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1. Introduction 

Proponents of the efficient markets hypothesis would claim that investors correctly incorporate 

new information into asset prices. Bayesian rationality is assumed to be a good description of 

investor behavior. Empirical studies are challenging this view. One interesting and robust stylized 

fact that emerges from the index options literature is the overreaction puzzle of Stein (1989), which 

was further investigated by Poteshman (2001) and more recently by Christoffersen et al. (2013). 

Stein (1989) derives and empirically tests a model that describes the relationship between implied 

volatilities of options of different maturities. Assuming that volatility evolves according to a 

continuous-time mean-reverting AR1 process, with a constant long-run mean and a constant 

coefficient of mean-reversion, theoretically, the implied volatility of longer maturity (two-months) 

options should move in a responsive, but smoothing manner to changes in implied volatility of 

shorter maturity (one-month) options. However, the empirical values of this elasticity exceeded 

the theoretical upper bound of normal-reaction. Stein interprets his findings as overreaction, which 

is caused by market inefficiencies, claiming that this contradicts the rational expectations 

hypothesis for the term structure of implied volatilities. 

Other studies challenge the simple mean-variance asset pricing framework and suggest to include 

higher moments. Among others, Kraus and Litzenberger (1976) derive a three-moment CAPM 

and show that systematic skewness is a priced risk factor. Harvey and Siddique (1999, 2000a, 

2000b) use conditional skewness to mitigate the shortcomings of mean-variance asset pricing 

models in explaining cross-sectional variations in expected returns. Their findings suggest that 

conditional skewness is important and helps explaining the ex-ante market risk premiums. Among 

others, Conrad et al (2013) use options market data to extract estimates of higher moments of 

individual securities’ probability density function. They find a significant negative relation 

between firm`s risk-neutral skewness and subsequent stock returns. In a related study, Chang et al. 

(2013) show that the risk-neutral market skewness is a priced risk factor in the cross section of 

stock returns, which cannot be explained by traditional four-factor models. 

Variance and skewness in asset returns represent different types of risks. Using a behavioral 

paradigm, research in neurology shows that individuals’ choice behavior is sensitive to both, 

dispersion (variance) and asymmetry (skewness) of outcomes (Symmonds et al (2011)). By 

scanning subjects with functional magnetic resonance imaging (fMRI), they find that individuals 
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encode variance and skewness separately in the brain, the former being associated with parietal 

cortex and the latter with prefrontal cortex and ventral striatum. Participants are exposed to choices 

among a range of orthogonalized risk factors. The authors argue that risk is neither monolithic 

from a behavioral nor from a neural perspective. Their findings support the argument of dissociable 

components of risk factors and suggest separable effects of variance and skewness on asset market 

returns.  

In contrast to the number of studies investigating the term structure of volatility, the term structure 

of skewness is not well understood. In this paper, we conduct skewness term structure tests to 

check whether the temporal structure of risk-neutral skewness is consistent with rational 

expectations. We develop a testing framework for the skewness term-structure in a simple 

production economy with a representative investor with CRRA utility. The stock index is assumed 

to follow a jump diffusion model with stochastic jump intensity. Because risk-neutral skewness is 

substantially mean reverting, skewness shocks should decay quickly and risk-neutral skewness of 

more distant option should display the rationally expected smoothing behavior. We derive this 

elasticity analytically and empirically test it using more than 20 years of data on S&P500 index 

options. 

The paper proceeds as follows. Section 2 describes the theoretical model. Section 3 discusses the 

data and section 4 presents the empirical analysis. Section 5 concludes. 
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2. Theoretical model 

We derive the equilibrium stock market risk premium in a simple economy with a representative 

investor with CRRA utility. The investor chooses a portfolio among the risk-free asset and capital 

market assets to maximize his life time utility. We model the capital market as having two sources 

of risk: diffusive risk and jump risk. We assume the jump intensity follows a stochastic process 

and the jump size follows a continuous distribution. To parameterize, the stock market index 

follows the process as  

(1) 
�����
���� = �r + ϕ − λ�t�E�e� − 1��dt + σdB� + �e� − 1�dN  

(2)  dλ�t� = κ�θ − λ�t��dt + σ�dB�                                             

where r is risk-free rate, ϕ  represents the stock premium, σ  denotes volatility, B�  and B�  are 

standard Brownian motions in ℝ  (and dB� , dB�  the increments), N  is Poisson process with 

intensity λ�t� (and dN the increment), �e� − 1� is the percentage jump size. This guarantees that 

percentage jump size is at least larger than -1 and therefore the stock price due to jumps remains 

positive. We assume the jump size and jump intensity are independent. The jump size x  follows a 

normal distribution independently over time with mean μ� and variance σ��. Combining the effects 

of random jump intensity and jump size, the term λ�t�E�e� − 1�dt is a compensation for the 

instantaneous change in expected stock returns introduced by the Poisson process N. Therefore, 

the term �e� − 1�dN − λ�t�E�e� − 1�dt  is an increment of the compensated compound Poisson 

process. The jump intensity follows a mean-reverting process, such that the process tends to drift 

towards its long-term mean θ, with the reverting speed κ > 0. For simplicity, we assume the two 

Brownian motions, B� and B�, are independent1. 

The risk-free asset is represented by money market account M�t� where investor can borrow and 

lend instantaneously at a rate r.  

                                                           
1 Some paper assumes constant correlations between Brownian motions. The correlations would affect the value 

of central moments, but those effects are minor in our term-term structure test. We follow the discrete-time 

calculation of central moments in Christoffersen, Jacobs and Ornthanalai (2012) to assume the Poisson jump 

process to be independent of the Brownian motions, which indicates the independence between Brownian motion 

in jump intensity process and Brownian motion in stock price process.   



 6

(3) 
�#���
#��� = rdt 

Suppose there is a representative investor who has wealth W(t) and allocates it to money market 

account and stock market index. We assume the investor has a constant relative risk aversion utility 

function as U = W�t� '()/�1 − γ�,   where  γ > 1 is a measure of the magnitude of relative risk 

aversion. The investor chooses at each time t to invest a fraction / of his wealth in stock S�t� and 

a fraction �1 − /� of his wealth in money market account, in order to maximize the utility of 

terminal wealth.  

(4) 123� 4�E�[U�W�T�, T�] 
Subject to his wealth constraint as 

dW�t� W�t� ≡ / dS�t�S�t� + �1 − /� dM�t�M�t� = [r + /ϕ − /λ�t�E�e� − 1�]dt + /σdB� + /�e� − 1�dN 

Current research using jump-diffusion processes relies mostly on two kinds of specification. One 

is the affine jump-diffusion as specified in Duffie et al (2000), where the time-varying jump 

intensity depends on a linear function of the state variable. The other kind is the quadratic Gaussian 

class, for example, Ahn et al (2002), Chen et al (2004), where jump process depends on quadratic 

function of the state variables. In a recent research by Santa-Clara and Yan (2010), they explicitly 

write out a form of quadratic stochastic process for the jump intensity itself. We model the jump 

intensity to have a mean-reverting autoregressive stochastic process. One related paper is by 

Christoffersen, Jacobs and Ornthanalai (2012), who model the jump intensity in a similar way as 

Heston-Nandi type GARCH (1,1) dynamics, which is a discrete time version of mean-reverting 

stochastic process. 

In this paper, we aim to capture the term-structure pattern of skewness through the lens of 

stochastic jump intensity. The intuition is simple. It has been documented in literature that large 

jump intensity is usually followed by large jump intensity, which exhibit mean-reverting at the 

same time; and an initial empirical test of the skewness time-series in this paper shows such kind 

of mean-reverting autoregressive pattern. If the market exhibit more downward jumps, the more 

frequently such jumps come, the more negative skewness would become. Capturing how jump 

intensity moves will help us understand better how skewness moves.     
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To solve (4), we follow Merton (1973) and define the optimal indirect utility 9�W�t�, λ�t�, t� to be  

(5) 9�W�t�, λ�t�, t� ≡ 123� 4�E�[U�W�T�, T�] 
The condition of optimality is given by the Bellman equation  

(6) E�[d9] = 0 

Applying Ito’s Lemma with jumps gives 

d9 = 9�dt + 9:W�t��r + /ϕ − /λ�t�E�e� − 1��dt + 9�κ�θ − λ�t��dt + 12 9::/�W�t��σ�dt
+ 12 9��σ��dt + 9:/W�t�σdB� + 9�σ�dB� + [9�W�t��1 + /�e� − 1��, λ�t�, t�
− 9�W�t�, λ�t�, t�]dN 

where the subscripts of 9  denote the partial derivatives. The term Δ9 ≡ [9�W�t��1 + /�e� −
1��, λ�t�, t� − 9�W�t�, λ�t�, t�] captures jumps in the optimal indirect function. Take conditional 

expectation E� against d9 to yield a more specific formula for (6) and it should hold for the optimal 

allocating fraction /. Since market clears when the money market account is in zero net supply, 

we differentiate the formula (6) and substitute the condition / = 1 and the assumption that jump 

size is normal distributed as x~N�μ�, σ��� to get the equilibrium stock premium ϕ in terms of the 

optimal indirect function 9�W�t�, λ�t�, t� as follows 

(7) ϕ = −>� ?���@AA@A − λ�t� '
@A �eBCDEFGCF − 1�E[9:�W�t�e�, λ�t�, t�] + �eBCDEFGCF − 1�λ�t� 

The stock market index risk premium contains two components: the variance of the marginal utility 

of wealth, the covariance of the marginal utility of wealth with the compensated jump size2 

respectively.  

Combining (6) and (7), we find a solution to the optimal indirect function and get the required risk 

premium formula. 

                                                           
2 Note that we specify a compensated compound Poisson process for the stock price dynamics. Therefore, the risk 

premium due to the jump size has the term �eBCDEFGCF − 1�λ�t�, in addition to the one [−λ�t� '
@A �eBCDEFGCF −

1�E[9:�W�t�e�, λ�t�, t�]] out of a compound Poisson process.  
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PROPOSITION 1 In an economy with jump diffusion and one representative investor with CRRA 

utility function, the stock premium is a function of variance, jump size components and jump 

intensity:  

(8) ϕ = γσ� − λ�t�e�'()�BCDEF�'()�FGCF + λ�t�e()BCDEF)FGCF + λ�t�eBCDEFGCF − λ�t� 

Proof. See Appendix1. 

Assume at time t there is a European option H with strike price K and it will mature at time T in 

this economy. The option price should be a function of the state variables and time, i.e. 

H�S�t�, λ∗�t�, t�. The state variables in risk-neutral measure are accordingly written as:  

(9)  
�����
���� = Jr − λ∗�t�E�e�∗ − 1�K dt + σdB�∗ + �e�∗ − 1�dN∗  

(10) dλ∗�t� = κ∗�θ∗ − λ∗�t��dt + σ�∗ dB�∗                                              

In the presence of European option in this economy, the investor allocates a fraction /� of his 

wealth in stock S�t�, a fraction /L  of his wealth in option H, and a fraction �1 − /� − /L� in 

money market account, in order to maximize the utility of terminal wealth. We can therefore derive 

the risk-neutral measures for the jump-diffusion components of the stock returns under market 

clearing condition.  

PROPOSITION 2 In an economy with jump diffusion and one representative investor with CRRA 

utility function, the risk-neutral jump components are given by  

(11) x∗~N�μ� − γσ��, σ��� 

(12) λ∗�t� = e()BCDEF)FGCFλ�t� ; σ�∗ = e()BCDEF)FGCFσ� 

(13) κ∗ = κ − 2σ��C�τ�;  θ∗ = OPQRCSEFQFTCF
U(�GVFW�X� �κθ − γρ��σ�σ + B�τ�σ��� 

Where τ = T − t;   B and C solve the following ODEs, with the subscripts denote the differentias 

and with initial conditions as Z�0� = 0, [�0� = 0: 

BX = 2κθC�τ� − κB�τ� + 2B�τ�C�τ�σ�� + �1 − γ�e()BCDEF)FGCF + γe�'()�BCDEF�'()�FGCF − 1  (A.10) 
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CX = −2κC�τ� + 2C�τ��σ��                 

Proof. See Appendix2. 

Upon this point, we can write the conditional central moments of returns in both physical and risk-

neutral measures. Define R�DX ≡ ln ���DX�
���� . R�DX is the continuously compounded return viewed at 

time t for the future time horizon τ, i.e. the return during the time interval (t, t + τ). 

PROPOSITION 3 In an economy with jump diffusion and one representative investor with CRRA 

utility function, the conditional central skewness in physical and risk-neutral measures are written 

as 

(14) _`abc�R�DX� = τ�μ�d + 3μ�σ���λ�t� 

(15) _`abc∗�R�DX� = τ��μ� − γσ���d + 3�μ� − γσ���σ���λ∗�t� 

Proof. See Appendix3. 

Corollary: 

1. If the jump size 3 follows normal distribution with negative mean fg and variance >g�, the risk-

neutral skewness is more negative than the physical one for the same time horizon; and the 

variance of risk-neutral skewness is larger than the variance of physical skewness. 

2. For a given time-horizon h, the conditional central skewness at time t is a linear function of 

jump intensity at time t.  

Next we investigate the term structure of skewness dynamics. We define an instantaneous 

skewness at time t as ψ�t�. Instantaenous skewness should be equal to a horizon-free conditional 

skewness. To put it another way, instantaneous skewness considers the time horizon τ as an 

exogenously given constant in the conditional skewness viewed at time t, i.e. ψ�t� =
_`abc�R�DX� bjkℎ 2m a3noamnpq τ . According to the Corollary, ψ�t�  is therefore a linear 

function of jump intensity λ�t�. We use the following denotations 

 ψXrrrr ≡ τ�μ�d + 3μ�σ��� 

 ψ∗Xrrrrr ≡ τ��μ� − γσ���d + 3�μ� − γσ���σ���  
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to rewrite formula (14) and (15) as  

(16) ψ�t� = ψXrrrrλ�t� 

(17) ψ∗�t� = ψ∗Xrrrrrλ∗�t� 

Since the increment of jump intensity is dλ�t� = κ�θ − λ�t��dt + σ�dB� , the dynamics of 

instantaneous skewness is accordingly written as: 

dψ�t� = ψXrrrrdλ�t� = κ�ψXrrrrθ − ψ�t��dt + ψXrrrrσ�dB�  

We notice the instantaneous skewness follows a continuous-time mean-reverting AR1 process, 

with the mean level of  ψXrrrrθ  and a mean-reverting speed of κ. Using Ito’s Lemma, the expectation 

of skewness as of time t+ i at time t will be given by 

(18) E��ψ�t + i�� = ψXrrrrθ + e(Ut�ψ�t� − ψXrrrrθ� 

The conditional skewness should equal the averaged expected instantaneous skewness over the 

time interval [t, t + τ] 

(19a) _`abc�R�DX� = '
X E�uv ψ�t + i�diXw x = ψXrrrrθ + '(OPyz

UX �ψ�t� − ψXrrrrθ� 

The risk-neutral conditional skewness is similarly written as 

(20a) _`abc∗�R�DX� =  '
X E�uv ψ∗�t + i�diXw x =  ψ∗Xrrrrrθ∗ + '(OPy∗z

U∗X �ψ∗�t� − ψ∗Xrrrrrθ∗� 

We learn from (19a) or (20a) that when instantaneous skewness is above its mean level, the 

conditional skewness should be decreasing with its time to maturity in a non-linear manner, and 

vise visa. Extending the formula (19a) and (20a) to include time lapse j to the time t, namely, let 

us view the conditional skewness over the time interval [t+j, t + j + τ], we get more general forms 

as 

(19b) _`abcD|�R��D}�DX� = '
X E�uv ψ�t + j + i�diXw x = ψXrrrrθ + '(OPyz

UX �ψ�t + j� − ψXrrrrθ� 

(20b) _`abcD|∗ �R��D}�DX� =  '
X E�uv ψ∗�t + j + i�diXw x = ψ∗Xrrrrrθ∗ + '(OPy∗z

U∗X �ψ∗�t + j� −  ψ∗Xrrrrrθ∗� 
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Where R��D}�DX is the continuously compounded return viewed at time (t+j) for the future time 

horizon τ, i.e. at the time interval (t+j, t + j + τ). Since the risk-neutral skewness is extracted from 

options and therefore the time horizon τ could be considered to be in corresponding to a given 

time with a particular maturity. Suppose there are two options. One option has time to maturity τ' 

and the other τ�, with τ' < τ�. Using formula (20a), the following equation should hold: 

(21) _`abc∗�R�DXF� − ψ∗Xrrrrrθ∗ = XEJ'(OPy∗zFK
XF�'(OPy∗zE� �_`abc∗�R�DXE� − ψ∗Xrrrrrθ∗� 

Rearrange (21) and using (20b), we get a more general empirical test equation: 

(22) 

E� �J_`abcD|∗ �R��D}�DXE� − _`abc∗�R�DXE�K
− τ��1 − e(U∗XE��e(U∗} − 1�τ'�1 − e(U∗XF� − τ��1 − e(U∗XE� J_`abc∗�R�DXF� − _`abc∗�R�DXE�K� = 0 

Denote the parameter � ≡ e(U∗
 and  � ≡ XFJ'(OPy∗zEK�OPy∗�('�

XE�'(OPy∗zF�(XF�'(OPy∗zE�. In theory, the persistency of 

skewness time series, �, is geometrically decaying in mean-reverting speed κ∗, and the boundary 

elasticity of rational reaction, � , is a nonlinear function of short-term maturity, τ' , long-term 

maturity, τ�, time lapse, j, and the mean-reverting speed κ∗. In the spirit of Stein (1989), we derive 

a theoretical level for normal reaction in the form of an elasticity parameter, which can be 

empirically tested. Hence, any values below the theoretical elasticity parameter would be 

characterized as underreaction, while any values above would be interpreted as overreaction.  
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3. Data 

We make use of data on S&P 500 index options, which are directly obtained from the Chicago 

Board Option Exchange (CBOE) 3 . The daily data covers the period January 1st 1990 until 

December 31th 2012, consisting of 5785 days, on which we obtain measures for the risk-neutral 

skewness for all traded maturities. The exchange uses a model-free approach applied to option 

prices to obtain a risk-neutral skewness measure (SKEW). This approach originates from Bakshi 

et al. (2003), and since then becames popular in empirical studies on options markets. To be 

specific, the risk-neutral skewness based on options with τ -month maturity can be computed as  

 

_`abc∗��cDX� = a�X�c�τ� − 3fc�τ�a�X�c�τ� + fcd�τ�
J�a�X�c�τ� − fc��τ�Kd  

Where 

fc�τ� = a�X − 1 − a�X
2 �c�τ� − a�X

6 �c�τ� − a�X
24 �c�τ� 

�c�τ� = � 2 J1 − ln J�_cKK
�� �c�τ, ����D�

� + � 2 J1 + ln J_c�KK
�� �c�τ, �����

w  

�c�τ� = � 6 ln J�_cK − 3�ln J�_cK��
�� �c�τ, ����D�

� − � 6 ln J_c�K − 3�ln J_c�K��
�� �c�τ, �����

w  

�c�τ� = � 12 ln J�_cK − 4�ln J�_cK�d
�� �c�τ, ����D�

� + � 12 ln J_c�K − 4�ln J_c�K�d
�� �c�τ, �����

w
 

where St is the underlying S&P500 index level on day t, K is the exercise price of the option and 

r is the risk-free interest rate corresponding to the time to maturity (τ) of the option. c and p refer 

to call and put prices. In this way, one can obtain the risk-neutral skewness on a daily basis for all 

traded maturities. We interpolate the skewness measures between two maturities, one below and 

                                                           
3 We thank the CBOE for making the data available to us. 
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one above the required time-to-maturity, in order to obtain fixed maturity risk-neutral skewness 

measures. The maturities considered are 1, 2, 3, 4, 6 and 8 months. 
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4. Empirical analysis 

Summary statistics 

Table I provides summary statistics of the skewness time series, with maturities ranging from 1 

month to 8 months. The average skewness is negative for all maturities and, typically, skewness 

becomes less negative on average, but more volatile for longer maturities. 

[Table I] 

In Table II, we examine autocorrelations and partial correlations in the skewness time series over 

different horizons. We find positive autocorrelations for a 1-day lag ranging from 0.87 to 0.95, 

where the risk-neutral skewness process becomes more persistent for longer maturities. The partial 

correlations are greatly decreased to less than 0.22 after the first lag for all maturities, which is 

higher compared to results reported in previous studies on volatility. However, adding additional 

lags does not improve the explanatory power of the regression. The R2 increases only slightly from 

76.9% for a 1-day lag to 78.8%, when up to 5 daily lags are used. 

[Table II] 

Results suggest that the conclusions about the appropriateness of our specification are similar to 

those reached in volatility studies as early as in the 1980s (e.g. Poterba and Summers (1986) and 

Stein (1989)). It ever since becomes a convention to model variance process as an autoregressive 

process as ARCH, GARCH, etc., and their continuous time versions. However, to our knowledge, 

there is seldom research that has empirically investigated the structure of the risk-neutral skewness 

process.  

Skewness Term Structure Tests 

The theoretical model derived in the previous sections specifies a mean-reverting stochastic 

process for risk-neutral skewness. An explicit function of an elasticity parameter was proposed for 

the test of the skewness term-structure, as is shown in formula (22). In the following, we proceed 

with the empirical testing of the theoretically derived elasticity relationship. This section considers 

a specification on the values of the elasticity parameter. According to rational expectations, the 

prediction error given in the expectations operator on the left-hand side of formula (22) should be 
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white noise. If the elasticity is smaller than expected, e,g, the prediction error is positively related 

with the short-term skewness time series itself, _`abc∗�R�DXE�, there is evidence of underreaction. 

Similarly, if the elasticity is larger than expected, the prediction error is negatively related with 

short-term skewness, there is evidence of overreaction. Therefore, we can test for underreaction or 

overreaction by regression the prediction error on _`abc∗�R�DXE� . However, the elasticity � 

depends on the time-to-maturity of the nearby and distant options, and, moreover, on the mean-

reverting speed κ∗ , which introduces some nonlinearity. Hence, in the following, we are 

investigating the impact of this non-linear relationship on the analysis. 

[Table III] 

Table III illustrates the values of elasticity parameter for various combinations of parameters. It 

shows that when the distant maturity is twice the nearby maturity, with the time lapse being equal 

to the time to maturity of the nearby options, � is equal to two and independent of κ∗. As a result, 

the regression equation can be generalized and simplified to 

 J_`abcD|∗ �R��D}�DXE� − _`abc∗�R�DXE�K − 2 J_`abc∗�R�DXF� − _`abc∗�R�DXE�K 

= � + �_`abc∗�R�DXE� + �cD| 

Where ��, τ', τ�� = (1 month, 1 month, 2 months); (2, 2, 4); (3, 3, 6); (4, 4, 8). 

As explained earlier, the prediction error should, according to rational expectations, be white noise, 

and, therefore not depend on the skewness of nearby options. Any significant estimate for  
� would bear out the under- or overreaction hypothesis. The regressions are OLS and the standard 

errors are corrected for serial correlations induced by the overlapping observations. Results are 

provided in Table IV. The coefficient for tests of the short end of the ‘skewness curve’, namely 1 

month versus 2 months, is positive and statistically significant, which suggests underreaction. The 

coefficient for tests of the long end of the ‘skewness curve’, namely 4 month versus 8 months, is 

negative and statistically significant, which suggests overreaction. All other coefficients are not 

significantly different from zero. 

[Table IV] 
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Furthermore, the subsample analysis in Table V reveals that the patterns that we observed 

previously also hold in the subsamples. On the short end of the ‘skewness curve’, we obtain 

underreaction, while the long end exhibits overreaction. For the middle part, we obtain mixed 

results, suggesting underreaction in the booming period of the 90’s and overreaction in more recent 

years. 

[Table V] 

Robustness Checks 

As a robustness check, we replicate the analysis with weekly data, the frequency that was used in 

previous studies on volatility. While the autocorrelation for a 1-week lag decreases only marginally, 

the partial correlations in the skewness time series are substantially reduced. For example, the 

partial correlation for the skewness time series of 1-month options decreases to less than 0.02 after 

the first lag for all maturities, which is a characteristic of a mean-reverting process4. We also run 

the same regressions over the complete term structure of risk-neutral skewness using weekly data. 

Results for the whole period are reported in Table VI and subsample results are shown in Table 

VII. 

 

[Table VI and VII] 

 

Overall, the results are slightly weaker, but still strongly suggest that our previous findings also 

hold for the lower sampling frequency. A similar picture arises from the subsample analysis. 

 

                                                           
4 More results are not reported to save space. 
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5. Conclusion 

In contrast to the number of studies investigating the term structure of volatility, the term structure 

of skewness is not well understood. In this paper, we conduct skewness term structure tests to 

check whether the temporal structure of skewness is consistent with rational expectations. We 

develop a testing framework in a simple production economy with a representative investor with 

CRRA utility. The stock index is assumed to follow a jump diffusion model with stochastic jump 

intensity. We derive the conditional moments of returns using the moment generating function of 

the Brownian and compensated compound Poisson processes, in both physical and risk-neutral 

measures. Stochastic jump intensity ensures that risk-neutral skewness follows a continuous-time 

mean-reverting process. Therefore, risk-neutral skewness shocks should decay quickly and risk-

neutral skewness of more distant options should display the rationally expected smoothing 

behavior. We derive this elasticity analytically. In an empirical application of the model using 

more than 20 years of data on S&P500 index options, we find that this elasticity turns out to be 

different than suggested under rational expectations - smaller on the short end (undereaction) and 

larger on the long end (overreaction) of the ‘skewness curve’. 
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Appendix1: 

Consider any twice-differentiable function as the optimal indirect utility  9�W�t�, λ�t�, t� that is a 

conditional expectation of utility function of W and λ at a later date T, measured at time t. 

9�W�t�, λ�t�, t� ≡ 123� 4�E�[U�W�T�, T�]                                                                              (A.1) 

To explore the linearity of the coefficients in subsequent partial differential equations (PDEs), 

we guess the functional form as: 

9�W�t�, λ�t�, t� = o�λ�t�, τ� ?��� EPQ
�'()�                                   (A.2) 

Where τ ≡ T − t, and o�λ�t�, τ� is a function independent of W(t). 

Ito’s Lemma with jump shows that: 

d9 = 9�dt + 9:W�t��r + /ϕ − /λ�t�E�e� − 1��dt + 9�κ�θ − λ�t��dt + '
� 9::/�W�t��σ�dt +

'
� 9��σ��dt + 9:/W�t�σdB� + 9�σ�dB� + [9�W�t��1 + /�e� − 1��, λ�t�, t� − 9�W�t�, λ�t�, t�]dN        

              (A.3)                                                               

By Bellman equation, we know that 9 must be a martingale: 

E�[d9] = 0                      (A.4)                           

Applying this to Equation (A.3) to get: 

123� 4�{  9� + 9:W�t��r + /ϕ − /λ�t�E�e� − 1�� + 9�κ�θ − λ�t�� +
'
� 9::/�W�t��σ� + '

� 9��σ�� + λ�t�E[9�W�t��1 + /�e� − 1��, λ�t�, t� −
9�W�t�, λ�t�, t�]} = 0                     (A.5)                             

                     

Taking partial derivative with respect to / and using the market clearing condition / = 1 and 

using the assumption that jump size follows normal distribution as x~N�μ�, σ���, yields the 

equilibrium stock premium: 

ϕ = −>� ?���@AA@A − λ�t� '
@A �eBCDEFGCF − 1�E[9:�W�t�e�, λ�t�, t�] + �eBCDEFGCF − 1�λ�t� (A.6) 
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Substituting (A.6) into (A.5) with / = 1 to get the following PDE satisfied by the optimal 

indirect function 9: 

  9� + rW�t�9: − '
� W�t��σ�9:: + 9�κ�θ − λ�t�� + '

� 9��σ�� − λ�t�W�t��eBCDEFGCF −
1�E[9:�W�t�e�, λ�t�, t�] + λ�t�E[9�W�t�e�, λ�t�, t�] − λ�t�E[9�W�t�, λ�t�, t�]    = 0       (A.7)               

Applying the functional form of optimal indirect function assumed in (A.2) and substitute it into 

(A.7) to get: 

−o� + r�1 − γ�o + '
� σ�γ�1 − γ�o + κ�θ − λ�t��o� + '

� o��σ�� + λ�t�o�1 − γ�e()BCDEF)FGCF +
λ�t�oγe�'()�BCDEF�'()�FGCF − λ�t�o = 0   with the initial condition o�λ�t�, 0� = 1                (A.8) 

To solve for the hyperbolic PDE whose coefficients are quadratic functions of λ�t�, we guess the 

functional form: 

o�λ�t�, τ� = a��X�D��X�����DW�X�����F
                                                                                        (A.9)              

This guess exploits the linearity of the coefficients in the PDE (A.3). Substitute (A.9) into (A.8) 

and collect terms with the same powers of λ�t� to reduce it to two ODEs:                                                                                                   

BX = 2κθC�τ� − κB�τ� + 2B�τ�C�τ�σ�� + �1 − γ�e()BCDEF)FGCF + γe�'()�BCDEF�'()�FGCF − 1  (A.10) 

CX = −2κC�τ� + 2C�τ��σ��                (A.11) 

With the initial conditions B�0� = 0; C�0� = 0. 

Meanwhile, by substituting the assumed functional form (A.2) into the equilibrium stock 

premium (A.6), we get: 

ϕ = γσ� − λ�t�e�'()�BCDEF�'()�FGCF + λ�t�e()BCDEF)FGCF + λ�t�eBCDEFGCF − λ�t�    (A.12)                
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Appendix2: 

In the presence of European option, f�S�t�, λ�t�, t�, in this economy, the investor allocates a 

fraction ω� of his wealth in stock S�t�, a fraction ω� in option f, and a fraction �1 − ω� − ω�� in 

money market account, in order to maximize the utility of terminal wealth. 

In response to the jump-diffusion stock price process, we assume that under physical probability 

measure, the options price follows the process: 

��
� = �r + ϕ� − λ�t�μ���dt + σ��dB� + σ��dB� + Q�dN                                                        (B.1) 

Where μ�� is the mean jump size on the option; ϕ� is the option risk premium; Q� ≡
[f�S�t�e�, λ�t�, t� − f�S�t�, λ�t�, t�]/f is the percentage jump size on the option. The Brownian 

motions and the jump process are independent. Under this process, we incorporate the same 

sources of risk in the underlying stock market into options market, but the magnitudes of the risk 

shocks in the options market, namely, σ��, σ��, Q� , are different from their counterparties 

specified in the stock market.  

The investor aims at maximizing the utility of terminal wealth by choosing the fractions (ω�, ω�): 
123� ¡¢,¡��E�[U�W�T�, T�] 
Subject to his wealth constraint as 

�?��� 
?��� ≡ ω� �����

���� + ω� �������,����,��
������,����,�� + �1 − ω� − ω�� �#���

#��� = ur + ω�ϕ + ω�ϕ� −
ω�λ�t�E�e� − 1� − ω�λ�t�μ��xdt + ω�σdB� + ω�σ��dB� + ω�σ��dB� + [ω��e� − 1� + ω�Q�]dN   

            (B.2)                                                                          

Define the optimal indirect utility 9�W�t�, λ�t�, t� to be  

9�W�t�, λ�t�, t� ≡ 123� ¡¢,¡��E�[U�W�T�, T�] 
Applying Ito’s Lemma with jumps gives 

d9 = 9�dt + 9:W�t�ur + ω�ϕ + ω�ϕ� − ω�λ�t�E�e� − 1� − ω�λ�t�μ��xdt + 9�κ�θ − λ�t��dt +
'
� 9::W�t��uω��σ� + 2ω�ω�σσ�� + ω���σ��� + σ��� �xdt + '

� 9��σ��dt + 9:�W�t�σ�ω�σ��dt +
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9:W�t�[ω�σ + ω�σ��]dB� + 9:W�t�ω�σ��dB� + 9�σ�dB� + [9�W�t��1 + �ω��e� − 1� +
ω�Q���, λ�t�, t� − 9�W�t�, λ�t�, t�]dN                         (B.3) 

By Bellman equation, we know that 9 must be a martingale: 

E�[d9] = 0                        (B.4)                             

Applying this to Equation (B.3) to get: 

123� ¡¢,¡��{  9� + 9:W�t�ur + ω�ϕ + ω�ϕ� − ω�λ�t�E�e� − 1� − ω�λ�t�μ��x + 9�κ�θ − λ�t�� +
'
� 9::W�t��uω��σ� + 2ω�ω�σσ�� + ω���σ��� + σ��� �x + '

� 9��σ�� + 9:�W�t�σ�ω�σ�� +
λ�t�E[9�W�t��1 + �ω��e� − 1� + ω�Q���, λ�t�, t� − 9�W�t�, λ�t�, t�]} = 0              (B.5)                             

Taking partial derivative with respect to ω� and using the market clearing conditions ω� = 1, 

ω� = 0, yields the equilibrium risk premium on the option: 

ϕ� = − ?���@AA@A σσ�� − @AV@A σ�σ�� − λ�t� '
@A E[Q�9:�W�t�e�, λ�t�, t�] + λ�t�μ��            (B.6) 

In the meantime, we could also use Ito’s Lemma with jumps to the option price f�S�t�, λ�t�, t� as 

follows: 

df = f�dt + f��r + ϕ − λ�t�E�e� − 1��S�t�dt + f�κ�θ − λ�t��dt + '
� f��S�t��σ�dt + '

� f��σ��dt +
f�σS�t�dB� + f�σ�dB� + [f�S�t�e�, λ�t�, t� − f�S�t�, λ�t�, t�]dN                  (B.7) 

Combining Equation (B.7) and Equation (B.1) and collecting terms with the same magnitude of 

drifts, diffusions, jumps, yields the following three equations: 

rf + ϕ�f − λ�t�μ��f = f� + f��r + ϕ − λ�t�E�e� − 1��S�t� + f�κ�θ − λ�t�� + '
� f��S�t��σ� +

'
� f��σ�� + λ�t�E[f�S�t�e�, λ�t�, t� − f�S�t�, λ�t�, t�]                                       (B.8) 

σ��f = f�σS�t�                                                                                                                         (B.9) 

σ��f = f�σ�                                                                                                                            (B.10) 

Substituting (B.9) and (B.10) into the equilibrium risk premium on the option (B.6), we get: 
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ϕ� = − ?���@AA@A σ�S�t� �¢� − @AV@A σ�� �V� − λ�t� '
@A E[Q�9:�W�t�e�, λ�t�, t�] + λ�t�μ��            (B.11) 

Using (B.11), we know: 

rf + ϕ�f − λ�t�μ��f = rf − ?���@AA@A σ�S�t�f� − @AV@A σ��f� − λ�t� '
@A E[Q�9:�W�t�e�, λ�t�, t�]f (B.12)                                                                

In the meantime, from the equilibrium risk premium on the stock (A.6) in Appendix1, we know: 

�r + ϕ − λ�t�E�e� − 1��S�t� = rS�t� − σ� ?���@AA@A S�t� − λ�t� '
@A �eBCDEFGCF −

1�E[9:�W�t�e�, λ�t�, t�]S�t�                          (B.13) 

Combining Equations (B.8), (B.12), (B.13), and using the fact that jump size follows normal 

distribution as x~N�μ�, σ���,  we have the following PDE: 

−f� = −rf + Jr − λ�t� '
@A �eBCDEFGCF − 1�E[9:�W�t�e�, λ�t�, t�]K S�t�f� + Jκ�θ − λ�t�� +

@AV@A σ��K f� + '
� f��S�t��σ� + '

� f��σ�� + λ�t� '
@A E[Q�9:�W�t�e�, λ�t�, t�]f +

λ�t�E[f�S�t�e�, λ�t�, t� − f�S�t�, λ�t�, t�]                         (B.14) 

To solve the PDE, we know in Appendix1 the functional form of optimal indirect utility  

9�W�t�, λ�t�, t�. Substituting (A.2) and (A.9) into (B.14) yields: 

−f� = −rf + Jr − λ�t�e()BCDEF)FGCF�eBCDEFGCF()GCF − 1�K S�t�f� + �κ�θ − λ�t�� +
�B�τ� + 2C�τ�λ�t��σ���f� + '

� f��S�t��σ� + '
� f��σ�� + λ�t�E[e()�Q�]f + λ�t�E[f�S�t�e�, λ�t�, t� −

f�S�t�, λ�t�, t�]                    (B.15)                   

In the paper, we already defined the risk-neutral process for both the stock process and the jump-

intensity process, as shown in formula (9) and (10). Next, we apply Ito’s Lemma with jumps to 

options price under risk-neutral probability measure, namely H�S�t�, £∗�t�, t�. 

df = f�dt + f� Jr − λ∗�t�E�e�∗ − 1�K S�t�dt + f�∗κ∗�θ∗ − λ∗�t��dt + '
� f��S�t��σ�dt +

'
� f�∗�∗σ¤∗�dt + f�σS�t�dB�∗ + f�∗σ¤∗dB�∗ + f�S�t�e�∗ , λ∗�t�, t� − f�S�t�, λ∗�t�, t�dN∗              (B.16) 
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Under risk-neutral measure, the drift term of df/f should be equal to risk-free rate r. Therefore 

Equation (B.16) leads to: 

−f� = −rf + Jr − λ∗�t�E�e�∗ − 1�K S�t�f� + κ∗�θ∗ − λ∗�t��f�∗ + '
� f��S�t��σ� + '

� f�∗�∗σ�∗ � +
λ∗�t�E[f�S�t�e�∗ , λ∗�t�, t� − f�S�t�, λ∗�t�, t�]        (B.17) 

Under the assumption that jump size follows normal distribution as x~N�μ�, σ���, the relations 

between risk-neutral jump components and their physical counterparties in equations (11), (12), 

(13) are verified by substituting them into (B.17) to get (B.15). 

 

  



 24

Appendix3: 

Define the continuously compounded return viewed at time t over the time interval (t, t +  τ) as 

R�DX ≡ ln ���DX�
���� . The conditional central skewness on return R�DX is expressed as  

_`abc�R�DX� ≡ E�[R�DX − E��R�DX�]d       (C.1) 

According to the stock price process  
�����
���� = �r + ϕ − λ�t�E�e� − 1��dt + σdB� + �e� − 1�dN 

and the assumption that the jump size follows normal distribution as x~N�μ�, σ���, we derive the 

following equations: 

R�DX ≡ ln ���DX�
���� = ¥r + ϕ − '

� σ� − λ�t�E�e� − 1�¦ τ + σB�,X + ∑ xt¨zt©'    (C.2) 

R�DX − E��R�DX� = σB�,X + �NX − λ�t�τ�μ� + ∑ �xt − μ��¨zt©'     (C.3) 

Where B�,X is the standard Brownian motion due to increments of B� in the stock price process 

over the time interval (t, t +  τ). NX is the jump numbers over the time interval (t, t +  τ).  

Since the Brownian process and jump process are independent, moment-generating functions of 

a standard Brownian motion, i.e. g�¢,z�m� = eEF¬FX
 and of a Poisson process, i.e. g¨z�m� =

e�X�O­('�, are applied to get the following properties that are needed in order to calculate the 

conditional central skewness on R�DX. 

E�B�,X� = g�¢,z` �m�|¬©w = 0 

E�B�,X� � = g�¢,z`` �m�|¬©w = τ 

E�B�,Xd � = g�¢,z``` �m�|¬©w = 0 

E�NX� = g¨z` �m�|¬©w = λτ 

E�NX�� = g¨z`` �m�|¬©w = λ�τ� + λτ 

E�NXd� = g¨z``` �m�|¬©w = λdτd + 3λ�τ� + λτ 



 25

Repeatedly substituting the above formulas into (C.1), and using assumption that the jump size 

follows normal distribution independently as x~N�μ�, σ���, we get:  

_`abc�R�DX� ≡ E�[R�DX − E��R�DX�]d 

= E� ° σB�,X +  �NX − λ�t�τ�μ� + ± �xt − μ��¨z
t©' ²d

 

= E� ° �NX − λ�t�τ�μ� + ± �xt − μ��¨z
t©' ²d

 

= μ�dE��NX − λ�t�τ�d + 3E� °��NX − λ�t�τ�μ��� × ± �xt − μ��¨z
t©' ²

+ 3E� ´�NX − λ�t�τ�μ� × µ± �xt − μ��¨z
t©' ¶�· + E� ° ± �xt − μ��¨z

t©' ²d
 

= μ�dE��NX − λ�t�τ�d + 3E���NX − λ�t�τ�μ�NX�xt − μ���� + E��NX�E��xt − μ��d 

= τ�μ�d + 3μ�σ���λ�t� 

            (C.4) 

In a similar manner, and using the result in Proposition2 that the jump size in risk-neutral 

measure follows normal distribution as x∗~N�μ� − γσ��, σ���, the conditional central skewness in 

risk-neutral measure is as follows: 

_`abc∗�R�DX� = τ��μ� − γσ���d + 3�μ� − γσ���σ���λ∗�t�     (C.5) 
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Table I 

Options Skewness - Summary Statistics 

Daily data from Jan 1st 1990 to Dec 31th 2012 

Maturity 

 (months) 
Mean Standard Deviation Min Max N 

1 -1.695 0.549 -4.679 -0.104 5785 

2 -1.625 0.470 -3.455 0.132 5785 

3 -1.606 0.490 -4.387 0.229 5785 

4 -1.645 0.473 -3.974 -0.230 5785 

6 -1.593 0.557 -4.857 1.520 5785 

8 -1.489 0.656 -7.045 3.408 5785 
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Table II 

Skewness Time Series – Autocorrelations and Partial Correlations 

where the implied daily persistency  �∗ is the autocorrelation raised to the 1/n power, where n is the lag length 

in days. The standard errors are shown in parentheses. 

Lag length (days) Autocorrelation Partial Correlation Implied daily persistency  �∗ 

Panel A: Maturity One Month 

1 0.876 (0.006) 0.623 (0.013) 0.876 

2 0.823 (0.007) 0.134 (0.015) 0.907 

3 0.788 (0.008) 0.082 (0.015) 0.923 

4 0.758 (0.008) 0.067 (0.015) 0.933 

5 0.724 (0.009) 0.017 (0.013) 0.937 

Panel B: Maturity Two Months 

1 0.887 (0.006) 0.560 (0.013) 0.887 

2 0.848 (0.006) 0.155 (0.014) 0.920 

3 0.822 (0.007) 0.072 (0.015) 0.936 

4 0.808 (0.007) 0.112 (0.014) 0.948 

5 0.786 (0.008) 0.043 (0.013) 0.952 

Panel C: Maturity Three Months 

1 0.913 (0.005) 0.652 (0.013) 0.913 

2 0.874 (0.006) 0.141 (0.015) 0.934 

3 0.846 (0.007) 0.073 (0.015) 0.945 

4 0.821 (0.007) 0.060 (0.015) 0.951 

5 0.795 (0.007) 0.020 (0.013) 0.955 

Panel D: Maturity Four Months 

1 0.944 (0.004) 0.617 (0.013) 0.944 

2 0.923 (0.005) 0.184 (0.015) 0.960 

3 0.906 (0.005) 0.088 (0.015) 0.967 

4 0.890 (0.005) 0.026 (0.015) 0.971 

5 0.876 (0.006) 0.052 (0.013) 0.973 

Panel E: Maturity Six Months 

1 0.951 (0.004) 0.583 (0.013) 0.951 

2 0.935 (0.004) 0.197 (0.015) 0.966 

3 0.923 (0.005) 0.136 (0.015) 0.973 

4 0.908 (0.005) 0.005 (0.015) 0.976 

5 0.897 (0.005) 0.051 (0.013) 0.978 

Panel F: Maturity Eight Months 

1 0.941 (0.004) 0.606 (0.013) 0.941 

2 0.921 (0.005) 0.213 (0.015) 0.959 

3 0.904 (0.005) 0.108 (0.015) 0.966 

4 0.882 (0.006) -0.026 (0.015) 0.969 

5 0.868 (0.006) 0.064 (0.013) 0.972 
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Table III 

Values of elasticity parameter  � ≡ XFJ'(OPy∗zEK�OPy∗�('�
XE�'(OPy∗zF�(XF�'(OPy∗zE� 

where τ' is the maturity of nearby options ; τ� is the maturity of distant options; j is time lapse in days; �∗ =e(U∗
 is the persistency of skewness time series on a daily basis; κ∗ is the mean-reverting speed of skewness 

time series on a daily basis. 

j (days) 
e(U∗ = 0.8 κ∗ = 0.223 

e(U∗ = 0.86 κ∗ = 0.150 

e(U∗ = 0.9 κ∗ = 0.105 

e(U∗ = 0.96 κ∗ = 0.040 

Panel A: Maturity ¼½ = ¾½ ¿ÀÁÂ and ¼¾ = Ã¾ ¿ÀÁÂ  

1 0.4037 0.2923 0.2245 0.1389 

2 0.7267 0.5436 0.4266 0.2723 

3 0.9850 0.7598 0.6085 0.4004 

4 1.1917 0.9458 0.7723 0.5233 

5 1.3571 1.1057 0.9196 0.6414 

… 

21 

22 

23 

… 

… 

2 

2.0037 

2.0067 

… 

… 

2 

2.0123 

2.0228 

… 

… 

2 

2.0245 

2.0466 

… 

… 

2 

2.0589 

2.1155 

… 

Panel B: Maturity ¼½ = Ã¾ ¿ÀÁÂ and ¼¾ = ÄÃ ¿ÀÁÂ 

1 0.40003 0.2804 0.2024 0.0975 

2 0.7200 0.5217 0.3846 0.1912 

3 0.9760 0.7291 0.5485 0.2811 

4 1.1809 0.9075 0.6961 0.3674 

5 

… 

42 

43 

44 

… 

1.3447 

… 

2 

2.00003 

2.00006 

… 

1.0610 

… 

2 

2.00049 

2.00092 

… 

0.8289 

… 

2 

2.0024 

2.0046 

… 

0.4503 

… 

2 

2.0175 

2.0344 

… 

Panel C: Maturity ¼½ = ÅÆ ¿ÀÁÂ and ¼¾ = ½¾Å ¿ÀÁÂ 

1 0.4000003 0.2800 0.2002 0.0866 

2 0.7200 0.5208 0.3804 0.1697 

3 0.9760 0.7279 0.5427 0.2495 

4 1.1808 0.9060 0.6887 0.3262 

5 

… 

63 

64 

65 

1.3446 

… 

2 

2.0000003 

2.0000006 

1.0592 

… 

2 

2.000021 

2.000039 

0.8200 

… 

2 

2.000262 

2.000498 

0.3997 

… 

2 

2.006617 

2.012970 

… … … … … 

Panel D: Maturity ¼½ = ÄÃ ¿ÀÁÂ and ¼¾ = ½ÅÄ ¿ÀÁÂ 

1 0.4 0.28000088 0.20002867 0.08268031 

2 0.72000001 0.52080164 0.38005448 0.16205342 

3 0.97600001 0.72789029 0.54207770 0.23825159 

4 1.18080001 0.90598653 0.68789860 0.31140184 

5 1.34464001 1.05914930 0.81913742 0.38162608 

… … … … … 

84 2 2 2 2 

85 2.00000000 2.00000088 2.00002867 2.00268031 

86 2.00000001 2.00000164 2.00005448 2.00525342 
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Table IV 

 Prediction error against risk-neutral skewness J_`abcD|∗ �R��D}�DXE � − _`abc∗�R�DXE�K − 2 J_`abc∗�R�DXF� − _`abc∗�R�DXE�K = � + �_`abc∗�R�DXE� + �cD|. 

Where _`abc∗�R�DXE� is the risk-neutral skewness of options with nearby maturity. _`abc∗�R�DXF� is the risk-

neutral skewness of options with distant maturity. The time lapse is set as � = τ'.  

 

Panel A : Maturity ¼½ = ¾½ ¿ÀÁÂ and ¼¾ = Ã¾ ¿ÀÁÂ 

 

 

 

Coefficient � Standard Error t-Statistic N 

1990-2012 0.293 0.017 16.79 5785 

Panel B : Maturity ¼½ = Ã¾ ¿ÀÁÂ and ¼¾ = ÄÃ ¿ÀÁÂ 

 

 

 

Coefficient � Standard Error t-Statistic N 

1990-2012 0.011 0.018 0.64 5785 

Panel C : Maturity ¼½ = ÅÆ ¿ÀÁÂ and ¼¾ = ½¾Å ¿ÀÁÂ 

 

 

 

Coefficient � Standard Error t-Statistic N 

1990-2012 -0.023 0.021 -1.101 5785 

Panel D : Maturity ¼½ = ÄÃ ¿ÀÁÂ and ¼¾ = ½ÅÄ ¿ÀÁÂ 

 

 

 

Coefficient � Standard Error t-Statistic N 

1990-2012 -0.509 0.024 -21.14 5785 
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Table V 

 Prediction error against risk-neutral skewness – subsample analysis J_`abcD|∗ �R��D}�DXE � − _`abc∗�R�DXE�K − 2 J_`abc∗�R�DXF� − _`abc∗�R�DXE�K = � + �_`abc∗�R�DXE� + �cD|. 

Where _`abc∗�R�DXE� is the risk-neutral skewness of options with nearby maturity. _`abc∗�R�DXF� is the risk-

neutral skewness of options with distant maturity. The time lapse is set as � = τ'.  

 

Panel A : Maturity ¼½ = ¾½ ¿ÀÁÂ and ¼¾ = Ã¾ ¿ÀÁÂ 

Subsample Periods Coefficient  � Standard Error t-Statistic N 

1990-1999 0.488 0.028 16.98 2527 

2000-2009 0.290 0.024 11.87 2504 

2010-2012 0.197 0.058 3.35 754 

Panel B : Maturity ¼½ = Ã¾ ¿ÀÁÂ and ¼¾ = ÄÃ ¿ÀÁÂ 

Subsample Periods Coefficient  � Standard Error t-Statistic N 

1990-1999 0.520 0.030 17.10 2527 

2000-2009 -0.064 0.026 -2.43 2504 

2010-2012 -0.571 0.073 -7.73 754 

Panel C : Maturity ¼½ = ÅÆ ¿ÀÁÂ and ¼¾ = ½¾Å ¿ÀÁÂ 

Subsample Periods Coefficient  � Standard Error t-Statistic N 

1990-1999 0.708 0.041 17.18 2527 

2000-2009 0.022 0.026 0.82 2504 

2010-2012 -0.376 0.081 -4.60 754 

Panel D : Maturity ¼½ = ÄÃ ¿ÀÁÂ and ¼¾ = ½ÅÄ ¿ÀÁÂ 

Subsample Periods Coefficient  � Standard Error t-Statistic N 

1990-1999 -0.141 0.063 -2.23 2527 

2000-2009 -0.228 0.022 -10.10 2504 

2010-2012 -0.240 0.086 -2.77 754 
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Table VI 

 Prediction error against risk-neutral skewness – Robustness check with weekly data J_`abcD|∗ �R��D}�DXE � − _`abc∗�R�DXE�K − 2 J_`abc∗�R�DXF� − _`abc∗�R�DXE�K = � + �_`abc∗�R�DXE� + �cD|. 

Where _`abc∗�R�DXE� is the risk-neutral skewness of options with nearby maturity. _`abc∗�R�DXF� is the risk-

neutral skewness of options with distant maturity. The time lapse is set as � = τ'. Wednesdays are used to construct 

the weekly data set. If a Wednesday is a holiday day, we use the weekday following that Wednesday. 

 

Panel A : Maturity ¼½ = Ã ÇÈÈÉÂ and ¼¾ = Ä ÇÈÈÉÂ 

 

 

 

Coefficient � Standard Error t-Statistic N 

1990-2012 0.263 0.037 6.99 1186 

Panel B : Maturity ¼½ = Ä ÇÈÈÉÂ and ¼¾ = ½Å ÇÈÈÉÂ 

 

 

 

Coefficient � Standard Error t-Statistic N 

1990-2012 0.021 0.040 0.52 1186 

Panel C : Maturity ¼½ = ½¾ ÇÈÈÉÂ and ¼¾ = ¾Ã ÇÈÈÉÂ 

 

 

 

Coefficient � Standard Error t-Statistic N 

1990-2012 -0.009 0.047 -0.19 1186 

Panel D : Maturity ¼½ = ½Å ÇÈÈÉÂ and ¼¾ = Æ¾ ÇÈÈÉÂ 

 

 

 

Coefficient � Standard Error t-Statistic N 

1990-2012 -0.480 0.054 -8.89 1186 
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Table VII 

 Prediction error against risk-neutral skewness – Robustness check of weekly data with subsample periods J_`abcD|∗ �R��D}�DXE � − _`abc∗�R�DXE�K − 2 J_`abc∗�R�DXF� − _`abc∗�R�DXE�K = � + �_`abc∗�R�DXE� + �cD|. 

Where _`abc∗�R�DXE� is the risk-neutral skewness of options with nearby maturity. _`abc∗�R�DXF� is the risk-

neutral skewness of options with distant maturity. The time lapse is set as � = τ'. Wednesdays are used to construct 

the weekly data set. If a Wednesday is a holiday day, we use the weekday following that Wednesday. 

 

Panel A : Maturity ¼½ = Ã ÇÈÈÉÂ and ¼¾ = Ä ÇÈÈÉÂ 

Subsample Periods Coefficient  � Standard Error t-Statistic N 

1990-1999 0.456 0.059 7.72 516 

2000-2009 0.226 0.054 4.12 515 

2010-2012 0.239 0.138 1.72 155 

Panel B : Maturity ¼½ = Ä ÇÈÈÉÂ and ¼¾ = ½Å ÇÈÈÉÂ 

Subsample Periods Coefficient  � Standard Error t-Statistic N 

1990-1999 0.469 0.068 6.83 516 

2000-2009 -0.027 0.059 -0.45 515 

2010-2012 -0.623 0.155 -4.00 155 

Panel C : Maturity ¼½ = ½¾ ÇÈÈÉÂ and ¼¾ = ¾Ã ÇÈÈÉÂ 

Subsample Periods Coefficient  � Standard Error t-Statistic N 

1990-1999 0.749 0.094 7.97 516 

2000-2009 0.047 0.058 0.81 515 

2010-2012 -0.533 0.189 -2.81 155 

Panel D : Maturity ¼½ = ½Å ÇÈÈÉÂ and ¼¾ = Æ¾ ÇÈÈÉÂ 

Subsample Periods Coefficient  � Standard Error t-Statistic N 

1990-1999 -0.107 0.142 -0.74 516 

2000-2009 -0.194 0.051 -3.77 515 

2010-2012 -0.366 0.185 -1.97 155 
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