ P2 | f(x0, x1, x2) = 0〉}.

C is called smooth is it is a complex submanifold of P2 (in this case it is a Riemann surface).

Claim. C = Z(f) ⊂ P2 is smooth if and only if

Z(
∂f

∂z0

,
∂f

∂z1

,
∂f

∂z2

) = {〈x0, x1, x2〉 ∈ P2 |
∂f

∂zi
(x0, x1, x2) = 0, i = 0, 1, 2}

is empty, i. e., the partial derivatives of f do not have common zeroes in P2.

Proof. Exercise. �

Theorem 12.6. Every complex torus C/Γ is isomorphic to a smooth projective plane cubic

curve. More precisely, C/Γ ∼= Z(f), where

f = z0z
2
2 − 4z3

1 + g2z
2
0z1 + g3z

3
0 , g2 = 60

∑
06=γ∈Γ

1

γ4
, g3 = 140

∑
06=γ∈Γ

1

γ6
.

The isomorphism is given by the map

C/Γ ϕ−→ P2, [z] 7→

〈1, ℘(z), ℘′(z)〉, [z] 6= [0];

〈0, 0, 1〉, [z] = [0].

Proof(Sketch). Let C = Z(f). From the discussion above it is clear that ϕ(C/Γ) ⊂ C.

I. Bijectivity of ϕ : C/Γ→ C.

I.1. Injectivity.

Lemma 12.7. 1) ℘(z) = ℘(w) if and only if z = w mod Γ or z = −w mod Γ.

2) ℘′(z) = 0 if and only if 2z ∈ Γ, i. e., there are three different mod Γ zeroes ω1

2
, ω2

2
, ω1+ω2

2
.

0 ω1

ω1 + ω2ω2

ω1

2

ω2

2

ω1+ω2

2



64 OLEKSANDR IENA

So if z, w 6∈ Γ such that ϕ(z) = ϕ(w), then ℘(z) = ℘(w), ℘′(z) = ℘′(w). So either w = z

mod Γ (and hence [z] = [w]) or z = −w mod Γ and ℘′(z) = ℘′(−w) = −℘′(w) = −℘′(z). In

the second case 2℘′(z) = 0, thus ℘′(z) = 0. Then by Lemma 12.7 2z ∈ Γ and finally z = w

mod Γ. Since ϕ([z]) 6= 〈0, 0, 1〉 for all [z] 6= [0], we conclude that ϕ is injective.

Remark 12.8. In particular ℘ takes different values at ω1

2
, ω2

2
, ω1+ω2

2
(i. e., at zeroes of ℘′). Put

h(x) = 4x3 − g2x − g3. Then since ℘′(z)2 = h(℘(z)), we conclude that ℘(ω1

2
), ℘(ω2

2
), ℘(ω1+ω2

2
)

are 3 different zeroes of h, thus

h(x) = 4
(
x− ℘

(ω1

2

))
·
(
x− ℘

(ω2

2

))
·
(
x− ℘

(
ω1 + ω2

2

))
.

I.2 Surjectivity. It is clear that 〈0, 0, 1〉 ∈ ϕ(C/Γ).

Take an arbitrary 〈1, a, b〉 ∈ C. Since ℘ takes all values,there exists z ∈ C with ℘(z) = a.

Since b2 = ℘′(z)2 = h(℘(z)) = h(a) we conclude ℘′(z) = ±b. If ℘′(z) = b, then ϕ([z]) = 〈1, a, b〉.

If ℘′(z) = −b, then ϕ([−z]) = 〈1, ℘(−z), ℘′(−z)〉 = 〈1, ℘(z),−℘′(z)〉 = 〈1, a, b〉.

II. C is a smooth curve in P2 (i. e., submanifold). Indeed. Suppose the contrary. Then

there exists s = 〈s0, s1, s2〉 ∈ P2 such that

∂f

∂z0

(s) =
∂f

∂z1

(s) =
∂f

∂z2

(s) = 0.

One computes that this implies that

∆ = g3
2 − 27g2

3 = 0.

On the other hand one notes that ∆ is the discriminant of h(x) = 4x3 − g2x − g3. Since the

latter has 3 zeroes, we get ∆ 6= 0 and thus a contradiction. Therefore C is smooth.

III. From the definition of ϕ it follows that it is continuous. Clearly ϕ is holomorphic on

C/Γ \ {[0]}. By Theorem 2.1 ϕ is a holomorphic map to P2. Its image C is a submanifold, so

ϕ : C/Γ→ C is a holomorphic map of Riemann sirfaces. Since it is bijective, we conclude that

ϕ is an isomorphism, which concludes the proof. �

Definition 12.9. Smooth projective plane cubic curves are called elliptic curves. So complex

tori are elliptic curves.

j-invariant. We defined for τ ∈ H g2 = g2(τ), g3 = g3(τ). Thus one can consider g2 and g3 as

functions on H. These functions are holomorphic on H. One can show that for ( a bc d ) ∈ SL2(C)

g2

(
aτ + b

cτ + d

)
= (cτ + d)4 · g2(τ), g3

(
aτ + b

cτ + d

)
= (cτ + d)6 · g3(τ).

One says in this situation that g2 is a modular form of weight 4 and g3 is a modular form of

weight 6.
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Then ∆ = g3
2 − 27g2

3 has the property

∆

(
aτ + b

cτ + d

)
= (cτ + d)12 ·∆(τ)

and one says that ∆ is a modular form of weight 12. We showed above that ∆ = g3
2−27g2

3 6= 0,

so one obtains the following holomorphic function on H:

j(τ) =
g3

2(τ)

∆(τ)
.

Then

j

(
aτ + b

cτ + d

)
= j(τ),

so j is invariant under the action of SL2(Z) on H.

Definition 12.10. The holomorphic function j : H→ C is called j-invariant.

Therefore, there exists a unique factorization through H π−→ H/ SL2(Z), which by abuse of

notation is denoted by j as well.

H C

H/ SL2(Z)

j
//

π ��

∃!
��

Theorem 12.11. The map

H/ SL2(Z)
j−→ C, [τ ] 7→ j(τ)

is a bijection, i. e., two complex tori C/Γ(τ) and C/Γ(τ ′) are isomorphic if and only if j(τ) =

j(τ ′).

Proof. No proof. A proof can be found for example in [5]. �
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Exercises.

Exercise 44. Let Γ be a lattice in C and let ℘ be the corresponding Weierstraß function.

Notice that the elliptic functions ℘′′′′(z) and ℘′(z) · ℘′′′(z) are even with poles in Γ. Represent

them as polynomials in ℘.

Exercise 45. Let Γ be a lattice in C and let ℘ be the corresponding Weierstraß function.

Notice that the elliptic functions ℘′′′(z) and ℘(5)(z) are odd. Represent them as ℘′ · Ψ(℘) for

some Ψ(t) ∈ C(t).

Exercise 46. In the lecture we showed that

MC/Γ(C/Γ) ∼= C(x)[y]/(y2 − 4x3 + g2x+ g3).

Find the inverse of y3 in C(x)[y]/(y2 − 4x3 + g2x + g3). Use it to express (1/℘′(z))3 as a

polynomial in ℘′ with coefficients in C(℘).

Exercise 47. In the lecture we defined j-invariant

j(τ) =
g3

2(τ)

∆(τ)
, ∆(τ) = g3

2(τ)− 27g2
3(τ).

Compute the following values of j-invariant:

j

(
1

2
+ i

√
3

2

)
= 0, j(i) = 1.

In other words show that

g2

(
1

2
+ i

√
3

2

)
= 0, g3(i) = 0.
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13. Lecture 13

Integration of differential forms. Let U ⊂ X be an open subset of a Riemann surface X.

Let ω ∈ ΩX(U).

Let γ : [a, b]→ U be a smooth (i. e., piece-wise differentiable) path. This means that for every

chart ϕi : Ui → Vi, Ui ⊂ U , the functions ϕi ◦ γ : γ−1(Ui)→ Vi are piece-wise differentiable.

I. Assume there exists a chart ϕ : W → V , W ⊂ U such that γ([a, b]) ⊂ W . Write

ω|W = f · dϕ for f ∈ OX(W ) and define∫
γ

ω :=

b∫
a

f(γ(t)) · (ϕ(γ(t)))′dt

Claim. This definition does not depend on the choice of ϕ.

Proof. Exercise. �

II. One can always choose a partition of the interval [a, b], i. e.,

a = a0 < a1 < · · · < am = b

such that for γi := γ|[ai−1,ai] : [ai−1, ai] → X there exists a chart ϕi : Ui → Vi of X with

γi([ai−1, ai]) ⊂ Ui. Define now ∫
γ

ω :=
m∑
i=1

∫
γi

ω.

Claim. This definition does not depend on the choice of the partition.

Proof. Exercise. �

So, for every open subset U ⊂ X, for every ω ∈ ΩX(U), and for every smooth path γ :

[a, b]→ U , we get ∫
γ

ω ∈ C.

Remark 13.1. Analogously, for an open set U ⊂ X, for ω ∈ KX(U), and and for a smooth

path γ : [a, b]→ U such that γ([a, b]) does not contain poles of ω, one gets
∫
γ

ω as well. Indeed,

just replace U by U ′ = U \ {poles of ω}. Then ω ∈ ΩX(U ′) and γ([a, b]) ⊂ U ′.

Properties. I. Reparameterisation invariance. Let [a′, b′]
α−→ [a, b] be a smooth map such

that α(a′) = a, α(b′) = b. Let γ : [a, b]→ X be a smooth path. Then γ ◦ α : [a′, b′] is a smooth

path as well and ∫
γ

ω =

∫
γ◦α

ω.
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II. Linearity.
∫
γ

(λω1 + µω2) = λ
∫
γ

ω1 + µ
∫
γ

ω2 for differential forms ω1, ω2 around γ and for

λ, µ ∈ C.

III. Let γ : [a, b]→ X be a smooth path, let U be a neighbourhood of γ([a, b]), let f ∈ OX(U).

Then ∫
γ

df = f(γ(b))− f(γ(a)).

IV. Let {γi}n1 be a partition of a smooth path γ, i. e, γ = γ1γ2 . . . γn. Then∫
γ

ω =
n∑
i=1

∫
γi

ω.

V. Let γ−1 be the inverse path to a smooth path γ. Then∫
γ−1

ω = −
∫
γ

ω.

Remark 13.2. Every continuous path can be approximated by smooth paths. This allows to

define integrals of differential forms over arbitrary continuous paths.

Theorem 13.3. Let X be a Riemann surface. Let ω ∈ ΩX(X). Let γ ∼ δ be two homotopic

paths. Then ∫
γ

ω =

∫
δ

ω.

Proof (hint). This is a consequence of the Stokes’ theorem. �

Corollary 13.4. Let X be a RS, let x0 ∈ X. Consider the fundamental group π1(X, x0). Let

ω ∈ ΩX(X), then

π1(X, x0)→ C, [γ] 7→
∫
γ

ω

is a well-defined group homomorphism.

Proof. The map is well-defined by the previous theorem. Let γ, δ be two closed paths at x0.

By property (IV) of integrals it holds∫
γ·δ

ω =

∫
γ

ω +

∫
δ

ω.

Thus the map [γ] 7→
∫
γ

ω is a group homomorphism for every ω ∈ ΩX(X). �

http://en.wikipedia.org/wiki/Stokes'_theorem
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Definition 13.5. The number
∫
γ

ω is called period of γ with respect to ω. The homomorphism

∫
−

ω : π1(X, x0)→ C, [γ] 7→
∫
γ

ω,

is called the period homomorphism.

Exercise. Compute the periods of the generators of π1(C/Γ) with respect to some generator

ω of ΩC/Γ(C/Γ).

Definition 13.6. Let ω ∈ KX(U) for some open subset U of a RS X. Let a ∈ U . Let

z : U ′ → V be a local coordinate at a. Let ω|U ′ = fdz for some f ∈MX(U ′). Define

resa ω := resz(a)(f ◦ z−1),

this number is called the residue of ω at a.

Reminder 13.7. Let U ⊂ C be open, let b ∈ U , f ∈ OX(U \ {b}), and let

f(z) =
∑
i

ci(z − b)i

be its Laurent power series at b. Then

resb f = c−1.

Equivalently

resb f =
1

2πi

∮
b

fdz.

Remark 13.8. It makes no sense to define residues of meromorphic functions on RS because

it would depend on the choice of local coordinates.

Claim. resa ω defined as in Definition 13.6 does not depend on the choice of a local coordinate.

Theorem 13.9 (Residue theorem). Let X be a compact RS, let ω ∈ KX(X). Then∑
x∈X

resx ω = 0.

Proof (hint). Follows from the Stokes’ theorem. �

Example 13.10. Let f ∈MX(X). Put ω = df
f

. The residue theorem reads then as∑
p∈X

resp
df

f
= 0.

http://en.wikipedia.org/wiki/Pierre_Alphonse_Laurent
http://en.wikipedia.org/wiki/Stokes'_theorem
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For every p ∈ X choose a local coordinate z at p and write f locally around p as f = zkf̃ ,

where f̃ is a holomorphic function around p such that f̃(p) 6= 0 and k = ordp f . Then

df = (kzk−1f̃ + zk
∂f̃

∂z
)dz

and therefore
df

f
=

(
k

z
+

∂f̃
∂z

f̃

)
dz.

This means resp
df
f

= k = ordp f , so the residue theorem reads as∑
p∈X

ordp f = 0,

which we already know.

Theorem 13.11. Let S ⊂ X be a finite set. For a ∈ S let Ua be an open neighbourhood such

that Ua ∩Ub = ∅ for a 6= b. Let ωa ∈ KX(Ua) such that ωa ∈ ΩX(Ux \ {a}). Let
∑
a∈S

resa ωa = 0.

Then there exists ω ∈ KX(X) such that S is its set of poles and ω|Ua − ωa ∈ ΩX(Ua).

Proof. Without. �

Remark 13.12. This means that the the condition
∑

x∈X resx ω = 0 from the residue theorem

is the only restriction for the existence of meromorphic differential forms.

Corollary 13.13. On every compact Riemann surface X there exists a non-constant mero-

morphic function f ∈MX(X).

Proof. For every two different points p1, p2 ∈ X there exist differential forms ω1, ω2 ∈ KX(X)

such that p1 is the only pole of ω1 with ordp1 ω1 = −2, p2 is the only pole of ω2, ordp2 ω2 = −2.

Then ω1 = f · ω2 for some f ∈MX(X). One sees that f should be non-constant. �
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Exercises.

Exercise 48. Consider the lattice Γ = Z · 5 + Z · (2 + 3i). Let X = C/Γ be the corresponding

complex torus. Consider the path γ : [0, 1]→ X, γ(t) = [(12 + 9i) · t]. Let ω be the standard

generator of ΩX(X), i. e., for every chart ϕ : U → V it holds ω|U = dϕ. Compute∫
γ

ω.

Exercise 49. Let Γ = Zγ1 +Zγ2 be a lattice in C. Let X = C/Γ be the corresponding complex

torus.

Define δ1 : [0, 1] → X by δ1(t) = [t · γ1] and δ2 : [0, 1] → X by δ2(t) = [t · γ2]. Notice that δ1

and δ2 are smooth closed paths at the point [0] ∈ X. Moreover, they generate the fundamental

group of X.

Let ω be the standard generator of ΩX(X), i. e., for every chart ϕ : U → V it holds ω|U = dϕ.

Compute the integrals ∫
δ1

ω and

∫
δ2

ω.

Exercise 50. Consider the Riemann sphere Ĉ. Let z = ϕ0 : U0 → C and w = ϕ1 : U1 → C be

the standard charts. Consider the meromorphic function f = z3

z2−1
on Ĉ and define ω ∈ KĈ(Ĉ)

by the condition ω|U0 = fdz. Compute res1 ω and res−1 ω. Use the Residue theorem to obtain

the value of res∞ ω.

Exercise 51. Let D =
r∑
i=1

ai · xi be a principal divisor on a complex torus X = C/Γ, i. e.,

D = (f) for some meromorphic function f ∈MX(X). Show that

r∑
i=1

ai · xi = 0

as an element of X = C/Γ.

Hint: Let π : C → X be the canonical projection. Consider F (z) = f ◦ π(z). Choose a

fundamental parallelogram V in C such that there are no poles or zeros of F on its boundary

∂V . Consider the integral ∫
∂V

z ·
F ′(z)

F (z)
dz

and apply the standard residue theorem.
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Theorem. For a meromorphic function g on an open set V ⊂ C which possesses a continuous

extension to the closure of V one has

1

2πi

∫
∂V

g(z)dz =
∑
a∈V

resa g.
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14. Lecture 14

Definition 14.1. Let X be a compact RS, let

α1, . . . , αp, β1, . . . , βp

be some representatives of generators of the fundamental group π1(X) of X (cf. Lecture 4).

Let ω ∈ ΩX(X), define Ai(ω) =
∫
αi

ω, Bi(ω) =
∫
βi

ω. We obtain the linear maps

ΩX(X)
A−→ Cp, ω 7→ (A1(ω), A2(ω), . . . , Ap(ω)),

ΩX(X)
B−→ Cp, ω 7→ (B1(ω), B2(ω), . . . , Bp(ω)).

Theorem 14.2. A and B are isomorphisms of vector spaces.

Proof. No proof. A proof can be deduced from the theory of harmonic functions. �

Corollary 14.3. Let ω ∈ ΩX(X). Then

ω = 0 ⇔ Ai(ω) = 0 ∀i ⇔ Bi(ω) = 0 ∀i.

Definition 14.4. Fix a basis of ΩX(X), say {ω1, . . . , ωg} (assume g > 1). Then for every

closed curve α in X at x0 ∈ X the vector

(

∫
α

ω1, . . . ,

∫
α

ωg) ∈ Cg

is called a period of X with respect to {ω1, . . . , ωg}.

Denote by L = L(ω1, . . . , ωg) ⊂ Cg the set of all periods of X with respect to {ω1, . . . , ωg}.

Since ∫
α

ω +

∫
β

ω =

∫
α·β

ω,

we see that L is subgroup of Cg.

Consider an arbitrary period (
∫
α

ω1, . . . ,
∫
α

ωg). Since [α1], . . . , [αg], [β1], . . . , [βg] generate the

fundamental group, [α] can be expressed as a product of their powers. Then

(

∫
α

ω1, . . . ,

∫
α

ωg)

is a linear combination of

(

∫
αi

ω1, . . . ,

∫
αi

ωg), i = 1, . . . , g, and (

∫
βj

ω1, . . . ,

∫
βj

ωg), j = 1, . . . , g,
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with integer coefficients. In other words,

(

∫
α

ω1, . . . ,

∫
α

ωg)

is a linear combination with integer coefficients of the rows of the period matrix

A1(ω1) . . . A1(ωg)
...

. . .
...

Ag(ω1) . . . Ag(ωg)

B1(ω1) . . . B1(ωg)
...

. . .
...

Bg(ω1) . . . Bg(ωg)


.

So the rows of the period matrix generate L as an abelian group.

One sees that the rank (over C) of the period matrix is g. Moreover, one can show that its

rows are linearly independent over R. This means that L is a free abelian subgroup of Cg of

rank 2g, i. e., a lattice in Cg.

Definition 14.5. Define the Jacobian of X by

Jac(X) := Cg/L.

One introduces a complex structure on Jac(X) as for one-dimensional complex tori (page 5).

Then Jac(X) is a complex manifold of dimension g.

Exercise. Jac(C/Γ) ∼= C/Γ.

Fix a point q ∈ X of a compact Riemann surface X. For a point x ∈ X take some path γx

from q from x and consider x∫
q

ω1,

x∫
q

ω2, . . . ,

x∫
q

ωg

 :=

∫
γx

ω1, . . . ,

∫
γx

ωg

 .

It is an element in Cg. Of course it depends on the choice of γx. However if δx is another path

connecting q and x, for every ω ∈ ΩX(X)∫
γx

ω −
∫
δx

ω =

∫
γx

ω +

∫
δ−1
x

ω =

∫
γx·δ−1

x

ω,

where αx = γx · δ−1
x is a closed path at q. Therefore,∫

γx

ω1, . . . ,

∫
γx

ωg

−
∫
δx

ω1, . . . ,

∫
δx

ωg

 =

∫
αx

ω1, . . . ,

∫
αx

ωg

 ∈ L.
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Thus the map

λq : X → Jac(X) = Cg/L, x 7→ [

 x∫
q

ω1, . . . ,

x∫
q

ωg

]

is well-defined.

Moreover, it is holomorphic.

Exercise. Show that λq is holomorphic.

Since Jac(X) has a natural structure of an abelian group, one can extend λq by linearity to

a homomorphism

Λq : DivX → JacX,
∑
x∈X

ax · x 7→
∑
x∈X

ax · λq(x).

Remark 14.6. Λq depends on the choice of q ∈ X.

Consider its restriction to the subgroup Div0X ⊂ DivX.

Claim.

Λq|Div0X : Div0X → JacX

does not depend on the choice of q.

Proof. Since every D ∈ Div0X is a sum of divisors of the form a − b, a, b ∈ X, a 6= b, it is

enough to check the statement for D = a− b, a 6= b. Then

Λq(D) = [(

∫ a

q

ω1, . . . ,

∫ a

q

ωg)]− [(

∫ b

q

ω1, . . . ,

∫ b

q

ωg)] =

[(

∫ a

q

ω1 −
∫ b

q

ω1, . . . ,

∫ a

q

ωg −
∫ b

q

ωg)] = [(

∫ a

b

ω1, . . . ,

∫ a

b

ωg)],

i. e., does not depend on q. �

Definition 14.7. Define Λ := Λq|Div0X for some (every) q ∈ X.

We obtained a homomorphism Λ : Div0X → JacX. Recall that for f ∈ MX(X), (f) ∈

Div0X. Notice that (f) = (g) for f, g ∈ MX(X) implies that f
g
∈ OX(X) = C. Hence, to

know the divisor of f ∈ MX(X) is the same as to know f up to a multiplication by a scalar.

So, to describe MX(X) is the same as to describe PDivX ⊂ Div0X.

Theorem 14.8. I. (Abel) PDivX = Ker Λ, i. e., a divisor D ∈ Div0X is a divisor of some

meromorphic function f ∈MX(X) (D = (f)) if and only if Λ(X) = 0. In particular Pic0X =

Div0X/PDivX can be seen as a subgroup of JacX by means of the induced embedding

Pic0X → JacX, [D] 7→ Λ(D).

http://en.wikipedia.org/wiki/Niels_Henrik_Abel
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II. (Jacobi) Λ is surjective, in particular

Pic0X → JacX, [D] 7→ Λ(D).

is an isomorphism of abelian groups.

Proof. No proof. �

Corollary 14.9. λq : X → JacX is injective for every q ∈ X

Proof. Suppose that λq is not injective. Then there exist a, b ∈ X, a 6= b, with λq(a) = λq(b).

Then for D = a − b, Λ(D) = λq(a) − λq(b) = 0, hence there exists f ∈ MX(X) such that

D = (f). Then f has degree 1 as a map of Riemann surfaces X
f̂−→ Ĉ. Therefore X ∼= Ĉ, which

is a contradiction because we assumed gX > 1. �

Corollary 14.10. If gX = 1, then λq : X → JacX = C/L is an isomorphism, i. e., complex

tori are the only compact Riemann surfaces of genus 1.

Proof. λq is a holomorphic injective map of Riemann surfaces X → C/L, hence surjective, and

hence an isomorphism. �

Corollary 14.11 (Abel-Jacobi theorem for complex tori). Let X = C/Γ be a complex torus.

(0) Then JacX can be identified with X itself.

(1) Let D =
∑
i

ai · [xi] ∈ DivX be a divisor on X, ai ∈ Z, xi ∈ C. Let DC =
∑
i

aixi ∈ C.

Then under the identification JacX = X, the map Λ : Div0X → JacX = X is given by

D 7→ [DC] = DC + Γ ∈ X = C/Γ.

Hence

Pic0X → X, [D] 7→ [DC],

is an isomorphism of abelian groups.

(2) In other words, for D ∈ Div0X there exists f ∈ MX(X) with D = (f) if and only if

DC ∈ Γ.

Proof. Exercise. �

http://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
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Some final remarks. Let X be a compact Riemann surface of genus gX > 1. Then JacX

can be embedded into Pn for some n. Then the chain of the embeddings

X ⊂ JacX ⊂ Pn

gives an embedding of X into Pn as a submanifold.

Remark 14.12. Note that not every higher dimensional torus can be embedded into Pn.

However this is the case for the tori defined by period lattices.

Definition 14.13. A projective variety is a zero set of homogeneous polynomials f1, . . . , fm ∈

C[x0, . . . , xn]

Z(f1, . . . , fm) = {〈x0, . . . , xn〉 ∈ Pn | fi(x0, . . . , xn) = 0 ∀i = 1, . . . ,m}.

Theorem 14.14 (Chow). Compact complex submanifolds of Pn are projective varieties.

Corollary 14.15. Every compact Riemann surface can be realized as a projective variety, i. e.,

a projective algebraic curve.

Remark 14.16. Let C = Z(f) ⊂ P2 be a smooth plane algebraic curve, deg f = d. Then its

genus is

gC =
(d− 1)(d− 2)

2
.

In particular, gC = 0 for d = 1 and d = 2, gC = 1 for d = 3, gC = 3 for d = 4, gC = 6 for d = 5,

so one sees that not all compact Riemann surfaces can be realized as plane algebraic curves

(for example Riemann surfaces of genus 2).

Dimension of the moduli space. In our course we showed that the space of isomorphism

classes (so called moduli space) of compact Riemann surfaces of genus

• g = 0 consists of one point;

• g = 1 has dimension 1 and can be identified with C (using j-invariant).

One can show that for g > 2, the space Mg of the isomorphism classes of compact Riemann

surfaces of genus g has dimension 3g − 3.

http://en.wikipedia.org/wiki/W._L._Chow
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Exercises.

Exercise 52. (1) Let Γ be a lattice in C and let X = C/Γ be the corresponding complex

torus. Fix some generators α1 and β1 of the fundamental group of X, fix a basis of ΩX(X), and

compute the corresponding period matrix. You could use some of your results from Exercise 49.

(2) Let Γ be a lattice in C and let X = C/Γ be the corresponding complex torus. Show that

Jac(X) ∼= X.

Exercise 53. Let X be a compact Riemann surface of genus g > 1. Let {ω1, . . . , ωg} be a

basis of ΩX(X). Let L ⊂ Cg be the corresponding lattice of periods. For a fixed point q ∈ X

we constructed the map

λq : X → Jac(X) = Cg/L, x 7→ [(

x∫
q

ω1, . . . ,

x∫
q

ωg)].

Prove that λq is a holomorphic map.

Hint: Notice that it is enough to understand the following.

(1) Let w be a point in C. Let f be a holomorphic function in some open neighbourhood W of

w. Then in every open ball U around w, U ⊂ W , for every point x ∈ U , and for every path γx

that connects w and x, the integral ∫
γx

fdz

depends only on x and not on the choice of γx, hence the notation
x∫
w

fdz :=
∫
γx

fdz makes sense.

(2) Moreover, there exists an open ball U around w where f has a primitive function, i. e., a

holomorphic function F such that F ′(z) = f(z). Then
x∫
w

fdz =
x∫
w

F ′(z)dz = F (x)− F (w) and

hence the function

U 3 x 7→
x∫

w

fdz

is holomorphic.

Exercise 54. Let X = C/Γ be a complex torus, Γ = Z · ω1 + Z · ω2. Let D1 =
[
ω1

2

]
+
[
ω2

2

]
−[

ω1+ω2

2

]
, D2 =

[
ω1

2

]
+
[
ω2

2

]
− 2 ·

[
ω1+ω2

2

]
, D3 =

[
ω1

2

]
+
[
ω2

2

]
− 2 ·

[
ω1+ω2

4

]
.

Check whether D1, D2, D3 are principal divisors.
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Appendix A. Examples of compact Riemann surfaces with different genera.

For an arbitrary genus g ∈ Z>0 we are going to present an example of a compact Riemann

surface of genus g.

A.1. Genus 0. We know that up to an isomorphism there is only one Riemann compact surface

of genus 0. This is the Riemann sphere Ĉ or the projective line P1.

A.2. Genus 1. We know that the only compact Riemann surfaces of genus 1 are complex tori.

These can be seen as plane projective cubic curves given by the equation

zy2 = 4x3 − g2xz
2 − g3z

3.

In other words, complex tori are just closures in P2 of the affine curves C ⊂ C2,

C = {(x, y) | y2 = 4x3 − g2x− g3},

where C2 is embedded into P2 by

(x, y) 7→ 〈x, y, 1〉.

So, we can see elliptic curves as the closures in P2 of the affine curves of the form

C = {(x, y) | y2 = h(x)},

where h is a cubic polynomial with 3 different roots.

Reminder A.1. Notice that for a polynomial f ∈ C[x, y] of degree d the closure of the affine

zero set

Z(f) = {(x, y) | f(x, y) = 0} ⊂ C2

is a zero set of the homogenized polynomial F ∈ C[x, y, z] defined by F (x, y, z) = zd · f(x
z
, y
z
).

Namely,

Z(f) = Z(F ) = {〈x, y, z〉 | F (x, y, z) = 0}.

A.3. Generalizing elliptic curves. One could try to generalize the construction of elliptic

curves in order to get examples of Riemann surfaces of higher genera.
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A.3.1. Trying a straightforward approach. One easily notes that for a polynomial h ∈ C[x] the

curve

C = {(x, y) | y2 = h(x)} ⊂ C2

is smooth (is a submanifold of C2) if and only if all roots of h are different. Let h = c·
∏d

1(x−ai),

d > 3, with ai 6= aj for i 6= j.

Embed C2 into P2 as above by the map (x, y) 7→ 〈x, y, 1〉 and consider the closure C̄ of C in

P2. Then C̄ is defined by the equation

y2zd−2 = c ·
d∏
1

(x− aiz).

One sees that 〈0, 1, 0〉 is a singular point of C̄ if d > 3, so taking the closure in P2 of a smooth

curve in C2 ⊂ P2 does not always produce a submanifold of P2, i. e., C̄ is not always a Riemann

surface.

A.3.2. Another approach. Let us look at C2 as at the product C × C keeping in mind that C

can be seen as an open subset of Ĉ ∼= P1. This suggests to realize C2 as an open subset of a

line bundle over Ĉ ∼= P1.

Reminder A.2. A line bundle over Ĉ is a 2-dimensional complex manifold E and a holomorphic

map E
π−→ Ĉ such that over the standard open charts U0 and U1 of Ĉ the restrictions E|U0 =

π−1(U0) and E|U1 = π−1(U1) are isomorphic to U0×C and U0×C via isomorphisms φ0 and φ1

respectively such that π|π−1(U0) = pr1 ◦ φ0 and π|π−1(U1) = pr1 ◦ φ1 and the transition map

(U0 ∩ U1)× C
φ1φ
−1
0−−−→ (U0 ∩ U1)× C, (x, v) 7→ (x, g10(x)(v))

is given in the fibre over x ∈ U0 ∩ U1 by a linear map g10(x) : C→ C, i. e., g10 can be seen as

a holomorphic map g10 : U0 ∩ U1 → C∗.

Notice that it is enough to know g10 in order to reconstruct E up to an isomorphism. It is

known that up to an isomorphism E is defined by a gluing map g10 of the form g10(t) = tn for

some n ∈ Z.

Let E be given by the cocycle g10(t) = tn. Then E can be glued together from two pieces

U0 × C and U1 × C, each of which is identified with C2, the gluing is given by the map

C∗ × C ∼= (U0 ∩ U1)× C
φ1φ
−1
0−−−→ (U0 ∩ U1)× C −→ C∗ × C, (x, y) 7→ (1/x, yxn).
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Then the point (x, y) is mapped to (ξ, η) = (1/x, yxn). Since y2 = h(x) and x = 1/ξ, one

obtains y = η/xn = ηξn and therefore

η2ξ2n = h(1/ξ) =
1

ξd
· c ·

d∏
1

(1− aiξ).

Notice that the polynomial g(ξ) = c ·
∏d

1(1− aiξ) does not vanish at 0 and has different roots.

If δ = 2n+ d > 0, then

η2ξδ = g(ξ).

The curve in C2 given by

C1 = {(ξ, η) | η2ξδ − g(ξ) = 0}

is smooth. So the union of C0 = C and C1 is a Riemann surface in E. However, since C1 does

not contain any points of the form (0, η), C1 is contained in C0. So this construction does not

add any points to C0 and hence does not provide a compact Riemann surface.

If δ = 2n+ d 6 0, then for ε = −δ

η2 = ξεg(ξ).

The curve in C2 given by

C1 = {(ξ, η) | η2 − ξεg(ξ) = 0}

is smooth if only if the polynomial ξεg(ξ) does not have multiple roots, i. e., since g has only

simple roots different from zero, if and only if ε = 0 or ε = 1. Let X be the union of C0 = C

and C1. Then X is a Riemann surface in E. Moreover, X is compact as a union of two compact

sets

{(x, y) | y2 = h(x), |x| 6 1} ∪ {(ξ, η) | η2 = ξεg(ξ), |ξ| 6 1}.

The Riemann surfaces of this type are called hyperelliptic curves.

A.3.3. Genus of X. Since X is constructed as a submanifold of a line bundle E over Ĉ, one

obtains a natural holomorphic map

X
π−→ Ĉ

which is given over U0 and U1 by (x, y) 7→ x and (ξ, η) 7→ ξ respectively.

First of all, let us compute the degree of X
π−→ Ĉ. Notice that for every x ∈ U0 ⊂ Ĉ such that

h(x) 6= 0, there are exactly 2 points in the preimage π−1(x). Since there can be only finitely

many ramification points, one concludes that d(π) = 2.

The set of the ramification points coincides with the preimages of the points x ∈ Ĉ such that

either h(x) = 0 if x ∈ U0 or ξεg(ξ) = 0 if x = 1/ξ ∈ U1. There are d such points lying over
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U0 and 1 more point over ∞ ∈ Ĉ in the case ε = 1, i. e., if d is odd. The multiplicity of each

ramification point is 2, therefore ∑
x∈X

(multx π − 1) = d+ ε.

Let g denote the genus of X. Let us apply the Riemann-Hurwitz formula to this map. It

reads

2g − 2 = 2(−2) + d+ ε.

Therefore, g = d+ε
2
− 1, so one can obtain this way a compact Riemann surface of an arbitrary

genus g ∈ N.

Remark A.3. We have shown that a hyperelliptic curve X of genus g comes together with a

holomorphic map π : X → Ĉ of degree 2.

One can also show that the converse is true: every compact Riemann surface of genus g with

a holomorphic map π : X → Ĉ of degree 2 is isomorphic to a hyperelliptic curve.

Remark A.4. A hyperelliptic curve of genus g and the corresponding holomorphic map X → Ĉ

define 2(g + 1) points on Ĉ (images of the ramification points). Acting by an automorphism

of Ĉ, i. e., by the transformations x 7→ ax+b
cx+d

, ( a bc d ) ∈ GL2(C), we can always assume that 3

of the points are, for example, 0, 1,∞. Then the remaining 2g − 1 points parameterize the

isomorphism classes of hyperelliptic curves of genus g. Moreover, different (2g − 1)-tuples of

points in Ĉ provide different isomorphism classes of hyperelliptic curves.

The latter means that the subspace of the hyperelliptic curves in the moduli space Mg

(cf. page 77) has dimension 2g − 1. Since dimMg = 3g − 3 for g > 2, one concludes that the

codimension of the hyperelliptic locus in Mg equals g − 2.

So, for g > 3 there are compact Riemann surfaces that are not hyperelliptic.

A.4. Genus 2. In order to obtain a hyperelliptic Riemann surface of genus 2, it should hold

d+ ε = 6, so one can take d = 5 or d = 6.

Remark A.5. It can be shown that every compact Riemann surface of genus 2 is a hyperelliptic

curve. By Remark A.3 it is enough to show the existence of a holomorphic map X → Ĉ of

degree 2, or, equivalently, it is enough to find a meromorphic function on X with two poles.

A.5. Higher genera. As mentioned above, there must exist a non-hyperelliptic Riemann sur-

face of genus g > 3.
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Example A.6. Let C be a plane projective curve smooth curve of degree 4, for example

C = {〈x, y, z〉 ∈ P2 | x4 + y4 + z4 = 0}.

As we know, the genus of C is 3. However, C is not hyperelliptic.

More generally, a hyperelliptic curve can not be realized as a submanifold of P2.

Remark A.7. Notice that X is obtained from C = C0 by adding one point if d is odd. In

this case our construction is just a one-point compactification and therefore there is a natural

homeomorphism of X and C̄.

If d is even, X is obtained from C = C0 by adding two points.

Remark A.8. Notice that the closure of C = C0 in P2 is also a one-point compactification.

However, as we noticed above, C̄ is a submanifold of P2 only for d = 3. In the case d = 3 the

genus of X is 1 and our one-point compactification construction of X is isomorphic to C̄.

For d > 3, C̄ is singular. So, though X and C̄ are homeomorphic as topological spaces, the

complex structure on X is not induced by the complex structure of P2.
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