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Abstract— This paper presents a novel energy-efficient
model-predictive cruise control formulation for electric vehi-
cles. The controller and the underlying dynamic model are
designed to meet the properties of a series-production electric
vehicle whose characteristics are identified by measurements. A
predictive eco-cruise controller involves the minimisation of a
compromise between terms related to driving speed and energy
consumption which are in general both described by nonlinear
differential equations. In this work, a coordinate transformation
is used which leads to a linear differential motion equation
without loss of information. The energy consumption map is
approximated by the maximum of a set of linear functions
which is implicitly determined in the optimisation problem.
The reformulations finally lead to a model-predictive control
approach with quadratic cost function, linear prediction model
and linear constraints that corresponds to a piecewise linear
system behaviour and allows a fast real-time implementation
with guaranteed convergence. Simulation results of the MPC
controller in closed-loop operation finally show the effectiveness
of the approach.

I. INTRODUCTION

The cruising range is one of the most decisive drawbacks
of electric vehicles and an important problem that needs to
be solved in electric mobility. Since the on board (tank-to-
wheel) efficiency of electric vehicles can hardly be improved,
there are only two possibilities to increase the range. The first
one is the improvement of the battery technology towards
higher capacities and lower weights. The second opportunity
is to address the driving style that has a huge influence on
the energy consumption of a vehicle [1]. Due to possible
savings of 10 to 20 %, it is a promising approach to improve
the driving style in order to save energy.

A sophisticated way to address this problem is controlling
the driving speed automatically by a driver-assistance system
(eco-cruise control). Eco-cruise control can be described as
an optimal control problem [2], [3]. The accelerator and
brake pedal positions are the control inputs of the system
while the driving speed and the energy consumption are
given by an underlying dynamic vehicle model (based on
the previous knowledge of the speed limits and the road
slope). The control inputs are the optimisation variables that
minimise a cost function containing terms related to driving
speed and energy consumption. As the car is running under
changing traffic and environment conditions, it is hardly
possible to calculate and apply the complete optimal driving
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strategy in advance. A suitable approach to overcome this
problem is to apply model-predictive control (MPC) in a
receding horizon fashion, where the optimisation is carried
out for a finite prediction horizon and is repeated at every
time step. This control strategy has been considered as the
tool of choice for the eco-cruise control of fuel-powered cars
in several works [3], [4], [5], [6]. Recently, eco-cruise control
for purely electric vehicles has been considered in [7], [8].
The biggest challenge in the application of MPC is the
requirement of a fast online-optimisation which is hampering
a real-time implementation. Therefore, the formulation of
the optimal control problem is decisively important in order
to achieve a fast solution. The most desirable formulation
comprises a quadratic cost function and linear constraints in-
cluding a linear dynamic plant model, since efficient solvers
with guaranteed convergence are available for the resulting
discretised quadratic optimisation problem.

However, an overall linearisation of the vehicle dynamics
around one operation point is not satisfactory since the pre-
diction has to be carried out over a wide range of operating
points whereas a linearisation only yields good results in the
area close to the operating point. Previous works use analyti-
cal solutions of the nonlinear optimal control problem based
on Pontryagin’s Maximum Principle (indirect methods) [2],
[3] or alternatively efficient discretisation techniques to solve
the nonlinear optimisation problem directly [5], [9], [6].
Using analytical solutions however, the optimal controller
cannot be designed in a flexible way since no constraints
on the state variables, dynamically changing weightings or
measured disturbances can be considered. On the other hand,
the numerical methods for nonlinear optimisation do not
guarantee a (fast) convergence of the optimisation algorithm.

This paper contributes a model-predictive eco-cruise con-
troller especially for an electric car using a quadratic cost
function and linear constraints. The linear dynamic model is
obtained by reformulations of the equations and an exploita-
tion of the optimisation problem setup instead of an overall
linearisation (Section III). Thus, the nonlinearities are con-
sidered implicitly by the control system while the results are
equivalent to a nonlinear approach. The proposed controller
is simulated in closed-loop operation with a simulation model
of a series electric vehicle - a Smart Electric Drive (ED) to
investigate the closed-loop performance (Section IV).

II. OVERALL SYSTEM SETUP

The overall system is planned to work as a driver-
assistance system mainly in highway and overland driving.
It shall control the speed automatically depending on the



road curvature, the road slope angle, the speed limits and
the distance to the preceding vehicle.

A reference generator (not considered in this work) gener-
ates the speed set-point trajectory with respect to speed lim-
its, the distance to the preceding car and the road curvature.
Given this information, the model-predictive cruise controller
aims at finding a traction force trajectory leading to an
optimal compromise between speed reference tracking and
minimisation of the energy consumption. Since the traction
force cannot serve directly as control input to the vehicle, a
subsidiary controller regulates the traction force by actuating
the accelerator pedal. The brake pedal is not planned to be
actuated in this setup. This paper focuses on the design of
the MPC controller.

III. CONTROLLER DESIGN

The synthesis of the energy-efficient model-predictive
cruise controller comprises the underlying dynamical model
as well as the constraints and the cost function.

A. Underlying Dynamic Model for the Controller Design

A suitable model needs to meet the dynamic behaviour
of the Smart ED whose centre-piece is a permanent-magnet
synchronous machine. This three-phase AC machine is able
to work as motor or generator allowing energy recovery when
decelerating. A lithium-ion battery serves as accumulator and
supplies the synchronous machine via a DC/AC converter.
The rear wheels are driven by the motor through a gear box
with one fixed transmission ratio.

The model is subdivided into a model of the driving speed
v (Section III-A.1) and a model of the energy consumption
Eel of the vehicle (Section III-A.2). The model input (and
control input) of the MPC is the traction force at the wheels
Ftrac.

1) Model of the Longitudinal Motion Dynamics: The
common approach to model the longitudinal dynamics of
a vehicle is to consider the car as a point mass and describe
a one-dimensional motion based on Newton’s second law∑
F = m · dv

dt . The main forces acting in longitudinal
direction on the vehicle are the traction force Ftrac as well
as the driving resistance forces [10].

The rolling resistance force Fr is a function of the road
slope angle αsl. The parameters are the vehicle kerb weight
mv , the payload ml, the gravitational constant g and the
rolling resistance coefficient of the tyres cr [10].

Fr = (mv +ml) · g · cr · cos
(
αsl(t)

)
(1)

The grade resistance force Fgr depends on road slope
angle as well [10].

Fgr = (mv +ml) · g · sin
(
αsl(t)

)
(2)

The air drag resistance force Fd is a function of the square
of the driving speed v. The coefficients are related to the
shape of the vehicle (projected front surface area Av , air
drag coefficient cd) and the air density ρa [10].

Fig. 1. Forces acting in longitudinal direction on the vehicle.

Fd =
1

2
· ρa · cd ·Av · v(t)2 (3)

A diagram of the forces acting in longitudinal direction is
given in Fig. 1.

Given these forces, the acceleration of the vehicle in
longitudinal direction can be computed from the difference
between the traction force and the driving resistance forces
divided by the equivalent mass of the vehicle meq .

dv(t)

dt
=
(
Ftrac(t)− Fr(αsl(t))

−Fgr(αsl(t))− Fd

(
v(t))

)
/meq

(4)

The equivalent mass meq is given by the relation meq =
(mv + ml) · ei which takes the inertia of the drive train
components into account by augmenting the vehicle mass
(mv +ml) by the constant factor ei.

The vehicle specific parameters in (1) to (4) are accessible
from data sheets [11]. The rolling resistance coefficient cr
is assumed to be 0.01. The gravity constant is assumed to
be g = 9.81m

s2 and the density of surrounding air to be
ρa = 1.2 kg

m3 . All parameters are summarised in Tab. I.
For the application of a predictive cruise controller how-

ever, it is useful to describe the model (4) as a function of
the position s instead of time, since the inputs related to the
road ahead (slope angle and speed limits) are also given as
functions of the position. The model can be reformulated by
applying the following transformation:

d

ds
=

d

dt
· dt
ds

=
d

dt
· 1

v
(5)

The reformulation (5) consequently leads to a motion equa-
tion depending on the inverse of a state variable (the velocity
v). This is disadvantageous for a fast solution of the opti-
misation problem. Following the idea in related works ([6],
[12]), the following coordinate transformation is applied to
calculate the kinetic energy

ekin =
1

2
·meq · v(t)2 (6)

of the moving vehicle instead of the driving speed. Since
only positive speed values are considered, the speed can be
calculated from the kinetic energy values at a given vehicle
mass after the optimisation. Derivation of (6) with respect to
position s yields

dekin
ds

= meq ·
dv

dt
(7)



Fig. 2. Measured traction force of the Smart ED at full-load (100 %
accelerator position, black line) and coasting (pedals released, pink line).
The linear approximation is given in blue. The hatched area is the feasible
region of the traction force Ftrac.

By applying the coordinate transformation (7) to the motion
equation (4), the following linear differential equation is
obtained. The values of the sine and cosine functions of the
road slope angle αsl are assumed to be known and provided
as a measurable disturbance.

dekin
ds

= Ftrac(s)−Fr

(
αsl(s)

)
−Fgr

(
αsl(s)

)
−Fd

(
ekin(s)

)
(8)

Herein, Fd is rewritten in terms of kinetic energy:

Fd(ekin) =
1

meq
· ρa · cd ·Av · ekin(s)

Since (8) is only valid for positive kinetic energy values, the
inequality constraint

ekin ≥ 0 (9)

must be imposed on the optimisation problem.
To stay within the limitations of the vehicle, the traction

force needs to be limited. The measured full-load curve as
well as the traction force at coasting (giving the maximum
and minimum possible traction force depending on the
kinetic energy of the moving vehicle) of the Smart Electric
Drive are given in Fig. 2. The full-load curve has been
measured at fully pushing the accelerator pedal but without
pressing the ”kick-down” switch below the accelerator pedal.
The traction force at coasting has been measured with
released pedals (slight energy recovery).

However, since only linear constraints should be consid-
ered here, the measured curves are linearised using a least-
squares approximation, resulting in the hatched polygon in
Fig. 2 and represented by the following linear inequality:

Ftr,min ≤ Ftrac ≤ c1 · ekin + c2; ekin ≥ 0 (10)

2) Dynamic Model of the Energy Consumption: In order
to relate the electrical input of the drive train with the

Fig. 3. Electrical battery power consumption as a function of the driving
speed v and the traction force Ftrac

mechanical power output, the drive train and motor charac-
teristics must be modeled. A detailed model of all physical
processes in these components is not suitable here due to its
complexity.

In this work, measurements of the overall drive train
characteristics of the vehicle in quasi-static operation are
available in the form of a characteristic map. The battery
power (Pbatt = Ubatt · Ibatt) is assumed to be a function
of the traction force at the wheels Ftrac and the driving
speed v. The data to set up this relation has been extracted
from measurements in static operating points on an industrial
dynamometer test bench. The resulting interpolated charac-
teristics are depicted in Fig. 3. It can be assumed that these
characteristics measured in quasi-static operation also hold
in dynamic operation since the electrical time constants are
much faster than the ones related to the mechanics. Quasi-
static drive train models are widely used in applications with
accurate results [10].

Since the vehicle motion model (8) is formulated with
respect to the position s, the energy consumption must also
be derived in terms of position. Here, it is advantageous
that every operating point in the power consumption map
(Fig. 3) is related to a certain driving speed due to the
fixed transmission ratio of the vehicle. Hence, each point
of the power consumption map is divided by its related
driving speed v according to reformulation (5) to obtain the
energy consumption per meter. In addition to this, the x-
axis is rescaled in terms of the kinetic energy of the moving
vehicle in order to fully comply with the reformulated motion
equation (8). The resulting map of the energy consumption
per meter as a function of the kinetic energy and the traction
force is given in Fig. 4a. The objective is to implement
an approximation of these characteristics in the underlying
dynamic model of the controller.

One possible method for the approximation of energy
consumption maps is the use of fitted polynomials [13].
Nevertheless, a closer look at Fig. 4a shows that the given
characteristics are more suitable for a piecewise linear
approximation since they can hardly be captured by one



Fig. 4. The figure shows the vehicle energy consumption per meter. The x-
axis has been rescaled in terms of the kinetic energy of the moving vehicle.
a) gives the measured characteristics; b) gives the approximation by six
linear functions.

single lower order polynomial. The use of a piecewise linear
problem formulation would be appropriate but in general
requires the use of different dynamic models in different
regions of the state space (i.e. operating points) which makes
the problem more time-consuming to solve. This can be
avoided by using a convex piecewise linear approximation.
Convex piecewise linear functions can be represented by the
maximum of a set of linear functions. This maximum can
be determined implicitly in the optimisation problem with
no need for a special solver.

To achieve this, (in this case) six linear functions (P1 to
P6) are introduced that form the lower boundary of a convex
set. They are fitted to the different regions of the map in
Fig. 4a by a least-squares regression, see Fig. 4b. Secondly,
P1 to P6 are transformed into inequality constraints on a de-
cision variable ucons that represents the energy consumption
of the vehicle per meter. The constraints have the form:

Pi : ucons ≥ ai · ekin + bi · Ftrac i=1...6 (11)

The optimisation problem (as discussed later in Section
III-B) is then set up in a way that guarantees that one of these
constraints is always equally fulfilled by the decision variable
ucons and it hence represents the energy consumption per
meter of the vehicle according to the following piecewise
linear model:

ucons = ai · ekin + bi · Ftrac if Pi is active
ucons ≥ aj · ekin + bj · Ftrac for j 6= i

(12)

In other words, it can be stated that one of the inequality
constraints (11) is always active depending on the actual
operating point specified by the speed v and the traction force
Ftrac. Hence, the variable ucons represents a piecewise linear
approximation of the power consumption per meter without
the necessity of defining a piece-wise changing dynamic
model explicitly and using a solver for piece-wise linear
problems.

Given this information, the energy consumption of the
vehicle Eel can simply be computed by integrating the
decision variable ucons with respect to the position.

dEel

ds
= ucons(s) (13)

Approximating nonlinear maps by the maximum of linear
functions is a known technique in nonlinear optimisation and
called separable programming [14]. However, to the best of
the authors’ knowledge, this method has so far not been used
to model piecewise linear dynamics in MPC formulations.

3) Model Discretisation: The continuous dynamic motion
model (8) and the model of the energy consumption (13) can
be summarised in state space form. Once a sampling step
∆s is chosen, the linear dynamic model can be discretised
in a straightforward way assuming zero-order hold for the
input and the disturbance to obtain the following discrete
state space representation for k ∈ {0....N − 1}, where the
”hat” symbolizes the discrete counterparts of the continuous
variables:

[
êkin,k+1

Êel,k+1

]
︸ ︷︷ ︸

x̂d,k+1

=

[
a11 0
0 1

]
︸ ︷︷ ︸

Ad

·
[
êkin,k
Êel,k

]
︸ ︷︷ ︸

x̂d,k

+

[
b11 0
0 ∆s

]
︸ ︷︷ ︸

Bd

·
[
F̂trac,k

ûcons,k

]
︸ ︷︷ ︸

ûd,k

+

[
e11 e12
0 0

]
︸ ︷︷ ︸

Ed

·
[
sin(α̂sl,k)
cos(α̂sl,k)

]
︸ ︷︷ ︸

d̂d,k

(14)

B. Overall Problem Formulation

Based on the results of the previous sections, the complete
model-predictive eco-cruise control problem is formulated
as a discrete finite-dimensional optimisation problem with
a quadratic cost function and linear constraints. The cost
function includes the energy consumption at the last step of
the prediction horizon to achieve an ”intelligent” predictive
controller behaviour with the freedom to increase the con-
sumption at any position if there is the benefit to save more
energy later as a result of this anticipatory action:

M1 = Q1 · Êel,N = Q1 ·
N−1∑
k=0

ûcons,k ·∆s (15)

The kinetic energy tracking error at the last step of the
prediction horizon is included in the cost function in order to
prevent the controller from planning an undesirable standstill
of the vehicle at the end of the prediction horizon:

M2 = Q2 ·
(
êkin,N − êkin,ref,N

)2
(16)

The accumulated kinetic energy tracking error finally is a
measure for the deviation from the speed reference trajectory:

L = Q3 ·
N∑

k=1

(
êkin,k − êkin,ref,k

)2
(17)

The complete optimisation problem is then given as fol-
lows:



min
F̂trac,ûcons

M1 +M2 + L (18a)

subject to the model of the system dynamics:

x̂d,k+1 = Ad · x̂d,k +Bd · ûd,k + Ed · d̂d,k (18b)

subject to the initial conditions:

Êel,0 = Eel(0); êkin,0 = ekin(0) (18c)

subject to the limitations of the traction force:

0 ≤ êkin,k Ftr,min ≤ F̂trac,k ≤ c1 · êkin,k + c2 (18d)

subject to the approximations of the power consumption
map:

ûcons,k ≥ ai · êkin,k + bi · F̂trac,k i=1...6 (18e)

Since problem (18) only consists of linear and quadratic
cost function terms as well as linear constraints, it can be
rewritten in the standard form of quadratic programming with
the optimisation variables y and the weighting matrices Qw

and hw:

min
y

1

2
· yTQwy + hTw · y s.t. Acon · y ≤ bcon (19)

If Qw in problem (19) is positive definite, the quadratic
program is strictly convex. The transformation of problem
(18) into the form of (19) and the proof of convexity are
omitted here for brevity.

As already mentioned in Section III-A.2, the problem
formulation (18) includes a piecewise linear model of the
decision variable ûcons specified by the inequality constraints
(18e). This is proven in the sequel.

Proposition 1: Consider an optimisation problem with the
following properties:
• Property 1: The cost function terms are separable with

regard to the vector optimisation variables u and w with
the elements uk, wk, where k ∈ {0...N − 1}:
min
u,w

f(u) + g(w)

• Property 2: The decision variable u is subject to convex
lower bounds:

P : A ·
[
u
w

]
≥ b

• Property 3: f(u) is strictly monotonously decreasing
for all uk, k ∈ {0...N − 1} in the feasible region:
f(u1) < f(u2) ∀u1,k, u2,k : u1,k < u2,k

Let {u∗, w∗} be the solution of this optimisation problem.
Then, u∗ will lie on the boundary of the feasible region,
i.e. at least one of the inequality constraints will be equally
fulfilled /active.

Proof: Suppose, for the sake of contradiction, that for
a feasible pair {u,w} no inequality constraint is active, i.e.

A ·
[
u
w

]
> b.

Then, the value of the cost function could be reduced
because there exists a vector u′ 6= u where u′k ≤ uk ∀k ∈
{0...N − 1} such that f(u′) + g(w) < f(u) + g(w) and

A ·
[
u′

w

]
= b.

This follows from Property 3 and the fact that the con-
straint set on u is lower bounded and convex. Thus, the pair
{u,w} cannot be the minimal solution. Hence, the solution
must always lie on the boundary of the feasible set and
at least one inequality constraint Pi ∈ P must be equally
fulfilled.

Corollary 1: The solution û∗cons of the proposed optimal
control problem (18) always lies on the boundary of the
feasible region and thus contains a piecewise linear model
of ûcons according to its lower limits (18e).

Proof: The proof consists of showing that Properties
1-3 of Proposition 1 hold for the proposed problem (18).

Property 1 is fulfilled for the assignment
u = ûcons

f(u) = M1 = Q1 · Êel,N =
∑N−1

k=0 ûcons,k ·∆s

g(w) = M2 + L

since the cost function terms M2 and L and thus g(w)
are independent of ûcons.

Property 2 is fulfilled because the inequality constraints
(18d) and (18e) form a convex and lower bounded set by
definition according to Section III-A.2, Fig. 2 and Fig. 4b.

Property 3 is fulfilled because a reduction of ûcons,k at any
step k always leads to a reduction of the energy consumption
at the end of the prediction Êel,N . Hence, M1 is strictly
monotonously decreasing with the decision variable ûcons,k.

Thus, ûcons will lie on the boundary of the feasible region
defined by the inequality constraints (18e).

IV. SIMULATION OF THE CLOSED-LOOP CONTROL

For the simulation of the control loop, the proposed MPC
controller is tested with the nonlinear dynamic motion model
formulated in terms of time (4) and the measured vehicle
energy consumption (Fig. 3). The traction force is limited
according to the measured curves in Fig. 2. A scenario
including down-hill and up-hill driving is chosen according
to Fig. 5a+b. The prediction horizon of the MPC controller is
subdivided into 40 steps of 10 m. This scenario is simulated
twice - once with the proposed eco-cruise controller and once
with the same MPC controller but with a zero weight on the
energy consumption (pure kinetic energy reference tracking)
for comparison. The results of the described scenario are
computed within SIMULINK and depicted in Fig. 5. The
weightings Q1 to Q3 as well as the prediction horizon
length are tuned manually here and will be investigated more
systematically in further research.

The eco-cruise controller accelerates to a constant steady
driving speed of 64.1 km/h on the even road segment. Before
the down-slope is reached, the vehicle decelerates. This
shows the predictive behaviour of the MPC controller and



TABLE I
PARAMETERS OF THE CONTROLLER SETUP

symbol value symbol value symbol value
Av 1.95 m2 meq 1070 kg cd 0.37
ml 160 kg cr 0.01 mv 900 kg
g 9.81 m

s2
ρa 1.2 kg

m3 Ftr,min -658 N
a1 -0.0423 a2 -0.0034 a3 1.27E-4
a4 -0.0054 a5 -5.9E-4 a6 5.64E-6
b1 1.5274 b2 1.3390 b3 1.2307
b4 0.2876 b5 0.5048 b6 0.62
c1 -0.0056 c2 3505 Q1 1.45e6
Q2 5 Q3 0.5

Fig. 5. Simulation results of the MPC controller in closed-loop operation.

serves to save energy since the speed loss can be recovered
with no traction force effort during the upcoming down-
slope. At down-hill driving, the vehicle accelerates up to the
desired speed of 70 km/h. This kinetic energy reserve allows
to save energy on the following even road segment. In front
of the following up-slope, the driving speed is decreased
again down to 64.1 km/h.

This eco-cruise control strategy reduces the overall energy
consumption throughout the simulation by 14.2 % compared
to the pure reference tracking controller while the average
speed drops by only 8.2 % which is a remarkable result.

Finally, Fig. 5d shows the comparison between the energy
consumption computed with the inner controller model (Fig.
4b) and the measured characteristic map (Fig. 3) in eco-
cruise control which shows a good accordance.

Convex quadratic programs can be solved in polynomial

time which is a good basis for a real-time capable algorithm.
In practical tests, the optimisation shall be solved every 0.1
seconds. The computational time to solve the optimisation
problem within MATLAB on a desktop PC (Intel Core i7)
varies between 0.05 and 0.15 seconds during the presented
simulation. Solving the same problem with a C-code based
quadratic programming solver, a significantly faster compu-
tation is expected. Thus, the proposed problem formulation
is expected to be real-time capable.

V. CONCLUSION

The eco-cruise control problem is converted into the form
of a quadratic optimisation with linear constraints without
applying an overall linearisation. The motion equation is
reformulated to obtain a linear differential equation. The en-
ergy consumption of the vehicle is modeled by the maximum
of a set of linear functions that is determined implicitly by
the optimisation which makes the formulation equivalent to
the use of a piecewise linear model. This provides a better fit
of the vehicle characteristics than lower order polynomials.
The proposed formulation guarantees a fast solution and is
much more suitable for a real-time implementation than a
nonlinear problem formulation. The next steps will be a
further investigation of the closed-loop performance and the
practical implementation in the real vehicle.
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