Discrete Multiscale Modelling and Future Research Plans concerning Metals

Lars Beex, Stephane Bordas Hussein Rappel, Jack Hale

EARCH UNIT

□ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Eindhoven University of Technology (Ron Peerlings & Marc Geers)

10 yearsPhD, MSc (cum laude), BSc (cum laude)Mechanics of Materials, Mechanical Engineering

Cardiff University (Pierre Kerfriden & Stephane Bordas)

1.5 years Assistant Prof, Institute of Mechanics & Advanced Materials

University of Luxembourg (Hussein Rappel, Jack Hale, Stephane Bordas)

4 months Research Fellow, Computational Mechanics

- 1. Discrete multiscale models for fibrous materials
- Discrete multiscale models for metals 2.
- 3. Future research plans for metals

Fibrous material 1: electronic textile

Fibrous material 1: electronic textile

Fibrous material 1: electronic textile

Fibrous material 2: paper materials

Fibrous material 2: paper materials

Fibrous material 2: paper materials

Quasicontinuum method (Tadmor et al, 1996)

- Ideal for local events in large-scale lattice computations
- Underlying lattice fully resolved where needed
- No continuum/constitutive assumptions

Electronic textile

Results: electronic textile

Failure surfaces

RESEARCH UNIT IN ENGINEERING SCIENCES

Results: fiber sliding in paper materials

Results: fiber sliding in paper materials

Horizontal displacement, relative to the uniform displacement

LUXEMBOURG

Lomer di-pole in 2.5D FCC system (EAM)

QC for atomistics

(LJ-potential)

Total number of atoms: Atoms for DOFs: Sampling atoms: 1,074,344 8732 (0.8%) 55,744 (5.1%)

- $\sqrt{\text{Elastoplastic trusses (local dissipative mechanism)}}$
- \sqrt{N} Nodal sliding (non-local dissipative mechanism)
- $\sqrt{\text{Atomistics (conservative but highly nonlocal)}}$
- $\sqrt{\text{Beams}}$
- $\sqrt{1}$ Irregularity
- Adaptivity
- Applications:

1. Technically relevant atomistic problems, 2. Open-cell AI foams with functionally graded Ni coatings.

Open-cell AI foams with functionally graded Ni coatings

(Jung, 2014)

RESEARCH UNIT IN ENGINEERING SCIENCES

Open-cell AI foams with functionally graded Ni coatings

RESEARCH UNIT

IN ENGINEERING SCIENCES

Enhanced discretisation technique for crystal plasticity

(Raabe, 2012)

Advantages:

- 1. Easy remeshing
- 2. Grain boundary fracture
- 3. Growth/shrinkage of crystals

RUES

RESEARCH UNIT

IN ENGINEERING SCIENCES

Multitime modelling for low cycle fatigue of crystal plasticity

(Joseph, 2010)

RESEARCH UNIT

IN ENGINEERING SCIENCES

Fast Fourier Transformation for RVEs

Resol. N	FFT σ ₀ ^{hom} MPa	CPU time s	Dof's	FEM σ ₀ ^{hom} MPa	CPU time s	400 Fibers 400 Matrix Composite	
16	160.34	1.64	*	*	*	6 ³⁰⁰ / hom	1
32	160.66	3.02	1402	162.36	267.69	200 - <u></u> <u> </u>	
64	160.07	12.21	5710	160.62	2170.28		
128	159.55	53.53	11370	160.37	6464.47	100	1
256	159.29	253.31	*	*	*	0	
512	159.13	1075.60	*	*	*	0.0 0.0025 0.005 0.0	0

(Moulinec & Suquet)

RESEARCH UNIT

IN ENGINEERING

- $\sqrt{\text{QC}}$ method for dissipative systems (springs/beams, regular/irregular) $\sqrt{\text{QC}}$ method for conservative systems (atomistics)
- QC method for dissipative graded systems (open-cell AI foams)
- Enhanced disretisation technique for crystal plasticity
- Multitime modelling for low cycle fatigue
- FFT modelling for RVEs

Dissipative lattice model based on a Coleman-Noll procedure

Kinematic variables \boldsymbol{u} & history variables \boldsymbol{z} Internal energy $\boldsymbol{E} = \sum_{i=1}^{n} E_i$

Virtual-power $\dot{\boldsymbol{u}}^T \boldsymbol{f}_{int} = \dot{\boldsymbol{u}}^T \boldsymbol{f}_{ext}$ $\forall \dot{\boldsymbol{u}}$ Internal power $P_{int} = \dot{\boldsymbol{E}} + \dot{\boldsymbol{D}}$ Energy rate $\dot{\boldsymbol{E}} = \dot{\boldsymbol{u}}^T \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{u}} + \dot{\boldsymbol{z}}^T \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{z}}$ Dissipation rate $\dot{\boldsymbol{D}} = \dot{\boldsymbol{u}}^T \left(\boldsymbol{f}_{int} - \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{u}} \right) - \dot{\boldsymbol{z}}^T \frac{\partial \boldsymbol{E}}{\partial \boldsymbol{z}} \ge 0$

RUES RESEARCH UNIT

Virtual-power-based QC framework

Apply 2 QC reduction steps to

Dissipative lattice model based on a Coleman-Noll procedure

Kinematic variables $\boldsymbol{u} = \Psi \boldsymbol{\overline{u}}$ & history variables \boldsymbol{z} Internal energy $\boldsymbol{E} = \sum_{i \in S} E_i$

Virtual-power
$$\dot{\overline{u}}^T \Psi^T f_{int} = \dot{\overline{u}}^T \Psi^T f_{ext}$$
 $\forall \dot{\overline{u}}$ Internal power $P_{int} = \dot{E} + \dot{D}$ Energy rate $\dot{E} = \dot{\overline{u}}^T \Psi^T \frac{\partial E}{\partial u} + \dot{z}^T \frac{\partial E}{\partial z}$ Dissipation rate $\dot{D} = \dot{\overline{u}}^T \left(f_{int} - \Psi^T \frac{\partial E}{\partial u} \right) - \dot{z}^T \frac{\partial E}{\partial z} \ge 0$
RUES RUES RUES RUES

Virtual-power-based QC framework

Electronic textile

Electronic textile

Results: electronic textile

Failure surfaces

RESEARCH UNIT IN ENGINEERING SCIENCES