
   
 

 

LLSSFF  RReesseeaarrcchh  WWoorrkkiinngg  PPaappeerr  SSeerriieess  
 

NN°°..    1144--0066  
 

Date: March 2014 
 

  
Title: Evaluating Option Pricing Model Performance Using Model Uncertainty 

 
 

Author(s)*: Dennis Bams, Gildas Blanchard, Thorsten Lehnert  
 
 

Abstract: The objective of this paper is to evaluate option pricing performance on the cross sectional 
level. For this purpose, we propose a statistical framework, in which we in particular 
account for the uncertainty associated with the reported pricing performance. Instead of a 
single figure, we determine an entire probability distribution function for the loss function 
that is used to measure option pricing performance. This methodology enables us to 
visualize the effect of parameter uncertainty on the reported pricing performance. Using a 
data driven approach, we confirm previous evidence that standard volatility models with 
clustering and leverage effects are sufficient for the option pricing purpose. In addition, we 
demonstrate that there is short-term persistence but long-term heterogeneity in cross-
sectional option pricing information. This finding has two important implications. First, it 
justifies the practitioner’s routine to refrain from time series approaches, and instead 
estimate option pricing models on a cross-section by cross-section basis. Second, the long 
term heterogeneity in option prices pinpoints the importance of measuring, comparing and 
testing option pricing model for each cross-section separately. To our knowledge no 
statistical testing framework has been applied to a single cross-section of option prices 
before. We propose a methodology that addresses this need. The proposed framework can 
be applied to a broad set of models and data. In the empirical part of the paper, we show by 
means of example, an application that uses a discrete time volatility model on S&P 500 
European options. 
 

      Keywords: option pricing, cross-section, estimation risk, parameter  uncertainty,  

                          specification test, bootstrapping 

 
     JEL Classification: G12, C15 

   
*Corresponding 
Author’s Address: 

Tel: +352 46 66 44 6941; Fax : +352 46 66 44 6835 
E-mail address: Thorsten.lehnert@uni.lu 
 

 
The opinions and results mentioned in this paper do not reflect the position of the Institution. 
 
The LSF Research Working Paper Series is available 
online: 
http://wwwen.uni.lu/recherche/fdef/luxembourg_school_of_ 
finance_research_in_finance/working_papers 
 
For editorial correspondence, please contact: 
martine.zenner@uni.lu  

University of Luxembourg 
Faculty of Law, Economics and 

Finance 
Luxembourg School of Finance 

4 Rue Albert Borschette 
L-1246 Luxembourg 

 



Evaluating Option Pricing Model Performance 

Using Model Uncertainty 

 
Dennis Bams 

Limburg Institute of Financial Economics (LIFE), Maastricht University, 
P.O. Box 616, 6200 MD Maastricht, The Netherlands 

 
Gildas Blanchard 

Limburg Institute of Financial Economics (LIFE), Maastricht University, 
P.O. Box 616, 6200 MD Maastricht, The Netherlands 

 
Thorsten Lehnert* 

Luxembourg School of Finance, University of Luxembourg, 
4, rue Albert Borschette, L-1246 Luxembourg, Luxembourg 

 

March 2014 
 

Abstract 

The objective of this paper is to evaluate option pricing performance on the cross sectional 
level. For this purpose, we propose a statistical framework, in which we in particular 
account for the uncertainty associated with the reported pricing performance. Instead of a 
single figure, we determine an entire probability distribution function for the loss function 
that is used to measure option pricing performance. This methodology enables us to 
visualize the effect of parameter uncertainty on the reported pricing performance. Using a 
data driven approach, we confirm previous evidence that standard volatility models with 
clustering and leverage effects are sufficient for the option pricing purpose. In addition, we 
demonstrate that there is short-term persistence but long-term heterogeneity in cross-
sectional option pricing information. This finding has two important implications. First, it 
justifies the practitioner’s routine to refrain from time series approaches, and instead 
estimate option pricing models on a cross-section by cross-section basis. Second, the long 
term heterogeneity in option prices pinpoints the importance of measuring, comparing and 
testing option pricing model for each cross-section separately. To our knowledge no 
statistical testing framework has been applied to a single cross-section of option prices 
before. We propose a methodology that addresses this need. The proposed framework can 
be applied to a broad set of models and data. In the empirical part of the paper, we show 
by means of example, an application that uses a discrete time volatility model on S&P 500 
European options. 
 
 
Keywords: option pricing, cross-section, estimation risk, parameter uncertainty, 
specification test, bootstrapping. 
JEL-Classification: G12, C15  

 
 
 
 
 

 
Corresponding Author. Email: thorsten.lehnert@uni.lu   



 2

Evaluating Option Pricing Model Performance 

Using Model Uncertainty 

 
 

Abstract 
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level. For this purpose, we propose a statistical framework, in which we in particular 
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1. INTRODUCTION 

Explaining option prices has been at the center of financial research interest since Black and 

Scholes (1973). Two complementary streams of research have emerged. The first one is 

dedicated to theoretically developed models that reflect complex data generating processes of 

the volatility dynamics. The second one, more pragmatic, is devoted to assessing, evaluating 

and comparing the performance of these alternative models empirically.  

Our focus is on the latter. In the following we suggest a method to derive the probability 

distribution of a loss function. This allows for the statistical comparison of alternative models’ 

ability to price a single cross-section of option prices, either in-sample or out-of-sample. 

Different from existing methods the proposed test does not rely upon a time series of cross-

sections, nor is it limited to the comparison of absolute pricing errors alone.  

How to measure option pricing model performance depends on the user’s perspective. For 

instance, Bakshi, Cao and Chen (1997) provide three performance criteria, using alternatively 

internal consistency, pricing error and hedging error as objective evaluation criteria. Pricing 

error has become the leading criterion across a wide range of studies. The distance between 

observed and predicted options prices forms the basis of loss function based measures. This has 

the merit of an intuitive economic interpretation of a model’s ability to match observed data. 

Moreover, this criterion allows for an out-of-sample comparison of models that are very 

different in nature.  

The existing option pricing literature provides some critical insights on what model 

specifications and what estimation and evaluation criteria to use. Hardle and Hafner (2000) and 

Heston and Nandi (2000) show that adding a leverage effect to the standard autoregressive 

volatility model leads to a significant reduction of the option pricing error. Furthermore, 

Christoffersen and Jacobs (2004a) provide empirical evidence that the use of a specification 
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which is richer than a standard asymmetric GARCH model does not provide any further pricing 

performance improvement. Nonetheless, Barone-Adesi, Engle and Mancini (2008) establish 

that additional pricing error reduction can be achieved by allowing for non-normality 

specifications of the error term. 

Aside from model selection, major developments have been made on the methodological 

aspects of parameter estimation of option pricing models. Volatility dynamics, which are 

inferred from information in the underlying time series returns, differ from the volatility 

dynamics that result from a calibration on options prices directly (Engle and Mustafa, 1992). 

While initially studies have relied on parameter estimates under the physical measure 

(Bollerslev and Mikkelsen, 1999), it subsequently turned out that parameters estimated under 

the risk neutral measure better explain empirical features of option prices (Duan, 1996) and  

significantly reduce the value of the loss function (Christoffersen and Jacobs, 2004a). 

Accordingly, estimating parameters on options prices directly has become the standard practice 

(Lehnert (2003), Barone-Adesi, Engle and Mancini (2008), and Frijns, Lehnert and Zwinkels 

(2010)).  

While practitioners prefer to continuously recalibrate their model on daily data, academics have 

suggested calibrating the model only once (Hull and Suo, 2002). Although less theoretically 

founded, the practitioners approach has proven to deliver better pricing performance 

(Christoffersen and Jacobs, 2004a) leading to a general adoption of this technique in academia 

too. 

Despite the important insights in the existing literature regarding option pricing performance, 

we feel that there is an opportunity for improvement in the performance evaluation criterion, 

which is usually limited to a comparison of point estimates of loss functions. Our proposed 

performance evaluation criterion explicitly incorporates the effect of measurement, model and 
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parameter uncertainty. Following the bootstrapping approach in Bams, Lehnert and Wolff 

(2009), we adopt an entire probability distribution function for the loss function, which 

facilitates a formal specification test to compare alternative models and approaches. 

Since the literature advocates for a continuous recalibration, this stretches the need of 

comparing model performance at a cross-section by cross-section level. Our empirical results 

confirm the fundamental difference in nature between alternative cross sections of options. This 

heterogeneity in cross-sections of option prices over time makes statistical tests as proposed by 

Diebold and Mariano (1995) and applied for option pricing purposes in Christoffersen and 

Jacobs (2004a) less useful. This is a further motivation why to employ statistical inference at a 

single cross-section as proposed in our testing framework. 

In the following we introduce our statistical framework and provide an empirical application of 

the framework, with a discrete time asymmetric GARCH model on S&P 500 options. 

 2. THE ECONOMETRIC FRAMEWORK 

The statistical testing framework to measure option pricing model performance is general in  

the sense that it can be applied to any class of models such as continuous time models, discrete 

time models or ad hoc models. We present the framework in the context of a specific discrete 

time asymmetric GARCH volatility specification, to allow for realistic empirical findings and 

implications. 

The choice of the discrete time asymmetric GARCH volatility specification is motivated by the 

evidence in the literature that such a model describes option pricing data features relatively 

well. Within the discrete time volatility model class, Christoffersen and Jacobs (2004a) show 

that, in order to obtain good pricing performance, clustering and leverage are two important 

effects to account for. In addition to clustering and leverage, other features have been proposed 

in the literature, but none of them have turned out to be substantially effective for additional 
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pricing performance. Hsieh and Ritchken (2005) show that GARCH models are able to explain 

a significant portion of the volatility smile. Lehar, Scheicher, and Schittenkoph (2002) 

demonstrate the relative outperformance of GARCH models compared to stochastic volatility 

models in term of out-of-sample options pricing performance. We use the volatility model of 

Frijns, Lehnert and Zwinkels (2010). This discrete-time specification is one of the numerous 

available asymmetric GARCH models, that features both volatility clustering and volatility 

leverage. 

Discrete-time volatility models including the estimation of the long term unconditional 

volatility parameter, are known to be unstable. Therefore, we have chosen to approximate the 

long term unconditional volatility in the model with the realized long term volatility. This 

approach is similar to variance targeting, and has proven to stabilize the volatility process at no 

pricing performance costs (Bams, Lehnert, and Wolff (2009)). 

The continuously compounded returns of the underlying asset follow the traditional process: 

�� = � + σ�ε� (1) ε�~
(0,1) (2) 

The volatility dynamics are defined as follows: 

Ln(σ���� ) = Ln(σ��) + 12 α(σ�� − σ�����) + 12 {β� max{ε�, 0� − β�min {ε�, 0�� 
(3) 

Volatility is a function of two equally weighted components. The first component, {α(σ�� − σ�����)�,  

drives the mean reversion of volatility where α is the parameter that determines the speed of 

mean-reversion and σ����� is the long-term unconditional volatility. The second component, 

{β� max{ε�, 0� − β�min {ε�, 0��, features the leverage effect where β� and β� allow for an asymmetric 

response, to positive and negative shocks, respectively.  
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Our pricing performance results are in line with Barone-Adesi, Engle and Mancini (2008) who 

use a similar sample and another asymmetric GARCH specification. This provides comfort that 

the model used is representative for a wider class of asymmetric GARCH-type model. 

Following Duan (1995), we apply the Local Risk Neutral Valuation Relationship to arrive at 

the return dynamics under the risk adjusted probability measure. The Local Risk Neutral 

Valuation Relationship specifies that the one period forward conditional variance is the same 

under both the actual and risk adjusted dynamics. For the conditional expectation of the 

underlying under the risk neutral probability is holds that: 

$%&exp(��)|Ω�+�, = exp (��-) (4) 

where ��-
 is the risk free rate at time t. This results in the following risk adjusted process for the 

return dynamics: 

�� = ��- − 12 σ�� + σ�ε� (5) 

0�|Ω�+�~
(0,1) (6) 

The volatility dynamics, as given in equation (3), remain unchanged when transitioning from 

actual to risk-adjusted return dynamics. 

From the Principle of Risk Neutral Valuation, it follows that option prices are determined as 

the expected option payoff function discounted with the risk free rate, where expectations are 

taken under the risk adjusted probability measure, Q:  

23� = exp (−�-45, 63�78  × 463�7 − 58) × $%{max &:463�78 − ;3�7 , 0,|Ω�+�� (7) =3� = exp (−�-(5, 63�>)  × (63�> − 5)) × $%{max &;3�> − :(63�>), 0,|Ω�+�� (8) 

Where 23� and =3� are, respectively, the call @ and put @ prices at time 5; 63�7 and 63�> are the 

associated times-to-maturity of call @ and put @ at time 5; ;3�7 and ;3� >  are the strike prices of the 

call and put options @ at time 5. With �-(5, 6)  we indicate the risk free rate at time t, 
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appropriately reflecting the term structure of interest rates for the remaining time-to-maturity, (6 − 5). Finally, :(6) is the value of the underlying stock at time T. 

In the absence of closed or semi-closed form solutions, the option payoff distribution in 

equations (7) and (8) is obtained through Monte Carlo Simulation. Following Duan and 

Simonato (1998), we use the Empirical Martingale Simulation (EMS) approach to reduce the 

required number of simulations for convergence.  

Subsequently, cross sectional parameter estimation follows by the choice and subsequent 

minimization of a loss function that calibrates modeled option prices to observed option prices. 

The proposed statistical framework is general in the sense that it works for alternative loss 

functions. Following the recommendation of Bams, Lehnert, Wolff (2009), for the empirical 

application the root mean squared error (RMSE) of absolute pricing errors is chosen as loss 

function. Parameter estimation for cross-section t, follow from minimization of the following 

loss function:  

BC:$� = D 1
�7 + 
�> EF(=3� − =G3�)�HIJ
3K� + F(23� −HIL

3K� 2M3�)�N (9) 

 

where 
�7  and 
�> are the respective number of call and put options in cross-section 5; 2M3�  and =G3� are the model call @ and put @ prices at 5, following from equations (5) to (8); 23�  and =3� are 

the observed call @ and put @ options prices at time 5. The loss function in equation (9) is 

minimized for each cross-section of option prices t separately using the Newton-Raphson 

algorithm, resulting into a separate set of parameters estimates  (αP, β�Q, β�Q)� as well as an 

accompanying value for the loss function, BC:$R � for each cross section t. 
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The absence of an analytical or easily derivable distribution function for the loss function causes 

the lack of statistical inference in the majority of the option pricing performance evaluation 

literature. Comparison of absolute loss functions for model selection is characterizing the option 

pricing model literature, instead. Bakshi, Cao and Chen (1997) benchmark the alternative 

continuous time models based on the absolute RMSE; Heston and Nandi (2000) use the RMSE 

accompanied by other absolute loss functions to demonstrate the outperformance of their model 

over available alternative specifications; Barone-Adesi, Engle, and Mancini (2008) use a 

battery of absolute loss functions to depict the pricing improvement of a model that includes 

historical innovations compared to Gaussian or other parametric alternatives. 

Christoffersen and Jacobs (2004a), provide more statistical validity to option pricing model 

comparison using the Diebold-Mariano (DM) test. This test is virtually a z-test on a time series 

differential between two forecasts losses corrected for serial correlation. In option pricing, the 

loss function differential time series is obtained by iterative cross section by cross section 

estimation and loss function evaluation pooled together over all cross sections. The DM test is 

designed for out-of-sample forecast comparison, which excludes in-sample testing. Moreover, 

the DM test is not intended for model selection (Diebold, 2012). In our opinion, the principal 

limitation of the DM test, resides in its inability to address the model performance for a single 

cross section.  

The time series requirement, pooling the information in many cross-sections, would at best be 

an approximation for the model performance at a single cross section. This would require 

homogeneity of the information in the alternative cross-sections. In fact, there are two sources 

of heterogeneity, as we will also demonstrate in the empirical application. First, model 

performance is affected by the change in the economic environment. Diebold and Mariano 

(1995) discuss the effect of business cycles on relative predictability. Second, the iterative 

recalibration comes at a cost. The data contained in each cross section is evolving through time. 
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The total number of observations and the qualitative composition of cross sections vary 

significantly. This suggests that over time the informational content of alternative cross sections 

is changing and therefore different.  

To answer the need for a cross sectional test, we propose a bootstrap based methodology to 

estimate the distribution of each cross-section RMSE separately. In the general finance 

literature, the use of bootstrap to overcome the lack of analytical solutions is a common 

practice (Bams, Lehnert and Wolff (2005); Ledoit and Wolf (2008); Hansen, Lunde and 

Nason (2011)). However, the use of bootstrapping in the specific field of option pricing has 

been more limited. Christoffersen and Jacobs (2004b) use a jackknife approach to study the 

pricing effect of alternative loss functions on a contemporaneous out-of-sample observation. 

Bams, Lehnert and Wolff (2009) bootstrap and summarize the loss function distribution into 

a statistic to assess loss function selection accounting for uncertainty. Finally, in a simulation 

and application study, Yatchew and Härdle (2006) show in the context of nonparametric 

state price density estimation that relying on a wild bootstrap to construct call function 

confidence intervals leads to reasonable results. We take these evidences as good indication 

that bootstrapping option pricing errors is an appropriate method to depict pricing 

uncertainty.  

Bootstrapping is a re-sampling technique to obtain the distribution of a particular statistic. 

In the following, this method is applied to obtain the probability distribution of the loss 

function for a single cross-section. The initial estimation step produces parameter estimates, 

fitted option prices, residuals and accompanying value for the loss function. The difference 

between the observed market price and theoretical price is the residual. We introduce the 

following matrix notation: 
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2� ≡ T23� , … , 2HIL,�VW                          5 = 1, … , 6 (10) 

=� ≡ T=3�, … , =HIJ ,�VW                          5 = 1, … , 6 (11) 

where 2� and =� are two vectors respectively (
�7X 1) and (
�> X 1) of the observed call and 

put market prices; 2M�and =G� are two vectors respectively (
�7X 1) and (
�> X 1) of the 

modeled call and put prices: 

2M� ≡ T2M3� , … , 2MHIL,�VW                          5 = 1, … , 6 (12) 

=G� ≡ T=G3�, … , =GHIJ,�VW                          5 = 1, … , 6 (13) 

We introduce two vectors of residuals: 

X�7 ≡ TX3�7 , … , XHIL,�7 VW                          5 = 1, … , 6 (14) 

X�> ≡ TX3�> , … , XHIJ,�> VW                          5 = 1, … , 6 (15) 

where it holds that: 

X3�7 = 23� − 2M3�                        @ = 1, … , 
�7             5 = 1, … , 6 (16) X3�> = =3� − =G3�                          @ = 1, … , 
�>           5 = 1, … , 6 (17) 

 

It is possible to create a bootstrapped sample by constructing “bootstrapped market prices” 

for each observations drawing residual with replacement. 2�∗and =�∗ are two vectors 

respectively (
�7X 1) and (
�> X 1) of the bootstrapped call and put prices, defined as: 

2�∗ ≡ T23�∗ , … , 2HIL,�∗ VW                          5 = 1, … , 6 (18) 

=�∗ ≡ T=3�∗ , … , =HIJ,�∗ VW                          5 = 1, … , 6 (19) 
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where Z�7and Z�> are two vectors respectively (
�7X 1) and (
�> X 1) obtained from drawing 

with replacement 
�7  and 
�>  observations from the X3�7  and X3�>  vectors, defined as: 

Z�7 =(Z3�7 , … , ZHIL,�7 )′                         5 = 1, … , 6 (18) Z�> = (Z3�> , … , ZHIJ,�> )′                         5 = 1, … , 6 (19) 

It holds that: 

2�∗ = 2M� + Z�7                          5 = 1, … , 6 (20) =�∗ = =G� + Z�>                         5 = 1, … , 6 (21) 

 

The drawing procedure to obtain equation (20) and (21) can be replicated independently S 

times to obtain S bootstrapped samples. The optimization of equation (9) is performed on 

each of the S bootstrapped samples for cross section 5. This mechanism procures the desired 

distribution reflecting estimation uncertainty of the estimated parameters (\], M̂�, M̂�)�(�), … , (\], M̂�, M̂�)�(_)
and loss functions BC:$R �(�), … , BC:$R �(_)

.  

The distribution of the residuals in different maturity and moneyness categories is strongly 

diverging. The deep in-the-money long maturity residuals are in absolute (relative) term 

larger (smaller) and more (less) volatile than deep out-of-the-money short maturity residuals. 

To account for this cross-sectional heterogeneity across moneyness and maturity, a block 

bootstrapping technique is pursued as applied in Bams, Lehnert and Wolff (2009). 

Bootstrapped prices are formed by drawing residuals from the block matching the 

moneyness/maturity block of the particular option. For that purpose, similar to Barone-

Adesi, Engle, and Mancini (2008), 12 blocks are formed with respect to maturity (60 >6, 60 ≤ 6 ≤ 160, 6 > 160) and moneyness (0.85 > C, 0.85 ≤ C ≤ 1,1 < C <1.15, C > 1.15). To have a sufficient large historical sample, we bootstrap residuals from 
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the contemporaneous and the 3 previous cross sections. This procedure avoids a downward 

bias in the bootstrapped confidence interval due to relying too often on the same 

bootstrapped error terms, while short term homogeneity in option prices cross sections 

safeguards the appropriateness of drawing from this larger sample.   

3. DATA 

We use European S&P 500 index options (SPX). The SPX option market is the most active 

in the world, making it popular in the option pricing literature (Barone-Adesi, Engle, and 

Mancini (2008)) and allows for a comparison with findings in existing literature. The closing 

prices of each Wednesday are used. These data are collected from OptionMetrics and cover 

3 years of data from January 2002 to December 2004, including 155 Wednesdays.  

Filtering criteria are comparable to Barone-Adesi, Engle, and Mancini (2008). Only out-of-

the-money options are selected. Options with a maturity lower than or equal to 10 days and 

higher than or equal to 360 days are filtered-out. Similarly options with an implied volatility 

higher than 70% and options with a price lower than or equal to $0.05 are excluded. In 

addition to these conventional rules, if in the same cross-section two options have the same 

maturity and strike price only the most traded option remains in the sample. The S&P 500 

dividend yields and zero–coupon default free interest rates are also collected from 

OptionMetrics. 

** PLEASE INSERT TABLE 1 HERE ** 

Table 1 presents the average price, average implied volatility and number of contracts per 

category, where a category is defined by moneyness and maturity. We observe the well-

known characteristics of the volatility smile, that deep out-of-the-money puts and calls 

exhibit a higher implied volatility than close to the money put and call options. This 
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difference in implied volatility decreases with maturity. The division of options within a 

moneyness/maturity category is balanced with respect to proportion of puts and calls. Put 

(call) options represent 51% (49%) of the sample; 48% of the options are deep out-of-the-

money with a strike/underlying ratio under 0.85 for puts and over 1.15 for calls; 52% of the 

options are less out-of-the-money with a strike/underlying ratio over or equal to 0.85 for puts 

and under or equal to 1.15 for calls. Long, medium and short maturity options represent 

respectively 36%, 31% and 33% of the sample. 

To assess the sources and effects of cross-sectional heterogeneity, we collect descriptive 

statistics of market conditions and sample conditions at the individual cross-sectional level. 

Table 2 Panel A reports the average, standard deviation, minimum and maximum values for 

market conditions and cross-sectional composition variables. Cross-sections differ strongly 

with respect to both types of variables. 

** PLEASE INSERT TABLE 2 HERE ** 

The selected sample period displays changing market conditions. From 2002 to 2004, the 

average yearly volatility is 16.6%. Some extremely high volatility regimes are observed at 

the beginning of the sample, reaching 54.1%. In both 2003 and 2004, the volatility is much 

lower; the minimum observed yearly volatility is 7.1%. The high volatility year 2002 

coincides with a bearish market. The worst 3 months loss equals -23%, while in the 

subsequent year, the market increased by 25% within 3 months. These statistics highlight 

the significant change in the underlying physical and risk neutral probability measure across 

time. 

Table 2 Panel B reports high correlations between market and sample composition variables. 

These correlations are mechanically magnified by the exclusion filtering rule used to select 

the included options in our sample. The sampling condition causing this cross-section 
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composition market conditions dependence is the restriction to only include out-of-the 

money options. Under this condition, a turbulent market that is characterized as a period 

preceded by low return, high realized volatility and high VIX results in subsequent cross-

sections that are over-dominated by slightly out-of-the-money call options. When a market 

crashes, the majority of the put options become in-the-money and are automatically excluded 

from the sample. The reverse occurs for previously in-the-money call options. These freshly 

included call options are concentrated in a close-to-money category changing the distribution 

of option moneyness in the cross-section.  

The resulting composition shifts are potentially substantial. Call options representation in a 

cross section ranges between 24% and 81%. Hence, the balanced distribution of puts and 

calls found for the total sample often does not hold at the single cross-sectional level. The 

accompanying variation in average moneyness is also meaningful, which is important 

because options with different levels of moneyness carry different information regarding the 

risk neutral distribution. Average moneyness per cross section ranges between 13% and 

35%. Average option prices per cross section take a minimum value of $6.80 and a maximum 

value of $16.78. The low average options prices are driven by an important concentration of 

“very cheap option”. For some cross sections, we observe up to almost 40% of options with 

prices below $1. Absolute prices are relevant since we use the RMSE as loss function. The 

composition and distribution of option prices in a particular cross section have an implicit 

effect on the weight allocated to different observations and hence affect the estimation 

results. 
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4. EMPIRICAL ANALYSIS 

Parameter estimates - cross section by cross section 

Table 3 presents summary statistics for the cross section by cross section estimation results 

of the volatility specification in equation (3), by minimizing the objective function in 

equation (9). The reported numbers are summarizing the individual results from 155 cross 

sectional parameter estimates.  

** PLEASE INSERT TABLE 3 HERE ** 

The average in-sample RMSE ($1.12) is comparable with the Barone-Adesi, Engle, and 

Mancini (2008) in-sample statistic for the Heston Nandi model. This statistic confirms that 

our volatility specification has pricing performance similar to other asymmetric GARCH 

type models and fits the data sufficiently well. All coefficients display expected values 

accounting for the clustering and asymmetric dynamics as reflected by the positive �̂ 

coefficient.  

These results pinpoint the heterogeneity over the alternative cross sections. Loss functions 

are highly fluctuating over time ranging between a minimum of $0.61 to a maximum of 

$2.38. There exist different regimes of pricing errors. Cross-sections of option relatively 

mispriced (well-priced) tend to be followed by other mispriced (well-priced) cross-sections. 

The observed heterogeneity over time, limits the possibility of pooling many cross sections 

to arrive at reliable test statistics, and supports instead our proposed block bootstrapping 

approach, where only a limited number of cross sections are pooled for inference purposes. 
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Appropriateness bootstrapping design 

To get a sense of the appropriateness of our bootstrapping design, Figure 1 Panel A plots 

observed prices against the average of bootstrapped prices. Even with a limited number of 

repetitions, the mean bootstrapped prices match the observed data well, as illustrated by the 

plots being concentrated within a tight range along the diagonal line. 

** PLEASE INSERT FIGURE 1 HERE ** 

Figure 1 Panel B compares the time series of cross-sectional RMSE resulting from the non-

linear least squares optimization in (9) and the average of the accompanying bootstrapped 

RMSEs for each point in time. The average bootstrapped RMSE is tightly tracking the estimated 

RMSE, capturing the changes in economic regime. We interpret these findings as good 

indication of the reliability of our bootstrapping procedure.  

We also investigate the properties of the bootstrap by a comparison of average bootstrapped 

prices and average observed prices at option category level (related to moneyness and maturity). 

Table 4 presents the results of a mean tests per category. For all categories, equality of means 

cannot be rejected. 

** PLEASE INSERT TABLE 4 HERE ** 

Parameter inference – standard deviations 

As a result of the cross sectional estimation and bootstrapping procedure, the distribution and 

variance-covariance of the parameters estimates are also naturally available at the single cross 

sectional level. Dumas, Fleming and Whaley (1998) used as an alternative the time series 

variations in continuously re-estimated parameters to investigate their dynamics and provide 

inference. We compare standard deviations and correlations for parameter estimates from both 

a time series based approach as in Dumas, Fleming and from a cross-sectional approach as 
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resulting from the bootstrap approach. It turns out that bootstrapped parameters statistics are 

not only available on an individual cross sectional frequency, but they also contain different 

information.  

** PLEASE INSERT TABLE 5 HERE ** 

Table 5 presents the time series based standard deviations as well as the average of cross-

sectional standard deviations. The time series based standard deviations are remarkably larger 

than their cross-sectional counterparts. Results suggest a ratio of 3 to 5 times higher times series 

based standard deviations. The time series of standard deviations reflects two sources of 

variations. The first is the variation due to uncertain parameter estimates and over-fitting within 

each cross-section. The second is the variation across cross-sections driven by a change in 

economic conditions over time. The cross-sectional approach isolates the first source of 

variation from the second, which makes the standard deviations more reliable as a reflection of 

parameter uncertainty at the single cross sectional level.  

The local volatility parameter, which is the parameter that is used as starting value for the 

volatility process in equation (3), shows a difference that is even more pronounced, with a ratio 

of 32. Local volatility tracks extremely tightly the economic conditions since it represents an 

instantaneous measure of market turbulences. The time period covered exhibits extremely quiet 

and turbulent market at time. The change in economic conditions explains the gap between the 

local volatility time series and cross-sectional statistic.  

This evidence suggests that cross-sections strongly diverge in nature and require individual 

consideration. This finding is consistent with the argument that continuous recalibration is 

desirable.  
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Parameter inference – correlations 

We next turn to the comparison of time series and cross-sectional based parameters variance-

covariance matrix. The left panel of table 6 exhibits the time series correlations while the top 

right panel presents the average cross-sectional correlations. The minimum and maximum 

correlations are also available for the cross-sectional case, in the lower right panel. The time 

series and cross-sectional correlations have the same signs, yet the magnitudes are significantly 

different. The cross-sectional correlations are extremely high, while the time series based 

correlations are driven down by the noise created by the second source of variation discussed 

in the previous paragraph. 

** PLEASE INSERT TABLE 6 HERE ** 

 At the cross-sectional level, the parameters �̂ and �̂ are almost perfectly negatively 

correlated, with a correlation coefficient of minus one. This suggests that the relative difference 

between ^� and �̂ is more relevant to capture asymmetry rather than the values taken by these 

two parameters. Hentschel (1995) shows that volatility asymmetry can be modeled either as a 

shift or a rotation parameter. On the one hand, a shift implies that the conditional volatility 

response to negative shocks is higher than to positive shocks by a constant factor. On the other 

hand, rotation suggests that the conditional volatility response is more complex and requires 

two different slopes for responses to either positive or negative shocks. Our results shows that, 

for option pricing purposes, the shift parameter is  the main driver of volatility asymmetry. 

The cross-sectional correlation results suggest that the mean reversion parameter \ and 

parameters ^� and �̂ are also remarkably highly correlated. The dependence on past 

conditional volatility and past shocks are competing to generate the clustering effect needed to 

match the data. In a traditional GARCH (1,1) sense, this implies that the pricing performance 
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would not be sensibly altered for alterative parameter values as long as the sum of these two 

parameters are close to one.  

We interpret these substantially high cross-sectional correlations as evidence that the loss 

function surface is flat, with many alternative local optima that are close to the global optimum. 

This suggests that a simple volatility specification is already over-fitting the data. Dumas et al. 

(1998) used the difference between in- and out-of-sample pricing errors to prove that simple ad 

hoc Black and Scholes models are over-fitting too. Our results show that this problem also 

exists for more theoretically founded discrete time volatility models. These findings therefore 

favor the use of a parsimonious volatility specification rather than richer specification prone to 

over-fitting. This recommendation is aligned with the relative good performances obtained by 

an asymmetric GARCH compared to richer specifications in Christoffersen and Jacobs (2004a). 

Inference - loss distribution 

The loss function distribution function is relevant to assess option pricing model performance. 

The outcome of the bootstrapping approach is an entire probability distribution of the loss 

function, i.e. RMSE, for each cross-section. The variation in RMSE is unaffected by the 

heterogeneity between cross-sections and is specific to the individual nature of the particular 

cross-section. 

** PLEASE INSERT FIGURE 2 HERE ** 

Figure 2 Panel A illustrates graphically the RMSE distributions obtained for three particular 

chosen cross-sections. The distribution around the RMSE point estimate can be truly wide as it 

is suggested by the cross-section of 2002/5/8. This illustrates that the mean of the distribution 

is not sufficient information for a pricing performance evaluation, and instead a statistical test 

based on the entire distribution is warranted. 
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The mean of the RMSE distribution is not the only statistic that changes between cross-sections. 

The shape of the distribution functions also diverges strongly. Panel C shows, by means of 

example, the discrepancy of the RMSE distribution shapes for two cross-sections with an 

equivalent RMSE level. Table 7 present the results of Kolomogrov-Smirnov tests confirming 

that our visual inspection is correct.  

** PLEASE INSERT TABLE 7 HERE ** 

We conclude that cross-sections display significant different levels of RMSE and diverging 

RMSE distribution shapes, providing additional evidence that a statistical test based on the 

entire distribution is preferred over a comparison of averages alone.  

Sources of time variation in RMSE 

The previous results highlight the time varying nature of the RMSE distribution. Next, we 

investigate the time dynamics of the RMSE distribution in a simple time series regression 

framework. For this analysis a single measure to describe each RMSE distribution is needed. 

For this purpose we use three different representations, being the mean of the RSME 

distribution, the coefficient of variation and the Asymmetric Selection Criterion (ASC), as 

defined in Bams, Lehnert, Wolff (2009): 

d:2 = − 1BC:$�������� × BC:$�������� − e�.f%+� (BC:$)BC:$�������� − ehi.f%+� (BC:$) (22) 

where BC:$�������� is the mean, e�.f%+� (BC:$) and ehi.f%+� (BC:$) are the respective percentiles of 

the bootstrapped vector BC:$. The ASC statistic reflects a preference of negatively skewed 

loss distributions, implying below-average mispricing, to positively skewed counterparts. 

Moreover, the ASC penalizes high average and above-average RMSE while rewards below-

average RMSE. 
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Table 8 reports the results of time series regressions investigating the factors influencing 

RMSE’s distribution. The three proposed measures for the RMSE distribution are regressed on 

three types of explanatory variables. Lagged values are used to investigate the persistence of 

the loss function distribution. The local volatility parameter and the leverage parameter capture 

the effect of market conditions. The local volatility is equivalent to the VIX. We use the 

parameter estimates for �̂ in equation (3) as a proxy for the risk neutral distribution skewness. 

Both variables are known to be measures of market turbulence and fear. The average price, the 

proportion of very cheap options and the average maturity capture the effect of the sample 

composition.  

** PLEASE INSERT TABLE 8 HERE ** 

The lags are the most powerful explanatory variables. Lagged ASC and lagged coefficient of 

variation standalone explain respectively about 60% and 70% of the variation, as indicated by 

the reported R-squares for the autoregressive regressions. Moreover, the one period lagged 

coefficient for ASC is equal to 0.84, which suggest persistence in the short term, suggesting 

that the RMSE distribution of a particular cross-section is a reliable source of information for 

the distribution of next week’s RMSE.  

Market conditions affect the model pricing performance to some extend as well. The local 

volatility and the leverage have a significant positive effect on the change in RMSE and 

coefficient of variation. The leverage variable has a significant negative effect on the ASC. The 

results suggest that turbulent markets characterized by high volatility and negatively skewed 

risk neutral distributions are accompanied by important mispricing as well as magnified 

uncertainty around the RMSE. This is in line with the well-known fact that GARCH models 

cannot account fully for the risk neutral skewness (Barone-Adesi, Engle, and Mancini (2008)) 
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and the CBOE VIX (Hao and Zhang, 2013). Therefore, high risk neutral skewness and VIX are 

coupled with a high unexplained portion of the distribution leading to mispricing.  

The effect of including sample composition variables is limited because of the important multi-

collinearity with the market condition variables. The regression still provides interesting 

insights regarding the role of sample composition on the loss function distribution. After 

controlling for the local volatility, the average price of a cross-section seems to slightly reduce 

the mispricing and the coefficient of variation. This would mean that higher prices are easier to 

match and to predict more precisely. However, an unconditionally higher average price implies 

higher volatility and worst pricing performances. A high average price is associated with high 

mispricing because RMSE is an absolute measure. Extremely low priced options are associated 

with higher RMSE distribution dispersion. 

Sample composition effects 

Cheap options are often the very short maturity deep out-of-the money options. In order to 

change the distribution of the payoff to match the price of these options, volatility dynamics 

should be forced to have unrealistic, unstable parameters that would not match long term 

maturity options. The choice of a loss function (RMSE) targeting the absolute and not the 

relative pricing error will mechanically leads to disregard cheap options. Even if these options 

are completely 100% mispriced, this will in absolute terms still appear as a good performance 

driving the RMSE down. More weight is given to match longer term and more expensive 

options.  

** PLEASE INSERT FIGURE 3 HERE ** 

 As a result, in case of a loss function that uses RMSE as evaluation criterion, the informational 

value of cheap options is almost non-existent, while simultaneously leads to higher pricing 
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uncertainty. Figure 3 explicitly pictures this effect. A high dispersion is displayed for average 

option prices. Certain cross-sections’ average option prices are lower than $7. These low values 

can be the result of a high loading in inexpensive options. 

The left side of the graph displays a clear negative relationship between uncertainty and average 

option prices. However, after a threshold around $10 this relationship disappears. This is 

evidence that the lowest average price cross-sections were loaded with these inexpensive 

options. After the threshold, we can assume that the relationship does not hold because the 

average price variation is not driven by the quantity of extremely inexpensive options. These 

results motivate the exclusion of very cheap options and the adoption of an alternative filtering 

rule that allows for more options to be selected in order to have enough options per cross-

section. 

Test example – local volatility parameter 

To illustrate this model pricing performance comparison procedure, we introduce a second 

model, which is the model with the same volatility dynamics as in (3), while the local volatility 

parameter is not treated as an unknown parameter, but is fixed to the 14 days realized historical 

variance. Evaluating the pricing benefit of local volatility estimation is an interesting 

application of our framework for two reasons. First, this has not been widely studied in the 

previous literature (Bams, Lehnert, Wolff (2009)) and most empirical applications are silent 

about how they treat local volatility. Second, as suggested by previously reported parameter 

inference, local volatility is highly dependent on market conditions. Hence, the benefit of 

estimating local volatility is also likely to be time-varying.  

The bootstrapped confidence intervals of both models’ RMSE are used to test whether the 

unconstrained model has a statistically significant better pricing performance than the 
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constrained model. Our approach is slightly time dependent since the residuals are drawn from 

the contemporaneous and the three previous cross-sections. To acknowledge for this limitation 

we, not only estimate the simpler specification, but also bootstrap it and use the mean 

bootstrapped RMSE as a reference for testing. This approach takes into account that, for cross-

sections preceded by important pricing performance changes, the estimated RMSE and the 

bootstrap mean RMSE can diverge. 

** PLEASE INSERT FIGURE 4 HERE ** 

Figure 4 draws the two models’ RMSE confidence intervals. The lighter grey interval represents 

the distribution of the constrained model’s RMSE. The darker grey interval represents the 

distribution of the unconstrained model’s RMSE. The darkest areas indicate when the two 

distributions overlap.  Our statistical test shows that estimating local volatility significantly 

reduces pricing error. The underlying time-series backward looking information is not a good 

substitute to the forward looking risk-neutral information relevant for option pricing. In 78% of 

the cross-section the two RMSE’s confidence intervals are distinct enough to conclude that the 

unconstrained model outperforms significantly at the 5% level the constrained model. However, 

this leaves 12% of cross-sections where the two models RMSE point estimates are within the 

other model´s confidence intervals. Estimating the local volatility does not generate a statistical 

significant pricing improvement for these cross-sections. Solely comparing the RMSE point 

estimates for these cross-sections would naturally lead to favor the unconstrained model. 

Inspections of the whole RMSE distribution offers a diverging picture stretching the importance 

of accounting for uncertainty. 

The number of failure to reject is substantial. Additionally these failures are not randomly 

distributed across time but they appear clustered. These clusters of overlapping RMSE 

distributions are noticeable in the middle of 2002 and at the end of 2004. This indicates that 
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there are times were the two models pricing performance cannot be distinguished. Interestingly, 

the failures to distinguish the two models’ pricing performances are concentrated during market 

stressed period with high volatility. The global context appears to influence the significance of 

the results. These times can be interpreted as either periods, where the cross-sectional data is 

not sufficient to precisely estimate the local volatility parameter or periods, where the economic 

conditions suggest that the local volatility converges to the realized volatility.  

Both explanations diverge but these results are additional evidence that cross-sections are 

heterogeneous and require individual treatment. For that reason, option pricing models need to 

be evaluated, tested and benchmarked with respect to a certain informational and economic 

context. Our bootstrapping approach to construct confidence intervals allows for such a 

comparison in a rigorous statistical manner. For instance, the conclusions of the cross-sectional 

tests are opposites for end of 2002 and for end of 2003 cross-sections.  A test using multiple 

cross-sections from 2002 and 2003 would have yielded mixed and inconclusive results. 

5. CONCLUSION 

Altogether, the empirical evidences presented in this paper suggest that cross-sections of option 

need to be regarded as independent entities. The long term cross-sectional heterogeneity affects 

both the pricing performance and the model selection risk. Option pricing models need to be 

benchmarked at the cross-sectional level to reflect the changing nature of the cross-section. 

Since cross-sections are similar on a short term horizon, this information is relevant for 

subsequent cross-sections. Nevertheless, one cannot pool too many cross-sections cannot 

without running the risk of being affected by the change in cross-sectional nature. Traditional 

option pricing statistical tests are inherently affected by this issue because of the important 

number of required cross-sections. Naturally, an absolute loss function comparison ignoring 

model selection risk and estimation uncertainty is not a better alternative. 
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The main novelty and innovation of our methodology is to provide a statistical framework to 

benchmark models at the cross-sectional level. The bootstraps result in a loss function 

distribution and confidence interval around the RMSE of one specific model. The statistical 

significance of alternative model pricing performance differences, accounting for model 

selection risk, is available for each cross-section. The empirical application of our framework 

yield interesting results. 

Firstly, we confirm the result of Christoffersen and Jacobs (2004a), that discrete time volatility 

model including clustering and simple asymmetry effect fit option data well. Richer 

specifications are not recommended. We use in-sample bootstrapped variance-covariance 

matrices to show that a simple model is already over-fitting significantly. 

Secondly, we quantitatively demonstrate the important heterogeneity in cross sections of 

options. Different cross sections strongly diverge in nature and cannot be considered identical. 

This time distinctness is highlighted by the discrepancy between time series information and 

cross-sectional bootstrapped information. Economic conditions, sample composition and 

information content are causing this diversity. These differences are aggravated with time since 

on a short term horizon cross sections can considered sufficiently homogeneous, which does 

not hold for longer horizons. These results encourage the practitioners’ custom of continuous 

recalibration, profiting from the short term persistence, but allowing for longer term variations. 

Thirdly, we show that the conclusion of a specification test is cross sectional dependent and 

cannot be generalized for all cross sections. This implies that the real question to ask is not what 

model is best, but what model is the best under what conditions. Our framework allows for an 

answer to this last question. The empirical application of this paper is limited to a specific type 

of discrete time volatility model, but the methodology is implementable for any class of option 

pricing model. 
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Table 1: Average Price, BS-Implied Volatility and number of contract by Moneyness and 

Maturity 

 

 

   Maturity 
   <60 60 to 160 >60 

M
o
n

ey
n

es
s 

<0.85 

Price 0.769 2.534 8.597 jk_ 0.321 0.277 0.237 

Nb Contract 1766 2342 2800 

0.85-1 

Price 8.389 19.063 38.584 jk_ 0.185 0.182 0.179 

Nb Contract 3341 2123 2273 

>1 to <1.15 

Price 7.431 15.724 34.761 jk_ 0.145 0.142 0.143 

Nb Contract 2929 2111 2211 

>1.5 

Price 0.339 0.840 3.900 jk_ 0.286 0.201 0.154 

Nb Contract 1571 2249 3048 
Notes: the option sample characteristic averages are summarized by maturity and moneyness. Moneyness in this table is computed as (k/s). 

Since only out of the money options are conserved, all options with a moneyness lower than 1 are put options. All options with a moneyness 

higher than 1 are call options. Maturities are in day.jk_ refers to the Black and Scholes implied volatility. 
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Table 2: Sample Composition and Market Conditions Descriptive Statistics 

 
Panel A 

  Mean Std. Dev. Min Max 

Market Conditions     
 Past Returns 0.01 0.08 -0.23 0.25 
 Realized Volatility 0.17 0.09 0.07 0.54 
 VIX 0.21 0.07 0.11 0.42 
 Leverage 0.27 0.07 0.15 0.47 
 Local Volatility 0.17 0.06 0.08 0.36 

Sample Compositions     
 Average Price 11.53 2.03 6.80 16.78 
 Average Moneyness 0.19 0.04 0.13 0.35 
 Average Maturity 135.18 15.30 108.33 178.14 
 Call % 0.49 0.13 0.24 0.81 
 Cheap Option % 0.31 0.04 0.23 0.39 

 

Panel B 

 
Past 
Returns 

Realized 
Volatility 

VIX Leverage Local 
Volatility 

Average 
Price 

Average 
Moneyness 

Average 
Maturity 

Call % Cheap 
Option 
% 

Past 
Returns 
 

1          

Realized 
Volatility 
 

-
0.59*** 

1         

 
VIX 
 

-
0.64*** 

0.84*** 1        

 
Leverage 
 

0.07 -0.43*** 
-
0.45*** 

1       

Local 
Volatility 
 

-
0.63*** 

0.83*** 0.99*** -0.46*** 1      

Average 
Price 
 

-
0.42*** 

0.54*** 0.61*** -0.14* 0.62*** 1     

Average 
Moneyness 
 

-
0.51*** 

0.75*** 0.93*** -0.5*** 0.94*** 0.55*** 1    

Average 
Maturity 
 

0.04 0.1 0.07 -0.01 0.09 0.57*** 0.22*** 1   

Call % 
 

-
0.71*** 

0.74*** 0.86*** -0.41*** 0.86*** 0.64*** 0.78*** 0.11 1  

Cheap 
Option % 
 

-0.07 0.12 0.21*** -0.34*** 0.21*** -0.42*** 0.32*** -0.4*** 0.18** 1 

Notes: Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
The table presents the descriptive statistics of Sample composition and market variables in Panel A. Past return and realized volatility are 
computed respectively over 3 months and 14 days. Past return and realized volatility are measured for each cross-section. Sample 
compositions refers to information about each of the 152 (2002 to 2004) samples used. Call % refers to the percentage of call option in the 
sample.  Cheap Option % is the percentage of option below 1$. Average moneyness is computed as the absolute value of (K/S)-1. Panel B 
reports the correlation matrix.  
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Table 3: Parameter Estimates and resulting in-sample RMSE 

 

 \ �̂ �̂ 
Local 

Volatility 
RMSE 

Mean -0.025 -0.288 0.272 16.5% 1.124 
SD 0.01 0.065 0.066 6.4% 0.401 
Min -0.089 -0.569 0.149 8.2% 0.611 
Max -0.003 -0.155 0.466 35.7% 2.381 
1st quartile -0.029 -0.324 0.215 11.5% 0.832 
3rd quartile -0.02 -0.24 0.318 20.2% 1.327 

Notes: The present statistics result from the 155 calibrations performed every Wednesdays. The statistic of all the parameters estimated and 

the loss function are displayed. The local volatility is expressed in yearly volatility.  
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Figure 1: Bootstrapped Prices and RMSEs 

 

Panel A  Panel B 

 

 

Note: Panel A plot the actual observed prices against the average of the bootstrapped prices for each observation. Panel B compare the time 
series of RMSE along different cross section. The estimated RMSE is obtained from the original estimation. The bootstrapped RMSE is the 
mean of the bootstrapped RMSE distribution. 
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Table 4: One sample T-test of the average Observed price-Average Bootrapped 

price difference per option category 

 

  Maturity 

M
o
n

ey
n

es
s 

 <60 60 to 160 >60 

<0.85 
0.00 

(0.56) 

0.01 
(0.67) 

0.01 
(0.16) 

0.85-1 
-0.01 
(0.67) 

-0.00 
(0.81) 

-0.01 
(0.55) 

>1 to <1.15 
0.01 

(0.30) 

0.02 
(0.38) 

-0.01 
(0.87) 

>1.5 
-0.01 
(0.21) 

-0.01 
(0.31) 

-0.01 
(0.62) 

Note: The table present the average values of the difference between the observed prices and the average bootstrap 
equivalent prices. In brackets are the P-values associated with a 0 mean difference test. 
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Table 5:Time Series and Bootstrap parameters 

information comparison 
 

PANEL A: STANDARD DEVIATION 
 

 \ ^� �̂ 
Local 

Volatility 
RMSE 

SD Time 
Series 

0.01 0.065 0.066 0.064 0.401 

SD 
Bootstrap 

0.003 0.017 0.015 0.002 0.074 

Notes: The 155 estimation performed are resulting in 155 parameters 
and loss functions at different point in time. The SD Time series is the 
standard deviation of these series. 
The bootstrap enables to obtain a standard deviation for each 
estimation. Therefore 155 SD are obtained. The SD Bootstrap 
displayed is the average of these 155 SD. 
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Table 6: Correlation Matrix- Time Series and Cross Section 
 

 
Time Series Correlations Cross-Section Correlations 

 \ �̂ �̂ Local Volatility   \ �̂ �̂ Local Volatility  \ 1     \ 1     
            �̂ 0.695*** 1    ^� 0.93*** 1    
            �̂ -0.504*** -0.857*** 1   �̂ -0.941*** -0.996*** 1   
            
Local 
Volatility 

0.0826 0.0977 -0.456*** 1  
Local 
Volatility 

0.282*** 0.228*** -0.27*** 1  

Notes: These are the Time Series Correlations of the 155 estimated parameters. The optimization is 
performed and a set of parameters is obtained every Wednesday. The correlations proposed are the 
correlation between all the parameters obtained over time, over multiple optimizations. Significance 
level are obtained with a Pearson Test 

 

Notes: The values reported are the average of each cross section correlation. Each cross-sections are 
bootstrapped resulting in a set of parameters for each cross-section. Therefore, correlations are obtained 
at the cross-sectional level. This table present the average of  all cross-sections correlations. The 
significance level is obtained with a t-test 

       

 

  \ �̂ �̂ 
Local 

Volatility \ 
Min 1    
Max 1    ^� 
Min 0.784 1   
Max 0.994 1   �̂ 
Min -0.99 -0.999 1  
Max -0.836 -0.984 1  

Local 
Volatility 

Min -0.83 -0.843 -0.913 1 
Max 0.937 0.868 0.807 1 

Notes: The minimum/maximum cross section correlation (obtained through bootstrap) are reported 
here 
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Figure 2: RMSE uncertainty represented as bootstrapped distribution in different contexts 
 

Panel A  Panel B 

 

 

 
Panel C   

 

  

Notes: Kernel density estimates are used to smooth the distribution.  
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Table 7: RMSE distributions in different context- Statistical 

test 

 

  
Mean 

Comparison 
Variance 

Comparison 
K-S 

RMSE     
 Normal-High 0.000 0.000 0.000 
 Normal-Low 0.000 0.000 0.000 
 High-Low 0.000 0.000 0.000 

Implied Volatility     
 High-Low 0.977 0.154 0.405 

Average Option Price     
 High-Low 0.963 0.000 0.12 

Notes: The table provides the P-value of alternative distribution comparison test (mean 
comparison test, variance comparison test, Kolomogrov-Smirnov test) for the previously 
displayed distributions. 
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Table 8: Cross Section Pricing Performance, Sample Composition and Market Conditions 
 

 ASC  ∆ RMSE  Coeficient of Variation 

 Autoregressive Multivariate Full    Autoregressive Multivariate Full 

          ∆ Local Volatility  -0.289 -0.073  0.181***   0.021** 0.005 
  (0.262) (0.181)  (0.059)   (0.010) (0.006) 
Leverage  -1.173*** -0.719***  0.218**   0.060*** 0.024** 
  (0.420) (0.268)  (0.102)   (0.017) (0.011) 
Average Price  -0.080*** -0.011  -0.012***   -0.002*** -0.001 
  (0.014) (0.012)  (0.004)   (0.001) (0.000) 
Cheap Option %  -1.423 -1.005*  -0.003   0.089** 0.045** 
  (0.876) (0.558)  (0.211)   (0.037) (0.021) 
Average Maturity  0.000 -0.004**  0.003***   0.000*** 0.000*** 
  (0.002) (0.001)  (0.001)   (0.000) (0.000) 
Dependant Variable Lag 0.533***  0.485***    0.839***  0.785*** 
 (0.088)  (0.087)    (0.047)  (0.046) 
Dependant Variable Lag 2 0.275***  0.296***       
 (0.084)  (0.081)       
Constant 0.212*** 2.760*** 1.349***  -0.281**  0.011*** 0.017 -0.016 
 (0.070) (0.527) (0.322)  (0.117)  (0.003) (0.021) (0.011) 
          

Observations 150 151 150  151  151 151 151 
R-squared 0.578 0.192 0.615  0.224  0.683 0.196 0.707 
Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
Local Volatility and RMSE appears to be non stationary based on a Dickey-Fuller test. As a precaution we take the first difference of these variables. 3 dependant variables 
are used ASC,  ∆ RMSE and Coefficient of Variation. For ASC and Coefficient of variation 3 models are performed: a simple auto regressive model, a multivariate model 
and a combined model. For ∆ RMSE only one model is available because as a first difference this time series is not autoregressive. For ASC and Coefficient of Variation 
the lag length is chosen based on previous time series analysis not reported here. 
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Figure 3: Very inexpensive options and uncertainty 

 
Notes: The figure presents the relationship between the coefficient of variation and Average price. The 
locally weighted regression of coefficient of variation on the average price line is also displayed. 

 

  

.0
4

.0
6

.0
8

.1
.1

2
C

o
e
ff
ic

ie
n

t 
o

f 
V

a
ri

a
ti
o

n

6 8 10 12 14 16
Average Price

bandwidth = .8



 41

Figure 4: Cross-sectional specification tests 

 
Notes: This figure is the graphic representation of the specification test. The light grey interval represents 
the 95% confidence interval of the nested model. The darker grey interval represents the 95% confidence 
interval of the full model. The darkest areas indicate where the two RMSE distributions are overlapping. A 
sufficient overlap is consistent with a statistical rejection of distinguishing the two models’ RMSE. 
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