
ar
X

iv
:1

41
2.

32
95

v1
  [

m
at

h.
C

T
] 

 1
0 

D
ec

 2
01

4

WEAK FIBER PRODUCTS IN BICATEGORIES OF FRACTIONS

MATTEO TOMMASINI

Abstract. We fix any pair (C ,W) consisting of a bicategory and a class
of morphisms in it, admitting a bicalculus of fractions, i.e. a “localization”
of C with respect to the class W. In the resulting bicategory of fractions,
we identify necessary and sufficient conditions for the existence of weak fiber
products.
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Introduction

In 1967 Pierre Gabriel and Michel Zisman proved in [GZ] that given a category C

and a class W of morphisms in it, satisfying 4 technical conditions (called (CF1) –
(CF4), see Appendix B), it is possible to construct a “localization” of C with respect
to W, i.e. a category C

[
W

−1
]

(called “right category of fractions”) obtained from
C by formally adding inverses for all the morphisms in W. To be more precise,
objects of the category of fractions are the same as those of C ; a morphism from
A to B consists of an equivalence class of a triple (A′,w, f) as follows

A A′ B,
w f

(0.1)
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2 MATTEO TOMMASINI

such that w belongs to W (we refer to Appendix B for the description of the equiva-
lence relation used here). The technical conditions (CF) mentioned before allow to
prove that the compositions of such morphisms exists and that it satisfies the usual
properties of categories. Such a construction turned out to be very useful in several
branches of mathematics, for example homotopy theory and triangulated categories.

In 1997 Dorette Pronk generalized such a construction from categories to bica-
tegories (see [Pr]). To be more precise, given a bicategory C and a class W of
morphisms in it, satisfying 5 technical conditions (called (BF1) – (BF5), see Ap-
pendix A), there is a “right bicategory of fractions” C

[
W

−1
]
. Such a bicategory in

general is not unique, but any 2 bicategories of fractions for the same pair (C ,W)
are equivalent using the axiom of choice. Objects in C

[
W

−1
]

are the same as
those of C ; morphisms are given by triples (A′,w, f) as in (0.1) (but not quotiented
by an equivalence relation, differently from the case of categories of fractions). 2-
morphisms consist of classes of equivalence of quintuples of an object, a pair of
morphisms and a pair of 2-morphisms, satisfying some technical conditions (for
more details, we refer to Appendix A).

In the case when C is a category (considered as a trivial bicategory), then the 5
technical conditions (BF) coincide with the 4 technical conditions (CF) and any
resulting right bicategory of fractions for (C ,W) is equivalent to the (trivial bica-
tegory associated to) the right category of fractions for (C ,W).

Pronk introduced the notion of bicategory of fractions mainly in order to study
certain bicategories of stacks (we refer directly to [Pr] for details). More recently,
bicategories of fractions were used intensively mainly in relation with the notion of
butterflies; we refer to [AMMV], [MMV] and [R] for some recent interesting deve-
lopment in this area.

The problem that we want to investigate in the present paper is the following:
when do weak fiber products exist in a bicategory of fractions? We recall that weak
fiber products are the natural generalization of (strong) fiber products from cat-
egories to bicategories (in the case when the bicategory is a 2-category, they are
also called 2-fiber products; we refer to Definition 2.1 for the precise notion of weak
fiber product in any bicategory). Weak fiber products are one of the basic tools
used whenever one has to deal with a 2-category or bicategory of stacks (on a given
site). It is known that weak fiber products of stacks (over a given site) exist be-
cause stackification commutes with 2-fiber products. However, very few is known in
general about weak fiber products if we restrict to a strict sub-2-category of stacks
(for example, the sub-2-category of differentiable stacks in the 2-category of stacks
over the site of smooth manifolds, see e.g. [J, Definition 8.1]). Frequently, such
sub-2-categories can be described as (equivalent to) bicategories of fractions (see
e.g. [Pr, Corollary 43] for a description of the 2-category of differentiable stacks as
a bicategory of fractions). So it is interesting to understand under which conditions
weak fiber products exist in this framework.

If we try to understand the notion of weak fiber products in the case when we
work in a bicategory of fractions, we get soon stuck in a very complicated setup.
Roughly speaking (see Definition 2.1 for details), given any bicategory D , any triple
of objects A,B1, B2 and any pair of morphisms g1 : B1 → A and g2 : B2 → A,
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(a) a weak fiber product of g1 and g2 in D is the datum of 1 object C, 2 of
morphisms r1 : C → B1, r2 : C → B2 and 1 invertible 2-morphism Ω :
g1 ◦ r1 ⇒ g2 ◦ r2;

(b) in order to verify if a set (C, r1, r2,Ω) as above gives a weak fiber product, one
has to compare it against a set of 1 object D, 4 morphisms s1, s2, t, t′ and 3
2-morphisms Λ,Γ1,Γ2 (satisfying some technical conditions);

(c) the comparison of (C, r1, r2,Ω) against the set of data in (b) has to give back 1
morphism s and 3 2-morphisms Λ1,Λ2,Γ (satisfying some technical conditions).

In the special case when D is a bicategory of fractions C
[
W

−1
]
, then the objects

of D are the same as those of C , the morphisms of D are triples of an object and a
pair of morphisms as in (0.1) and the 2-morphisms of D are (classes of equivalence
of) quintuples of an object, a pair of morphisms and a pair of 2-morphisms of C .
Therefore, (a) – (c) above becomes:

(a)′ given any pair of morphisms with the same target in C
[
W

−1
]
, a weak fiber

product of them a priori consists of 4 objects, 6 morphisms and 2 2-morphisms
of C ;

(b)′ in order to verify if the set of data as in (a)′ is a weak fiber product in C
[
W

−1
]
,

a priori one has to compare it against a set of 8 objects, 14 morphisms and 6
2-morphisms of C (satisfying some technical conditions);

(c)′ the comparison of the data of (a)′ against the data of (b)′ has to give back
4 objects, 8 morphisms and 6 2-morphisms of C (satisfying some technical
conditions).

This means that having fixed any pair of morphisms with the same target in a
bicategory D ,

• there are 16 data of D (as in (a) – (c)) that we have either to construct (in order
to define a weak fiber product) or to consider (in order to prove that what we
constructed is actually a weak fiber product);

• if D = C
[
W

−1
]
, such data turn out to be given by 58 data of C .

As such, the problem of constructing a weak fiber product in a bicategory of frac-
tions apparently is very complicated. In the present paper we prove that such a
problem can be considerably simplified by reducing the 58 data mentioned above
to only 31. To be more precise, first of all we will show that it is sufficient to find
4 data of C in order to define a weak fiber product in C

[
W

−1
]

(instead of the 12
data needed a priori in (a)′ above):

Theorem 0.1. Let us fix any bicategory C and any class W of morphisms in

it, satisfying axioms (BF), and let us choose any bicategory of fractions C
[
W

−1
]

associated to the pair (C ,W). Given any pair of morphisms f1 : B1 → A and

f2 : B2 → A in C , the following facts are equivalent:

(i) for any pair of morphisms of W of the form w1 : B1 → B
1
, w2 : B2 → B

2
,

the pair of morphisms

B
1

B
2 A

(B1,w1,f1)

(B2,w2,f2)
(0.2)

admits a weak fiber product in C
[
W

−1
]
;

(ii) there are an object C, a pair of morphisms p1 : C → B1, p2 : C → B2 and an

invertible 2-morphism ω : f1 ◦ p1 ⇒ f2 ◦ p2 in C , such that the diagram



4 MATTEO TOMMASINI

C B1

B2 A

=⇒
Ω :=

[
C, idC , idC , i(idC ◦ idC)◦idC

, ω ∗ iidC

]
(C,idC ,p2)

(C,idC ,p1)

(B1,id
B1 ,f

1)

(B2,id
B2 ,f

2)

(0.3)
is a weak fiber product in C

[
W

−1
]
.

Moreover, given any pair of morphisms w1,w2 in W as above, a weak fiber product
for (0.2) can be obtained easily as a suitable modification of diagram (0.3) (we refer
to Corollary 4.2 for details).

In addition, we have the following result, where the 2-morphisms θ• are the asso-
ciators of the bicategory C (they are all trivial if C is a 2-category).

Theorem 0.2. Let us fix any bicategory C and any class W of morphisms in

it, satisfying axioms (BF), and let us choose any bicategory of fractions C
[
W

−1
]

associated to the pair (C ,W). Moreover, let us fix any set of data in C as in the

following diagram

C B1

B2 A

=⇒
ωp2

p1

f1

f2

(0.4)

Then the induced diagram (0.3) is a weak fiber product in C
[
W

−1
]

if and only if

the following 3 conditions hold for each object D of C :

(a) given any pair of morphisms qm : D → Bm for m = 1, 2 and any invertible

2-morphism λ : f1 ◦ q1 ⇒ f2 ◦ q2 in C , there are an object E, a morphism

v : E → D in W, a morphism q : E → C and a pair of invertible 2-morphisms

λm : qm ◦ v ⇒ pm ◦ q for m = 1, 2 in C , such that:

θ−1
f2,p2,q

⊙
(
ω ∗ iq

)
⊙ θf1,p1,q ⊙

(
if1 ∗ λ1

)
=

=
(
if2 ∗ λ2

)
⊙ θ−1

f2,q2,v ⊙
(
λ ∗ iv

)
⊙ θf1,q1,v; (0.5)

(b) given any pair of morphisms t, t′ : D → C and any pair of invertible 2-
morphisms γm : pm ◦ t ⇒ pm ◦ t′ for m = 1, 2 in C such that

θ−1
f2,p2,t′

⊙
(
ω ∗ it′

)
⊙ θf1,p1,t′ ⊙

(
if1 ∗ γ1

)
=

=
(
if2 ∗ γ2

)
⊙ θ−1

f2,p2,t
⊙
(
ω ∗ it

)
⊙ θf1,p1,t, (0.6)

there are an object F , a morphism u : F → D in W and an invertible 2-
morphism γ : t ◦ u ⇒ t′ ◦ u in C , such that

θpm,t′,u ⊙
(
ipm ∗ γ

)
=

(
γm ∗ iu

)
⊙ θpm,t,u for m = 1, 2; (0.7)



WEAK FIBER PRODUCTS IN BICATEGORIES OF FRACTIONS 5

(c) given any set of data (t, t′, γ1, γ2, F, u, γ) as in (b), if there is another choice

of data F̃ , ũ : F̃ → D in W and γ̃ : t ◦ ũ ⇒ t′ ◦ ũ invertible, such that

θpm,t′,ũ ⊙
(
ipm ∗ γ̃

)
=

(
γm ∗ iũ

)
⊙ θpm,t,ũ for m = 1, 2, (0.8)

then there are an object G, a morphisms z : G → F in W, a morphism z̃ : G →

F̃ and an invertible 2-morphism µ : u ◦ z ⇒ ũ ◦ z̃, such that

θt′,ũ,̃z ⊙
(
it′ ∗ µ

)
⊙ θ−1

t′,u,z ⊙
(
γ ∗ iz

)
=

=
(
γ̃ ∗ iz̃

)
⊙ θt,ũ,̃z ⊙

(
it ∗ µ

)
⊙ θ−1

t,u,z. (0.9)

As a consequence of Theorem 0.2, we have the following general principle. Suppose
that we are working in a given bicategory C and that for some reason not all the
weak fiber products exist in C , or that not all the “interesting” fiber products exist
there (for example, the pullbacks along a certain class of “good” maps, etc). Then
a possible way to try to solve this problem is the following:

(1) for each given pair of morphisms fm : Bm → A for m = 1, 2 (or for each given
pair (f1, f2) that is “interesting” as above), try to identify a “candidate” for a
weak fiber product in C , i.e. a quadruple (C, p1, p2, ω) as in (0.4);

(2) given any data as in (1) and any set of data (D, q1, q2, λ, t, t′, γ1, γ2) as in (a)
and (b) above, try to find a set of data (E, v, q, λ1, λ2, F, u, γ) as in (a) and (b),
with the only difference that we don’t impose that v and u belong to some class
W (since for the moment there is no such class);

(3) try to identify a class W of morphisms in C , such that:
• W contains all the morphisms v and u obtained from the previous procedure,

for any set of data (A,B1, B2, f1, f2) as in (1) and for any (D, q1, q2, λ, t, t′,

γ1, γ2) as in (2),
• W satisfies conditions (BF) for a bicategory of fractions;

(4) verify if for any data as in (1), condition (c) holds with the associated “candi-
date” (C, p1, p2, ω) (with the class W constructed in (3));

(5) if you are successful at each of the previous steps, this means that each pair
of morphisms (f1, f2) (or each “interesting” pair of morphisms (f1, f2)) has a
weak fiber product if considered in the right bicategory of fractions C

[
W

−1
]
.

In other terms, if you are lucky then you are able to construct the desired weak
fiber products, provided that you allow some morphisms of C to become internal
equivalences. Note however that in general there is no guarantee that the bicate-
gory C

[
W

−1
]

obtained in this way is “interesting”. For example, if we have already
managed to solve problem (1) and (2), but a choice for W as in (3) is given by
the entire class of morphisms of C , then in the bicategory of fractions obtained in
this way all the morphisms are internal equivalences; so in certain frameworks this
procedure could lead to a bicategory that is not useful or interesting to work with.

As a consequence of Theorem 0.2, we are also able to prove:

Corollary 0.3. Let us fix any pair (C ,W) satisfying axioms (BF) and let us choose

any bicategory of fractions C
[
W

−1
]

associated to the pair (C ,W). Let us fix any

pair of morphisms f1 : B1 → A and f2 : B2 → A. Let us suppose that there is a set

of data (C, p1, p2, ω) such that (0.4) is a weak fiber product in C . Then conditions

(a), (b) and (c) above are satisfied. Therefore, for each pair of morphisms in W

of the form w1 : B1 → B
1

and w2 : B2 → B
2
, there is a weak fiber product in

C
[
W

−1
]

for the pair of morphisms (B1,w1, f1) and (B2,w2, f2). In particular,
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if the bicategory C is closed under weak fiber products, then also the bicategory

C
[
W

−1
]

is closed under weak fiber products.

As a simple application of Theorems 0.1 and 0.2, in the last part of this paper we will
examine the particular case when C is a category (considered as a trivial bicategory)
and the pair (C ,W) satisfies conditions (CF) for a right calculus of fractions. As
we mentioned before, in this case the pair (C ,W) satisfies also conditions (BF)
for a right bicalculus of fractions and the right category of fractions associated to
(C ,W) (considered as a trivial bicategory) is equivalent to the right bicategory
of fractions associated to (C ,W). Moreover in this case weak fiber products are
simply (strong) fiber products. Then we will prove the following result.

Proposition 0.4. Let us fix any pair (C ,W) satisfying axioms (CF) for a right

calculus of fractions. Given any pair of morphisms f1 : B1 → A and f2 : B2 → A

in C , the following facts are equivalent:

(iii) for any pair of morphisms in W of the form w1 : B1 → B
1
and w2 : B2 → B

2
,

the pair of morphisms

B
1

B
2 A

[B1,w1,f1]

[B2,w2,f2]
(0.10)

admits a (strong) fiber product in the right category of fractions C
[
W

−1
]
;

(iv) there are an object C in C and a pair of morphisms p1 : C → B1, p2 : C →

B2, such f1 ◦ p1 = f2 ◦ p2 and such that the diagram

C B1

B2 A

y[C,idC ,p2]

[C,idC ,p1]

[B1,id
B1 ,f

1]

[B2,id
B2 ,f

2]
(0.11)

is a (strong) fiber product in the right category of fractions C
[
W

−1
]
.

Moreover, given any set of data (C, p1 : C → B1, p2 : C → B2) such that f1 ◦ p1 =
f2 ◦ p2, diagram (0.11) is a (strong) fiber product if and only if the following 2
conditions hold:

(d) given any object D and any pair of morphisms qm : D → Bm for m = 1, 2,
such that f1 ◦ q1 = f2 ◦ q2 in C , there are an object E, a morphism v : E → D

in W and a morphism q : E → C, such that qm ◦ v = pm ◦ q for each m = 1, 2;
(e) given any set of data (D, q1, q2, E, v, q) as in (d), if there is another choice of

data Ẽ, ṽ : Ẽ → D in W and q̃ : Ẽ → C, such that qm ◦ ṽ = pm ◦ q̃ for each

m = 1, 2, then there are an object F , a morphism u : F → E in W and a

morphism ũ : F → Ẽ, such that:

• v ◦ u = ṽ ◦ ũ;
• q ◦ u = q̃ ◦ ũ.

1. Notations

Through all this paper we will use the axiom of choice, that we therefore assume
without further remarks. The reason for this is twofold: first of all, the construction
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of bicategories of fractions in [Pr] in general requires the axiom of choice (except
for some special cases described in [T1, Corollary 0.6]); moreover we will use from
time to time the universal property of bicategories of fractions, that was proved
in [Pr, Theorem 21] implicitly using that axiom.

We mainly refer to [PW, § 1] and [L, § 1.5] for a general overview on bicate-
gories and pseudofunctors. Given any bicategory C , we denote its objects by
A,B, . . ., its morphisms by f, g, · · · and its 2-morphisms by α, β, · · · (we will use
AC , fC , αC , · · · if we have to recall that they belong to C when we are using
more than one bicategory in the computations). Given any triple of morphisms
f : A → B, g : B → C, h : C → D in C , we denote by θh,g,f the associator
h ◦ (g ◦ f) ⇒ (h ◦ g) ◦ f that is part of the structure of the bicategory C ; we de-
note by πf : f ◦ idA ⇒ f and υf : idB ◦f ⇒ f the right and left unitors for C

relative to any morphism f as above. Given another bicategory D , we will denote
by Θ•,Π• and Υ• its associators, right and left unitors respectively. We denote
by F = (F0,F1,F2, Ψ

F
• ,Σ

F
• ) any pseudofunctor C → D . Here for each pair of

morphisms f, g as above, ΨF
g,f is the associator from F1(g ◦ f) to F1(g) ◦F1(f) and

for each object A, ΣF
A is the unitor from F1(idA) to idF0(A).

We recall that a morphism e : A → B in a bicategory C is called an internal

equivalence (or, simply, an equivalence) of C if and only if there exists a triple
(d, δ, ξ), where d is a morphism from B to A and δ : idA ⇒ d ◦ e and ξ : e ◦ d ⇒ idB

are invertible 2-morphisms in C (in the literature sometimes the name “internal
equivalence” is used for denoting the whole quadruple (e, d, δ, ξ) instead of the
morphism e alone). In particular, also d is an internal equivalence and it is usually
called a quasi-inverse (or pseudo-inverse) for e (in general, the quasi-inverse of an
internal equivalence is not unique). An adjoint equivalence is a quadruple (e, d, δ, ξ)
as above, such that

υe ⊙
(
ξ ∗ ie

)
⊙ θe,d,e ⊙

(
ie ∗ δ

)
⊙ π−1

e = ie

and

πd ⊙
(
id ∗ ξ

)
⊙ θ−1

d,e,d ⊙
(
δ ∗ id

)
⊙ υ−1

d = id

(this more restrictive definition is actually the original definition of internal equi-
valence used for example in [Mac, pag. 83]). By [L, Proposition 1.5.7] a morphism
e is (the first component of) an internal equivalence if and only if it is the first
component of a (possibly different) adjoint equivalence.

2. Weak fiber products in a bicategory

Let us fix any bicategory D and any diagram in it as follows:

C B1

B2 A

=⇒
Ωr2

r1

g1

g2

(2.1)

with Ω invertible. Given any object D in D , we define a 1-category IsoD(D,C)
whose objects are all the 1-morphisms from D to C in D and whose morphisms are
all the invertible 2-morphisms between such 1-morphisms (as such, IsoD(D,C) is
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an internal groupoid in (Sets)). Moreover, we define also a groupoid IsoD(D, g1, g2)
as follows: its objects are all the triples (s1, s2,Λ), where s1 : D → B1, s2 : D → B2

are morphisms and Λ is any invertible 2-morphism from g1 ◦ s1 to g2 ◦ s2 in D .
A morphism from a triple (s1, s2,Λ) to a triple (s′ 1, s′ 2,Λ′) is any pair (Γ1,Γ2) of
invertible 2-morphisms Γ1 : s1 ⇒ s′ 1 and Γ2 : s2 ⇒ s′ 2, such that

Λ′ ⊙
(
ig1 ∗ Γ1

)
=

(
ig2 ∗ Γ2

)
⊙ Λ : g1 ◦ s1 =⇒ g2 ◦ s′ 2.

Then for each object D in D , diagram (2.1) induces a functor

FD : IsoD(D,C) −→ IsoD(D, g1, g2)

defined on each object s : D → C in IsoD(D,C) by

FD(s) :=
(
r1 ◦ s, r2 ◦ s,Θ−1

g2,r2,s
⊙ (Ω ∗ is)⊙Θg1,r1,s

)

and on each invertible 2-morphism Γ : s ⇒ s′ (i.e. each morphism in IsoD(D,C)
from s to s′) by

FD(Γ) :=
(
ir1 ∗ Γ, ir2 ∗ Γ

)
:
(
r1 ◦ s, r2 ◦ s,Θ−1

g2,r2,s
⊙ (Ω ∗ is)⊙Θg1,r1,s

)
−→

−→
(
r1 ◦ s′, r2 ◦ s′,Θ−1

g2,r2,s′
⊙ (Ω ∗ is′)⊙Θg1,r1,s′

)

(a direct check proves that FD is actually a functor). Then one can give the
following definition (see for example [MM, pag. 125] in the case when D is a 2-
category).

Definition 2.1. Let us fix any bicategory D and any diagram as (2.1) in it, with
Ω invertible. We say that such a diagram has the universal property of weak fiber

products if the functor FD described above is an equivalence of categories (actually,
of internal groupoids in (Sets)) for each object D in D . In this case, we say also
that (2.1) is a weak fiber product (also called weak pullback or 2-fiber product when
D is a 2-category) of the pair (g1, g2). Equivalently, (2.1) is a weak fiber product
if and only if the following 2 conditions hold for every object D:

A1(D): FD is essentially surjective, i.e. for any set of data (s1, s2,Λ) in D

with Λ invertible as follows

D B1

B2 A,

=⇒
Λs2

s1

g1

g2

there are a morphism s : D → C and a pair of invertible 2-morphisms
Λm : sm ⇒ rm ◦ s for m = 1, 2, such that

(
Ω ∗ is

)
⊙Θg1,r1,s ⊙

(
ig1 ∗ Λ1

)
= Θg2,r2,s ⊙

(
ig2 ∗ Λ2

)
⊙ Λ. (2.2)

For simplicity of exposition, we write below the 2 diagrams associated to
the left and to the right hand side of (2.2):
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B1

D

C

A,

⇓ is

⇓ ig1

⇓ Ω

⇓ Λ1

⇓ Θg1,r1,s

g1

g1r1◦s

s1

g1
◦r1

g2
◦r2

s

s

B1

D A;B2

B2

⇓ Λ2

⇓ Λ

⇓ ig2

⇓ Θg2,r2,s

s1

s2

r2◦s

g1

g2

g2

s
g2

◦r2

A2(D): FD is fully faithful, i.e. for any pair of morphisms t, t′ : D → C and
for any pair of invertible 2-morphisms Γm : rm ◦ t ⇒ rm ◦ t′ for m = 1, 2,
such that

Θ−1
g2,r2,t′

⊙
(
Ω ∗ it′

)
⊙Θg1,r1,t′ ⊙

(
ig1 ∗ Γ1

)
=

=
(
ig2 ∗ Γ2

)
⊙Θ−1

g2,r2,t
⊙
(
Ω ∗ it

)
⊙Θg1,r1,t, (2.3)

there is a unique invertible 2-morphism Γ : t ⇒ t′, such that irm ∗ Γ = Γm

for each m = 1, 2. The pair of 2-morphisms in (2.3) is given as follows:

D

B1

A,C

B2

⇓ Γ1 ⇓ ig1

⇓ Θg1,r1,t′

⇓ Ω⇓ it′

⇓ Θ−1
g2,r2,t′

t′

t′

g1

g1

g1
◦r1

g2
◦r2

r2◦t′ g2

r1◦t′

r1◦t

D

B2

A.C

B1

⇓ Γ2 ⇓ ig2

⇓ Θ−1
g2,r2,t

⇓ Ω⇓ it

⇓ Θg1,r1,t

t

t

g2

g2

g2
◦r2

g1
◦r1

r1◦t g1

r2◦t

r2◦t′

Remark 2.2. Equivalently, (2.1) is a weak fiber product in the bicategory D if
and only if the following conditions are satisfied:

• for each triple (D, s1 : D → B1, s2 : D → B2) in D the following property
holds:
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B1(D, s1, s2): for any invertible 2-morphism Λ : g1 ◦ s1 ⇒ g2 ◦ s2, there are a
morphism s : D → C and a pair of invertible 2-morphisms Λm : sm ⇒ rm◦s

for m = 1, 2, such that (2.2) holds;
• for each triple (D, t : D → C, t′ : D → C) in D the following property holds:

B2(D, t, t′): for any pair of invertible 2-morphisms Γm : rm ◦ t ⇒ rm ◦ t′ for
m = 1, 2, such that (2.3) holds, there is a unique invertible 2-morphism
Γ : t ⇒ t′, such that irm ∗ Γ = Γm for each m = 1, 2.

As we will see in Proposition 2.10 and 2.11, in general it is sufficient to verify that
condition B1, respectively B2, holds for a (smaller) subset of triples (D, s1, s2),
respectively (D, t, t′).

Remark 2.3. Given any category D , we denote by D2 the trivial bicategory ob-
tained from D , i.e. the bicategory whose objects and morphisms are the same as
those of D and whose 2-morphisms are only the 2-identities. Then it is easy to
see that a 2-commutative square in D2 is a weak fiber product if and only if the
same square is a (strong) fiber product in D . In other terms, weak fiber products
generalize the notion of (strong) fiber products from categories to 2-categories.

In the remaining part of this section we are going to state some useful results about
weak fiber products in any bicategory D . All such lemmas will play a crucial role
when D will be a bicategory of fractions C

[
W

−1
]
.

Proposition 2.4. Let us suppose that (2.1) (with Ω invertible) is a weak fiber

product in a bicategory D . Moreover, let us also fix any set of objects, morphisms

and 2-morphism as follows for each m = 1, 2:

em : B
m

−→ Bm, dm : Bm −→ B
m
,

∆m : idBm =⇒ dm ◦ em, Ξm : em ◦ dm =⇒ idBm , (2.4)

such that the quadruple (em, dm,∆m,Ξm) is an adjoint equivalence in D for each

m = 1, 2. Moreover, let us define

Ω := Θ−1
g2◦e2,d2,r2

⊙
(
Θg2,e2,d2 ∗ ir2

)
⊙
((

ig2 ∗
(
Ξ2

)−1
)
∗ ir2

)
⊙
(
Π−1

g2 ∗ ir2
)
⊙

⊙Ω⊙
(
Πg1 ∗ ir1

)
⊙
((

ig1 ∗ Ξ1
)
∗ ir1

)
⊙
(
Θ−1

g1,e1,d1 ∗ ir1
)
⊙Θg1◦e1,d1,r1 :

(g1 ◦ e1) ◦ (d1 ◦ r1) =⇒ (g2 ◦ e2) ◦ (d2 ◦ r2) (2.5)

(where Θ• and Π• are the associators and right unitors for D). Then the diagram

C B
1

B
2 A

=⇒
Ωd2

◦r2

d1
◦r1

g1
◦e1

g2
◦e2 (2.6)

is a weak fiber product in D .

Since each internal equivalence is the first component of an adjoint equivalence
(see [L, Proposition 1.5.7]), then this result implies at once that:

Corollary 2.5. Let us fix any pair of morphisms gm : Bm → A for m = 1, 2
that admit a weak fiber product in a bicategory D ; then for every pair of internal

equivalences em : B
m

→ Bm for m = 1, 2, the morphisms gm ◦ em : B
m

→ A for

m = 1, 2 have a weak fiber product in D .
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Proof of Proposition 2.4. For simplicity of exposition, we will give a complete proof

only in the case when D is a 2-category. In the general case, one has to add as-

sociators and unitors of D and use the coherence conditions on the bicategory D

wherever it is necessary. Apart from that, the proofs are exactly the same.

Since the quadruple (em, dm,∆m, Ξm) is an adjoint equivalence, then for each
m = 1, 2 we have:

(
Ξm ∗ iem

)
⊙
(
iem ∗∆m

)
= iem and

(
idm ∗ Ξm

)
⊙
(
∆m ∗ idm

)
= idm . (2.7)

Let us fix any object D in D and let us prove property A1(D) for diagram (2.6),
so let us fix any set of data (s1, s2,Λ) in D as follows, with Λ invertible

D B
1

B
2 A.

=⇒
Λ

g2
◦e2

s2 g1
◦e1

s1

(2.8)

Since D is a 2-category, we can consider Λ as defined from g1◦(e1◦s1) to g2◦(e2◦s2).
Using property A1(D) for diagram (2.1), there are a morphism s : D → C and a
pair of invertible 2-morphisms Λm : em ◦ sm ⇒ rm ◦ s for m = 1, 2, such that

(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
=

(
ig2 ∗ Λ2

)
⊙ Λ. (2.9)

For each m = 1, 2 we define an invertible 2-morphism

Λ
m

:=
(
idm ∗ Λm

)
⊙
(
∆m ∗ ism

)
: sm =⇒ (dm ◦ rm) ◦ s.

Then using the definitions of Λ
1
,Λ

2
and Ω (where we omit associators and unitors

of D since we are assuming that D is a 2-category), we get a series of identities as
follows:

(
Ω ∗ is

)
⊙
(
ig1◦e1 ∗ Λ

1
)
=

=
(
ig2 ∗

(
Ξ2

)−1
∗ ir2◦s

)
⊙
(
Ω ∗ is

)
⊙
(
ig1 ∗ Ξ1 ∗ ir1◦s

)
⊙

⊙
(
ig1◦e1◦d1 ∗ Λ1

)
⊙
(
ig1◦e1 ∗∆

1 ∗ is1
)

(∗)
=

(∗)
=

(
ig2 ∗

(
Ξ2

)−1
∗ ir2◦s

)
⊙
(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
⊙

⊙
(
ig1 ∗ Ξ1 ∗ ie1◦s1

)
⊙
(
ig1◦e1 ∗∆

1 ∗ is1
)

(∗∗)
=

(∗∗)
=

(
ig2 ∗

(
Ξ2

)−1
∗ ir2◦s

)
⊙
(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
(2.9)
=

(2.9)
=

(
ig2 ∗

(
Ξ2

)−1
∗ ir2◦s

)
⊙
(
ig2 ∗ Λ2

)
⊙ Λ

(∗)
=

(∗)
=

(
ig2◦e2◦d2 ∗ Λ2

)
⊙
(
ig2 ∗

(
Ξ2

)−1
∗ ie2◦s2

)
⊙ Λ

(∗∗)
=

(∗∗)
=

(
ig2◦e2◦d2 ∗ Λ2

)
⊙
(
ig2◦e2 ∗∆

2 ∗ is2
)
⊙ Λ =

(
ig2◦e2 ∗ Λ

2
)
⊙ Λ, (2.10)
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where the identities of the form
(∗)
= are a consequence of the interchange law in D

(see [B, Proposition 1.3.5]) and the identities denoted by
(∗∗)
= are obtained using

(2.7). Then identity (2.10) proves that diagram (2.6) satisfies property A1(D).

Now let us prove also property A2(D) for diagram (2.6), so let us fix any pair of

morphisms t, t
′
: D → C and any pair of invertible 2-morphisms Γ

m
: (dm◦rm)◦t ⇒

(dm ◦ rm) ◦ t
′
for m = 1, 2, such that

(
Ω ∗ it′

)
⊙
(
ig1◦e1 ∗ Γ

1
)
=

(
ig2◦e2 ∗ Γ

2
)
⊙
(
Ω ∗ it

)
. (2.11)

Then for each m = 1, 2 we define an invertible 2-morphism

Γm :=
(
Ξm ∗ irm◦t

′

)
⊙
(
iem ∗Γ

m
)
⊙
(
(Ξm)

−1
∗ irm◦t

)
: rm ◦ t =⇒ rm ◦ t

′
. (2.12)

Then using the interchange law on D , we have:

(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ1

)
(2.12)
=

(2.12)
=

(
Ω ∗ it′

)
⊙
(
ig1 ∗ Ξ1 ∗ ir1◦t′

)
⊙
(
ig1◦e1 ∗ Γ

1
)
⊙
(
ig1 ∗

(
Ξ1

)−1
∗ ir1◦t

)
(2.5)
=

(2.5)
=

(
ig2 ∗ Ξ2 ∗ ir2◦t′

)
⊙
(
Ω ∗ it′

)
⊙
(
ig1◦e1 ∗ Γ

1
)
⊙
(
ig1 ∗

(
Ξ1

)−1
∗ ir1◦t

)
(2.11)
=

(2.11)
=

(
ig2 ∗ Ξ2 ∗ ir2◦t′

)
⊙
(
ig2◦e2 ∗ Γ

2
)
⊙
(
Ω ∗ it

)
⊙
(
ig1 ∗

(
Ξ1

)−1
∗ ir1◦t

)
(2.5)
=

(2.5)
=

(
ig2 ∗ Ξ2 ∗ ir2◦t′

)
⊙
(
ig2◦e2 ∗ Γ

2
)
⊙
(
ig2 ∗

(
Ξ2

)−1
∗ ir2◦t

)
⊙

⊙
(
Ω ∗ it

)
⊙
(
ig1 ∗ Ξ1 ∗ ir1◦t

)
⊙
(
ig1 ∗

(
Ξ1

)−1
∗ ir1◦t

)
(2.12)
=

(2.12)
=

(
ig2 ∗ Γ2

)
⊙
(
Ω ∗ it

)
. (2.13)

Since property A2(D) holds for diagram (2.1), then (2.13) implies that there is a

unique invertible 2-morphism Γ : t ⇒ t
′
, such that

irm ∗ Γ = Γm for m = 1, 2. (2.14)

Then for each m = 1, 2, by interchange law we have:

idm◦rm ∗ Γ
(2.14)
= idm ∗ Γm (2.12)

=

(2.12)
=

(
idm ∗ Ξm ∗ irm◦t

′

)
⊙
(
idm◦em ∗ Γ

m
)
⊙

(
idm ∗ (Ξm)

−1
∗ irm◦t

)
(2.7)
=

(2.7)
=

(
(∆m)

−1
∗ idm◦rm◦t

′

)
⊙
(
idm◦em ∗ Γ

m
)
⊙
(
∆m ∗ idm◦rm◦t

)
=

= Γ
m
⊙
(
(∆m)−1

∗ idm◦rm◦t

)
⊙
(
∆m ∗ idm◦rm◦t

)
= Γ

m
. (2.15)

In order to conclude the proof, we need only to prove that Γ is the unique invertible

2-morphism from t to t
′
, such that (2.15) holds for each m = 1, 2. So let us suppose

that there is another invertible 2-morphism Γ
′
: t ⇒ t

′
, such that idm◦rm ∗ Γ

′
= Γ

m

for each m = 1, 2. Then using again the interchange law, for each m = 1, 2 we have:

Γm (2.12)
=

(
Ξm ∗ irm◦t

′

)
⊙
(
iem ∗ Γ

m
)
⊙
(
(Ξm)−1

∗ irm◦t

)
=

=
(
Ξm ∗ irm◦t

′

)
⊙
(
iem◦dm◦rm ∗ Γ

′
)
⊙
(
(Ξm)

−1
∗ irm◦t

)
=
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=
(
irm ∗ Γ

′
)
⊙
(
Ξm ∗ irm◦t

)
⊙
(
(Ξm)

−1
∗ irm◦t

)
= irm ∗ Γ

′
.

Since Γ is the unique invertible 2-morphism from t to t
′
such that (2.14) holds, we

conclude that Γ = Γ
′
. So we have proved that property A2(D) holds for diagram

(2.6). �

Lemma 2.6. Let us suppose that (2.1) (with Ω invertible) is a weak fiber product

in a bicategory D and let us fix any internal equivalence e : A → A in D . Then the

induced square

C B1

B2 A

=⇒
Ω := Θe,g2,r2 ⊙

(
ie ∗ Ω

)
⊙Θ−1

e,g1,r1r2

r1

e◦g1

e◦g2

(2.16)

is a weak fiber product in D .

See Appendix C for a proof.

Lemma 2.7. Let us fix any diagram as (2.1) (with Ω invertible) in a bicategory

D . Moreover, let us fix any pair of morphisms g1, g2 and any pair of invertible

2-morphisms Ω1 and Ω2 as follows:

B1

B2 A.

⇒

Ω1

⇓ Ω2

g1

g2

g1

g2

Then (2.1) is a weak fiber product if and only if the following diagram is a weak

fiber product

C B1

B2 A.

=⇒
Ω :=

(
Ω2 ∗ ir2

)
⊙ Ω⊙

( (
Ω1

)−1
∗ ir1

)
r2

r1

g1

g2

(2.17)

See Appendix C for a proof.

Theorem 2.8. Let us fix any bicategory D , any pair of morphisms g1 : B1 → A,

g2 : B2 → A and any triple of internal equivalences

e : A −→ A, e1 : B
1
−→ B1 and e2 : B

2
−→ B2.

Then the following facts are equivalent:

(a) the pair (g1, g2) has a weak fiber product;

(b) the pair (e ◦ (g1 ◦ e1), e ◦ (g2 ◦ e2)) has a weak fiber product.
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Moreover, if for each m = 1, 2 we fix a triple (dm,∆m,Ξm) such that the quadru-

ple (em, dm,∆m,Ξm) is an adjoint equivalence and if we assume that a weak fiber

product for (a) is given by diagram (2.1), then a weak fiber product for (b) is given

by the following diagram

C B
1

B
2 A,

=⇒
Ωd2

◦r2

d1
◦r1

e◦(g1
◦e1)

e◦(g2
◦e2)

where:

Ω := Θe,g2◦e2,d2◦r2 ⊙
{
ie ∗

[
Θ−1

g2◦e2,d2,r2
⊙
(
Θg2,e2,d2 ∗ ir2

)
⊙

⊙
((

ig2 ∗
(
Ξ2

)−1
)
∗ ir2

)
⊙
(
Π−1

g2 ∗ ir2
)
⊙ Ω⊙

(
Πg1 ∗ ir1

)
⊙

⊙
((

ig1 ∗ Ξ1
)
∗ ir1

)
⊙
(
Θ−1

g1,e1,d1 ∗ ir1
)
⊙ Θg1◦e1,d1,r1

]}
⊙Θ−1

e,g1◦e1,d1◦r1
:

(e ◦ (g1 ◦ e1)) ◦ (d1 ◦ r1) =⇒ (e ◦ (g2 ◦ e2)) ◦ (d2 ◦ r2).

Proof. The implication (a) ⇒ (b) and the last part of the Theorem are given by
Proposition 2.4 and Lemma 2.6, so we need only to prove (b) ⇒ (a).

As usual, for simplicity of exposition we assume that D is a 2-category. Let us
suppose that e ◦ g1 ◦ e1 and e ◦ g2 ◦ e2 have a weak fiber product. Let us fix
a pair of triples (dm,∆m,Ξm) for m = 1, 2 as in (2.4), such that the quadruple
(em, dm,∆m,Ξm) is an adjoint equivalence for each m = 1, 2. In particular, both
d1 and d2 are internal equivalences. Since the pair (e◦g1 ◦e1, e◦g2 ◦e2) has a weak
fiber product, then by Corollary 2.5 also the pair of morphisms

(g1 := e ◦ g1 ◦ e1 ◦ d1 : B1 → A, g2 := e ◦ g2 ◦ e2 ◦ d2 : B2 → A)

has a weak fiber product. Then for each m = 1, 2 we define an invertible 2-morphism
Ωm := ie◦gm ∗ (Ξm)−1 from e ◦ gm to gm. Then by Lemma 2.7 we conclude that
the pair of morphisms (e ◦ g1, e ◦ g2) has a weak fiber product.

Now e is an internal equivalence, so there are an internal equivalence d : A → A

and an invertible 2-morphism ∆ : idA ⇒ d ◦ e. By Lemma 2.6 we get that the pair
of morphisms (d ◦ e ◦ g1, d ◦ e ◦ g2) has a weak fiber product. Then by Lemma 2.7
applied to the pair of invertible 2-morphisms ∆∗ igm : gm ⇒ d◦ e◦ gm for m = 1, 2,
we get that the pair of morphisms (g1, g2) has a weak fiber product, so we have
proved that (b) implies (a). �

Lemma 2.9. Let us suppose that (2.1) (with Ω invertible) is a weak fiber product

in a bicategory D and let us suppose that e : C → C is an internal equivalence in

D . Then the induced square

C B1

B2 A

=⇒
Ω := Θ−1

g2,r2,e
⊙
(
Ω ∗ ie

)
⊙Θg1,r1,er2◦e

r1◦e

g1

g2

(2.18)
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is a weak fiber product in D .

See Appendix C for a proof.

In Remark 2.2 we described a set of conditions equivalent to conditions A1 and
A2. In the following 2 propositions we will show that given a diagram as (2.1),
it is sufficient to verify property B1 for it on a (in general smaller) set of triples
(D, s1, s2); analogously it is sufficient to verify property B2 on a (in general smaller)
set of triples (D, t, t′). This will be very useful in order to simplify the computations
when D is a bicategory of fractions C

[
W

−1
]
.

Proposition 2.10. Let us fix any diagram as (2.1) in a bicategory D , with Ω
invertible, and any triple (D, s1 : D → B1, s2 : D → B2). Moreover, let us fix

any other pair of morphisms sm : D → Bm and any pair of invertible 2-morphisms

Ωm : sm ⇒ sm for m = 1, 2. Then the following facts are equivalent:

(a) condition B1(D, s1, s2) for (2.1) holds;

(b) condition B1(D, s1, s2) for (2.1) holds.

Moreover, given any object D and any internal equivalence e : D → D, property

(a) is equivalent to:

(c) condition B1(D, s1 ◦ e, s2 ◦ e) for (2.1) holds.

Proof. As usual, for simplicity of exposition let us suppose that D is a 2-category.
Let us firstly prove that (a) implies (b), so let us fix any invertible 2-morphism
Λ : g1 ◦ s1 ⇒ g2 ◦ s2. Then we define an invertible 2-morphism

Λ :=
(
ig2 ∗

(
Ω2

)−1
)
⊙ Λ⊙

(
ig1 ∗ Ω1

)
: g1 ◦ s1 =⇒ g2 ◦ s2. (2.19)

Since we are assuming (a), then there are a morphism s : D → C and a pair of
invertible 2-morphisms Λm : sm ⇒ rm ◦ s for m = 1, 2, such that

(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
=

(
ig2 ∗ Λ2

)
⊙ Λ. (2.20)

Then for each m = 1, 2 we define Λ
m

:= Λm ⊙ (Ωm)−1 : sm ⇒ rm ◦ s, so:

(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ

1
)
=

(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
⊙
(
ig1 ∗

(
Ω1

)−1
)

(2.20)
=

(2.20)
=

(
ig2 ∗ Λ2

)
⊙ Λ⊙

(
ig1 ∗

(
Ω1

)−1
)

(2.19)
=

(
ig2 ∗ Λ

2
)
⊙ Λ.

Therefore B1(D, s1, s2) holds, i.e. (b) is satisfied.

Since Ω1 and Ω2 are invertible by hypothesis, then an analogous proof shows that
(b) implies (a).

Now let us fix any object D and any internal equivalence e : D → D and let
us prove that (a) implies (c). Since e is an internal equivalence, we choose an
internal equivalence d : D → D and invertible 2-morphisms ∆ : idD ⇒ d ◦ e and
Ξ : e ◦ d ⇒ idD, such that

(
Ξ ∗ ie

)
⊙
(
ie ∗∆

)
= ie and

(
id ∗ Ξ

)
⊙
(
∆ ∗ id

)
= id. (2.21)

In order to prove that (c) holds, let us fix any invertible 2-morphism Λ : g1◦s1◦e ⇒
g2 ◦ s2 ◦ e. Then we define an invertible 2-morphism

Λ :=
(
ig2◦s2 ∗ Ξ

)
⊙
(
Λ ∗ id

)
⊙
(
ig1◦s1 ∗ Ξ

−1
)
: g1 ◦ s1 =⇒ g2 ◦ s2. (2.22)
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Since condition B1(D, s1, s2) holds for (2.1), then there are a morphism s : D → C

and a pair of invertible 2-morphisms Λm : sm ⇒ rm ◦s for m = 1, 2, such that (2.2)
holds. Then we set s := s ◦ e : D → C and

Λ
m

:= Λm ∗ ie : sm ◦ e =⇒ rm ◦ s ◦ e = rm ◦ s for m = 1, 2. (2.23)

Then we have:

(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ

1
)

(2.23)
=

[(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)]
∗ ie

(2.2)
=

(2.2)
=

[(
ig2 ∗ Λ2

)
⊙ Λ

]
∗ ie

(2.23)
=

(
ig2 ∗ Λ

2
)
⊙
(
Λ ∗ ie

)
(2.22),(2.21)

=
(
ig2 ∗ Λ

2
)
⊙ Λ.

So we have proved that condition B1(D, s1 ◦ e, s2 ◦ e) holds for (2.1), i.e. we have
proved that (c) holds.

Conversely, let us suppose that (c) holds and let us prove that (a) holds. Let us
choose any internal equivalence d and any pair of invertible 2-morphisms ∆ and Ξ
as above. By proceeding as in the proof of (a)⇒(c) already given, we have that (c)
implies that B1(D, s1 ◦ e ◦ d, s2 ◦ e ◦ d) holds for (2.1). Then using the equivalence
of (b) with (a) and the pair of invertible 2-morphisms Ωm := ism ∗ Ξ for m = 1, 2,
we conclude that B1(D, s1, s2) holds for (2.1), i.e. (a) is satisfied. This suffices to
conclude. �

Proposition 2.11. Let us fix any diagram as (2.1) in a bicategory D , with Ω
invertible, and any triple (D, t : D → C, t′ : D → C). Moreover, let us fix another

pair of morphisms t, t
′
: D → C and any pair of invertible 2-morphisms Φ : t ⇒ t

and Φ′ : t′ ⇒ t
′
. Then the following facts are equivalent:

(a) condition B2(D, t, t′) holds for (2.1);

(b) condition B2(D, t, t
′
) holds for (2.1).

Moreover, given any object D and any internal equivalence e : D → D, property

(a) is equivalent to:

(c) condition B2(D, t ◦ e, t′ ◦ e) holds for (2.1).

Proof. Let us firstly prove that (a) implies (b), so let us fix any pair of invertible

2-morphisms Γ
m

: rm ◦ t ⇒ rm ◦ t
′
for m = 1, 2, such that

(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ

1
)
=

(
ig2 ∗ Γ

2
)
⊙
(
Ω ∗ it

)
. (2.24)

Then for each m = 1, 2 we define an invertible 2-morphism

Γm :=
(
irm ∗ (Φ′)

−1
)
⊙ Γ

m
⊙
(
irm ∗ Φ

)
: rm ◦ t =⇒ rm ◦ t′. (2.25)

Then by interchange law we have:

(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ1

)
(2.25)
=

(2.25)
=

(
Ω ∗ it′

)
⊙
(
ig1◦r1 ∗ (Φ

′)
−1

)
⊙
(
ig1 ∗ Γ

1
)
⊙
(
ig1◦r1 ∗ Φ

)
=

=
(
ig2◦r2 ∗ (Φ

′)
−1

)
⊙
(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ

1
)
⊙
(
ig1◦r1 ∗ Φ

)
(2.24)
=

(2.24)
=

(
ig2◦r2 ∗ (Φ

′)
−1

)
⊙
(
ig2 ∗ Γ

2
)
⊙
(
Ω ∗ it

)
⊙
(
ig1◦r1 ∗ Φ

)
=

=
(
ig2◦r2 ∗ (Φ

′)
−1

)
⊙
(
ig2 ∗ Γ

2
)
⊙
(
ig2◦r2 ∗ Φ

)
⊙
(
Ω ∗ it

)
(2.25)
=
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(2.25)
=

(
ig2 ∗ Γ2

)
⊙
(
Ω ∗ it

)
.

Since we are assuming (a), then there is a unique invertible 2-morphism Γ : t ⇒ t′

such that irm ∗Γ = Γm for each m = 1, 2. Then we define an invertible 2-morphism

Γ := Φ′ ⊙ Γ⊙ Φ−1 : t ⇒ t
′
. Therefore, for each m = 1, 2 we have:

Γ
m (2.25)

=
(
irm ∗ Φ′

)
⊙ Γm ⊙

(
irm ∗ Φ−1

)
=

=
(
irm ∗ Φ′

)
⊙
(
irm ∗ Γ

)
⊙
(
irm ∗ Φ−1

)
= irm ∗ Γ.

Now let us suppose that there is another invertible 2-morphism Γ
′
: t ⇒ t

′
, such

that Γ
m

= irm ∗ Γ
′

for each m = 1, 2. Then we define an invertible 2-morphism

Γ′ := (Φ′)−1 ⊙ Γ
′
⊙ Φ : t ⇒ t′. Therefore, for each m = 1, 2 we have:

Γm (2.25)
=

(
irm ∗ (Φ′)

−1
)
⊙ Γ

m
⊙
(
irm ∗ Φ

)
=

=
(
irm ∗ (Φ′)

−1
)
⊙
(
irm ∗ Γ

′
)
⊙
(
irm ∗ Φ

)
= irm ∗ Γ′.

Since Γ is the unique invertible 2-morphism such that irm∗Γ = Γm for each m = 1, 2,

then we get that Γ′ = Γ. Therefore, we conclude that Γ
′
= Γ, so we have proved

that B2(D, t, t
′
) holds for (2.1), i.e. that (b) holds. Since Φ and Φ′ are invertible,

an analogous proof shows that (b) implies (a).

Now let us fix any object D and any internal equivalence e : D → D and let
us prove that (a) implies (c). So let us fix any pair of invertible 2-morphisms

Γ
m

: rm ◦ t ◦ e ⇒ rm ◦ t′ ◦ e for m = 1, 2, such that

(
Ω ∗ it′◦e

)
⊙
(
ig1 ∗ Γ

1
)
=

(
ig2 ∗ Γ

2
)
⊙
(
Ω ∗ it◦e

)
. (2.26)

Let us choose any internal equivalence d and any pair of invertible 2-morphisms ∆
and Ξ as in the proof of Proposition 2.10 (in particular, let us assume that (2.21)
holds). For each m = 1, 2, let us define an invertible 2-morphism

Γm :=
(
irm◦t′ ∗ Ξ

)
⊙
(
Γ
m
∗ id

)
⊙
(
irm◦t ∗ Ξ

−1
)
: rm ◦ t =⇒ rm ◦ t′. (2.27)

Then by interchange law we get:

(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ1

)
(2.27)
=

(2.27)
=

(
Ω ∗ it′

)
⊙
(
ig1◦r1◦t′ ∗ Ξ

)
⊙
(
ig1 ∗ Γ

1
∗ id

)
⊙
(
ig1◦r1◦t ∗ Ξ

−1
)
=

=
(
ig2◦r2◦t′ ∗ Ξ

)
⊙
(
Ω ∗ it′◦e◦d

)
⊙
(
ig1 ∗ Γ

1
∗ id

)
⊙
(
ig1◦r1◦t ∗ Ξ

−1
)

(2.26)
=

(2.26)
=

(
ig2◦r2◦t′ ∗ Ξ

)
⊙
(
ig2 ∗ Γ

2
∗ id

)
⊙
(
Ω ∗ it◦e◦d

)
⊙
(
ig1◦r1◦t ∗ Ξ

−1
)
=

=
(
ig2◦r2◦t′ ∗ Ξ

)
⊙
(
ig2 ∗ Γ

2
∗ id

)
⊙
(
ig2◦r2◦t ∗ Ξ

−1
)
⊙
(
Ω ∗ it

)
(2.27)
=

(2.27)
=

(
ig2 ∗ Γ2

)
⊙
(
Ω ∗ it

)
. (2.28)

By (a), condition B2(D, t, t′) holds for diagram (2.1), so by (2.28) there is a unique
invertible 2-morphism Γ : t ⇒ t′, such that irm ∗ Γ = Γm for each m = 1, 2. We set
Γ := Γ ∗ ie : t ◦ e ⇒ t′ ◦ e. Then using the interchange law, for each m = 1, 2 we
have:
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irm ∗ Γ = irm ∗ Γ ∗ ie = Γm ∗ ie
(2.27)
=

(2.27)
=

(
irm◦t′ ∗ Ξ ∗ ie

)
⊙
(
Γ
m
∗ id◦e

)
⊙
(
irm◦t ∗ Ξ

−1 ∗ ie

)
(2.21)
=

(2.21)
=

(
irm◦t′◦e ∗∆

−1
)
⊙
(
Γ
m
∗ id◦e

)
⊙
(
irm◦t◦e ∗∆

)
= Γ

m
.

Then we need only to prove the uniqueness of Γ. Let us suppose that Γ
′
is another

invertible 2-morphism from t ◦ e to t′ ◦ e, such that irm ∗Γ
′
= Γ

m
for each m = 1, 2.

We set

Γ′ :=
(
it′ ∗ Ξ

)
⊙
(
Γ
′
∗ id

)
⊙
(
it ∗ Ξ

−1
)
: t =⇒ t′. (2.29)

Then for each m = 1, 2 we have:

irm ∗ Γ′ (2.29)
=

(
irm◦t′ ∗ Ξ

)
⊙
(
irm ∗ Γ

′
∗ id

)
⊙
(
irm◦t ∗ Ξ

−1
)
=

=
(
irm◦t′ ∗ Ξ

)
⊙
(
Γ
m
∗ id

)
⊙
(
irm◦t ∗ Ξ

−1
)

(2.27)
= Γm.

By uniqueness of Γ, we get that Γ = Γ′. Therefore,

Γ = Γ ∗ ie = Γ′ ∗ ie
(2.29)
=

(
it′ ∗ Ξ ∗ ie

)
⊙
(
Γ
′
∗ id◦e

)
⊙
(
it ∗ Ξ

−1 ∗ ie

)
(2.21)
= Γ

′
.

So B2(D, t ◦ e, t′ ◦ e) holds for diagram (2.1), i.e. (c) holds. Now let us assume that
(c) holds and let us prove that (a) holds. Since d is an internal equivalence, using
the proof that (a) implies (c) we get that B2(D, t ◦ e ◦ d, t′ ◦ e ◦ d) holds for (2.1).
Then using the equivalence of (a) and (b) and the pair of invertible 2-morphisms
Φ := it ∗ Ξ and Φ′ := it′ ∗ Ξ, we get that B2(D, t, t′) holds for (2.1), i.e. (a) is
satisfied. �

3. Weak fiber products in equivalent bicategories

Given any pair (C ,W) satisfying conditions (BF) for a right bicalculus of fractions
(see Appendix A), in general the associated right bicategory of fractions is unique

only up to equivalences of bicategories, since the “standard” construction (as de-
scribed in [Pr, § 2.2 and 2.3]) depends on a set of choices C(W) involving axioms
(BF). In the next pages we will need to do all the computations of weak fiber pro-
ducts in a chosen right bicategory of fractions for the pair (C ,W) and then use
this result in order to get a similar result for any other right bicategory of fractions
for (C ,W).

Therefore, the aim of this section is to prove that weak fiber products are preserved

by equivalences of bicategories. We recall from [St, (1.33)] that given any pair of
bicategories A and B, a pseudofunctor F : A → B is a weak equivalence of bica-

tegories (also known as weak biequivalence) if and only if the following conditions
hold:

(X1) for each object AA , there are an object AB and an internal equivalence from
F0(AA ) to AB in B;

(X2) for each pair of objects AA , BA , the functor F(AA , BA ) is an equivalence of
categories from A (AA , BA ) to B(F0(AA ),F0(BA )).

Since we are assuming the axiom of choice, then each weak equivalence of bica-

tegories is a (strong) equivalence of bicategories (see [PW, § 1]), i.e. it admits a
quasi-inverse. Conversely, each strong equivalence of bicategories is also a weak
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equivalence. So from now on we will simply write “equivalence of bicategories” for
any weak, equivalently strong, equivalence of bicategories.

Lemma 3.1. Let us suppose that F : A → B is an equivalence of bicategories;

moreover, let us fix any weak fiber product in A as follows:

CA B1
A

B2
A

AA .

=⇒
ΩA

g2

A

r2
A g1

A

r1
A

(3.1)

Then the induced diagram

F0(CA ) F0(B
1
A
)

F0(B
2
A
) F0(AA )

=⇒
ΩB := ΨF

g2

A
,r2

A

⊙F2(ΩA )⊙
(
ΨF

g1

A
,r1

A

)−1

F1(g
2

A
)

F1(r
2

A
) F1(g

1

A
)

F1(r
1

A
)

(3.2)

is a weak fiber product in B (here the 2-morphisms ΨF
• are the associators for F).

See Appendix C for a proof.

Proposition 3.2. Let us suppose that F : A → B is an equivalence of bicategories;

moreover, let us fix any triple of objects AA , B1
A
, B2

A
and any pair of morphisms

gm
A

: Bm
A

→ AA for m = 1, 2. Then the pair (g1
A
, g2

A
) has a weak fiber product in

A if and only if the pair (F1(g
1
A
),F1(g

2
A
)) has a weak fiber product in B.

Proof. One of the 2 implication is simply Lemma 3.1. So we need only to prove the
opposite implication. So let us suppose that the pair (F1(g

1
A
),F1(g

2
A
)) has a weak

fiber product in B. Since F is an equivalence of bicategories, then by [L, § 2.2] there
are an equivalence of bicategories G : B → A and a pseudonatural equivalence of
pseudofunctors µ : G ◦ F ⇒ idA . Since G is an equivalence of bicategories, then by
Lemma 3.1 (with the roles of A and B reversed, and F replaced by G) we have
that the pair of morphisms:

(G1 ◦ F1(g
1
A ), G1 ◦ F1(g

2
A ))

has a weak fiber product in A . Moreover, since µ is a pseudonatural equivalence
of pseudofunctors, for each m = 1, 2 we have an invertible 2-morphism in A :

µ(gmA ) : G1 ◦ F1(g
m
A ) =⇒ gmA .

So by Lemma 2.7 we conclude that the pair (g1
A
, g2

A
) has a weak fiber product in

A . �

4. Weak fiber products in bicategories of fractions

In this section and in the following ones, C will be a fixed bicategory and W will be
a fixed class of morphisms in it, such that the pair (C ,W) satisfies conditions (BF)
for a right bicalculus of fractions (see Appendix A). We recall that the construction
of a bicategory of fractions in [Pr] depends on a set of choices C(W) involving
axioms (BF). For more details on the construction of bicategories of fractions, we
refer directly to Appendix A. Then we are ready to give the following:
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Proof of Theorem 0.1. First of all, let us assume (ii) and let us prove that (i)
holds. By (ii), there is a weak fiber product in C

[
W

−1
]

for the pair of morphisms
(Bm, idBm , fm) for m = 1, 2. Now for each m = 1, 2 we consider the morphism

em := (Bm,wm, idBm) : B
m

→ Bm. By [Pr, Proposition 20] each em is an inter-
nal equivalence in C

[
W

−1
]

because wm belongs to W. So by Corollary 2.5 for

D := C
[
W

−1
]
, the morphisms gm ◦ em for m = 1, 2 have a weak fiber product.

Now for each m = 1, 2 we consider an invertible 2-morphism in C
[
W

−1
]

as follows:

Ωm :=
[
Bm, idBm , idBm , πwm ◦ idBm , πfm◦idBm

]
:

gm ◦ em =
(
Bm,wm ◦ idBm , fm ◦ idBm

)
=⇒

(
Bm,wm, fm

)

(where the 2-morphisms π• are the right unitors of C ). Using Lemma 2.7, we con-
clude that the pair of morphisms in (0.2) has a weak fiber product, i.e. (i) holds.

Now let us assume (i) and let us prove that (ii) holds. If we choose wm := idBm for
each m = 1, 2 and we use the definition of morphisms in a bicategory of fractions,
then there are 3 objects T, T 1, T 2, a pair of morphisms vm : Tm → T in W for
m = 1, 2, a pair of morphisms tm : Tm → Bm for m = 1, 2 in C and an invertible 2-
morphism Ω1 in C

[
W

−1
]
, such that the following diagram is a weak fiber product

in C
[
W

−1
]
:

T B1

B2 A.

=⇒
Ω1

(B2,id
B2 ,f

2)

(T 2,v2,t2) (B1,id
B1 ,f

1)

(T 1,v1,t1)

(4.1)

For simplicity of exposition, from now on we assume that C is a 2-category instead
of a bicategory. Note that even under this restriction, in general C

[
W

−1
]

is only
a bicategory, with trivial unitors but possibly non-trivial associators. So we will
have anyway to explicitly write the associators Θ• for C

[
W

−1
]
.

As we mentioned above, the bicategory C
[
W

−1
]

is not unique, but it depends on
a set of choices C(W) (for any pair of morphisms (f, v) with the same target and
such that v belongs to W). Different sets of choices give equivalent bicategories.
Therefore, the proof that (i) implies (ii) will consist of the following 2 steps:

(a) first of all, we prove that (ii) holds in any bicategory C
[
W

−1
]

obtained by
fixing a set of choices C(W) satisfying condition (C3) (see Appendix A.1);

(b) then we use Step (a) in order to prove that (ii) holds for any other set of choices
C ′(W).

So for the moment, we assume that the set of choices C(W) satisfies condition (C3).
In other terms, we assume that the fixed choices in C(W) are trivial for each pair
(v, v) (with v in W).

Let us suppose that the fixed choices C(W) give data as in the following diagram,
with x1 in W and ρ invertible:
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R

T 1 T 2.T

ρ
⇒

v2

x2

v1

x1

(4.2)

By condition (C3) the composition of the following morphisms in C
[
W

−1
]

T 1 T 1 T
id

T1 v1

and T T 1 B1
v1 t1

is given by

T 1 T 1 B1;
id

T1 t1

by (4.2) the composition of

T 1 T 1 T
id

T1 v1

and T T 2 B2
v2 t2

is given by

T 1 R B2.
x1 t2◦x2

Therefore, if we apply Lemma 2.9 to D := C
[
W

−1
]
, to diagram (4.1) and to the

internal equivalence (T 1, idT 1 , v1) (see again [Pr, Proposition 20]), we get that there
is a weak fiber product in C

[
W

−1
]

of the form

T 1 B1

B2 A.

=⇒
Ω2

(B2,id
B2 ,f

2)

(R, x1,t2◦x2) (B1,id
B1 ,f

1)

(T 1,id
T1 ,t

1)

(4.3)

Now we apply again Lemma 2.9 to diagram (4.3) and to the internal equiva-
lence (R, idR, x

1). So using again condition (C3), there is a weak fiber product
in C

[
W

−1
]

of the form

R B1

B2 A.

=⇒
Ω3

(B2,id
B2 ,f

2)

(R,idR,t2◦x2) (B1,id
B1 ,f

1)

(R,idR,t1◦x1)

(4.4)

Since (4.4) is a weak fiber product, then Ω3 is invertible in C
[
W

−1
]
. Its source is

the morphism (R, idR, f
1 ◦ t1 ◦ x1), while its target is the morphism (R, idR, f

2 ◦

t2 ◦ x2). By [T1, Lemma 6.1] applied to α := iidR
and to Ω3, there are an object

C, a morphism z : C → R in W and a 2-morphism

ω : f1 ◦ t1 ◦ x1 ◦ z =⇒ f2 ◦ t2 ◦ x2 ◦ z

in C , such that Ω3 = [C, z, z, iz, ω]. Using [T1, Proposition 0.8], up to replacing C

and z, we can assume that ω is invertible in C since Ω3 is invertible in C
[
W

−1
]
.
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Now by Lemma 2.9 applied to the weak fiber product (4.4) and to the internal
equivalence (C, idC , z) (see again [Pr, Proposition 20]), we have a weak fiber product
in C

[
W

−1
]

of the form

C B1

B2 A,

=⇒
Ω4

(B2,id
B2 ,f

2)

(C,idC ,p2) (B1,id
B1 ,f

1)

(C,idC ,p1)

(4.5)

where for each m = 1, 2 we set pm := tm ◦ xm ◦ z and where

Ω4 := Θ−1
(B2,id

B2 ,f2),(R,idR,t2◦x2),(C,idC ,z) ⊙
(
Ω3 ∗ i(C,idC ,z)

)
⊙

⊙Θ(B1,id
B1 ,f1),(R,idR,t1◦x1),(C,idC ,z) :

(
C, idC , f

1 ◦ p1
)
=⇒

(
C, idC , f

2 ◦ p2
)
.

By Lemma A.3, the associators Θ• in the previous lines are both trivial, so

Ω4 = Ω3 ∗ i(C,idC ,z) =
[
C, idC , idC , iidC

, ω
]
:
(
C, idC , f

1 ◦ p1
)
⇒

(
C, idC , f

2 ◦ p2
)
.

(4.6)
Therefore, we have completely proved Step (a). Now let us fix any other set of
choices C ′(W) and let us denote by C ′

[
W

−1
]

the associated bicategory of frac-
tions. This bicategory has the same objects, morphisms and 2-morphisms as those
of C

[
W

−1
]
, but compositions of morphisms and 2-morphisms are (possibly) differ-

ent (therefore, we cannot conclude directly that (4.5) is a weak fiber product also
in C ′

[
W

−1
]
). By [T2, Corollary 3.6], there is a pseudofunctor

Q : C
[
W

−1
]
−→ C

′
[
W

−1
]

that is the identity on objects, morphisms and 2-morphisms (hence, Q is an equi-
valence of bicategories). Since Q is a pseudofunctor, then its associators ΨQ

• (that
are induced by the set of choices C(W) and C ′(W)) are invertible. So for each
m = 1, 2 we can consider the invertible 2-morphism

Γm := ΨQ

(Bm,idBm ,fm),(C,idC ,pm) :
(
C, idC , f

m ◦ pm
)
= Q

(
C, idC , f

m ◦ pm
)
=

= Q
((

Bm, idBm , fm
)
◦C [W−1]

(
C, idC , p

m
))

=⇒

=⇒ Q
(
Bm, idBm , fm

)
◦C ′[W−1] Q

(
C, idC , p

m
)
=

=
(
Bm, idBm , fm

)
◦C ′[W−1]

(
C, idC , p

m
)
=

(
C, idC , f

m ◦ pm
)

(in the lines above ◦C [W−1] is the composition in C
[
W

−1
]
, and analogously for

◦C ′[W−1]). If we apply [T1, Lemma 6.1] for α := iidC
and for (Γ1)−1, we get an

object C1, a morphism z1 : C1 → C in W and a 2-morphism

α1 : f1 ◦ p1 ◦ z1 =⇒ f1 ◦ p1 ◦ z1

in C , such that

(Γ1)−1 =
[
C1, z1, z1, iz1 , α

1
]
.

If we apply [T1, Lemma 6.1] for α := iz1 and for Γ2, there are an object C, a
morphism z2 : C → C1, such that z1 ◦ z2 belongs to W, and a 2-morphism
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α2 : f2 ◦ p2 ◦ z1 ◦ z2 =⇒ f2 ◦ p2 ◦ z1 ◦ z2

in C , such that

Γ2 =
[
C, z1 ◦ z2, z1 ◦ z2, iz1 ◦ z2 , α

2
]
.

Since (4.5) is a weak fiber product in C
[
W

−1
]
, then using Lemma 3.1 we get that

the following diagram is a weak fiber product in C ′
[
W

−1
]
:

C B1

B2 A.

=⇒
Ω5 := Γ2 ⊙ Ω4 ⊙ (Γ1)−1(C,idC ,p2)

(C,idC ,p1)

(B1,id
B1 ,f

1)

(B2,id
B2 ,f

2)
(4.7)

Now for each m = 1, 2 we set pm := pm ◦ z1 ◦ z2 : C → Bm and

ω := α2 ⊙
(
ω ∗ iz1 ◦ z2

)
⊙
(
α1 ∗ iz2

)
: f1 ◦ p1 =⇒ f2 ◦ p2.

Then a direct check proves that

Ω5 =
[
C, z1 ◦ z2, z1 ◦ z2, iz1 ◦ z2 , ω

]
.

Now by Lemma 2.9 applied to (4.7) and to the internal equivalence (C, idC , z
1 ◦ z2)

(see [Pr, Proposition 20]), the following diagram is a weak fiber product in C ′
[
W

−1
]
:

C B1

B2 A,

=⇒
Ω6(C,id

C
,p2)

(C,id
C
,p1)

(B1,id
B1 ,f

1)

(B2,id
B2 ,f

2)

where

Ω6 := Θ(B2,id
B2 ,f2),(C,idC ,p2),(C,id

C
,z1 ◦ z2)⊙

⊙
(
Ω5 ∗ i(C,id

C
,z1 ◦ z2)

)
⊙Θ−1

(B1,id
B1 ,f1),(C,idC ,p1),(C,id

C
,z1 ◦ z2)

.

By Lemma A.3, the associators Θ• above are both trivial, so

Ω6 = Ω5 ∗ i(C,id
C
,z1 ◦ z2) =

[
C, idC , idC , iidC

, ω
]
.

So the quadruple (C, p1, p2, ω) proves that Step (b) is satisfied in C ′
[
W

−1
]
. �

Remark 4.1. The previous Theorem proves that for each set of choices C(W)
there is a set of data (C, p1, p2, ω) (a priori depending on C(W)), inducing a weak
fiber product (0.3) in the bicategory C

[
W

−1
]
. A priori we don’t know whether

such a set of data induces a weak fiber product also in the bicategory of fractions
associated to a different set of choices C ′(W) or not. Actually, given any set of
data (C, p1, p2, ω), the following facts are equivalent:

• diagram (0.3) induced by (C, p1, p2, ω) is a weak fiber product in C
[
W

−1
]
;

• the same diagram is a weak fiber product in C ′
[
W

−1
]

for any set of choices
C ′(W).
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This will be an obvious consequence of the fact that conditions (a), (b) and (c) in
Theorem 0.2 (that we are going to prove below) do not depend on a set of choices
C(W), but only on the pair (C ,W), hence they are verified for every bicategory of
fractions C

[
W

−1
]

associated to (C ,W).

As we mentioned in the Introduction, Theorem 0.1 gives an explicit form for a weak
fiber product (0.3) (whenever it exists) in the case when the pair of fixed morphism
in C

[
W

−1
]

has the special form (Bm, idBm , fm) for m = 1, 2. The same Theorem
shows that whenever such a special pair of morphisms have a weak fiber product,
then also those pairs with (idB1 , idB2) replaced by any pair of morphisms in W

have a weak fiber product. However in Theorem 0.1 we did not give any explicit
description of a weak fiber product in that case. The next Corollary fills this gap (as
in the previous pages, the 2-morphisms θ• and υ• are the associators, respectively
the left unitors of C ).

Corollary 4.2. Let us fix any pair (C ,W) satisfying conditions (BF), any bicate-

gory of fractions C
[
W

−1
]

(i.e. any set of choices C(W)), any pair of morphisms

fm : Bm → A for m = 1, 2 and any pair of morphisms wm : Bm → B
m

in W for

m = 1, 2. Moreover, let us fix any object C, any pair of morphisms pm : C → Bm

for m = 1, 2 and any invertible 2-morphism ω : f1 ◦ p1 ⇒ f2 ◦ p2 in C , such that

diagram (0.3) is a weak fiber product in C
[
W

−1
]
. In addition, let us suppose that

for each m = 1, 2 the fixed choices C(W) give data as in upper part of the following

diagram, with vm in W and σm invertible:

Cm

C B
m

Bm

σm

⇒

vm

wmwm
◦pm

qm

(4.8)

(this implies that (Bm,wm, fm) ◦ (C, idC ,w
m ◦pm) = (Cm, idC ◦ vm, fm ◦ qm) for

each m = 1, 2). Then let us choose any set of data as follows (the existence of such

data is a consequence of axioms (BF), see Appendix A):

(i) for each m = 1, 2, an object C′m, a morphism um : C′m → Cm in W and an

invertible 2-morphism τm : (pm ◦ vm) ◦ um ⇒ qm ◦ um, such that:

iwm ∗ τm = θ−1
wm,qm,um ⊙

((
σm ⊙ θwm,pm,vm

)
∗ ium

)
⊙ θwm,pm◦vm,um ;

(ii) an object C′′, a pair of morphisms zm : C′′ → C′m for m = 1, 2, with z1 in

W, and an invertible 2-morphism µ : v1 ◦(u1 ◦ z1) ⇒ v2 ◦(u2 ◦ z2).

Then the following diagram is a weak fiber product in C
[
W

−1
]

C B
1

B
2 A,

=⇒
Ω(C,idC ,w2

◦p2)

(C,idC ,w1
◦p1)

(B1,w1,f1)

(B2,w2,f2)
(4.9)

where

Ω :=
[
C′′, u1 ◦ z1, u2 ◦ z2,

(
υ−1
v2 ∗ iu2 ◦ z2

)
⊙ µ⊙

(
υv1 ∗ iu1 ◦ z1

)
, δ
]
:
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(
C1, idC ◦ v1, f1 ◦ q1

)
=⇒

(
C2, idC ◦ v2, f2 ◦ q2

)

and δ : (f1◦q1)◦(u1 ◦ z1) ⇒ (f2◦q2)◦(u2 ◦ z2) is defined as the following composition

(associators of C omitted for simplicity):

C1C′1

C1 B1

C′′ C A.

C′2

C2 B2

C2

⇓ (τ1)−1

⇓ τ2

⇓ ω⇓ µ

p2

u1

v1

z1

u2

z2

v2

u1

f1

f2

q1

u2

p1

q2

Proof. For simplicity of exposition, we give a complete proof only in the case when
C is a 2-category. For each m = 1, 2, let us suppose that the fixed choices C(W)
give a set of data as in the upper part of the following diagram, with tm in W and
ξm invertible:

B̃m

Bm
B

m
Bm.

ξm

⇒

tm

wmwm

sm

(4.10)

Note that the choices C(W) here are arbitrary, so we cannot use condition (C3)
for the previous diagram (see Appendix A.1). For each m = 1, 2, we apply axioms
(BF4a) and (BF4b) to the invertible 2-morphism ξm; so there are an object B′m,

a morphism rm : B′m → B̃m in W and an invertible 2-morphism εm : tm ◦ rm ⇒

sm ◦ rm, such that

iwm ∗ εm = ξm ∗ irm . (4.11)

For each m = 1, 2, we consider the following morphisms in C
[
W

−1
]

em :=
(
B

m
Bm Bm

)
wm idBm

and dm :=
(
Bm Bm B

m
)
.

idBm wm

Using (4.10), for each m = 1, 2 we get

dm ◦ em =
(
B

m
Bm B

m
)

wm wm

and em ◦ dm =
(
Bm

B̃m Bm
)
.

tm sm

Then for each m = 1, 2 we define an invertible 2-morphism ∆m : idB
m ⇒ dm ◦ em

in C
[
W

−1
]

as the 2-morphism represented by the following diagram:
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B
m

B
m

Bm B
m

;

Bm

⇓ iwm ⇓ iwm

id
B

m id
B

m

wm wm

wm

idBm

Moreover, for each m = 1, 2 we define an invertible 2-morphism Ξm : em ◦ dm ⇒

idBm in C
[
W

−1
]

as the 2-morphism represented by the following diagram:

B̃m

Bm B′m Bm.

Bm

⇓ εm ⇓ ism ◦ rm

tm sm

idBm idBm

rm

sm ◦ rm

(4.12)

Following the proof of [Pr, Proposition 20], the quadruple (em, dm,∆m,Ξm) is an
adjoint equivalence in C

[
W

−1
]

for each m = 1, 2. For each such m, let us set:

gm :=
(
Bm Bm A

)
idBm fm

and rm :=
(
C C Bm

)
.

idC pm

Since we assumed that C is a 2-category, then the 2-morphism Ω of C
[
W

−1
]

appearing in (0.3) is given by

Ω =
[
C, idC , idC , iidC

, ω
]
: g1 ◦ r1 =⇒ g2 ◦ r2. (4.13)

Then we define an invertible 2-morphism

Ω : (g1 ◦ e1) ◦ (d1 ◦ r1) =⇒ (g2 ◦ e2) ◦ (d2 ◦ r2)

as the following composition, where the 2-morphisms Θ• are the associators of
C
[
W

−1
]
:
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C A.

⇓ Θg1◦e1,d1,r1

⇓ Θ−1
g1,e1,d1 ∗ ir1

⇓ (ig1 ∗ Ξ1) ∗ ir1

⇓ Ω

⇓ (ig2 ∗ (Ξ2)−1) ∗ ir2

⇓ Θg2,e2,d2 ∗ ir2

⇓ Θ−1
g2◦e2,d2,r2

(g1
◦e1)◦(d1

◦r1)

((g1
◦e1)◦d1)◦r1

(g1
◦(e1◦d1))◦r1

(g1
◦id

B1)◦r
1=g1

◦r1

(g2
◦id

B2)◦r
2=g2

◦r2

(g2
◦(e2◦d2))◦r2

((g2
◦e2)◦d2)◦r2

(g2
◦e2)◦(d2

◦r2)
(4.14)

Since we are working in the case when C is a 2-category, then it is easy to prove that
the unitors of C

[
W

−1
]

are trivial. Therefore, the 2-morphism Ω above coincides

with the 2-morphism Ω defined in Proposition 2.4 for D := C
[
W

−1
]
. By hypo-

thesis, diagram (0.3) is a weak fiber product in C
[
W

−1
]
, so by Proposition 2.4 we

get that also the following diagram is a weak fiber product in C
[
W

−1
]
:

C B
1

B
2 A.

=⇒
Ωd2

◦r2=(C,idC ,w2
◦p2)

d1
◦r1=(C,idC ,w1

◦p1)

g1
◦e1=(B1,w1,f1)

g2
◦e2=(B2,w2,f2)

Then in order to prove the claim we need only to compute all the 2-morphisms in
(4.14) and to prove that their composition is equal to the 2-morphism in (4.9).

Since we are assuming that C is a 2-category, then for each m = 1, 2 we have

(gm ◦ em) ◦ (dm ◦ rm) =
(
Bm,wm, fm

)
◦
(
C, idC ,w

m ◦pm
)

(4.8)
=

(4.8)
=

(
Cm, vm, fm ◦ qm

)
. (4.15)

Let us suppose that for each m = 1, 2 the fixed choices C(W) give data as in the
upper part of the following diagram, with km in W and ηm invertible:

Fm

C Bm
B̃m.

ηm

⇒

km

tmpm

hm

(4.16)

Then for each m = 1, 2 we have:

((gm ◦ em) ◦ dm) ◦ rm =
((

Bm,wm, fm
)
◦
(
Bm, idBm ,wm

))
◦
(
C, idC , p

m
)

(4.10)
=

(4.10)
=

(
B̃m, tm, fm ◦ sm

)
◦
(
C, idC , p

m
)

(4.16)
=
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(4.16)
=

(
Fm, km, fm ◦ sm ◦hm

)
. (4.17)

Now for each m = 1, 2, we want to compute the associators Θgm◦em,dm,rm from
(4.15) to (4.17) appearing in (4.14). As a preliminary step, for each m = 1, 2 we
use axiom (BF3) in order to get a set of data as in the upper part of the following
diagram, with am in W and γm invertible:

Gm

C′′ C Fm.

γm

⇒

am

kmvm
◦ um

◦ zm

bm

Then we use (BF4a) and (BF4b) in order to get an object Tm, a morphism jm :
Tm → Gm in W and an invertible 2-morphism

ρm : qm ◦ um ◦ zm ◦ am ◦ jm =⇒ sm ◦hm ◦ bm ◦ jm,

such that iwm ∗ ρm coincides with the following composition:

Cm Bm

Tm Gm C Bm
B

m
.Fm

B̃m Bm

⇓ ξm⇓ ηm

⇓ γm ⇓ (σm)−1

wm

wm

um
◦ zm ◦ am wm

pmjm

kmbm

sm

qm

vm

hm

tm

(4.18)
Then we compute the associator from (4.15) to (4.17) using [T1, Proposition 0.1]
for f := rm, g := dm and h := gm ◦ em. Using the previous choices, we have that
the 2-morphisms appearing in [T1, Proposition 0.1(0.4)] are given as follows:

δ := ipm , σ := σm, ξ := ξm, η := ηm.

Then in [T1, Proposition 0.1] we choose

γ := γm ∗ ijm , ω :=
(
ηm ∗ ibm ◦ jm

)
⊙
(
ipm ∗ γm ∗ ijm

)
, ρ := ρm.

Then we get that the associator Θgm◦em,dm,rm from (4.15) to (4.17) is represented
by the following diagram:

Cm

C Tm A.

Fm

⇓ ifm ∗ ρm⇓ γm ∗ ijm

vm

km fm
◦sm ◦hm

um
◦ zm ◦ am ◦ jm

bm
◦ jm

fm
◦qm

(4.19)
Now using (4.10), it is easy to prove that

gm ◦ (em ◦ dm) =
(
B̃m, tm, fm ◦ sm

)
= (gm ◦ em) ◦ dm
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and that Θgm,em,dm is the 2-identity of this morphism; hence for each m = 1, 2, in
diagram (4.14) we have:

Θgm,em,dm ∗ irm = i((gm◦em)◦dm)◦rm
(4.16)
= i(Fm,km,fm◦sm ◦hm). (4.20)

Now a direct check using (4.12) proves that for each m = 1, 2 the 2-morphism
igm ∗ Ξm is represented by the following diagram:

B̃m

Bm B′m A.

Bm

⇓ εm ⇓ ifm◦sm ◦ rm

tm fm
◦sm

idBm fm

rm

sm ◦ rm

Then we need to compute the 2-morphisms (igm ∗ Ξm) ∗ irm appearing in (4.14).
For each m = 1, 2 we use axiom (BF3) in order to get data as in the upper part of
the following diagram, with cm in W and φm invertible:

Lm

Tm
B̃m B′m

φm

⇒

cm

rmhm
◦bm

◦ jm

om

Then we use [T1, Proposition 0.3] in order to compute (igm ∗Ξm)∗ irm . In the case
under exam, the 2-morphisms α and β appearing in that Proposition are given by εm

and ifm◦sm ◦ rm respectively; moreover, the 2-morphisms ρ1, ρ2 of that Proposition
are given by ηm and ipm respectively. Then we choose the 2-morphisms σ1, σ2 and
α′ appearing in that Proposition as follows: we set σ1 := φm, α′ := ikm ◦ bm ◦ jm ◦ cm

and we define σ2 as the following composition:

Fm

Lm
B̃m Bm.

B′m
B̃m

C

⇓ εm

⇓ ηm

⇓ φm

km

pm

om

bm
◦ jm ◦ cm

hm

sm

rm

tm

rm

Then replacing all these choices in [T1, Proposition 0.3(0.12)] we get the 2-identity
over tm ◦ rm ◦ om. So in that Proposition we can choose δ := iom . Therefore,
replacing in the definition of β′ in that Proposition, we conclude that for each
m = 1, 2 the 2-morphism (igm ∗Ξm) ∗ irm appearing in (4.14) is represented by the
following diagram
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Fm

C Lm A,

C

⇓ ikm ◦ bm ◦ jm ◦ cm ⇓ ifm ∗ ζm

fm
◦pm

fm
◦sm ◦hm

km

bm
◦ jm ◦ cm

km
◦ bm

◦ jm ◦ cm

idC

(4.21)

where ζm is the following composition:

B̃m

Lm B′m
B̃m Bm.

Fm C

Fm

⇓ (ηm)−1

⇓ φm
⇓ (εm)−1

⇓ (φm)−1

bm
◦ jm ◦ cm

hm

sm

om

bm
◦ jm ◦ cm pm

tm

hm

rm

rm

km

(4.22)

Now using (4.19), (4.20) and (4.21) we get that for each m = 1, 2 the 2-morphism

Fm :=
((

igm ∗ Ξm
)
∗ irm

)
⊙
(
Θ−1

gm,em,dm ∗ irm
)
⊙Θgm◦em,dm,rm (4.23)

is represented by the following diagram

Cm

C Lm A.

C

⇓ ifm ∗ (ζm ⊙ (ρm ∗ icm))⇓ γm ∗ ijm ◦ cm

um
◦ zm ◦

◦ am ◦ jm ◦ cm

fm
◦pm

fm
◦qm

idC

vm

km
◦ bm

◦ jm ◦ cm

Using the definition of 2-morphism in a bicategory of fractions (see Appendix A.2),
we get easily that Fm is also represented by the following diagram

Cm

C Lm A,

C

⇓ ifm ∗ χm⇓ ivm ◦ um ◦ zm ◦ am ◦ jm ◦ cm

um
◦ zm ◦

◦ am ◦ jm ◦ cm

vm
◦ um

◦ zm ◦

◦ am ◦ jm ◦ cm
fm

◦pm

fm
◦qm

idC

vm

(4.24)
where

χm :=
(
ipm ∗ (γm)

−1
∗ ijm ◦ cm

)
⊙ ζm ⊙

(
ρm ∗ icm

)
.
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Now we want to write Fm in a shorter form. As a preliminary step, we want to
compute iwm ∗ χm; for that, we replace iwm ∗ ρm with (4.18) and ζm with (4.22).
So we get that iwm ∗ χm coincides with the following composition:

Cm Bm

Lm

Gm

Gm

B′m

C Bm
B

m
.Fm

B̃m

B̃m

Bm

Fm C

Cm

⇓ φm

⇓ (φm)−1

⇓ (εm)−1

⇓ (ηm)−1

⇓ (γm)−1

⇓ ξm⇓ ηm

⇓ γm ⇓ (σm)−1

um
◦ zm ◦ am vm

bm

pm

km

hm

tm

rm

rm

om
wm

wm

um
◦ zm ◦ am wm

pm

jm ◦ cm

jm ◦ cm

km

bm

sm

qm

vm

hm tm

(4.25)

In such a diagram, using (4.11) we can replace the composition of ξm and (εm)−1

with a 2-identity. Then we can simply the terms φm, ηm and γm (in this order)
with their inverses. So we get:

iwm ∗ χm = (σm)
−1

∗ ium ◦ zm ◦ am ◦ jm ◦ cm = iwm ∗ (τm)
−1

∗ izm ◦ am ◦ jm ◦ cm ,

where the last identity is a consequence of hypothesis (i). So by [T1, Lemma 1.1]
there are an object Hm and a morphism ym : Hm → Lm, such that

χm ∗ iym = (τm)
−1

∗ izm ◦ am ◦ jm ◦ cm ◦ ym . (4.26)

So for each m = 1, 2 we have:

Fm (4.24),(4.26)
=

[
Hm, um ◦ zm ◦ am ◦ jm ◦ cm ◦ ym, vm ◦ um ◦ zm ◦ am ◦ jm ◦ cm ◦ ym,

ivm ◦ um ◦ zm ◦ am ◦ jm ◦ cm ◦ ym , ifm ∗ (τm)
−1

∗ izm ◦ am ◦ jm ◦ cm ◦ ym

]
=

=
[
C′′, um ◦ zm, vm ◦ um ◦ zm, ivm ◦ um ◦ zm , ifm ∗ (τm)−1

∗ izm
]
. (4.27)

Now using (4.23) together with (4.14), we get that Ω = (F 2)−1 ⊙ Ω ⊙ F 1. Using
(4.27) for m = 1 and (4.13), we get that Ω ⊙ F 1 is represented by the following
diagram:

C1

C C′′ A,

C

⇓ κ1⇓ iv1 ◦ u1 ◦ z1

f2
◦p2

f1
◦q1

idC

v1

u1
◦ z1

v1
◦ u1

◦ z1

(4.28)



32 MATTEO TOMMASINI

where

κ1 :=
(
ω ∗ iv1 ◦ u1 ◦ z1

)
⊙
(
if1 ∗ (τ1)−1 ∗ iz1

)
.

Using the inverse of (4.27) for m = 2 and the choices in (ii) in the claim, we get
that F 2 is represented by the following diagram:

C

C C′′ A,

C2

⇓ κ2⇓ µ

f2
◦q2

f1
◦p2

v2

idC

v1
◦ u1

◦ z1

u2
◦ z2

(4.29)

where

κ2 :=
(
if2 ∗ τ2 ∗ iz2

)
⊙
(
if2◦p2 ∗ µ

)
.

Lastly, using (4.28), (4.29) and [T1, Proposition 0.2], we get that the 2-morphisms
Ω = (F 2)−1 ⊙ Ω⊙ F 1 coincides with (4.9), so we conclude. �

Now we want to prove Theorem 0.2, so the problem that we have to solve is the
following: given any set of data in C as follows

C B1

B2 A

=⇒
ω

f2

p2
f1

p1

(4.30)

with ω invertible, when is the associated diagram (0.3) a weak fiber product in
C
[
W

−1
]
? In the next 2 sections we will consider separately conditions A1 and

A2 for (0.3) and we will manage to give equivalent but simple conditions for both
properties.

5. Condition A1 in a bicategory of fractions

Lemma 5.1. Let us fix any pair (C ,W) satisfying conditions (BF) and any bica-

tegory of fractions C
[
W

−1
]

associated to it (i.e. any set of choices C(W)). More-

over, let us also fix any set of data in C as in diagram (4.30) with ω invertible.

Then the following facts are equivalent:

(i1 ) for any object D, condition A1(D) holds for diagram (0.3) in C
[
W

−1
]
;

(i2 ) for any object D and for any pair of morphisms q1 : D → B1, q2 : D → B2

in C , condition B1(D, (D, idD, q1), (D, idD, q2)) holds for diagram (0.3).

Proof. For simplicity of exposition, let us suppose that C is a 2-category.

We recall from Remark 2.2 that (i1) is equivalent to

(i1)′ for any object D, and for any pair of morphisms s1 : D → B1 and s2 : D → B2

in C
[
W

−1
]
, property B1(D, s1, s2) holds for diagram (0.3).



WEAK FIBER PRODUCTS IN BICATEGORIES OF FRACTIONS 33

Clearly (i1)′ implies (i2): it is simply the case when sm := (D, idD, qm) for m = 1, 2.
Let us assume that (i2) holds and let us prove (i1)′. So let us fix any object D in
C and any pair of morphisms s1 : D → B1 and s2 : D → B2 in C

[
W

−1
]
. By

definition of morphisms in C
[
W

−1
]
, for each m = 1, 2 there are an object Dm, a

morphism wm : Dm → D in W and a morphism tm : Dm → Bm in C , such that
sm = (Dm,wm, tm). Now we use (BF3) in order to get data as in the upper part
of the following diagram, with v2 in W and α invertible:

D3

D1.D2 D

α
⇒

w2

v2

w1

v1

Moreover, let us suppose that the fixed choices C(W) give data as in the upper
part of the following diagram, with r in W and ε invertible:

D4

D3 D3D

ε
⇒

w2
◦ v2

q

w2
◦ v2

r

(5.1)

(since the choices C(W) are arbitrary, then we cannot assume that condition (C3)
holds, so we cannot say anything more about the data above). By construction and
(BF2), the morphism w2 ◦ v2 belongs to W. So using (BF4a) and (BF4b), there
are an object D5, a morphism h : D5 → D4 in W and an invertible 2-morphism
η : r ◦ h ⇒ q ◦ h, such that ε ∗ ih = iw2 ◦ v2 ∗ η. Since we are assuming (i2), then
condition B1(D3, (D3, idD3 , t1 ◦ v1), (D3, idD3 , t2 ◦ v2)) holds for (0.3). Then for
each m = 1, 2 we consider the invertible 2-morphism

Ωm :
(
D3, idD3 , tm ◦ vm

)
=⇒

(
D4, r, tm ◦ vm ◦ q

)
(5.2)

represented by the following diagram:

D3

D3 D5 Bm.

D4

⇓ η−1 ⇓ itm◦vm ◦ q ◦ h

id
D3

r tm◦vm
◦ q

q ◦ h

h

tm◦vm

Then using the equivalence of (a) and (b) in Proposition 2.10 and (5.2), we get that
condition B1(D3, (D4, r, t1 ◦ v1 ◦ q), (D4, r, t2 ◦ v2 ◦ q)) holds for (0.3). Now using
(5.1), for each m = 1, 2 we have

(
D3,w2 ◦ v2, tm ◦ vm

)
◦
(
D3, idD3 ,w2 ◦ v2

)
=

(
D4, r, tm ◦ vm ◦ q

)
. (5.3)

Since w2 ◦ v2 belongs to W, then the morphism e := (D3, idD3 ,w2 ◦ v2) is an inter-
nal equivalence in C

[
W

−1
]

(see [Pr, Proposition 20]). Therefore, using the equiva-

lence of (a) and (c) in Proposition 2.10, and (5.3), we get that B1(D, (D3,w2 ◦ v2, t1◦
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v1), (D3,w2 ◦ v2, t2 ◦ v2)) holds for (0.3). Now we consider the pair of invertible 2-
morphisms

Ω̃1 :=
[
D3, idD3 , v1, α, it1◦v1

]
:
(
D3,w2 ◦ v2, t1 ◦ v1

)
=⇒

(
D1,w1, t1

)
= s1,

Ω̃2 :=
[
D3, idD3 , v2, iw2 ◦ v2 , it2◦v2

]
:
(
D3,w2 ◦ v2, t2 ◦ v2

)
=⇒

(
D2,w2, t2

)
= s2.

Using the equivalence of (a) and (b) in Proposition 2.10, we get that B1(D, s1, s2)
holds for (0.3), i.e. (i1)′ holds. �

Lemma 5.2. Let us fix the same notations of Lemma 5.1. Then the following

facts are equivalent:

(i2 ) for any object D and for any pair of morphisms q1 : D → B1, q2 : D → B2

in C , condition B1(D, (D, idD, q1), (D, idD, q2)) holds for diagram (0.3);
(i3 ) for any object D of C the following condition holds:

(a) given any pair of morphisms qm : D → Bm for m = 1, 2 and any invertible

2-morphism λ : f1 ◦ q1 ⇒ f2 ◦ q2 in C , there are an object E, a morphism

v : E → D in W, a morphism q : E → C and a pair of invertible

2-morphisms λm : qm ◦ v ⇒ pm ◦ q for m = 1, 2 in C , such that:

θ−1
f2,p2,q

⊙
(
ω ∗ iq

)
⊙ θf1,p1,q ⊙

(
if1 ∗ λ1

)
=

=
(
if2 ∗ λ2

)
⊙ θ−1

f2,q2,v ⊙
(
λ ∗ iv

)
⊙ θf1,q1,v.

Proof. As usual, we assume for simplicity that C is a 2-category. Let us suppose
that (i2) holds and let us fix any quadruple (D, q1, q2, λ) as in (i3). Then we can
consider a diagram as follows in C

[
W

−1
]
:

D B1

B2 A.

=⇒
Λ := [D, idD, idD, iidD

, λ](D,idD ,q2)

(D,idD ,q1)

(B1,id
B1 ,f

1)

(B2,id
B2 ,f

2)
(5.4)

Since λ is invertible in C , then we get easily that Λ is invertible in C
[
W

−1
]
, so by

(i2) there are a morphism

s :=
(
D D C

)
: D −→ C

w r

in C
[
W

−1
]

and a pair of invertible 2-morphisms

Λm :
(
D, idD, qm

)
=⇒

(
C, idC , p

m
)
◦
(
D,w, r

)

for m = 1, 2 in C
[
W

−1
]
, such that

(
Ω ∗ i(D,w,r)

)
⊙Θ(B1,id

B1 ,f1),(C,idC ,p1),(D,w,r) ⊙
(
i(B1,id

B1 ,f1) ∗ Λ
1
)
=

= Θ(B2,id
B2 ,f2),(C,idC ,p2),(D,w,r) ⊙

(
i(B2,id

B2 ,f2) ∗ Λ
2
)
⊙ Λ. (5.5)

For each m = 1, 2, Λm is defined from (D, idD, qm) to (D,w, pm ◦ r). Therefore
by [T1, Lemma 6.1] applied to α := iw and to Λ1, there are an object D1, a
morphism u1 : D1 → D such that w ◦ u1 belongs to W, and a 2-morphism
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α1 : q1 ◦ w ◦ u1 =⇒ p1 ◦ r ◦ u1

in C , such that

Λ1 =
[
D1,w ◦ u1, u1, iw ◦ u1 , α1

]
.

By [T1, Proposition 0.8], we can assume that α1 is invertible in C since Λ1 is
invertible in C

[
W

−1
]
. By [T1, Lemma 6.1] applied to α := iw ◦ u1 and to Λ2, there

are an object D2, a morphism u2 : D2 → D1 such that w ◦ u1 ◦ u2 belongs to W,
and a 2-morphism

α2 : q2 ◦ w ◦ u1 ◦ u2 =⇒ p2 ◦ r ◦ u1 ◦ u2

in C , such that

Λ2 =
[
D2,w ◦ u1 ◦ u2, u1 ◦ u2, iw ◦ u1 ◦ u2 , α2

]
.

As above, we can assume that α2 is invertible in C since Λ2 is invertible in C
[
W

−1
]
.

Now by Lemma A.5 (in the special case when C is a 2-category), we have:

i(B1,id
B1 ,f1) ∗ Λ

1 =
[
D2,w ◦ u1 ◦ u2, u1 ◦ u2, iw ◦ u1 ◦ u2 , if1 ∗ α1 ∗ iu2

]
(5.6)

and

i(B2,id
B2 ,f2) ∗ Λ

2 =
[
D2,w ◦ u1 ◦ u2, u1 ◦ u2, iw ◦ u1 ◦ u2 , if2 ∗ α2

]
. (5.7)

Moreover, using (0.3) and Lemma A.4 (in the special case when C is a 2-category),
we have:

Ω ∗ i(D,w,r) =
[
C, idC , idC , iidC

, ω
]
∗ i(D,w,r) =

[
D, idD, idD, iw, ω ∗ ir

]
. (5.8)

In addition, by Lemma A.3 each 2-morphism of the form Θ• in (5.5) is trivial.
Therefore, by replacing (5.4), (5.6), (5.7) and (5.8) in (5.5), we get:

[
D, idD, idD, iw, ω ∗ ir

]
⊙
[
D2,w ◦ u1 ◦ u2, u1 ◦ u2, iw ◦ u1 ◦ u2 , if1 ∗ α1 ∗ iu2

]
=

=
[
D2,w ◦ u1 ◦ u2, u1 ◦ u2, iw ◦ u1 ◦ u2 , if2 ∗ α2

]
⊙
[
D, idD, idD, iidD

, λ
]
. (5.9)

This is equivalent to saying that

[
D2,w ◦ u1 ◦ u2, u1 ◦ u2, iw ◦ u1 ◦ u2 ,

(
ω ∗ ir◦u1 ◦ u2

)
⊙
(
if1 ∗ α1 ∗ iu2

)]
=

=
[
D2,w ◦ u1 ◦ u2, u1 ◦ u2, iw ◦ u1 ◦ u2 ,

(
if2 ∗ α2

)
⊙
(
λ ∗ iw ◦ u1 ◦ u2

)]
.

So by [T1, Proposition 0.7] there are an object E and a morphisms u3 : E → D2,
such that w ◦ u1 ◦ u2 ◦ u3 belongs to W and such that

(
ω∗ir◦u1 ◦ u2 ◦ u3

)
⊙
(
if1 ∗α1∗iu2 ◦ u3

)
=

(
if2 ∗α2∗iu3

)
⊙
(
λ∗iw ◦ u1 ◦ u2 ◦ u3

)
. (5.10)

Now we define

v := w ◦ u1 ◦ u2 ◦ u3 : E −→ D, q := r ◦ u1 ◦ u2 ◦ u3 : E −→ C,

λ1 := α1 ∗ iu2 ◦ u3 : q1 ◦ v =⇒ p1 ◦ q, λ2 := α2 ∗ iu3 : q2 ◦ v =⇒ p2 ◦ q.

So (5.10) reads as follows:
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(
ω ∗ iq

)
⊙
(
if1 ∗ λ1

)
=

(
if2 ∗ λ2

)
⊙
(
λ ∗ iv

)
,

hence we have proved that (i2) implies (i3).

Conversely, let us assume that (i3) holds. Let us fix any object D, any pair of
morphisms q1 : D → B1, q2 : D → B2 in C ; then we have to prove that condition
B1(D, (D, idD, q1), (D, idD, q2)) holds for diagram (0.3). So let us fix any invertible
2-morphism

Λ :
(
B1, idB1 , f1

)
◦
(
D, idD, q1

)
=⇒

(
B2, idB2 , f2

)
◦
(
D, idD, q2

)
(5.11)

in C
[
W

−1
]
. By [T1, Lemma 6.1] applied to α := iidD

and Λ, there are an object

D, a morphism w : D → D in W and an invertible 2-morphism λ : f1 ◦ q1 ◦ w ⇒

f2 ◦ q2 ◦ w in C , such that

Λ =
[
D,w,w, iw, λ

]
:
(
D, idD, f1 ◦ q1

)
=⇒

(
D, idD, f2 ◦ q2

)
. (5.12)

Now we apply condition (i3) for the set of data (D, q1 ◦ w, q2 ◦ w, λ). Then there
are an object E, a morphism v : E → D in W, a morphism q : E → C and a pair
of invertible 2-morphisms

λm : qm ◦ w ◦ v =⇒ pm ◦ q for m = 1, 2,

in C , such that

(
ω ∗ iq

)
⊙
(
if1 ∗ λ1

)
=

(
if2 ∗ λ2

)
⊙
(
λ ∗ iv

)
. (5.13)

Now we consider the morphism s := (E,w ◦ v, q) : D → C in C
[
W

−1
]
; moreover,

for each m = 1, 2 we consider the invertible 2-morphism

Λm :
(
D, idD, qm

)
=⇒

(
C, idC , p

m
)
◦ s =

(
E,w ◦ v, pm ◦ q

)
,

represented by the data in the internal part of the following diagram

D

ED Bm.

E

⇓ λm⇓ iw ◦ v

pm
◦q

qm

w ◦ v

idE
w ◦ v

idD

(5.14)

By Lemma A.4 we have:

Ω ∗ is
(0.3)
=

[
C, idC , idC , iidC

, ω
]
∗ i(E,w ◦ v,q) =

[
E, idE , idE , iw ◦ v, ω ∗ iq

]
; (5.15)

moreover, by Lemma A.5 we have the following formula for each m = 1, 2:

i(Bm,idBm ,fm) ∗ Λ
m (5.14)

= i(Bm,idBm ,fm) ∗
[
E,w ◦ v, idE , iw ◦ v, λ

m
]
=

=
[
E,w ◦ v, idE , iw ◦ v, ifm ∗ λm

]
:
(
D, idD, fm ◦ qm

)
=⇒

(
E,w ◦ v, fm ◦ pm ◦ q

)
.

(5.16)
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Therefore, using (5.15), (5.16) for m = 1 and Lemma A.3, we get:

(
Ω ∗ is

)
⊙Θ(B1,id

B1 ,f1),(C,idC ,p1),s ⊙
(
i(B1,id

B1 ,f1) ∗ Λ
1
)
=

=
[
E, idE , idE , iw ◦ v, ω ∗ iq

]
⊙ i(E,w ◦ v,f1◦p1◦q) ⊙

[
E,w ◦ v, idE , iw ◦ v, if1 ∗ λ1

]
=

=
[
E,w ◦ v, idE , iw ◦ v,

(
ω ∗ iq

)
⊙
(
if1 ∗ λ1

)]
. (5.17)

Using (5.16) for m = 2, (5.12) and Lemma A.3, we have

Θ(B2,id
B2 ,f2),(C,idC ,p2),s ⊙

(
i(B2,id

B2 ,f2) ∗ Λ
2
)
⊙ Λ =

= i(E,w ◦ v,f2◦p2◦q) ⊙
[
E,w ◦ v, idE , iw ◦ v, if2 ∗ λ2

]
⊙
[
E,w ◦ v,w ◦ v, iw ◦ v, λ ∗ iv

]
=

=
[
E,w ◦ v, idE , iw ◦ v,

(
if2 ∗ λ2

)
⊙
(
λ ∗ iv

)]
. (5.18)

Then using (5.13) we get that (5.17) and (5.18) coincide. So we conclude that
condition B1(D, (D, idD, q1), (D, idD, q2)) holds for diagram (0.3) in C

[
W

−1
]
, i.e.

property (i2) is verified. �

6. Condition A2 in a bicategory of fractions

Lemma 6.1. Let us fix the same notations of Lemma 5.1. Then the following

facts are equivalent:

(ii1 ) for any object D, condition A2(D) holds for diagram (0.3) in C
[
W

−1
]
;

(ii2 ) for any object D and for any pair of morphisms t, t′ : D → C in C , condition

B2(D, (D, idD, t), (D, idD, t′)) holds for diagram (0.3).

The proof follows the same lines of the proof of Lemma 5.1, using Proposition 2.11
instead of Proposition 2.10, so we omit the details.

Lemma 6.2. Let us fix the same notations of Lemma 5.1. Then the following

facts are equivalent:

(ii2 ) for any object D and for any pair of morphisms t, t′ : D → C in C , condition

B2(D, (D, idD, t), (D, idD, t′)) holds for diagram (0.3);
(ii3 ) for any object D, the following 2 conditions hold:

(b) given any pair of morphisms t, t′ : D → C and any pair of invertible

2-morphisms γm : pm ◦ t ⇒ pm ◦ t′ for m = 1, 2 in C , such that

θ−1
f2,p2,t′

⊙
(
ω ∗ it′

)
⊙ θf1,p1,t′ ⊙

(
if1 ∗ γ1

)
=

=
(
if2 ∗ γ2

)
⊙ θ−1

f2,p2,t
⊙
(
ω ∗ it

)
⊙ θf1,p1,t, (6.1)

there are an object F , a morphism u : F → D in W and an invertible

2-morphism γ : t ◦ u ⇒ t′ ◦ u in C , such that

θpm,t′,u ⊙
(
ipm ∗ γ

)
=

(
γm ∗ iu

)
⊙ θpm,t,u for m = 1, 2; (6.2)

(c) given any set of data (t, t′, γ1, γ2, F, u, γ) as in (b), if there is another

choice of data F̃ , ũ : F̃ → D in W and γ̃ : t ◦ ũ ⇒ t′ ◦ ũ invertible, such

that

θpm,t′,ũ ⊙
(
ipm ∗ γ̃

)
=

(
γm ∗ iũ

)
⊙ θpm,t,ũ for m = 1, 2, (6.3)
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then there are an object G, a morphism z : G → F in W, a morphism

z̃ : G → F̃ and an invertible 2-morphism µ : u ◦ z ⇒ ũ ◦ z̃, such that

θt′,ũ,̃z ⊙
(
it′ ∗ µ

)
⊙ θ−1

t′,u,z ⊙
(
γ ∗ iz

)
=

=
(
γ̃ ∗ iz̃

)
⊙ θt,ũ,̃z ⊙

(
it ∗ µ

)
⊙ θ−1

t,u,z. (6.4)

Proof. Again, we give a complete proof in the case when C is a 2-category. Let us
suppose that (ii2) holds, let us fix any object D and let us prove that (b) holds. So
let us fix any tuple (t, t′, γ1, γ2) as in (b), such that (6.1) is satisfied. Then for each
m = 1, 2 we define an invertible 2-morphism Γm from

(
C, idC , p

m
)
◦
(
D, idD, t

)
=

(
D, idD, pm ◦ t

)

to

(
C, idC , p

m
)
◦
(
D, idD, t′

)
=

(
D, idD, pm ◦ t′

)

in C
[
W

−1
]

as the 2-morphism represented by the following diagram:

D

DD Bm.

D

⇓ γm⇓ iidD

pm
◦t′

pm
◦t

idD

idD

idD

idD

(6.5)

Using (0.3) and (6.5) together with Lemmas A.3, A.4 and A.5, we have

Θ−1
(B2,id

B2 ,f2),(C,idC ,p2),(D,idD,t′) ⊙
(
Ω ∗ i(D,idD ,t′)

)
⊙

⊙Θ(B1,id
B1 ,f1),(C,idC ,p1),(D,idD ,t′) ⊙

(
i(B1,id

B1 ,f1) ∗ Γ
1
)
=

= i(D,idD ,f2◦p2◦t′) ⊙
[
D, idD, idD, iidD

, ω ∗ it′
]
⊙

⊙ i(D,idD ,f1◦p1◦t′) ⊙
[
D, idD, idD, iidD

, if1 ∗ γ1
]
=

=
[
D, idD, idD, iidD

,
(
ω ∗ it′

)
⊙
(
if1 ∗ γ1

)]
(6.1)
=

(6.1)
=

[
D, idD, idD, iidD

,
(
if2 ∗ γ2

)
⊙
(
ω ∗ it

)]
=

=
[
D, idD, idD, iidD

, if2 ∗ γ2
]
⊙ i(D,idD,f2◦p2◦t)⊙

⊙
[
D, idD, idD, iidD

, ω ∗ it

]
⊙ i(D,idD ,f1◦p1◦t) =

=
(
i(B2,id

B2 ,f2) ∗ Γ
2
)
⊙ Θ−1

(B2,id
B2 ,f2),(C,idC ,p2),(D,idD,t)⊙

⊙
(
Ω ∗ i(D,idD,t)

)
⊙Θ(B1,id

B1 ,f1),(C,idC ,p1),(D,idD,t). (6.6)

Since we are assuming (ii2), then (6.6) implies that there is a unique invertible
2-morphism Γ : (D, idD, t) ⇒ (D, idD, t′) in C

[
W

−1
]
, such that

Γm = i(C,idC ,pm) ∗ Γ for m = 1, 2. (6.7)
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By [T1, Lemma 6.1] for α := iidD
and Γ, there are an object T , a morphism

q : T → D in W and a 2-morphism η : t ◦ q ⇒ t′ ◦ q, such that Γ = [T, q, q, iq, η].
Since Γ is invertible in C

[
W

−1
]
, then by [T1, Proposition 0.8] we can assume that

η is invertible. Then by Lemma A.5 we have:

[
T, q, q, iq, γ

1 ∗ iq

]
=

[
D, idD, idD, iidD

, γ1
]

(6.5)
=

(6.5)
= Γ1 (6.7)

= i(C,idC ,p1) ∗ Γ =
[
T, q, q, iq, ip1 ∗ η

]
.

By [T1, Proposition 0.7], the previous identity implies that there are an object R

and a morphism x1 : R → T , such that q ◦ x1 belongs to W and such that

γ1 ∗ iq ◦ x1 = ip1 ∗ η ∗ ix1 . (6.8)

By Lemma A.5 we have:

[
R, q ◦ x1, q ◦ x1, iq ◦ x1 , γ2 ∗ iq ◦ x1

]
=

[
D, idD, idD, iidD

, γ2
]

(6.5)
= Γ2 (6.7)

=

(6.7)
= i(C,idC ,p2) ∗ Γ =

[
T, q, q, iq, ip2 ∗ η

]
=

[
R, q ◦ x1, q ◦ x1, iq ◦ x1 , ip2 ∗ η ∗ ix1

]
.

Again by [T1, Proposition 0.7], the previous identity implies that there are an
object F and a morphism x2 : F → R, such that q ◦ x1 ◦ x2 belongs to W and such
that

γ2 ∗ iq ◦ x1 ◦ x2 = ip2 ∗ η ∗ ix1 ◦ x2 . (6.9)

We set u := q ◦ x1 ◦ x2 : F → D and

γ := η ∗ ix1 ◦ x2 : t ◦ u =⇒ t′ ◦ u . (6.10)

Then from (6.8) and (6.9) we get that ipm ∗γ = γm ∗ iu for each m = 1, 2; moreover
γ is invertible because η is so by construction. So we have proved that (ii2) implies
condition (b) for each object D of C .

Let us also prove that (ii2) implies (c). So let us fix any set of data (t, t′, γ1, γ2, F, u, γ)

as in (b) and any set of data (F̃ , ũ, γ̃) as in (c). In particular, we assume that (6.2)
and (6.3) hold. Then we define a pair of invertible 2-morphisms in C

[
W

−1
]

as
follows:

Γ :=
[
F, u, u, iu, γ

]
, Γ̃ :=

[
F̃ , ũ, ũ, iũ, γ̃

]
:
(
D, idD, t

)
=⇒

(
D, idD, t′

)
.

Then by Lemma A.5, for each m = 1, 2 we have

i(C,idC ,pm) ∗ Γ =
[
F, u, u, iu, ipm ∗ γ

]
(6.2)
=

(6.2)
=

[
F, u, u, iu, γ

m ∗ iu

]
=

[
D, idD, idD, iidD

, γm
]
=

[
F̃ , ũ, ũ, iũ, γ

m ∗ iũ

]
(6.3)
=

(6.3)
=

[
F̃ , ũ, ũ, iũ, ipm ∗ γ̃

]
= i(C,idC ,pm) ∗ Γ̃.

Then by the uniqueness part of condition B2(D, (D, idD, t), (D, idD, t′)) we con-

clude that Γ = Γ̃. Then by Lemma A.7 there are an object G, a morphism z : G → F

in W, a morphisms z̃ : G → F̃ and an invertible 2-morphism µ : u ◦ z ⇒ ũ ◦ z̃, such
that

(
it′ ∗ µ

)
⊙
(
γ ∗ iz

)
⊙
(
it ∗ µ

−1
)
= γ̃ ∗ iz̃.
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Such an identity is equivalent to (6.4) (in the case when C is a 2-category), so we
have proved that (ii2) implies condition (c) for each object D, hence (ii3) holds.

Conversely, let us suppose that (ii3) holds and let us prove that (ii2) holds. So let
us fix any object D and any pair of morphisms t, t′ : D → C in C ; we have to prove
that condition B2(D, (D, idD, t), (D, idD, t′)) holds for diagram (0.3). In order to
do that, let us fix any pair of invertible 2-morphisms

Γm :
(
C, idC , p

m
)
◦
(
D, idD, t

)
=⇒

(
C, idC , p

m
)
◦
(
D, idD, t′

)
for m = 1, 2

in C
[
W

−1
]
, such that

Θ−1
(B2,id

B2 ,f2),(C,idC ,p2),(D,idD,t′) ⊙
(
Ω ∗ i(D,idD ,t′)

)
⊙

⊙Θ(B1,id
B1 ,f1),(C,idC ,p1),(D,idD ,t′) ⊙

(
i(B1,id

B1 ,f1) ∗ Γ
1
)
=

=
(
i(B2,id

B2 ,f2) ∗ Γ
2
)
⊙ Θ−1

(B2,id
B2 ,f2),(C,idC ,p2),(D,idD,t)⊙

⊙
(
Ω ∗ i(D,idD,t)

)
⊙Θ(B1,id

B1 ,f1),(C,idC ,p1),(D,idD,t). (6.11)

By [T1, Lemma 6.1] applied to α := iidD
and to Γ1, there are an object K, a

morphism x1 : K → D in W and a 2-morphism α1 : p1 ◦ t ◦ x1 ⇒ p1 ◦ t′ ◦ x1 in C ,
such that

Γ1 =
[
K, x1, x1, ix1 , α1

]
:
(
D, idD, p1 ◦ t

)
=⇒

(
D, idD, p1 ◦ t′

)
. (6.12)

Since Γ1 is invertible in C
[
W

−1
]
, then by [T1, Proposition 0.8] we can assume

that α1 is invertible in C . Now we apply [T1, Lemma 6.1] to α := ix1 and to Γ2.
Then there are an object M , a morphism x2 : M → K such that x1 ◦ x2 belongs to
W, and a 2-morphism

α̃2 : p2 ◦ t ◦ x1 ◦ x2 =⇒ p2 ◦ t′ ◦ x1 ◦ x2,

such that

Γ2 =
[
M, x1 ◦ x2, x1 ◦ x2, ix1 ◦ x2 , α̃2

]
. (6.13)

As above, we can assume that α̃2 is invertible in C since Γ2 is invertible in C
[
W

−1
]
.

If we set α̃1 := α1 ∗ ix2 , then from (6.12) we get

Γ1 =
[
M, x1 ◦ x2, x1 ◦ x2, ix1 ◦ x2 , α̃1

]
. (6.14)

So using Lemma A.5, for each m = 1, 2 we have

i(Bm,idBm ,fm) ∗ Γ
m =

[
M, x1 ◦ x2, x1 ◦ x2, ix1 ◦ x2 , ifm ∗ α̃m

]
. (6.15)

Moreover, using (0.3) and Lemma A.4, we have Ω∗i(D,idD ,t) = [D, idD, idD, iidD
, ω∗

it] and analogously Ω ∗ i(D,idD,t′) = [D, idD, idD, iidD
, ω ∗ it′ ]. Using such identities

together with Lemma A.3, we get that

[
M, x1 ◦ x2, x1 ◦ x2, ix1 ◦ x2 ,

(
ω ∗ it′◦x1 ◦ x2

)
⊙
(
if1 ∗ α̃1

)]
=

=
[
D, idD, idD, iidD

, ω ∗ it′
]
⊙

⊙
[
M, x1 ◦ x2, x1 ◦ x2, ix1 ◦ x2 , if1 ∗ α̃1

]
(6.15)
=
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(6.15)
= i(D,idD,f2◦p2◦t′) ⊙

(
Ω ∗ i(D,idD ,t′)

)
⊙ i(D,idD,f1◦p1◦t′) ⊙

(
i(B1,id

B1 ,f1) ∗ Γ
1
)

(6.11)
=

(6.11)
=

(
i(B2,id

B2 ,f2) ∗ Γ
2
)
⊙ i(D,idD,f2◦p2◦t) ⊙

(
Ω ∗ i(D,idD ,t)

)
⊙ i(D,idD ,f1◦p1◦t)

(6.15)
=

(6.15)
=

[
M, x1 ◦ x2, x1 ◦ x2, ix1 ◦ x2 , if2 ∗ α̃2

]
⊙

⊙
[
D, idD, idD, iidD

, ω ∗ it

]
=

=
[
M, x1 ◦ x2, x1 ◦ x2, ix1 ◦ x2 ,

(
if2 ∗ α̃2

)
⊙
(
ω ∗ it◦x1 ◦ x2

)]
. (6.16)

Using (6.16) and [T1, Proposition 0.7], there are an object N and a morphism
y : N → M , such that x1 ◦ x2 ◦ y belongs to W and

((
ω ∗ it′◦x1 ◦ x2

)
⊙
(
if1 ∗ α̃1

))
∗ iy =

=
((

if2 ∗ α̃2
)
⊙
(
ω ∗ it◦x1 ◦ x2

))
∗ iy. (6.17)

Then we set

n := t ◦ x1 ◦ x2 ◦ y : N −→ C, n′ := t′ ◦ x1 ◦ x2 ◦ y : N −→ C (6.18)

and

γm := α̃m ∗ iy : pm ◦ n =⇒ pm ◦ n′ for m = 1, 2. (6.19)

Then (6.17) implies that:

(
ω ∗ in′

)
⊙
(
if1 ∗ γ1

)
=

(
if2 ∗ γ2

)
⊙
(
ω ∗ in

)
.

We recall that we assumed that (ii3) holds. This implies that (b) holds for D

replaced by N and (t, t′) replaced by (n, n′). So there are an object F , a morphism
u : F → N in W and an invertible 2-morphism γ : n ◦ u ⇒ n′ ◦ u, such that

ipm ∗ γ = γm ∗ iu for m = 1, 2. (6.20)

Then we set a := x1 ◦ x2 ◦ y ◦ u : F → D (so that γ is defined from t ◦ a to t′ ◦ a)
and

Γ :=
[
F, a, a, ia, γ

]
:
(
D, idD, t

)
=⇒

(
D, idD, t′

)
. (6.21)

Then for each m = 1, 2 we have:

ipm ∗ γ
(6.20)
= γm ∗ iu

(6.19)
= α̃m ∗ iy ◦ u. (6.22)

Then using Lemma A.5, for each m = 1, 2 we have

i(C,idC ,pm) ∗ Γ = i(C,idC ,pm) ∗
[
F, a, a, ia, γ

]
=

[
F, a, a, ia, ipm ∗ γ

]
(6.22)
=

(6.22)
=

[
F, x1 ◦ x2 ◦ y ◦ u, x1 ◦ x2 ◦ y ◦ u, ix1 ◦ x2 ◦ y ◦ u, α̃

m ∗ iy ◦ u

]
=

=
[
M, x1 ◦ x2, x1 ◦ x2, ix1 ◦ x2 , α̃m

]
(6.13),(6.14)

= Γm.

This proves that the existence part of condition B2(D, (D, idD, t), (D, idD, t′)) is
satisfied. Then we need only to prove that the 2-morphism Γ defined above is
the unique invertible 2-morphism in C

[
W

−1
]

such that i(C,idC ,pm) ∗ Γ = Γm for
each m = 1, 2. So let us suppose that there is another invertible 2-morphism

Γ̃ : (D, idD, t) ⇒ (D, idD, t′) in C
[
W

−1
]
, such that i(C,idC ,pm) ∗ Γ̃ = Γm for each
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m = 1, 2. Then we apply [T1, Lemma 6.1] to α := ix1 ◦ x2 ◦ y ◦ u and to Γ̃. Then
there are an object L, a morphism b : L → F such that x1 ◦ x2 ◦ y ◦ u ◦ b belongs to
W, and a 2-morphism

β : t ◦ x1 ◦ x2 ◦ y ◦ u ◦ b =⇒ t′ ◦ x1 ◦ x2 ◦ y ◦ u ◦ b,

such that

Γ̃ =
[
L, x1 ◦ x2 ◦ y ◦ u ◦ b, x1 ◦ x2 ◦ y ◦ u ◦ b, ix1 ◦ x2 ◦ y ◦ u ◦ b, β

]
. (6.23)

Then by Lemma A.5, for each m = 1, 2 we have

[
L, x1 ◦ x2 ◦ y ◦ u ◦ b, x1 ◦ x2 ◦ y ◦ u ◦ b, ix1 ◦ x2 ◦ y ◦ u ◦ b, ipm ∗ β

]
=

= i(C,idC ,pm) ∗ Γ̃ = Γm (6.13),(6.14)
=

[
M, x1 ◦ x2, x1 ◦ x2, ix1 ◦ x2 , α̃m

]
(6.19)
=

(6.19)
=

[
L, x1 ◦ x2 ◦ y ◦ u ◦ b, x1 ◦ x2 ◦ y ◦ u ◦ b, ix1 ◦ x2 ◦ y ◦ u ◦ b, γ

m ∗ iu ◦ b

]
. (6.24)

Now we apply [T1, Proposition 0.7] to (6.24) for m = 1. So there are an object H

and a morphism s : H → L, such that x1 ◦ x2 ◦ y ◦ u ◦ b ◦ s belongs to W and such
that

ip1 ∗ β ∗ is = γ1 ∗ iu ◦ b ◦ s. (6.25)

Moreover, from (6.24) for m = 2, we get:

[
H, x1 ◦ x2 ◦ y ◦ u ◦ b ◦ s, x1 ◦ x2 ◦ y ◦ u ◦ b ◦ s, ix1 ◦ x2 ◦ y ◦ u ◦ b ◦ s, ip2 ∗ β ∗ is

]
=

=
[
H, x1 ◦ x2 ◦ y ◦ u ◦ b ◦ s, x1 ◦ x2 ◦ y ◦ u ◦ b ◦ s, ix1 ◦ x2 ◦ y ◦ u ◦ b ◦ s, γ

2 ∗ iu ◦ b ◦ s

]
.

So again by [T1, Proposition 0.7], there are an object I and a morphism r : I → H ,
such that x1 ◦ x2 ◦ y ◦ u ◦ b ◦ s ◦ r belongs to W and

ip2 ∗ β ∗ is ◦ r = γ2 ∗ iu ◦ b ◦ s ◦ r. (6.26)

Since also x1 ◦ x2 ◦ y belongs to W by construction, then by Lemma A.6 there are

an object F̃ and a morphism c : F̃ → I, such that the morphism ũ := u ◦ b ◦ s ◦ r ◦ c :

F̃ → N belongs to W. Then we define γ̃ := β ∗ is ◦ r ◦ c, so from (6.25) and (6.26)
we get that

ipm ∗ γ̃ = γm ∗ iũ for m = 1, 2. (6.27)

We recall that we already used (b) (for the data (N,n, n′, γ1, γ2)) in order to get a
set of data (F, u, γ) such that (6.20) holds. Since (6.27) holds, then we can apply

(c) for the data (F̃ , ũ, γ̃), so there are an object G, a morphism z : G → F in W, a

morphism z̃ : G → F̃ and an invertible 2-morphism

µ : u ◦ z =⇒ ũ ◦ z̃ = u ◦ b ◦ s ◦ r ◦ c ◦ z̃,

such that

(
in′ ∗ µ

)
⊙
(
γ ∗ iz

)
=

(
γ̃ ∗ iz̃

)
⊙
(
in ∗ µ

)
.

If we replace γ̃ with β ∗ is ◦ r ◦ c, and n, n′ with their definition in (6.18), then the
previous identity implies that:

γ ∗ iz =
(
it′◦x1 ◦ x2 ◦ y ∗ µ

−1
)
⊙
(
β ∗ is ◦ r ◦ c ◦z̃

)
⊙
(
it◦x1 ◦ x2 ◦ y ∗ µ

)
. (6.28)
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So using [Pr, § 2.3] we have

Γ
(6.21)
=

[
F, a, a, ia, γ

]
(6.28)
=

(6.28)
=

[
L, x1 ◦ x2 ◦ y ◦ u ◦ b, x1 ◦ x2 ◦ y ◦ u ◦ b, ix1 ◦ x2 ◦ y ◦ u ◦ b, β

]
(6.23)
= Γ̃,

so we have proved also the uniqueness part of B2(D, (D, idD, t), (D, idD, t′)), i.e.
we have proved that (ii3) implies (ii2). �

Therefore, we have:

Proof of Theorem 0.2. Given an object C, a pair of morphisms pm : C → Bm for
m = 1, 2 and an invertible 2-morphism ω : f1 ◦ p1 ⇒ f2 ◦ p2 in C , the induced
diagram (0.3) is a weak fiber product if and only if it satisfies conditions A1(D)
and A2(D) for each object D of C

[
W

−1
]
, i.e. for each object D of C . Using

Lemmas 5.1 and 5.2, condition A1(D) holds for each object D if and only if property
(a) of Theorem 0.2 is satisfied for each D. Using Lemmas 6.1 and 6.2, condition
A2(D) holds for each object D if and only if properties (b) and (c) are satisfied for
each D. This suffices to conclude. �

Moreover, we are ready to give also the following proof.

Proof of Corollary 0.3. As usual, for simplicity of exposition we give the proof as-
suming that C is a 2-category. Let us fix any object D in C and let us start by
proving that condition (a) of Theorem 0.2 is satisfied. So let us suppose that we
have fixed any pair of morphisms qm : D → Bm for m = 1, 2 and any invertible
2-morphism λ : f1 ◦ q1 ⇒ f2 ◦ q2 in C . By hypothesis, (0.4) is a weak fiber product
in the bicategory C ; so by A1(D) there are a morphism q : D → C and a pair of
invertible 2-morphisms λm : qm ⇒ pm ◦ q for m = 1, 2, such that

(
ω ∗ iq

)
⊙
(
if1 ∗ λ1

)
=

(
if2 ∗ λ2

)
⊙ λ.

Then condition (a) holds if we set E := D and v := idD. Now let us prove (b), so let
us fix any pair of morphisms t, t′ : D → C and any pair of invertible 2-morphisms
γm : pm ◦ t ⇒ pm ◦ t′ for m = 1, 2 in C , such that

(
ω ∗ it′

)
⊙
(
if1 ∗ γ1

)
=

(
if2 ∗ γ2

)
⊙
(
ω ∗ it

)
. (6.29)

Since (0.4) is a weak fiber product in C , then by A2(D) there is a unique invertible
2-morphism γ : t ⇒ t′, such that

ipm ∗ γ = γm for m = 1, 2. (6.30)

So condition (b) is satisfied if we set F := D and u := idD.

Hence, we only need to prove condition (c). So let us fix any pair of morphisms
t, t′ : D → C, any pair of invertible 2-morphisms γm : pm ◦ t ⇒ pm ◦ t′ for m = 1, 2

such that (6.29) holds, any pair of objects F, F̃ , any pair of morphisms u : F → D

and ũ : F̃ → D, both in W, and any pair of invertible 2-morphisms γ : t◦u ⇒ t′ ◦u
and γ̃ : t ◦ ũ ⇒ t′ ◦ ũ, such that

ipm ∗ γ = γm ∗ iu and ipm ∗ γ̃ = γm ∗ iũ for m = 1, 2. (6.31)

Using axiom (BF3) there is a set of data as in the upper part of the following
diagram, with z in W and µ invertible.
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G

F F̃ .D

µ
⇒

ũ

z̃

u

z

For each m = 1, 2, we consider the invertible 2-morphism

φm := γm ∗ iu ◦ z : pm ◦ t ◦ u ◦ z =⇒ pm ◦ t′ ◦ u ◦ z .

Then using (6.29) we get

(
ω ∗ it′◦u ◦ z

)
⊙
(
if1 ∗ φ1

)
=

(
if2 ∗ φ2

)
⊙
(
ω ∗ it◦u ◦ z

)
. (6.32)

From the first part of (6.31), for each m = 1, 2 we have

ipm ∗
(
γ ∗ iz

)
= φm. (6.33)

Moreover, from the second part of (6.31) and interchange law, for each m = 1, 2 we
have:

ipm ∗
((

it′ ∗ µ
−1

)
⊙
(
γ̃ ∗ iz̃

)
⊙
(
it ∗ µ

))
=

=
(
ipm◦t′ ∗ µ

−1
)
⊙
(
γm ∗ iũ◦z̃

)
⊙
(
ipm◦t ∗ µ

)
= γm ∗ iu ◦ z = φm. (6.34)

Since (0.4) is a weak fiber product in C , then using condition A2(G) together with
(6.32), (6.33) and (6.34), we get that

γ ∗ iz =
(
it′ ∗ µ

−1
)
⊙
(
γ̃ ∗ iz̃

)
⊙
(
it ∗ µ

)
.

This equation is equivalent to (0.9) when C is a 2-category, so condition (c) holds
for each object D.

So Theorem 0.2 implies that diagram (0.3) is a weak fiber product in C
[
W

−1
]
.

Then by Theorem 0.1 for every pair of morphisms in W of the form w1 : B1 → B
1

and w2 : B2 → B
2
, the pair of morphisms (B1,w1, f1) and (B2,w2, f2) has a weak

fiber product in C
[
W

−1
]
. �

7. (Strong) pullbacks in categories of fractions

As we mentioned in the Introduction, the right bicalculus of fractions developed by
Dorette Pronk generalizes the usual right calculus of fractions described by Pierre
Gabriel and Michel Zisman (see [GZ]). We refer to Appendix B for more details
on axioms (CF) for a right calculus of fractions and on the construction of a right
category of fractions. Then we can give a proof of the last result mentioned in the
Introduction.

Proof of Proposition 0.4. We recall (see Proposition B.1) that given any category
C and any class W of morphisms in it, the pair (C ,W) satisfies the axioms for a
right calculus of fractions if and only if the pair (C 2,W) satisfies the axioms for
a right bicalculus of fractions (here given any category C , we denote by C 2 the
associated trivial bicategory). If any of such conditions is satisfied, then there is an
equivalence of bicategories

E : C
2
[
W

−1
]
−→

(
C

[
W

−1
])2
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given on objects as the identity and on any morphism (A′,w, f) : A → B as
E(A′,w, f) := [A′,w, f ].

If we fix any pair of morphisms g1 : B1 → A and g2 : B2 → A in C 2
[
W

−1
]
; then

the following facts are equivalent:

• the pair (g1, g2) has a weak fiber product in the bicategory C 2
[
W

−1
]
;

• the pair (E(g1), E(g2)) has a weak fiber product in the bicategory (C
[
W

−1
]
)2;

• the pair (E(g1), E(g2)) has a (strong) fiber product in the category C
[
W

−1
]
.

The equivalence of the first 2 conditions follows from the existence of E and Propo-
sition 3.2; the equivalence of the last 2 conditions is simply Remark 2.3.

Since C is a category, considered as a trivial bicategory, then the 2-morphism ω

appearing in Theorems 0.1 is a 2-identity, i.e. f1 ◦ p1 = f2 ◦ p2. Using the previous
set of equivalent conditions and the equivalence of (i) and (ii) in Theorem 0.1, this
implies at once the equivalence of (iii) and (iv) in Proposition 0.4.

Now also all the 2-morphisms appearing in Theorem 0.2 are 2-identities, hence
saying that there is a 2-morphism joining a pair of morphisms is equivalent to
saying that such a pair of morphisms coincide. Moreover, all the identities from
(0.5) to (0.9) are simply of the form ia = ia for some morphism a in C , hence they
are automatically satisfied, so they will be ignored in the following lines. So let us
fix any set of data (C, p1, p2) such that f1 ◦ p1 = f2 ◦ p2. Then the following facts
are equivalent:

(1) for any object D, condition (a) of Theorem 0.2 holds;
(2) condition (d) of Proposition 0.4 holds.

Moreover, also the following facts are equivalent:

(3) for any object D, condition (b) of Theorem 0.2 holds;
(4) given any object R and any pair of morphisms r, r′ : R → C such that pm ◦ r =

pm ◦ r′ for each m = 1, 2, there are an object S and a morphism h : S → R in
W, such that r ◦ h = r′ ◦ h.

In addition, the following facts are equivalent:

(5) for any object D, condition (c) of Theorem 0.2 holds;

(6) given any set of data (R, r, r′, S, h) as in (4), any object S̃ and any morphism

h̃ : S̃ → R in W such that r ◦ h̃ = r′ ◦ h̃, there are an object M and a pair of

morphisms d : M → S in W and d̃ : M → S̃, such that h ◦ d = h̃ ◦ d̃.

Using condition (CF3) (with f := h and w := h̃), there are an object M and a

pair of morphisms d : M → S in W and d̃ : M → S̃, such that h ◦ d = h̃ ◦ d̃.
So (6) is automatically satisfied, hence also (5) is true. So using Theorem 0.2 we
have that (0.11) is a (strong) fiber product if and only if conditions (2) and (4) holds.

Now we claim that if we assume (2), then (4) is equivalent to:

(7) condition (e) of Proposition 0.4 holds.

So first of all, let us assume (2) and (4) and let us prove that (7) holds. So let us

fix any set of data (D, q1, q2, E, v, q, Ẽ, ṽ, q̃) as in Proposition 0.4 (d) and (e) (in
particular, such that qm ◦ v = pm ◦ q and qm ◦ ṽ = pm ◦ q̃ for each m = 1, 2). Let us
apply axiom (CF3) to the pair of morphisms (v, ṽ). Then there are an object R, a

pair of morphisms w : R → E in W and w̃ : R → Ẽ, such that v ◦w = ṽ ◦ w̃. Then
we set

r := q ◦ w : R −→ C and r′ := q̃ ◦ w̃ : R −→ C.
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Then for each m = 1, 2 we have:

pm ◦ r = pm ◦ q ◦ w = qm ◦ v ◦w = qm ◦ ṽ ◦ w̃ = pm ◦ q̃ ◦ w̃ = pm ◦ r′.

So by (4) there are an object F and a morphism z : F → R in W, such that
r ◦ z = r′ ◦ z. We set u := w ◦ z and ũ := w̃ ◦ z. So we have

v ◦ u = v ◦w ◦ z = ṽ ◦ w̃ ◦ z = ṽ ◦ ũ

and

q ◦ u = q ◦ w ◦ z = r ◦ z = r′ ◦ z = q̃ ◦ w̃ ◦ z = q̃ ◦ ũ,

so (7) is satisfied.

Conversely, let us suppose that (2) and (7) hold and let us prove (4). So let us fix
any object R and any pair of morphisms r, r′ : R → C, such that pm ◦ r = pm ◦ r′

for each m = 1, 2. Then let us set qm := pm ◦ r : R → Bm for m = 1, 2. Then
condition (d) of Proposition 0.4 is satisfied is we choose E := R, v := idR and

q := r. Moreover, (d) is also satisfied by choosing Ẽ := R, ṽ := idR and q̃ := r′.

Hence, by (7) there are an object S and a pair of morphisms h, h̃ : S → R in W,

such that idR ◦ h = idR ◦h̃ and r ◦ h = r′ ◦ h̃. This implies that r ◦ h = r′ ◦ h, so (4)
holds. So (0.11) is a (strong) fiber product if and only if (2) and (4) hold, if and
only if (2) and (7) hold. This is sufficient to conclude. �

Proposition 0.4 can also be obtained directly working in the category of fractions,
i.e. not relying on Theorems 0.1 and 0.2. This gives a check of correctness for the
mentioned 2 Theorems.

Appendix A. Bicategories of fractions

In this and in the next appendix we will recall some basic notions about categories
and bicategories of fractions and we will list a series of lemmas used often in this
paper.

Let us fix any bicategory C (with the notations already mentioned in § 1) and any
class W of morphisms in it. We recall that W is said to admit a right bicalculus of

fractions if and only if the following conditions are satisfied (see [Pr, § 2.1]):

(BF1) for every object A of C , the 1-identity idA belongs to W;
(BF2) W is closed under compositions;
(BF3) for every morphism w : A → B in W and for every morphism f : C → B,

there are an object D, a morphism w′ : D → C in W, a morphism f ′ : D →

A and an invertible 2-morphism α : f ◦ w′ ⇒ w ◦f ′;
(BF4) (a) given any morphism w : B → A in W, any pair of morphisms f1, f2 :

C → B and any 2-morphism α : w ◦f1 ⇒ w ◦f2, there are an object D,
a morphism v : D → C in W and a 2-morphism β : f1 ◦ v ⇒ f2 ◦ v,
such that

α ∗ iv = θw,f2,v ⊙
(
iw ∗ β

)
⊙ θ−1

w,f1,v;

(b) if α in (a) is invertible, then so is β;
(c) if (D′, v′ : D′ → C, β′ : f1 ◦ v′ ⇒ f2 ◦ v′) is another triple with the

same properties of (D, v, β) in (a), then there are an object E, a pair
of morphisms u : E → D, u′ : E → D′ and an invertible 2-morphism
ζ : v ◦ u ⇒ v′ ◦ u′, such that v ◦ u belongs to W and
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θ−1
f2,v′,u′

⊙
(
β′ ∗ iu′

)
⊙ θf1,v′,u′ ⊙

(
if1 ∗ ζ

)
=

=
(
if2 ∗ ζ

)
⊙ θ−1

f2,v,u ⊙
(
β ∗ iu

)
⊙ θf1,v,u.

(BF5) if w : A → B is a morphism in W, v : A → B is any morphism and if there
exists an invertible 2-morphism α : v ⇒ w, then also v belongs to W.

We recall the following fundamental result:

Theorem A.1. [Pr, Theorem 21] Given any pair (C ,W) satisfying conditions

(BF), there are a bicategory C
[
W

−1
]

(called (right) bicategory of fractions) and

a pseudofunctor UW : C → C
[
W

−1
]

that sends each element of W to an internal

equivalence and that is universal with respect to such property.

In the notations of [Pr], UW is called bifunctor, but this notation is no more in use;
for the precise meaning of “universal” above, we refer directly to [Pr].

Remark A.2. In [Pr] the theorem above is stated with (BF1) replaced by the
slightly stronger hypothesis

(BF1)′ all the internal equivalences of C are in W.

By looking carefully at the proofs in [Pr], it is easy to see that the only part of
axiom (BF1)′ that is really used in all the computations is (BF1), so we are allowed
to state the theorem of [Pr] under such less restrictive hypothesis.

In order to describe explicitly C
[
W

−1
]
, one has to make some choices as below.

By [Pr, Theorem 21], different choices will give equivalent bicategories of fractions

where objects, 1-morphisms and 2-morphisms are the same, but compositions of
1-morphisms and 2-morphisms are (possibly) different.

A.1. Choices in a bicategory of fractions. Following [Pr, § 2.2 and 2.3] in order
to construct a bicategory of fractions, we have to fix a set of choices as follows:

C(W): for every set of data in C as follows

A′ B B′
f v

(A.1)

with v in W, using (BF3) we choose an object A′′, a pair of morphisms
v′ : A′′ → A′ in W and f ′ : A′′ → B′ and an invertible 2-morphism
ρ : f ◦ v′ ⇒ v ◦f ′ in C .

The choices using (BF3) in general are not unique; following [Pr, § 2.2] we have
only to impose the following conditions:

(C1) whenever (A.1) is such that B = A′ and f = idB, then we choose the data of
C(W) to be given by A′′ := B′, f ′ := idB, v′ := v and ρ := π−1

v ⊙ υv;
(C2) whenever (A.1) is such that B = B′ and v = idB, then we choose the data of

C(W) to be given by A′′ := A′, f ′ := f , v′ := idA′ and ρ := υ−1
f ⊙ πf .

For simplicity of computations, in some of the proofs of this paper we will consider
a set of choices C(W) satisfying also the following additional condition:

(C3) whenever (A.1) is such that A′ = B′ and f = v (with v in W), then we
choose the data of C(W) to be given by A′′ := A′, f ′ := idA′ , v′ := idA′ and
ρ := if◦id

A′
.

Condition (C3) is not strictly necessary in order to do a right bicalculus of fractions,
but it simplifies lots of the computations in the present paper. We have only to
check that it is compatible with conditions (C1) and (C2) required by [Pr], but this
is obvious using the axioms of a bicategory. In other terms, for each pair (C ,W)
satisfying condition (BF3), there is always a set of choices C(W) satisfying (C1),
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(C2) and (C3). According to [Pr, § 2.3] one should also fix an additional set of
choices depending on axiom (BF4), but actually such additional set of choices is
not necessary (see [T1, Theorem 0.5]).

A.2. Morphisms and 2-morphisms in C [W−1]. We recall (see [Pr]) that the
objects of C

[
W

−1
]

are the same as those of C . A morphism from A to B in

C
[
W

−1
]

is any triple (A′,w, f), where A′ is an object of C , w : A′ → A is an
element of W and f : A′ → B is a morphism of C . Given any pair of morphisms
from A to B and from B to C in C

[
W

−1
]

as follows

A A′ B and
w f

B B′ C
v g

(with both w and v in W), one has to use choices C(W) for the pair (f, v) in order
to get data (A′′, v′, f ′) as above and then define the composition of the previous
morphisms of C

[
W

−1
]

as (A′′,w ◦ v′, g ◦ f ′).

Given any pair of objects A,B and any pair of morphisms (Am,wm, fm) : A → B

for m = 1, 2, a 2-morphism from (A1,w1, f1) to (A2,w2, f2) is an equivalence class
of data (A3, v1, v2, α, β) in C as follows

A1

A3A B,

A2

⇓ β⇓ α

f2

f1

v1

v2

w2

w1

(A.2)

such that w1 ◦ v1 belongs to W and such that α is invertible in C (in [Pr, § 2.3]
it is also required that w2 ◦ v2 belongs to W, but this follows from (BF5)). Any
other set of data

A1

A′3A B

A2

⇓ β′⇓ α′

f2

f1

v′1

v′2

w2

w1

(such that w1 ◦ v′1 belongs to W and α′ is invertible) represents the same 2-
morphism in C

[
W

−1
]

if and only if there is a set of data (A4, z, z′, σ1, σ2) in
C as in the following diagram
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A1

A′3 A4 A3,

A2

⇒
σ1

⇐
σ2

v′2

z

v2

v′1

z′

v1

such that (w1 ◦ v1) ◦ z belongs to W, σ1 and σ2 are both invertible,

(
iw2 ∗ σ2

)
⊙ θ−1

w2,v2,z ⊙
(
α ∗ iz

)
⊙ θw1,v1,z ⊙

(
iw1 ∗ σ1

)
=

= θ−1
w2,v′2,z′ ⊙

(
α′ ∗ iz′

)
⊙ θw1,v′1,z′ (A.3)

and

(
if2 ∗ σ2

)
⊙ θ−1

f2,v2,z ⊙
(
β ∗ iz

)
⊙ θf1,v1,z ⊙

(
if1 ∗ σ1

)
=

= θ−1
f2,v′2,z′ ⊙

(
β′ ∗ iz′

)
⊙ θf1,v′1,z′ (A.4)

(in [Pr, § 2.3] it is also required that (w1 ◦ v′1) ◦ z′ belongs to W, but this follows
from (BF5)). We denote by

[
A3, v1, v2, α, β

]
:
(
A1,w1, f1

)
=⇒

(
A2,w2, f2

)

the class of any data as in (A.2). We refer to [Pr] for the description of associators
and compositions of 2-morphisms in C

[
W

−1
]
. A simplified description can be

found in [T1, Propositions 0.1, 0.2, 0.3 and 0.4].

A.3. Useful lemmas in a bicategory of fractions. We denote by Θ• the as-
sociators of a bicategory of fractions C

[
W

−1
]

(constructed as in [Pr, Appendix
A.2]). Then we have:

Lemma A.3. [T1, Corollary 2.2 and Remark 2.3] Let us fix any triple of morphisms

h : D → C, g : C → B, f : B → A in C and any morphism w : D → D′ in W. If

C is a 2-category, then the associator Θ(B,idB ,f),(C,idC ,g),(D,w,h) coincides with the

2-identity of the morphism (D,w, f ◦ g ◦ h) : D′ → A in C
[
W

−1
]
.

The following is a special case of [T1, Proposition 0.3].

Lemma A.4. Let us fix any morphism and any representative of a 2-morphism in

C
[
W

−1
]

as follows.

A A′ B,
w g

B

BB C.

B

⇓ γ⇓ iidB ◦ idB

h2

h1

idB

idB

idB

idB
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Then the 2-morphism

[
B, idB , idB, iidB

, γ
]
∗ i(A′,w,g) :

(
A′,w ◦ idA′ , h1 ◦ g

)
=⇒

(
A′,w ◦ idA′ , h2 ◦ g

)

is equal to [A′, idA′ , idA′ , i(w ◦ idA′ )◦idA′
, π−1

h2◦g
⊙ ((πh2 ⊙ γ ⊙ π−1

h1 ) ∗ ig)⊙ πh1◦g].

The following is a special case of [T1, Proposition 0.4].

Lemma A.5. Let us fix any morphism and any representative of a 2-morphism in

C
[
W

−1
]

in C
[
W

−1
]

as follows:

A1

A3A B,

A2

⇓ β⇓ α

f2

f1

u1

u2

w2

w1

B B C.
idB g

Then the 2-morphism

i(B,idB ,g) ∗
[
A3, u1, u2, α, β

]
:
(
A1,w1 ◦ idA1 , g ◦ f1

)
=⇒

(
A2,w2 ◦ idA2 , g ◦ f2

)

is equal to [A3, u1, u2, (π−1
w2 ∗ iu2)⊙ α⊙ (πw1 ∗ iu1), θg,f2,u2 ⊙ (ig ∗ β)⊙ θ−1

g,f1,u1 ].

The following is a simple application of the definition of right saturation (see [T2,
Definition 2.11]) together with [T2, Proposition 2.11].

Lemma A.6. Let us fix any triple of objects A,B,C, and any pair of morphisms

w : B → A and v : C → B, such that both w and w ◦ v belong to W. Then there

are an object D and a morphism z : D → C, such that v ◦ z belongs to W.

Lemma A.7. Let us fix any set of objects A,A′, B, any morphism w : A′ → A

in W and any pair of morphisms f1, f2 : A′ → B. Let us also fix any pair of

2-morphisms in C
[
W

−1
]

Γ, Γ′ :
(
A′,w, f1

)
=⇒

(
A′,w, f2

)

and let us suppose that Γ = [C, v, v, iw ◦ v, γ] and Γ′ = [C′, v′, v′, iw ◦ v′ , γ′] (for some

choice of C,C′, v, v′, γ and γ′). Then Γ = Γ′ if and only if there are an object D, a

morphism z : D → C in W, a morphism z′ : D → C′ and an invertible 2-morphism

µ : v ◦ z ⇒ v′ ◦ z′, such that

(
if2 ∗ µ

)
⊙ θ−1

f2,v,z ⊙
(
γ ∗ iz

)
⊙ θf1,v,z ⊙

(
if1 ∗ µ−1

)
=

= θ−1
f2,v′,z′ ⊙

(
γ′ ∗ iz′

)
⊙ θf1,v′,z′ .

Proof. The “if” part is a direct consequence of the definition of 2-morphism in
C
[
W

−1
]
. Conversely, let us suppose that Γ = Γ′. Then there is a set of data

(C, t, t′, σ1, σ2) in C as in the following diagram
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A′

C′ C C,

A′

⇒
σ1

⇐
σ2

v′

t

v

v′

t′

v

such that (w ◦ v) ◦ t belongs to W, σ1 and σ2 are both invertible,

(
iw ∗ σ2

)
⊙ θ−1

w,v,t ⊙
(
iw ◦ v ∗ it

)
⊙ θw,v,t ⊙

(
iw ∗ σ1

)
=

= θ−1
w,v′,t′ ⊙

(
iw ◦ v′ ∗ it′

)
⊙ θw,v′,t′ (A.5)

and

(
if2 ∗ σ2

)
⊙ θ−1

f2,v,t ⊙
(
γ ∗ it

)
⊙ θf1,v,t ⊙

(
if1 ∗ σ1

)
=

= θ−1
f2,v′,t′ ⊙

(
γ′ ∗ it′

)
⊙ θf1,v′,t′ (A.6)

Since Γ is a 2-morphism in a bicategory of fractions, then w ◦ v belongs to W.

Since also (w ◦ v) ◦ t belongs to W, then by Lemma A.6 there are an object C̃ and

a morphism r : C̃ → C, such that t ◦ r belongs to W.

From (A.5) we get that iw ∗ (σ2 ∗ ir) = iw ∗ (σ1 ∗ ir)
−1. So using [T1, Lemma 1.1]

there are an object D and a morphism s : D → C̃ in W, such that

(
σ2 ∗ ir

)
∗ is =

(
σ1 ∗ ir

)−1

∗ is. (A.7)

By construction and (BF2) the morphism (t ◦ r) ◦ s belongs to W, so by (BF5) we
conclude that also the morphism z := t ◦(r ◦ s) : D → C belongs to W. We define
also z′ := t′ ◦(r ◦ s) : D → C′ and

µ := θ−1
v′,t′,r ◦ s ⊙

(
σ2 ∗ ir◦ s

)
⊙ θv,t,r ◦ s : v ◦ z =⇒ v′ ◦ z′ .

Then we conclude using (A.7) and (A.6). �

Appendix B. Categories of fractions

We recall (see [GZ]) that given a category C and a class W of morphisms in it, the
pair (C ,W) is said to admit a right calculus of fractions if and only if the following
properties hold:

(CF1) W contains all the identities of C ;
(CF2) W is closed under compositions;
(CF3) (“right Ore condition”) for every morphism w : A → B in W and any

morphism f : C → B, there are an object D, a morphism w′ : D → C in
W and a morphism f ′ : D → A, such that f ◦ w′ = w ◦f ′;

(CF4) (“right cancellability”) given any morphism w : B → A in W and any pair
of morphisms f1, f2 : C → B such that w ◦f1 = w ◦f2, there are an object
D and a morphism v : D → C in W, such that f1 ◦ v = f2 ◦ v.
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Given any pair (C ,W) satisfying this set of axioms, the right category of fractions
C
[
W

−1
]

associated to it is described as follows. Its objects are the same as those
of C ; a morphism from A to B is any equivalence class [A′,w, f ] of a triple (A′,w, f)
as follows:

A A′ B
w f

with w in W. Any 2 triples (A1,w1, f1) and (A2,w2, f2) (both defined from A to
B) are declared equivalent if and only if there are an object A3, a pair of morphisms
v1 : A3 → A1 and v2 : A3 → A2, such that:

• w1 ◦ v1 belongs to W;
• w1 ◦ v1 = w2 ◦ v2;
• f1 ◦ v1 = f2 ◦ v2;

(the fact that this is an equivalence relation is obvious using the axioms). The com-
position of morphisms in C

[
W

−1
]

is obtained by choosing representatives, then
using (CF3) and then taking the class of the resulting composition. As such, com-
position is well-defined and associative.

Now given any category C , we denote by C 2 the trivial bicategory obtained from
C , i.e. the bicategory whose objects and morphisms are the same as those of C

and whose 2-morphisms are only the 2-identities. Then a direct check proves the
following fact.

Proposition B.1. Let us fix any category C and any class W of morphisms in it.

Then the pair (C ,W) satisfies the axioms for a right calculus of fractions if and

only if the pair (C 2,W) satisfies the axioms for a right bicalculus of fractions. If

any of such conditions is satisfied, then:

(a) given any pair of objects A,B in C and any pair of morphisms (Am,wm, fm) :
A → B for m = 1, 2 in C 2

[
W

−1
]
, if [A1,w1, f1] = [A2,w2, f2] in C

[
W

−1
]

then there is exactly one 2-morphism Γ from (A1,w1, f1) to (A2,w2, f2) in

C 2
[
W

−1
]
; moreover such a Γ is invertible;

(b) given any set of data (A,B,Am,wm, fm) as before, if [A1,w1, f1] 6= [A2,w2, f2]
in C

[
W

−1
]
, then there are no 2-morphisms from (A1,w1, f1) to (A2,w2, f2)

in C 2
[
W

−1
]
;

(c) there is an equivalence of bicategories

E : C
2
[
W

−1
]
−→

(
C

[
W

−1
])2

given on objects as the identity, on any morphism (A′,w, f) : A → B as

E(A′,w, f) := [A′,w, f ] and induced on 2-morphisms by (a) and (b).

This makes precise the informal concept (stated in the Introduction) that the right
bicalculus of fractions generalizes the right calculus of fractions.

Appendix C. Proofs of some technical lemmas

Proof of Lemma 2.6. As usual, we give a complete proof assuming for simplicity
that D is a 2-category; in this case Ω = ie∗Ω. Since e is an internal equivalence, then
by [L, Proposition 1.5.7] e is the first component of an adjoint equivalence. So there
are an internal equivalence d : A → A and invertible 2-morphisms ∆ : idA =⇒ d ◦ e

and Ξ : e ◦ d =⇒ idA such that

(
Ξ ∗ ie

)
⊙
(
ie ∗∆

)
= ie and

(
id ∗ Ξ

)
⊙
(
∆ ∗ id

)
= id. (C.1)
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Let us fix any object D in D and let us prove conditions A1(D) and A2(D) for
diagram (2.16). First of all, we prove A1(D), so we fix any set of data (s1, s2,Λ)
with Λ invertible as follows

D B1

B2 A.

=⇒
Λs2

s1

e◦g1

e◦g2

Then we consider the invertible 2-morphism

Λ :=
(
∆−1 ∗ ig2◦s2

)
⊙
(
id ∗ Λ

)
⊙

(
∆ ∗ ig1◦s1

)
: g1 ◦ s1 =⇒ g2 ◦ s2. (C.2)

Since (2.1) satisfies condition A1(D), then there are a morphism s : D → C and a
pair of invertible 2-morphisms Λm : sm ⇒ rm ◦ s for m = 1, 2, such that

(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
=

(
ig2 ∗ Λ2

)
⊙ Λ. (C.3)

Now by interchange law we have

ie ∗ Λ
(C.2)
=

(
ie ∗∆

−1 ∗ ig2◦s2

)
⊙
(
ie◦d ∗ Λ

)
⊙
(
ie ∗∆ ∗ ig1◦s1

)
(C.1)
=

(C.1)
=

(
Ξ ∗ ie◦g2◦s2

)
⊙
(
ie◦d ∗ Λ

)
⊙
(
Ξ−1 ∗ ie◦g1◦s1

)
= Λ, (C.4)

so

(
Ω ∗ is

)
⊙
(
ie◦g1 ∗ Λ1

)
= ie ∗

((
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

))
(C.3)
=

(C.3)
=

(
ie◦g2 ∗ Λ2

)
⊙
(
ie ∗ Λ

)
(C.4)
=

(
ie◦g2 ∗ Λ2

)
⊙ Λ.

This proves that condition A1(D) holds for diagram (2.16). Let us also prove
condition A2(D), so let us fix any pair of morphisms t, t′ : D → C and any pair of
invertible 2-morphisms Γm : rm ◦ t ⇒ rm ◦ t′ for m = 1, 2, such that

(
Ω ∗ it′

)
⊙
(
ie◦g1 ∗ Γ1

)
=

(
ie◦g2 ∗ Γ2

)
⊙
(
Ω ∗ it

)
. (C.5)

Then by interchange law we have

(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ1

)
=

=
(
∆−1 ∗ ig2◦r2◦t′

)
⊙
{
id◦e ∗

[(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ1

)]}
⊙
(
∆ ∗ ig1◦r1◦t

)
(C.5)
=

=
(
∆−1 ∗ ig2◦r2◦t′

)
⊙
{
id◦e ∗

[(
ig2 ∗ Γ2

)
⊙
(
Ω ∗ it

)]}
⊙
(
∆ ∗ ig1◦r1◦t

)
=

=
(
ig2 ∗ Γ2

)
⊙
(
Ω ∗ it

)
.

Since (2.1) satisfies condition A2(D), then there is a unique invertible 2-morphism
Γ : t ⇒ t′, such that irm ∗ Γ = Γm for each m = 1, 2. This proves that condition
A2(D) holds also for diagram (2.16). �

Proof of Lemma 2.7. As usual, we give the proof in the case when D is a 2-category.
Since Ω1 and Ω2 are invertible, then the roles of (g1, g2) and (g1, g2) are interchange-
able. Hence, we will only prove that if (2.1) is a weak fiber product, then (2.17) is
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also a weak fiber product.

So let us fix any object D in D and let us prove condition A1(D) for (2.17), so let
us consider any set of data (s1, s2,Λ) in D as follows, with Λ invertible:

D B1

B2 A.

=⇒
Λs2

s1

g1

g2

Then we define an invertible 2-morphism

Λ :=
( (

Ω2
)−1

∗ is2
)
⊙ Λ ⊙

(
Ω1 ∗ is1

)
: g1 ◦ s1 =⇒ g2 ◦ s2. (C.6)

Since (2.1) is a weak fiber product, then by A1(D) for (2.1) there are a morphism
s : D → C and a pair of invertible 2-morphisms Λm : sm ⇒ rm ◦ s for m = 1, 2,
such that:

(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
=

(
ig2 ∗ Λ2

)
⊙ Λ. (C.7)

Therefore, by interchange law we have:

(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
(2.17)
=

(2.17)
=

(
Ω2 ∗ ir2◦s

)
⊙
(
Ω ∗ is

)
⊙
( (

Ω1
)−1

∗ ir1◦s

)
⊙
(
ig1 ∗ Λ1

)
=

=
(
Ω2 ∗ ir2◦s

)
⊙
(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
⊙
( (

Ω1
)−1

∗ is1
)

(C.7)
=

(C.7)
=

(
Ω2 ∗ ir2◦s

)
⊙
(
ig2 ∗ Λ2

)
⊙ Λ⊙

( (
Ω1

)−1
∗ is1

)
=

=
(
ig2 ∗ Λ2

)
⊙
(
Ω2 ∗ is2

)
⊙ Λ⊙

( (
Ω1

)−1
∗ is1

)
(C.6)
=

(
ig2 ∗ Λ2

)
⊙ Λ.

Therefore, property A1(D) holds for diagram (2.17). Let us prove also condition
A2(D) for (2.17), so let us fix any pair of morphisms t, t′ : D → C and any pair of
invertible 2-morphisms Γm : rm ◦ t ⇒ rm ◦ t′ for m = 1, 2, such that:

(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ1

)
=

(
ig2 ∗ Γ2

)
⊙
(
Ω ∗ it

)
. (C.8)

By interchange law we have:

(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ1

)
=

=
(
Ω ∗ it′

)
⊙
( (

Ω1
)−1

∗ ir1◦t′
)
⊙
(
ig1 ∗ Γ1

)
⊙
(
Ω1 ∗ ir1◦t

)
(2.17)
=

(2.17)
=

( (
Ω2

)−1
∗ ir2◦t′

)
⊙
(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ1

)
⊙
(
Ω1 ∗ ir1◦t

)
(C.8)
=

(C.8)
=

( (
Ω2

)−1
∗ ir2◦t′

)
⊙
(
ig2 ∗ Γ2

)
⊙
(
Ω ∗ it

)
⊙
(
Ω1 ∗ ir1◦t

)
=

=
(
ig2 ∗ Γ2

)
⊙
( (

Ω2
)−1

∗ ir2◦t

)
⊙
(
Ω ∗ it

)
⊙
(
Ω1 ∗ ir1◦t

)
(2.17)
=

(2.17)
=

(
ig2 ∗ Γ2

)
⊙
(
Ω ∗ it

)
.
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Since (2.1) is a weak fiber product, then by A2(D) for (2.1) there is a unique
invertible 2-morphism Γ : t ⇒ t′, such that irm ∗ Γ = Γm for each m = 1, 2.
Therefore, property A2(D) holds also for diagram (2.17). �

Proof of Lemma 2.9. We give a proof in the case when D is a 2-category; this
implies that Ω = Ω∗ie. Since e is an internal equivalence, we can choose a morphism
d : C → C and invertible 2-morphisms ∆ : idC ⇒ d ◦ e and Ξ : e ◦ d ⇒ idC , such
that

(
Ξ ∗ ie

)
⊙
(
ie ∗∆

)
= ie and

(
id ∗ Ξ

)
⊙
(
∆ ∗ id

)
= id. (C.9)

We fix any object D in D and we prove conditions A1(D) and A2(D) for diagram
(2.18). In order to prove the first property, let us fix any set of data (s1, s2,Λ) in
D as in the following diagram, with Λ invertible:

D B1

B2 A.

=⇒
Λs2

s1

g1

g2

Since (2.1) is a weak fiber product, then by A1(D) for (2.1) there are a morphism
s : D → C and a pair of invertible 2-morphisms Λm : sm ⇒ rm ◦ s for m = 1, 2,
such that:

(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
=

(
ig2 ∗ Λ2

)
⊙ Λ. (C.10)

Then we set s := d ◦ s : D → C; for each m = 1, 2 we define

Λ
m

:=
(
irm ∗ Ξ−1 ∗ is

)
⊙ Λm : sm =⇒ rm ◦ e ◦ d ◦ s = rm ◦ e ◦ s. (C.11)

By definition of s and Ω and interchange law, we have:

(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ

1
)

(C.11)
=

(C.11)
=

(
Ω ∗ ie◦d◦s

)
⊙
(
ig1◦r1 ∗ Ξ

−1 ∗ is

)
⊙
(
ig1 ∗ Λ1

)
=

=
(
ig2◦r2 ∗ Ξ

−1 ∗ is

)
⊙
(
Ω ∗ is

)
⊙
(
ig1 ∗ Λ1

)
(C.10)
=

(C.10)
=

(
ig2◦r2 ∗ Ξ

−1 ∗ is

)
⊙
(
ig2 ∗ Λ2

)
⊙ Λ

(C.11)
=

(
ig2 ∗ Λ

2
)
⊙ Λ.

Therefore diagram (2.18) satisfies property A1(D).

Let us prove also property A2(D) for (2.18), so let us fix any pair of morphisms

t, t
′
: D → C and any pair of invertible 2-morphisms Γ

m
: (rm ◦ e) ◦ t ⇒ (rm ◦ e) ◦ t

′

for m = 1, 2, such that

(
Ω ∗ it′

)
⊙
(
ig1 ∗ Γ

1
)
=

(
ig2 ∗ Γ

2
)
⊙
(
Ω ∗ it

)
. (C.12)

Let us consider the morphisms t := e ◦ t and t′ := e ◦ t
′
, both defined from D to

C. Then by (C.12) we have (Ω ∗ it′)⊙ (ig1 ∗ Γ
1
) = (ig2 ∗ Γ

2
)⊙ (Ω ∗ it). Since (2.1)

is a weak fiber product, then by A2(D) there is a unique invertible 2-morphism

Γ : t ⇒ t′, such that irm ∗ Γ = Γ
m

for each m = 1, 2. Then we define
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Γ :=
(
∆−1 ∗ it′

)
⊙
(
id ∗ Γ

)
⊙
(
∆ ∗ it

)
: t =⇒ t

′
.

A direct computation using (C.9) and the interchange law shows that ie ∗ Γ = Γ.
Therefore

irm◦e ∗ Γ = irm ∗ Γ = Γ
m

for m = 1, 2. (C.13)

So in order to conclude we need only to prove that Γ is the unique invertible

2-morphism t ⇒ t
′

such that (C.13) holds. So let us fix another invertible 2-

morphism Γ
′
: t ⇒ t

′
, such that irm◦e ∗ Γ

′
= Γ

m
for each m = 1, 2. Then we

have irm ∗ (ie ∗ Γ
′
) = Γ

m
for each m = 1, 2; by uniqueness of Γ we conclude that

ie ∗ Γ
′
= Γ. So we get ie ∗ Γ = Γ = ie ∗ Γ

′
, hence by interchange law we have:

Γ =
(
∆−1 ∗ it′

)
⊙
(
id◦e ∗ Γ

)
⊙
(
∆ ∗ it

)
=

=
(
∆−1 ∗ it′

)
⊙
(
id◦e ∗ Γ

′
)
⊙
(
∆ ∗ it

)
= Γ

′
.

This suffices to conclude. �

Proof of Lemma 3.1. For simplicity of exposition, in this proof we assume that both
A and B are 2-categories and that F is a strict pseudofunctor between them, i.e. a
2-functor (in other terms, we assume that F preserves compositions and identities).
So in particular ΩB = F2(ΩA ). In the more general case the proof is analogous:
it suffices to add unitors and associators for F wherever it is necessary and to use
the coherence conditions on the pseudofunctor F .

So let us fix any object DB in B and let us prove conditions A1(DB) and A2(DB)
for diagram (3.2). By property (X1) for F , there are an object DA and an internal
equivalence eB : F0(DA ) → DB. Since eB is an internal equivalence then there are
an internal equivalence dB : DB → F0(DA ) and a pair of invertible 2-morphisms
ΞB : eB ◦ dB ⇒ idDB

and ∆B : idF0(DA ) ⇒ dB ◦ eB, such that

(
ΞB ∗ ieB

)
⊙
(
ieB

∗∆B

)
= ieB

and
(
idB

∗ ΞB

)
⊙
(
∆B ∗ idB

)
= idB

. (C.14)

In order to prove condition A1(DB) for (3.2), let us fix any set (s1
B
, s2

B
,ΛB) in B

as follows, with ΛB invertible

DB F0(B
1
A
)

F0(B
2
A
) F0(AA ).

=⇒
ΛB

F1(g
2

A
)

s2
B F1(g

1

A
)

s1
B

By property (X2) for F , for each m = 1, 2 there are a morphism sm
A

: DA → Bm
A

and an invertible 2-morphism χm
B

: F1(s
m
A
) ⇒ sm

B
◦ eB. Again by (X2) there is a

(unique) invertible 2-morphism ΛA : g1
A

◦ s1
A

⇒ g2
A

◦ s2
A

, such that

F2(ΛA ) =
(
iF1(g2

A
) ∗

(
χ2

B

)−1
)
⊙
(
ΛB ∗ ieB

)
⊙
(
iF1(g1

A
) ∗ χ

1
B

)
:

F1(g
1
A ◦ s1A ) =⇒ F1(g

2
A ◦ s2A ). (C.15)

Since (3.1) satisfies property A1(DA ), then there are a morphism sA : DA → CA

and a pair of invertible 2-morphisms Λm
A

: sm
A

⇒ rm
A

◦ sA for m = 1, 2, such that
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(
ΩA ∗ isA

)
⊙
(
ig1

A

∗ Λ1
A

)
=

(
ig2

A

∗ Λ2
A

)
⊙ ΛA . (C.16)

Since we are assuming that F is a strict pseudofunctor, then by applying F2 to
(C.16) and using (C.15), we get:

(
F2(ΩA ) ∗ iF1(sA )

)
⊙
(
iF1(g1

A
) ∗ F2(Λ

1
A )

)
=

=
(
iF1(g2

A
) ∗ F2(Λ

2
A )

)
⊙
(
iF1(g2

A
) ∗

(
χ2

B

)−1
)
⊙
(
ΛB ∗ ieB

)
⊙
(
iF1(g1

A
) ∗ χ

1
B

)
.

This implies that:

(
F2(ΩA ) ∗ iF1(sA )

)
⊙
(
iF1(g1

A
) ∗

(
F2(Λ

1
A )⊙

(
χ1

B

)−1
))

=

=
(
iF1(g2

A
) ∗

(
F2(Λ

2
A )⊙

(
χ2

B

)−1
))

⊙
(
ΛB ∗ ieB

)
. (C.17)

Then by interchange law we have:

(
F2(ΩA ) ∗ iF1(sA )◦dB

)
⊙

⊙
{
iF1(g1

A
) ∗

[(
F2(Λ

1
A ) ∗ idB

)
⊙
( (

χ1
B

)−1
∗ idB

)
⊙
(
is1

B
∗ Ξ−1

B

)]}
(C.17)
=

(C.17)
=

{
iF1(g2

A
) ∗

[(
F2(Λ

2
A ) ∗ idB

)
⊙
( (

χ2
B

)−1
∗ idB

)
⊙
(
is2

B

∗ Ξ−1
B

)]}
⊙ ΛB.

(C.18)

Then we set sB := F1(sA ) ◦ dB : DB → F0(CA ) and for each m = 1, 2:

Λm
B :=

(
F2(Λ

m
A ) ∗ idB

)
⊙
(
(χm

B)
−1

∗ idB

)
⊙
(
ism

B
∗ Ξ−1

B

)
: smB =⇒ F1(r

m
A ) ◦ sB,

so (C.18) reads as follows:

(
F2(ΩA ) ∗ isB

)
⊙
(
iF1(g1

A
) ∗ Λ

1
B

)
=

(
iF1(g2

A
) ∗ Λ

2
B

)
⊙ ΛB.

This shows that condition A1(DB) holds for diagram (3.2).

Now let us also prove A2(DB) for (3.2), so let us fix any pair of morphisms tB, t′
B

:
DB → F0(CA ) any pair of invertible 2-morphisms Γm

B
: F1(r

m
A
)◦tB ⇒ F1(r

m
A
)◦t′

B
,

such that

(
F2(ΩA ) ∗ it′

B

)
⊙
(
iF1(g1

A
) ∗ Γ

1
B

)
=

(
iF1(g2

A
) ∗ Γ

2
B

)
⊙
(
F2(ΩA ) ∗ itB

)
. (C.19)

By property (X2) there are a pair of morphisms tA , t′
A

: DA → CA and a pair of
invertible 2-morphisms

ΦB : F1(tA ) =⇒ tB ◦ eB and Φ′
B : F1(t

′
A ) =⇒ t′B ◦ eB.

Then using the interchange law we get:

(
F2(ΩA ) ∗ iF1(t′A )

)
⊙

⊙
{
iF1(g1

A
) ∗

[(
iF1(r1A ) ∗ (Φ

′
B)

−1
)
⊙
(
Γ1

B ∗ ieB

)
⊙
(
iF1(r1A ) ∗ ΦB

)]}
=

=
(
iF1(g2

A
◦r2

A
) ∗ (Φ

′
B)

−1
)
⊙
{[(

F2(ΩA ) ∗ it′
B

)
⊙

⊙
(
iF1(g1

A
) ∗ Γ

1
B

)]
∗ ieB

}
⊙
(
iF1(g1

A
◦r1

A
) ∗ ΦB

)
(C.19)
=
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(C.19)
=

(
iF1(g2

A
◦r2

A
) ∗ (Φ

′
B)

−1
)
⊙
{[(

iF1(g2

A
) ∗ Γ

2
B

)
⊙

⊙
(
F2(ΩA ) ∗ itB

)]
∗ ieB

}
⊙
(
iF1(g1

A
◦r1

A
) ∗ ΦB

)
=

=
{
iF1(g2

A
) ∗

[(
iF1(r2A ) ∗ (Φ

′
B)

−1
)
⊙
(
Γ2

B ∗ ieB

)
⊙
(
iF1(r2A ) ∗ ΦB

)]}
⊙

⊙
(
F2(ΩA ) ∗ iF1(tA )

)
. (C.20)

Again by property (X2) for F , for each m = 1, 2 there is a (unique) invertible
2-morphism Γm

A
: rm

A
◦ tA ⇒ rm

A
◦ t′

A
, such that

F2(Γ
m
A ) =

(
iF1(rmA ) ∗ (Φ

′
B)

−1
)
⊙
(
Γm

B ∗ ieB

)
⊙
(
iF1(rmA ) ∗ ΦB

)
:

F1(r
m
A ◦ tA ) =⇒ F1(r

m
A ◦ t′A ). (C.21)

Then (C.20) reads as follows:

F2

[(
ΩA ∗ it′

A

)
⊙
(
ig1

A
∗ Γ1

A

)]
= F2

[(
ig2

A
∗ Γ2

A

)
⊙
(
ΩA ∗ itA

)]
.

Then again by property (X2) we conclude that

(
ΩA ∗ it′

A

)
⊙
(
ig1

A
∗ Γ1

A

)
=

(
ig2

A
∗ Γ2

A

)
⊙
(
ΩA ∗ itA

)
.

Since diagram (3.1) satisfies property A2(DA ), then the previous identity implies
that there is a unique invertible 2-morphism ΓA : tA ⇒ t′

A
, such that irm

A
∗ ΓA =

Γm
A

for each m = 1, 2. So by interchange law, for each m = 1, 2 we have:

Γm
B =

(
iF1(rmA )◦t′

B
∗ ΞB

)
⊙
(
Γm

B ∗ ieB◦dB

)
⊙
(
iF1(rmA )◦tB

∗ Ξ−1
B

)
(C.21)
=

(C.21)
=

(
iF1(rmA )◦t′

B
∗ ΞB

)
⊙
(
iF1(rmA ) ∗ Φ

′
B ∗ idB

)
⊙
(
F2(Γ

m
A ) ∗ idB

)
⊙

⊙
(
iF1(rmA ) ∗ Φ

−1
B

∗ idB

)
⊙
(
iF1(rmA )◦tB

∗ Ξ−1
B

)
=

= iF1(rmA ) ∗
{(

it′
B
∗ ΞB

)
⊙
[(

Φ′
B ⊙F2(ΓA )⊙ Φ−1

B

)
∗ idB

]
⊙
(
itB

∗ Ξ−1
B

)}
.

(C.22)

Hence, if we set

ΓB :=
(
it′

B
∗ΞB

)
⊙
[(

Φ′
B⊙F2(ΓA )⊙Φ−1

B

)
∗idB

]
⊙
(
itB

∗Ξ−1
B

)
: tB ⇒ t′B, (C.23)

then (C.22) implies that iF1(rmA ) ∗ ΓB = Γm
B

for each m = 1, 2.

Now in order to conclude that (3.2) satisfies property A2(DB), we need only to
prove that ΓB is the unique invertible 2-morphism with such a property. So let us
fix another invertible 2-morphism Γ′

B
: tB ⇒ t′

B
such that iF1(rmA ) ∗ Γ

′
B

= Γm
B

for

each m = 1, 2. By (X2) there is a unique invertible 2-morphism Γ′
A

: tA ⇒ t′
A

,
such that

F2(Γ
′
A ) = (Φ′

B)
−1

⊙
(
Γ′

B ∗ ieB

)
⊙ ΦB : F1(tA ) =⇒ F1(t

′
A ). (C.24)

Now by interchange law, we have:

ΓB ∗ ieB

(C.23),(C.14)
=

(
it′

B
◦eB

∗∆−1
B

)
⊙
((

Φ′
B ⊙F2(ΓA )⊙ Φ−1

B

)
∗ idB◦eB

)
⊙

⊙
(
itB◦eB

∗∆B

)
= Φ′

B ⊙F2(ΓA )⊙ Φ−1
B

. (C.25)
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Therefore, for each m = 1, 2 we have:

F2

(
irm

A
∗ Γ′

A

)
= iF1(rmA ) ∗ F2(Γ

′
A )

(C.24)
=

(C.24)
=

(
iF1(rmA ) ∗ (Φ

′
B)

−1
)
⊙
(
iF1(rmA ) ∗ Γ

′
B ∗ ieB

)
⊙
(
iF1(rmA ) ∗ ΦB

)
=

=
(
iF1(rmA ) ∗ (Φ

′
B)

−1
)
⊙
(
Γm

B ∗ ieB

)
⊙
(
iF1(rmA ) ∗ ΦB

)
=

=
(
iF1(rmA ) ∗ (Φ

′
B)

−1
)
⊙
(
iF1(rmA ) ∗ ΓB ∗ ieB

)
⊙
(
iF1(rmA ) ∗ ΦB

)
=

= iF1(rmA ) ∗
(
(Φ′

B)
−1

⊙
(
ΓB ∗ ieB

)
⊙ ΦB

)
(C.25)
=

(C.25)
= iF1(rmA ) ∗ F2(ΓA ) = F2

(
irm

A
∗ ΓA

)
= F2(Γ

m
A ).

By (X2), this implies that irm
A
∗ Γ′

A
= Γm

A
for each m = 1, 2. By construction, ΓA

is the unique invertible 2-morphism from tA to t′
A

such that irm
A
∗ ΓA = Γm

A
for

each m = 1, 2, hence Γ′
A

= ΓA . Therefore,

Γ′
B ∗ ieB

(C.24)
= Φ′

B ⊙F2(Γ
′
A )⊙ Φ−1

B
=

= Φ′
B ⊙F2(ΓA )⊙ Φ−1

B

(C.25)
= ΓB ∗ ieB

. (C.26)

Hence by interchange law we have:

Γ′
B =

(
it′

B
∗ ΞB

)
⊙
(
Γ′

B ∗ ieB◦dB

)
⊙
(
itB

∗ Ξ−1
B

)
(C.26)
=

(C.26)
=

(
it′

B
∗ ΞB

)
⊙
(
ΓB ∗ ieB◦dB

)
⊙
(
itB

∗ Ξ−1
B

)
= ΓB,

so we have proved also the uniqueness part of condition A2(DB). Therefore dia-
gram (3.2) is a weak fiber product in B. �
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