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Community-integrated omics links dominance of a
microbial generalist to fine-tuned resource usage
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Laura A. Lebrun1, Hugo Roume1,w, Jake Lin1, Patrick May1, Nathan D. Hicks3, Anna Heintz-Buschart1,
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Nikos Vlassis1,w, Nitin S. Baliga2, Robert L. Moritz2, Paul S. Keim3 & Paul Wilmes1

Microbial communities are complex and dynamic systems that are primarily structured

according to their members’ ecological niches. To investigate how niche breadth (generalist

versus specialist lifestyle strategies) relates to ecological success, we develop and apply an

integrative workflow for the multi-omic analysis of oleaginous mixed microbial communities

from a biological wastewater treatment plant. Time- and space-resolved coupled metabo-

lomic and taxonomic analyses demonstrate that the community-wide lipid accumulation

phenotype is associated with the dominance of the generalist bacterium Candidatus Micro-

thrix spp. By integrating population-level genomic reconstructions (reflecting fundamental

niches) with transcriptomic and proteomic data (realised niches), we identify finely tuned

gene expression governing resource usage by Candidatus Microthrix parvicella over time.

Moreover, our results indicate that the fluctuating environmental conditions constrain the

accumulation of genetic variation in Candidatus Microthrix parvicella likely due to fitness

trade-offs. Based on our observations, niche breadth has to be considered as an important

factor for understanding the evolutionary processes governing (microbial) population sizes

and structures in situ.
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M
icroorganisms are ubiquitous and form complex,
heterogeneous and dynamic assemblages1. They
represent essential components of the Earth’s

biogeochemical cycles2, human metabolism3 and
biotechnological processes4. Microbial population sizes and
structures are governed by resource availability and usage5–7,
and mainly develop in response to the breadths of the
fundamental and realized niches of constituent populations8,9

(narrow for specialists; wide for generalists) albeit being
influenced by stochastic neutral processes8,9. Microbial niche
breadths remain poorly described in situ (for an earlier study, see
ref. 10). The application of high-fidelity, high-resolution and
high-throughput molecular analyses to microbial consortia holds
great promise for resolving population-level phenotypes and
defining their corresponding niche breadths in situ11. However,
to obtain community-wide multi-omic data that can be
meaningfully integrated and analysed, systematic measurements
are essential1.

We have recently developed the required laboratory methods
that enable us to isolate representative biomolecular fractions
(DNA, RNA, proteins and small molecules) from single microbial
community samples12,13. Here, we expand this concept by
performing integrated omic analyses of purified biomolecular
fractions from oleaginous mixed microbial communities
(OMMCs) located on the surface of an anoxic biological
wastewater treatment tank to study how microbial lifestyle
strategies relate to ecological success and the associated
community-level phenotypes in this fluctuating but well-
characterized environment. In addition, OMMCs are typically
enriched in lipid-accumulating filamentous bacteria and often
associated with operational difficulties, such as phase separation
and bulking in biological wastewater treatment plants14.
However, the phenotypic traits of OMMCs may allow for the
recovery of lipids from wastewater streams for subsequent
chemical energy recovery through biodiesel synthesis15. As for
other microbial consortia, a detailed understanding of OMMC
ecology is essential for the formulation of strategies to shape
microbial community structure and function (in this case,
enriching for lipid-accumulating bacteria) in the future.
Building on the recently developed methodologies for the
systematic molecular characterization of microbial

consortia12,13, and for resolving and reconstructing population-
level genomic complements from community-wide sequence
data16, here, we integrate multi-omic data sets to resolve
microbial lifestyle strategies in situ, identify finely tuned gene
expression governing resource usage by a dominant bacterial
generalist population and reveal that genetic variation within this
population is constrained likely due to fitness trade-offs.

Results
Coupled metabolomic—taxonomic analyses over space and
time. To obtain a detailed view of OMMC (Supplementary
Fig. 1a) lipid accumulation and bacterial composition, we first
applied coupled metabolomics and 16S rRNA gene sequencing to
samples taken over space and time (see the Methods section). The
initial sample set included four distinct biological replicates
(Supplementary Fig. 1b) from four representative time points
(two in autumn, two in winter; Methods and Supplementary
Fig. 2a,b). Using gas chromatography coupled to tandem mass
spectrometry (GC-MS/MS), absolute quantifications of the 14
major long-chain fatty acids were obtained for OMMC biomass
and wastewater, respectively (Methods). The V3 and V6 hyper-
variable regions of the 16S rRNA gene were amplified from the
DNA fraction of the samples (Methods). The barcoded amplicons
were pyrosequenced on a 454 GS FLX platform, yielding a total of
265,592 reads (n¼ 10,574±3,451 (mean±s.d.) per OMMC
sample after quality control and chimera filtering). Direct taxo-
nomic classification of the obtained sequencing reads demon-
strates that, at the phylum level, the OMMCs of the studied
treatment plant were dominated across the studied seasons by
Proteobacteria and Actinobacteria, which constituted 43%±14%
and 21%±5% (mean±s.d.) of the community, respectively
(Fig. 1a). Similar results were obtained when operational taxo-
nomic unit clustering was applied before classification
(Supplementary Fig. 3a). Among the two most dominating taxa
over time (Fig. 1b; Supplementary Fig. 3b), Candidatus Micro-
thrix spp., a well-known lipid-accumulating genus17,18, correlated
with a more pronounced community-wide lipid accumulation
phenotype (Spearman correlation coefficient rZ0.8 for
Candidatus Microthrix spp. and palmitoleic and oleic acids,
respectively; Fig. 1c). This trend, despite the metabolic versatility
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Figure 1 | Microbial community dynamics and lipid accumulation from wastewater. (a) Fractions of taxa identified across the communities sampled

on four distinct dates (SD1–SD4). Roman numerals refer to the four biological replicates sampled per time point. The blue star indicates the representative

sample from SD3 subjected to the integrated omic analysis. (b) Average genus-level abundances of the two dominant populations. The most abundant

microbial population in winter was identified as Candidatus Microthrix spp., whereas a population tentatively identified (confidence level o0.8) as

Perlucidibaca spp. was dominant in autumn. (c) Long-chain fatty acid intracellular accumulation per sampling date expressed as ratios between quantified

intracellular and extracellular long-chain fatty acid abundances. (d) Genus-level alpha diversity and evenness. (b–d), error bars represent s.d. (n¼4).
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of Candidatus Microthrix spp.17,18 and the statistically significant
lower levels of lipids available compared with other carbon and
energy sources particularly in winter (Wilcoxon rank-sum test,
Po0.001, n¼ 15; Supplementary Fig. 4), suggests optimal foraging
behaviour19,20 by Candidatus Microthrix spp.

High-throughput multi-omic analyses. To obtain an initial
view of the population-level characteristics that determine the
ecological success of Candidatus Microthrix spp. in winter in
comparison with other co-occurring microbial populations, we
first conducted a detailed integrated omic analysis of a single
representative sample obtained on sampling date 3 (SD3;
Methods). This sample was selected on the basis of the relatively
large Candidatus Microthrix spp. population size (Fig. 1b), the
desired community-wide lipid accumulation phenotype (Fig. 1c)
and its even but diverse community composition (Fig. 1d).
Concomitantly isolated DNA, RNA and protein fractions were
processed and subjected to high-throughput metagenomic,
metatranscriptomic and metaproteomic analyses. Massive parallel
sequencing of DNA and cDNA resulted in the generation of
1.47� 107 and 1.65� 107 metagenomic and metatranscriptomic
paired-end reads, respectively. Shotgun proteomic analyses based
on liquid chromatography followed by tandem mass spectro-
metry (LC-MS/MS) resulted in the generation of 271,915 mass
spectra (Methods).

Assembly-free community profiling. To assess the composition
of the winter OMMC, we first carried out an assembly-free
community analysis. For this, the results obtained using two
shotgun sequence data profiling tools, namely MetaPhlAn21 and
MG-RAST22, were compared with the profiles obtained using
the previous 16S rRNA gene sequencing. Given the poor
taxonomic classification of Candidatus Microthrix spp. in the
databases used by these profiling tools, all analyses were limited to
phylum-level classification. At this level, similar community
structures were apparent for the representative sample from SD3
using the three distinct approaches (Supplementary Fig. 3a and
Methods).

Second, to resolve the functions encoded and expressed by the
OMMC from SD3, the proportions of genes and transcripts
belonging to different cluster of orthologous group (COG)
functional categories were compared for both the metagenomic

and metatranscriptomic data sets (Supplementary Fig. 5). Similar
proportions were observed for most of the different functional
categories in both data sets. Nevertheless, major differences were
observed for the categories ‘J—translation, ribosomal structure
and biogenesis’, ‘O—posttranslational modification, protein turn-
over, chaperones’, and ‘C—energy production and conversion’.
Differences in gene copy numbers and transcript abundances may
be expected for these functional genes because of their typical
high levels of constitutive expression. The proportion of gene
copies and transcript numbers were similar for the COG category
‘I—lipid transport and metabolism’ although these genes are
expected to have essential roles in OMMCs and, therefore, overall
high levels of expression may be expected. The previous findings
suggest that key members in the OMMC, that is, Candidatus
Microthrix spp., are involved in lipid transformations. Conse-
quently, key processes related to lipid transport and metabolism,
that is, resource usage, have to be resolved at the population level.
Therefore, to deconvolute the activities of the constituent OMMC
members, a detailed population-resolved analysis was subse-
quently performed.

Population-resolved integrated omic analyses. To resolve the
traits of the dominant populations within the community
obtained on SD3, composite genomes (CGs) were reconstructed
using a newly developed iterative binning and de novo assembly
procedure for the combined metagenomic and metatran-
scriptomic sequence data (Methods). Detailed profiling and
grouping of the assembled contiguous sequence fragments
(contigs) were performed on the basis of centred log-ratio
transformed pentanucleotide signatures and visualization
using the Barnes–Hut Stochastic Neighbour Embedding
(BH-SNE) algorithm16, followed by human-augmented clustering
(Methods). Using this approach, we identified nine CG groups
(Fig. 2a) that displayed homogeneous GþC percentage (Fig. 2b).
The assembled contigs from the nine CG groups were subjected
to gene calling and annotation (Methods), which led to the
identification of 23,317 coding sequences, with 16,841 and 1,533
of these being represented at the transcript and protein levels,
respectively.

The refinement of the CGs by depth of read coverage resulted
in the splitting of CG8 into low (CG8a) and high (CG8b)
coverage populations (Supplementary Fig. 6). The average amino-
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Figure 2 | Identification of genomic fragments derived from distinct populations. (a) Binning of assembled contigs (Z1,000 bp in length) on the basis

of pentanucleotide signatures and visualization using the BH-SNE algorithm followed by human-augmented clustering of composite genome (CG) groups.

(b) Violin plots of the GþC percentage for contigs within each of the CG groups. (c) Percentage amino-acid identity of the two subpopulations

in CG8 (CG8a and CG8b) compared with the two sequenced Candidatus Microthrix parvicella (Bio17-1 (ref. 16) and RN1 (ref. 17)) genomes. The values

are median±s.d. and n is the number of putative orthologues identified as best BLAST hits. Boxplots represent the lower quartile, median and upper

quartile. Whiskers are placed at � 1.5 interquartile range beyond the lower and upper quartiles.
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acid sequence identities of CG8b with recently obtained genome
sequences of Candidatus Microthrix parvicella strains Bio17-1
(ref. 17) and RN1 (ref. 18) were 499% (Fig. 2c), an identity level
usually observed among strains of the same bacterial species23. In
contrast, the CG8a identity levels compared with the same
reference sequences were around 78% (Fig. 2c). Consequently,
CG8b represents a Candidatus Microthrix parvicella population
in this OMMC sample from SD3.

The identities of the other CGs were determined using 31
phylogenetic marker genes24 resulting, for example, in the
tentative identification of CG5 as a population belonging to the
Moraxellaceae family of the g-Proteobacteria (Supplementary
Data 1).

Eight of the 10 reconstructed CGs were estimated to be 460%
complete with CG8b, CG4 and CG5 being 97.5, 90 and 85%
complete, respectively (Supplementary Data 1). On the basis of
population sizes inferred from the mapping of the metagenomic
read data onto the CGs (Methods), these three community
members represent the first, the seventh and the fourth most
abundant OMMC populations, respectively. Because CG8b and
CG5 represent the most deeply covered nearly complete genomic
reconstructions, a detailed analysis of the ecophysiology of these
populations based on the generated functional omic data was
performed.

By mapping the metatranscriptomic and metaproteomic data
onto the reconstructed CGs (Methods), all 10 populations were
found to be active albeit exhibiting differing levels of gene
expression (Fig. 3a, Supplementary Figs 7–9, Supplementary
Data 2). Observed patterns of gene expression were not
necessarily consistent at the transcript and protein levels for the
different CGs. Discrepancies between the levels of gene expres-
sion inferred from transcriptomic and proteomic data have been
well described in eukaryotes25 and these have also recently been
observed for microbial communities26. The lack of correlation
may have different reasons including differing molecular half-
lives26 and/or possible posttranscriptional or posttranslational
modifications, which are not detectable using the transcriptomic
and proteomic methodologies used in this study.

Despite its large population size, population CG8b expressed
only a comparatively small fraction (45.8% of possible transcripts
detected) of its genetic complement in situ (Fig. 3b,
Supplementary Data 1, Supplementary Fig. 8) and this at a
moderate level of expression both at the transcript and protein
levels (Supplementary Fig. 9a), suggesting the fine-tuning of gene
expression by CG8b. On the contrary, the other CGs exhibited
expression of the majority of their genetic repertoire (Fig. 3,
Supplementary Data 1, Supplementary Fig. 8). In particular,
92.7% of CG5 genes were detected at the transcript level.

On the basis of its genetic repertoire, Candidatus Microthrix
parvicella appears to be physiologically versatile17,18 which,
combined with its enrichment under fluctuating environmental
conditions, indicates a generalist lifestyle strategy27. The fine-
tuning of gene expression is particularly apparent for genes
involved in lipid transport and metabolism, which show a clear
genomic enrichment within the CG8b population although only a
limited subset, that is, 46%, are expressed (Fig. 3b, Supplementary
Fig. 8). Among these genes, long-chain fatty acid-CoA ligases are
essential for the assimilation and activation of extracellular fatty
acids into their acyl-CoA conjugates28 and are therefore required
for resource usage by Candidatus Microthrix parvicella. CG8b
encodes 29 genes annotated as homologues of this enzyme class,
indicating that a broad spectrum of free fatty acids may be
assimilated by this population. Only 11 and 14 of these genes
were found to be expressed at the RNA and protein levels,
respectively (Fig. 4a). In contrast, the five genes annotated as
long-chain fatty acid-CoA ligase homologues in CG5 were all

expressed (Supplementary Data 2). This observation suggests the
fine-tuned expression of these genes by Candidatus Microthrix
parvicella, likely through the tight regulation of gene expression,
to facilitate preferential resource usage in accordance with
optimal foraging behaviour19,20.

Population-level genetic diversity. To assess the overall fre-
quencies of population-level genetic variation and determine how
these variations may reflect the lifestyle strategy of CG8b, the
number of single-nucleotide polymorphisms (SNPs) identified in
individual CGs were normalized according to reconstructed
CG length and population sizes inferred from the proportion
of metagenomic reads mapped to the reconstructed CGs
(Supplementary Data 1). CG8b displayed a relatively limited level
of genetic variation. For example, it exhibited one order of
magnitude fewer SNPs compared with CG5, the other almost
complete reconstructed CG with enough coverage to confidently
infer SNP densities (Supplementary Data 1). Given the generalist
lifestyle strategy of CG8b, the relatively high within-population
genetic homogeneity may be explained by fitness trade-offs
resulting, for example, from antagonistic pleiotropy29,30. In a
fluctuating environment, most of the beneficial or neutral
mutations under one condition may be deleterious under other
conditions, thereby restricting the evolutionary rate of
generalists29,30. An alternative hypothesis positing that this low
population-level variation may be due to a recent genetic
bottleneck (selective sweep, colonization, and so on.) followed
by population expansion31 may be rejected on the basis of the
high genetic similarity between the reconstructed CG and the two
available Candidatus Microthrix parvicella genome sequences
from strains isolated from distant wastewater treatment plants 7
and 16 years before the present study (Fig. 2c).

Fine-tuned gene expression and limited genetic diversity over
time. To validate the previous snapshot views of the ecophy-
siology and structure of populations CG8b and CG5, identical
multi-omic analyses were carried out on three additional,
rationally selected OMMC samples from the same wastewater
treatment tank (Methods). A first additional sample was collected
on SD7 approximately a year after SD3 when the measured
physico-chemical parameters were very similar to those measured
on SD3 (Supplementary Fig. 2b,c). In addition, samples were
selected from SD5 and SD6 because the physico-chemical para-
meters on these dates were at variance with SD3 and SD7
(Supplementary Fig. 2c). Importantly, the additional samples also
contain populations CG8b and CG5 at sufficient quantities to
obtain the necessary coverages at the genomic and transcriptomic
levels for the subsequent analyses of genetic diversity and gene
expression over time (Table 1). Massive parallel sequencing of
DNA and cDNA resulted in the generation of an additional
5� 107 and 4.45� 107 metagenomic and metatranscriptomic
paired-end reads, respectively. In addition, a total of 326,630
additional mass spectra were generated using LC-MS/MS
(Methods).

To corroborate the fine-tuning of gene expression of the
generalist population CG8b (Candidatus Microthrix parvicella)
deduced from the analysis of the sample from SD3, patterns of
gene expression were assessed for SD5–SD7. Although the CG5
population consistently expressed the vast majority of its genetic
repertoire, only a comparatively small fraction of the genetic
complement of CG8b was expressed at each additional time point
despite its relatively consistent population size (Table 1,
Supplementary Fig. 9b, Supplementary Data 3). These observa-
tions support the previous results obtained on the OMMC from
SD3. In addition, analogous to the patterns observed for SD3, the
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expression of genes involved in lipid transport and processing
encoded by CG8b was highly variable over time (Fig. 4b). In
contrast, the CG5 population consistently expressed the vast
majority of this functional category (Fig. 4b, Supplementary
Fig. 10). These comprehensive additional data reinforce the
notion of finely tuned gene expression for resource usage by the
Candidatus Microthrix parvicella generalist population.

The patterns of low SNP density in the generalist population
CG8b were also consistent over time, with one order of
magnitude fewer SNPs generally apparent in CG8b compared
with CG5 (Table 1, Supplementary Data 4). In contrast to CG5,
the variant counts of CG8b remain relatively constant over
time (Table 1). The observations from the three additional time
points reinforce the previous notion that a generalist lifestyle
under fluctuating environmental conditions constrains the
accumulation of population-level genetic variation.

Discussion
Here, the application of systematic integrated multi-omic
measurements to mixed microbial communities has allowed us
to obtain fundamental insights into the ecology of the constituent

dominant populations. On the basis of its genetic repertoire
and enrichment under temporally changing environmental
conditions, the dominant population within the winter OMMCs,
that is, Candidatus Microthrix parvicella, can be classified as a
generalist species. The low proportion of genes expressed over
time indicates that its ecological success most likely results from
finely tuned gene expression facilitating optimal foraging
behaviour. In addition, the Candidatus Microthrix parvicella
population exhibits low levels of genetic variation that may be
explained by evolutionary constraints resulting from fitness trade-
offs. Elucidating the exact mechanisms driving these trade-offs in
Candidatus Microthrix parvicella, for example, antagonistic
pleiotropy or others, will require additional integrated omic data
sets to be generated from many more samples taken over space
and time, as well as surveys of other wastewater treatment plants.
Overall, our results call for similar studies on other microbial
communities to determine whether fine-tuning of gene expres-
sion is a general feature of generalists and whether lifestyle
strategies provide an explanation for the varying degrees of
within-population genetic heterogeneity so far observed in
metagenomic data sets32.
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Methods
Sample processing. Oleaginous mixed microbial communities (OMMCs) were
sampled at four representative time points from the surface of the anoxic treatment
phase of a biological wastewater treatment plant treating residential effluents
(Schifflange, Esch-sur-Alzette, Luxembourg; 49�30048.290 0N; 6�104.530 0E).
For each sampling date (SD), four distinct ‘islets’ were collected (herein referred to
as biological replicates; Supplementary Fig. 1), transferred into a sterile tube, snap
frozen on site and maintained at � 80 �C until processing. Initial samples were
taken on 4 October 2010 (SD1; anoxic tank wastewater temperature of 20.7 �C),
25 October 2010 (SD2; 18.9 �C), 25 January 2011 (SD3; 14.5 �C) and 23 February

2011 (SD4; 13.9 �C). Since the prevalence of OMMCs is dependent on
wastewater temperature14, these samples were chosen to be representative of
the range of wastewater temperatures at which OMMCs are highly abundant
within the system. Due to heavy precipitation, which leads to dispersion of the
OMMC islets, and due to excess nitrate concentrations (Supplementary Fig. 2a),
no samples from December/early January were included in the present study.
However, given the range of water temperatures encountered in this biological
wastewater treatment plant (Supplementary Fig. 2a), the October as well as January
and February samples are representative of autumn and winter OMMCs,
respectively.
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29 predicted long-chain fatty acid-CoA ligases encoded by the Candidatus Microthrix parvicella population (CG8b). Metagenomic (grey) and

metatranscriptomic (red) data represented as fragments per 1 kb of sequence per 106 mapped reads (FPKM), the protein abundance data (blue) is

represented as the log10 of the Normalized Spectral Indices (NSI). (b) Qualitative gene expression patterns of the five most prevalent homologous

gene sets belonging to the COG category ‘I—lipid transport and metabolism’ encoded by Candidatus Microthrix parvicella (CG8b) and the CG5

population at the metatranscriptomic (red) and metaproteomic (blue) levels across four sampling time points.

Table 1 | The characteristics of composite genomes CG5 and CG8b at different sampling time points.

SD3 SD5 SD6 SD7

CG5 C8b CG5 CG8b CG5 CG8b CG5 CG8b

Average composite genome coverage (� ) 9.65 23.36 30.02 45.74 20.54 65.57 35.06 81.81
Proportion of total metagenomic reads
mapped per composite genome (%)

8.10 36.50 16.81 37.48 11.27 51.38 13.71 47.85

Percentage of ORFs expressed at the
RNA level

92.7 45.8 78.9 25.1 85.3 32.0 87.0 36.8

Number of detected variants (based on
the metagenomic data)

5,428 11,702 42,250 11,588 29,431 12,596 37,699 11,517

Number of detected variants (based on
the metatranscriptomic data)

11,481 777 24,353 1,366 26,227 2,923 28,247 3,504

Variant density per CG population 2.34E�04 7.43E�05 8.78E�04 7.17E�05 9.13E�04 5.68E�05 9.61E�04 5.58E�05
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For the integrated omic analyses of a representative sample, a single biological
replicate (SD3-I; Fig. 1a) from the 25 January 2011 samples was selected for
subsequent high-resolution omic analyses. This sample was chosen on the basis of
its pronounced community-wide lipid accumulation phenotype, dominance of
Candidatus Microthrix spp., and because it exhibited the highest bacterial diversity
and evenness. This in turn should allow a comprehensive community-wide
overview and reconstruction of composite genomes (CGs) from the most abundant
populations within the OMMC.

To validate findings from the integrated omic analysis of the sample from SD3,
three additional OMMC samples were rationally selected. On the basis of
hierarchical clustering analysis of physico-chemical parameters (Supplementary
Fig. 2c), a first additional sample was collected on SD7 (11 January 2012)
approximately a year after SD3 when the measured physico-chemical parameters
were very similar to those for SD3 (Supplementary Fig. 2b,c). In addition, samples
were selected from SD5 (5 October 2011) and SD6 (12 October 2011) because the
physico-chemical parameters measured on these dates (especially wastewater
temperature) were at variance with those of SD3 and SD7 (Supplementary
Fig. 2b,c).

Biomolecular isolation. All biomolecular fractions were obtained using a recently
developed methodological framework, which allows recovery of high-quality
biomolecular fractions (DNA, RNA, proteins, polar and non-polar metabolites)
from unique undivided samples12,13. For biomacromolecular purification we used
the AllPrep DNA/RNA/Protein Mini kit (Qiagen). Resulting biomolecular fractions
comprising genomic DNA, RNA, proteins and small molecules were further
processed and analysed as detailed below.

Quantification of biomolecular resources. Intracellular and extracellular non-
polar metabolite fractions of the four biological replicates collected on SD1 to SD4
were obtained using the biomolecular extraction procedure described earlier12,13

(only on three biological replicates for SD3). The non-polar phases were aliquoted
in four vials (analytical replicates) of 100ml each, dried overnight and the resulting
pellets were then preserved at � 80 �C. The intracellular and extracellular dried
extracts were redissolved in 100 and 40 ml of dichloromethane, respectively.
Derivatisation was carried out on 40 ml of solubilized extract with 40 ml of
N,O-bis(trimethylsilyl)trifluoroacetamide:trimethylchlorosilane 99:1 (Sylon BFT,
Supelco) for 1 h at 70 �C. Samples were analysed by gas chromatography coupled to
tandem mass spectrometry (GC-MS/MS) on a Thermo Trace GC and a Thermo
TSQ Quantum XLS triple-quadrupole MS (Thermo Fisher). Samples were injected
in PTV splitless mode onto a Rxi-5Sil MS column (20 m� 0.18 mm� 0.18 mm,
Restek). Helium was used as the carrier gas at a constant flow rate of 1.0 ml min� 1.
Metabolite detection was performed in Multiple Reaction Monitoring mode, with
two Multiple Reaction Monitoring transitions per target compound. Quantification
was carried out by external calibration using standard mixtures of pure hexanoic
acid, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, palmitoleic
acid, hexadecanoic acid, linoleic acid, oleic acid, linolenic acid, octadecanoic acid,
eicosanoic acid, docosanoic acid and tetracosanoic acid, respectively (Sigma-
Aldrich).

Total carbohydrate and protein quantities were determined on supernatant of
the same samples comprising 200 mg of OMMC biomass for each sampling date
using a Total Carbohydrate Assay Kit and a Total Protein Assay Kit (Micro Lowry,
Peterson’s Modification; Sigma-Aldrich) according to the manufacturer’s
instructions.

16S rRNA amplicon sequencing and analysis. Amplification. The wet-laboratory
and bioinformatic procedures for analysing the bacterial community composition
based on the V3–V6 region of the bacterial 16S rRNA gene are described in detail
elsewhere33. Briefly, we generated barcoded V3–V6 amplicons using broad-
coverage fusion PCR primers (forward primer: 50-CCATCTCATCCCTGCGT
GTCTCCGACTCAGnnnnnnnnCCTACGGGDGGCWGCA-30 and reverse primer
50- CCTATCCCCTGTGTGCCTTGGCAGTCTCAGCTGACGACRRCCRT
GCA-30 with the underlined portion denoting FLX Lib-L adaptor sequences,
italicized portion denoting the sample-specific 8-nt barcode sequences and bold
portion denoting 16S rRNA gene primer sequences) on 10 ml of DNA extracts in
50ml PCR reactions. The barcoded amplicons were pooled and sequenced on a
Roche/454 Genome Sequencer FLX platform (Roche Applied Sciences). Resulting
pyrosequencing data underwent processing and stringent filtering, which included
chimera-checking, demultiplexing and quality-based trimming.

Direct classification. The processed pyrosequences were classified at each
taxonomic level using a bootstrap confidence level of Z80 and using a re-trained
version of the Ribosomal Database Project (RDP) Naive Bayesian Classifier 2.4
(refs 34,35), which includes the genus Candidatus Microthrix as a separate taxon.
The training set consisted of the RDP 16S rRNA training set #9, with sequences
S001942289, S000724117, S000724133, S001448117, S001448118, S001942070,
S001942206, S002416756, S002416776, S000014283, S000588187, S000588192,
S000010408, S000011228, S000021841, S000267158, S000588182, S000588183,
S000588184, S000588185, S000588186, S000588188, S000588189, S000588190,
S000588191, S000588193, S000724113, S000724122, S000832952, S000935760,
S001294363, S001942173 reclassified as bacteria4Actinobacteria4

Actinobacteria4unclassified4unclassified Candidatus Microthrix, by placing the
full 16S rRNA gene sequence of the recently sequenced strain Bio17-1 (ref. 17) into
the same taxon. Classification results from each sample were used to produce an
abundance matrix for data analysis.

The 16S rRNA gene-based data of the four different biological replicates (islets)
per sampling date were used for calculating Simpson diversity and Pielou evenness
indices with 10 replications of subsampling of 6,359 reads per sample using the R
Vegan package.

Operational taxonomic unit-based classification. In addition to the direct
classification, processed pyrosequences were also analysed by clustering the reads
into operational taxonomic units using Mothur36 v.1.32.1. To allow appropriate
sample-specific classifications, the Candidatus Microthrix parvicella Bio17-1 (ref.
17) 16S rRNA gene sequence was added to the Mothur-formatted version of the
RDP training set v9 and the related taxonomy file. Operational taxonomic units
clustering was performed at a cut-off level of 0.03 before the assignment of
taxonomy. Scripts are available from the authors upon request.

Metagenome and metatranscriptome sequencing and assembly. DNA library
preparation. The purified DNA fractions12,13 from the unique biological replicates I
of SD3 and from SD5 to SD7 suspended in elution buffer (pH 8.0) were used to
prepare a paired-end library with the AMPure XP/Size Select Buffer Protocol as
previously described by Kozarewa et al.37, modified to allow for size selection of
fragments using the double solid phase reversible immobilization procedure
described earlier38. Size selection yielded metagenomic library fragments with a
mean size of 450 bp. All enzymatic steps in the protocol were performed using the
Kapa Library Preparation Kit (Kapa Biosystems) with the addition of 1 M PCR-
grade betaine in the PCR reaction to aid in the amplification of high GþC
percentage content templates.

RNA library preparation. Following RNA purification12,13 from the unique
biological replicates I of SD3 and from SD5 to SD7, RNA fractions were ethanol
precipitated, overlayed with RNAlater solution (Ambion) and stored at � 80 �C.
Before sequencing library preparation, the RNA pellet was rinsed twice in 80%
ethanol and twice in 100% ethanol to remove any excess RNAlater solution. The
pellet was then left on ice to dry. After ethanol evaporation, the RNA pellets were
resuspended in 1 mM sodium citrate buffer at pH 6.4. Ribosomal RNAs were
depleted using the Ribo-Zero Meta-Bacteria rRNA Removal Kit (Epicentre)
according to the manufacturer’s instructions. Transcriptome libraries were
subsequently prepared using the ScriptSeq v2
RNA-Seq Library Preparation Kit (Epicentre) according to the manufacturer’s
instructions. The resulting cDNA was subjected to Illumina sequencing.

Nucleic acid sequencing. Nucleic acid fractions were sequenced on an Illumina
Genome Analyser (GA) IIx sequencer. Massive parallel sequencing of DNA and
cDNA resulted in the generation of 1.47� 107 and 1.65� 107 metagenomic and
metatranscriptomic paired-end reads for SD3, respectively. Similarly, the
sequencing of SD5-derived DNA and cDNA generated 1.57� 107 and 1.47� 107

metagenomic and metatranscriptomic paired-end reads, SD6-derived DNA and
cDNA sequencing generated 1.47� 107 and 1.48� 107 metagenomic and
metatranscriptomic paired-end reads and SD7-derived DNA and cDNA
sequencing generated 1.96� 107 and 1.80� 107 metagenomic and
metatranscriptomic paired-end reads.

Nucleic acid sequence data analysis. MetaPhlAn21 (using default parameters)
was used on 5’ seven base pairs hard-clipped raw paired-end reads, collapsed,
filtered at or above a mean QV of 30 and a minimum length of 60 bp.

Raw metagenomic paired-end reads were submitted to MG-RAST22 using the
‘join fastq-formatted paired-reads’ option retaining the non-overlapping reads,
dynamic trimming and dereplication options. Raw metatranscriptomic reads were
submitted to MG-RAST as described for metagenomic data, except that the
dereplication option was not selected. As MG-RAST also supports the analysis of
eukaryotic sequences, to allow comparison to MetaPhlAn and the 16S rRNA gene
sequencing results, the MG-RAST output was filtered to only include bacterial and
archaeal taxa. MG-RAST complete functional annotations of both the
metagenomic and metatranscriptomic data were used for the assembly-free
analysis of the community function.

Apart from these assembly-free community analyses, any overlapping paired-
end reads from SD3 were joined with PANDASeq39 (with threshold parameter
t¼ 0.9) before the removal of potential PCR duplicates using custom scripts
(available upon request). Read clipping, quality trimming and filtering of sequence
reads was performed with the trim-fastq.pl script from the PoPoolation suite40.
Four base pairs were hard-clipped from the 5’ of all raw reads, and reads were
filtered at or above a mean QV of 30 , and a minimum length of 40 bp. The quality
of the resulting reads and the presence of remaining adaptor sequence
contamination were assessed using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/).

To reduce the sample complexity and to improve the efficiency of the assembly
process, quality-filtered, combined metagenomic and metatranscriptomic reads
were initially mapped against the draft genome sequence of Candidatus Microthrix
parvicella Bio17-1 (ref. 17). Mapped reads were extracted from the pool of reads
and assembled separately with IDBA-UD41 (v.1.1.10), with the following
parameters: --pre_correction --mink 35 --maxk 75 --step 2 --num_threads 12 --
similar 0.97 --min_count 3. The remaining unmapped reads were binned as pairs
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according to low and high GþC percentage content, with an inclusive cut-off
value of 50% GþC, and assembled as above. This strategy resulted in the
generation of 1,739,837 additional base pairs of assembled sequence data compared
with a direct assembly. Assemblies were merged using minimus and scaffolded
using Bambus2 (AMOS tool suite42).

Assembled contigs longer than 500 bp, representing the first set, were grouped
by a reference-free binning algorithm that has recently been developed by some of
the authors16. The algorithm first computes the pentanucleotide frequency of
each contig, which then allows representation of each contig as a point in a
512-dimensional Euclidean space (512 is the number of unique pentanucleotides
after taking reverse complements into account). After a centred log-ratio
transformation on each point43, the sets of points were used as input for the
Barnes–Hut Stochastic Neighbourhood Embedding (BH-SNE) algorithm44, which
produced a two-dimensional map (embedding) of the original signatures (Fig. 2a).
Binning of points was then carried out using the Expectation–Maximisation (EM)
algorithm on a postulated two-dimensional Gaussian Mixture model45, where the
means of the Gaussian components of interest were initialized by the user and the
covariance matrices were initialized by diagonal matrices with small positive
entries. For the results reported in this work, we initialized EM with one Gaussian
component per expected cluster following visual inspection. Contigs from the
resulting clusters were extracted as contig groups and used as reference sequences
to recruit sequence reads from the original, quality-filtered data set. Non-mapped
paired-end reads were extracted and merged. A second iterative round of assembly
was performed on each set of recruited reads separately and BH-SNE profiling was
conducted as described above (except that this time a minimal contig size of
1,000 bp was used). Contig groups resulting from the second BH-SNE iteration
were used once more for read recruitment. GþC percentage was calculated per
base using in-house scripts (available upon request).

For coverage and gene expression analyses (SD3, SD5, SD6 and SD7),
metagenomic and metatranscriptomic reads were mapped onto reconstructed
genomic fragments from SD3 using Bowtie2 (ref. 46) (using ‘very sensitive-local’
parameters) and BWA47 (using default parameters except for the –M option). Gene
expression levels were determined using Cufflinks48 on the basis of the BWA read
mappings.

Metagenomic FPKM48 (fragments per 1 kb of sequence per 106 mapped reads)
and coverage values corresponding to each predicted gene in each of the CGs were
obtained for the different time points (Supplementary Data 2 and Supplementary
Data 3).

To estimate relative population sizes within the community, we devised a
measure analogous to the RPKM49 (reads per 1 kb of sequence per 106 mapped
reads) measure, widely used for reporting the normalized abundance of, for
example, transcripts and we defined this as follows:

Ni ¼
ci�106

C�li

where Ni is the relative size of the population corresponding to CGi; ci is the
number of reads mapped to CGi; C is the total number of metagenomic reads
mappable to all of the CGs; and li is the length of CGi in bp.

To account for the differences in observed expression levels linked to differing
population sizes and to allow comparative analyses between different CGs as well
as the different time points, genes were only considered to be expressed per CG per
time point, if their metatranscriptomic FPKM values were Z50�Ni

(Supplementary Data 2 and Supplementary Data 3).

Metaproteome processing and analysis. Five microlitres of the protein extract
obtained from SD3, SD5, SD6 and SD7 as previously described12,13 were mixed
with 1.25 ml of XT sample buffer and 0.25ml of XT reducing agent (Bio-Rad). After
10 min of denaturation at 70 �C, 5 ml the sample was subsequently separated by 1D
SDS–PAGE (Criterion precast 1D gel, Bio-Rad). The gel was then stained with
Imperial stain (Coomassie-Blue R250, Thermo Fisher Scientific) and cut into
uniform 2 mm bands50. After in-gel reduction and alkylation, tryptic digestion was
performed. Resulting peptides were separated by liquid chromatography (LC)
using an Easy-nLC column (Proxeon, Thermo Fisher Scientific). Separation was
performed using a 75mm ID fused silica column packed with 20 cm of ReproSil Pur
C18-AQ 3 mm beads (Dr Maisch). Before column separation, the samples were
loaded onto a fritted 100 mm ID fused silica trap packed with 2 cm of the same
material. The peptide mixture was separated using a binary solvent gradient to
elute the peptides. Solvent A was 0.1% formic acid in water. Solvent B was 0.1%
formic acid in acetonitrile. The peptide fractions were pooled in consecutive pairs,
concentrated and resuspended up to 20 ml in solvent A. Eight microlitres of each
pooled sample was injected per LC analysis. The three-step elution programme was
operated at a flow rate of 0.3 ml min� 1 consisting of (1) a gradient from 2 to 35%
solvent B over 60 min, (2) a 10-min wash at 80% solvent B and (3) a 20-min
column re-equilibration step at 2% solvent B.

Mass spectra were acquired on an LTQ-Orbitrap Elite (Thermo Fisher
Scientific). The instrument was operated on an 11-scan cycle consisting of a single
Fourier transformed (FT) precursor scan at 30,000 resolution followed by 10 data-
dependent MS/MS scan events using higher-energy collisional dissociation at
15,000 resolution in the FT Orbitrap. The precursor scans had a mass range of
300–2,000 m/z, and an automatic gain control setting of 106 ions. The MS/MS

scans were performed using a normalized collision energy of 35 and an isolation
width of 2 m/z. The data-dependent settings included monoisotopic precursor
selection and charge state filtering that excluded unassigned and single charge
states. Dynamic exclusion was enabled with a repeat count of 1, a repeat duration
of 10 s, an exclusion list size of 500 and an exclusion duration of 180 s. Exclusion
mass width was ±5 p.p.m. relative to mass.

LC-MS/MS analysis resulted in the generation of 271,915 mass spectra for SD3,
118,386 mass spectra for SD5, 102,916 mass spectra for SD6 and 105,328 mass
spectra for SD7.

Composite genome and expression analyses. Gene calling and annotation. The
assembled CGs were submitted for gene calling and annotation to RAST51 with
default parameters except for Domain (Bacteria), Genetic code (11), Sequencing
method (other), FIGfam version (release 63) and with the Build metabolic model
option selected.

Taxonomic affiliation. The taxonomies of the reconstructed CGs were
determined using the AmphoraNet24 webserver. A taxon name was assigned when
at least 75% of the identified marker genes resulted in a concordant taxonomy, and
a putative taxon name was assigned when at least 50% of the identified markers
resulted in a concordant taxonomy.

Completeness and composition of composite genomes. Genome completeness of
the reconstructed CGs was estimated on the basis of 40 universal single copy
genes52. For this, the functional annotation of the predicted proteins in each CG
was obtained using the WebMGA server53 using the ‘cog’ analysis option.
Functional compositions of the CGs and of their expressed genes were obtained
from COG category counts, which were normalized by the total number of
predicted features per CG.

Comparative analysis of Candidatus Microthrix parvicella-like sequences.
Draft genome sequences for Candidatus Microthrix parvicella strains Bio17-1
(ref. 17) and RN1 (ref. 18) were obtained from the GenBank database (Assembly
ID GCA_000299415.1 and GCA_000455525.1, respectively). Sets of orthologous
genes were built using RAST’s ‘sequence based comparison’ tool.

Variant identification. SNPs were identified by separately mapping
metagenomic and metatranscriptomic reads against the reconstructed CG
assemblies using Bowtie2 and BWA (as described above). SNPs were identified
from each of the mappings using mpileup (SAMtools54), the UnifiedGenotyper
(Genome Analysis Tool Kit55) and Freebayes56. The intersection of identified SNPs
from all the aforementioned methods was obtained using the vcf-isec utility from
the VCFtools suite and was considered for subsequent analyses. SD3 variant
amino-acid sequences were included in the amino-acid sequence databases
generated on the basis of called and annotated genes. This database was used for
subsequent protein identification on the basis of the generated metaproteomic data
(see below). Variant frequencies were separately estimated from mapped
metagenomic and metatranscriptomic reads. Only variants in regions with a
minimum read depth (coverage) of 10 for both metagenomic and
metatranscriptomic data were considered. Variant density per CG population was
calculated by normalizing the SNP density (number of SNPs per kb) by the relative
population size, which in turn was inferred from the fraction of metagenomic
sequencing reads mapped onto the individual genomic reconstructions.

Protein identification. MS/MS spectra were searched against the generated
amino-acid sequence database (containing the predicted proteins including all
variants of the 10 reconstructed CGs and common contaminants) using the
X!Tandem algorithm57. The resulting peptide identifications were validated using
the Trans-Proteomic Pipeline58. The X!Tandem parameters included precursor
and fragment ion mass tolerances of 15 p.p.m., a static modification of
57.021464 Da on cysteine residues and a potential modification mass of
15.994915 Da on methionine residues. The search allowed for semi-tryptic
cleavages up to two missed cleavages. The database search results were validated
and proteins were inferred at B1% false discovery rate using the PeptideProphet,
ProteinProphet and iProphet tools from the Trans-Proteomic Pipeline software
suite58–60.

Protein quantification. Relative protein quantification was performed using the
normalized spectral index (NSI) measure using an in-house software tool called
NSICalc (details available upon request). The tool was adapted from the method by
Griffin et al.61 Briefly, the NSI combines peptide count, spectral count and MS/MS
fragment ion intensity for quantification and normalizes these values by the length
of each protein. This strategy incorporates measurable peptide intensities while
removing some of the biases of using spectral counts when comparing large and
small proteins. NSI values were log2 normalized before comparison across proteins
to obtain relative quantification ratios.

Metaproteomic analyses led to peptide matching against the amino-acid
database of 43,214 spectra, which in turn provided abundance data on a total of
1,815 proteins for SD3.

Analysis of the long-chain fatty acid-CoA ligases of CG8b. Amino-acid sequences
of genes annotated as long-chain-fatty-acid-CoA ligases by RAST from CG8b were
aligned using Expresso62 using default parameters. Sequence similarities were
determined using the SIAS server (http://imed.med.ucm.es/Tools/sias.html).
A dendrogram based on pairwise comparisons of amino-acid sequence similarities
was obtained using the hierarchical clustering function in R. Abundance values
were extracted from the mapped metagenomic, metatranscriptomic and
metaproteomic data.
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