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Abstract—One of the main challenges in cloud computing is
to increase the availability of computational resources, while
minimizing system power consumption and operational expenses.
This article introduces a power efficient resource allocation algo-
rithm for tasks in cloud computing data centers. The developed
approach is based on genetic algorithms which ensure perfor-
mance and scalability to millions of tasks. Resource allocation
is performed taking into account computational and networking
requirements of tasks and optimizes task completion time and
data center power consumption. The evaluation results, obtained
using a dedicated open source genetic multi-objective framework
called jMetal show that the developed approach is able to perform
the static allocation of a large number of independent tasks on
homogeneous single-core servers within the same data center with
a quadratic time complexity.

Index Terms—Data center, Cloud Computing, Genetic Algo-
rithm, Resource Allocation, Power Efficiency.

I. INTRODUCTION

Cloud computing data centers provide high performance,
scalability and access to virtually unlimited computational
power to application providers. For optimal operation, data
centers need to perform hardware maintenance, provide redun-
dancy, optimize power consumption as well as manage task
execution and network traffic. Energy and power consumption
in data centers affect operational costs. In recent years, differ-
ent solutions where developed to improve energy efficiency of
computing hardware and network equipment.

VMPlanner [1] is a VM and traffic flows allocator able
to reduce data center power cost by putting in sleep mode
network elements. VMPlanner solves the Virtual Machine
(VM) allocation problem with three different algorithms which
use approximation and are not scalable due to only a limited
number of switches and racks that could be considered.

In [14] authors developed a particular kind of Service Level
Agreement (SLA) called Green SLA. Green SLA uses best
effort scheduling, which minimizes task execution time and
energy-performance trade off. This approach implements a
number of advanced power management strategies such as
Dynamic Voltage and Frequency Scaling (DVFS) and supports
parallel execution.

In [2] the authors propose another energy efficient dynamic
allocator for VMs. It is implemented using a modified version
of the Best Fit Decreasing algorithm to allocate VMs using
their utilization factors. This approach allows to dynamically
reallocate VMs and supports also heterogeneous hardware.

Another approach, presented in [4], is able to allocate tasks
with the objectives of minimizing the longest task completion
time while optimizing the energy efficiency at the same
time in heterogeneous Grid systems composed of multi-core
processors. However, that work does not take into account the
network requirements.

In [16], the authors propose a system which maps VMs
to physical resources using genetic algorithm improved with
fuzzy multi-objective optimization. This approach tries to
reduce the amount of power consumed by the servers, optimize
CPU and memory utilization, and minimize peak tempera-
tures inside the facility. In summary, most of the reviewed
genetic algorithm based approaches optimize only one or
two parameters at a time and primarily focus on computing
hardware, while all parameters including system performance,
networking requirements, completion time of the tasks and
energy consumption must be taken into account.

In this paper, we propose a new resource allocation approach
for cloud computing data centers that performs joint allocation
of computational and network resources. Our objective is
finding trade-off solutions between tasks completion time and
system power consumption. The system considered includes
the static scheduling of independent tasks on homogeneous
single-core resources. This algorithm is designed using genetic
algorithms that allow both to explore solutions space and to
search for the optimal solution in an efficient manner. It is both
scalable and power efficient, and is based on a model devel-
oped to capture specifics of the data center network topology
and device power consumption. During the implementation
phase, a specific java-based open source framework for multi-
objective genetic algorithms, called jMetal [6], was used.

The rest of the paper is organized as follows: Section II
defines the problem and the proposed system model, Sec-
tion III details the developed algorithm, Section IV includes
a description of the performed experiments and analyses the
obtained results, Section V concludes the paper outlining
directions for future research on the topic.

II. SYSTEM MODEL

One of the main challenges in cloud computer industry
is data center energy efficiency and scalability. Total power
consumption due to data center, in a country such as US,
doubled in 6 years (from 2000 to 2006) reaching nearly 61
billion kW h or 1.5% of total US electricity consumption[1].
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For every watt delivered [13] only 30% is consumed by the IT
equipment, 33% are spent in chillers, 18% in uninterruptible
power suppliers, 9% for computer room air conditioning, 5%
in power distribution units, 3% in humidifiers. 1% for lightning
and 1% in transformers.

There are two main approaches for power management in
server hardware: DVFS and dynamic power shutdown. DVFS
reduces power consumption by lowering down operating fre-
quency and/or voltage, while dynamic power shutdown saves
power during idle times by powering down as much as possible
all the sub-components. The aforementioned approaches can
be applied in both computing hardware and network switches.
Network operators can free some devices by reducing the num-
ber of used paths and aggregating the traffic. This approach
can be especially beneficial as average utilization of network
links is often below 40%.

We model data center with currently the most widely used
three-tier fat-tree architecture (see Fig. 1). IT is composed
of the access, aggregation, and core layers. The access layer
provides connection to servers which are arranged into racks
with each rack being served by a single Top of the rack (ToR)
switch. In our model, one rack contains of up to 24 servers
and a single pod includes up to 8 racks.

Fig. 1. Fat-tree topology in data centers.

The links interconnecting server and ToR switches have ca-
pacity of 1 Gb/s while the links between racks and aggregation
switches are 2 x 10 Gb/s. The proposed algorithm allocates
in this data center, which is empty at the beginning, a set of
independent tasks which are characterized by:

• a number of instructions to be executed;
• a constant amount of bandwidth required to perform the

execution.
As all tasks are independent and do not require to commu-

nicate during their execution. For this, the bandwidth require-
ment is only related to communication between computing
servers and data center gateway.

Computing servers are modeled with single-core processors
offering a fixed computational power expressed in instruc-
tions per second. The tasks allocated for execution on the
same server will share server’s processing power equally. The
servers left idle can be put into a sleep mode minimizing

their power consumption. As a result, the power model of
data center network is linearly proportional with the respect
to the load. Power consumption ranges between two power
values: idle and peak power respectively when traffic load is
0 or 1. If dynamic power shutdown is enabled, the servers and
network switches that left idle are turned off.

Considering:

N tasks to be allocated
M servers
S switches
R racks
IPS instruction per second executed by CPUs
nj tasks allocated on j-th server
PSRP peak power consumption for servers
PSWP peak power consumption for switches
PSWI idle power consumption for switches

we define

Tc the maximum completion time between all the tasks
Bi the i-th task bandwidth request
PSRj the power consumption of server j-th
PSR =

∑
j

PSRj the total server power consumption

PSWk the power consumption of k-th switch
PSW =

∑
k

PSWk the total switch power consumption

P = PSR + PSW the global power consumption
VLj the bandwidth utilization on j-th server link
VTk the bandwidth utilization on k-th ToR switch

The following two objectives must be minimized:

1) Maximum total completion time of all tasks (makespan);
2) Power consumption of servers and network switches.

The first objective represents performance of the whole
data center, while the second objective is related to its power
consumption. Our goal is to find a reasonable trade off. These
two objectives can be represented by the following two fitness
functions: {

f1 = Tc;
f2 = P.

(1)

The total completion time corresponds to the completion
time of the last task.
Considering

xij =

{
1, if the i-th task is allocated on the j-th server;
0, otherwise;

#insi the total number of instruction of task i-th;

Ij =
N∑
i=1

xij #insi instructions to be executed on j-th server

Tj =
Ij

IPS
the j-th server completion time

we can define the total completion time as

Tc = max 1≤j≤M Tj . (2)

The power consumption of computing servers is modeled
using binary law, assuming that each processor either execut-
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ing tasks at the full speed or stays idle:

PSRj =

{
PSRP , if nj ≥ 1;
0 if nj = 0.

(3)

The power consumption of a network switch is linearly
proportional to the traffic load and stays between PSWP

(when all the link are full utilized) and PSRI (when the
switch is idle). Network switches left idle can be turned off
to optimize their energy consumption. Defining

Ci the throughput of the i-th link
CMAX the sum of maximum capacity of all uplinks

#linkk the number of uplinks in switch k-th

lk =

#linkk∑
i=1

Ci

CMAX
the load factor of k-th switch

the network switch power consumption can be computed as
follows:

PSWk(lk) =

{
PSWI + (PSWP − PSWI)lk if 0 < lk ≤ 1;
0 if lk = 0.

(4)
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Fig. 2. Network switch power consumption.

The optimization problem is the subject to two different
constraints: it is not possible to allocate on a single server tasks
demanding higher bandwidth than the available link capacity
(1Gb/s), and the 20 Gb/s uplink capacity of ToR switches
cannot be exceeded by the sum of the traffic. These two
constraints can be formalized as follows:{

VLj ≤ 1Gb/s 1 ≤ j ≤M ;
VTk ≤ 20Gb/s 1 ≤ k ≤ R.

(5)

Denoting

xijk =

{
1, if the i-th task is allocated on the j-th server of the k-th rack;
0, otherwise;

cj1 =

(
N∑
i=1

xij Bi − 1Gbps

)
.sgn

(
N∑
i=1

xij Bi − 1Gbps

)

ck2 =

 M∑
j=1

N∑
i=1

xijk Bi − 20 Gbps

 sgn

 M∑
j=1

N∑
i=1

xijk Bi − 20 Gbps



the two constraints are:
c1 =

M∑
j=1

cj1;

c2 =

R∑
k=1

ck2.

(6)

where
sgn(x) =

{
0 ∀x ≤ 0;
1 ∀x > 0.

(7)

The aforementioned definition of two constraints does not as-
sign any penalty if network links are not congested. Whenever
tasks allocated to the same server (or to the same rack) require
more than available bandwidth, the exceeding amount of
bandwidth is added to the constraint violations. It is important
to recall that with this heuristic, solutions that are violating
constraints are still considered during the search phase, but
using the proper search heuristic they tend to disappear in the
last generations.

III. OPTIMAL ALLOCATION OF RESOURCES USING
NSGA-II

Genetic algorithms (GAs) [15] are iterative stochastic
optimization methods based on the principles of natural
selection and evolution. In GAs, a population of candidate
solutions (called individuals or phenotypes) is evolved toward
better solutions with the application of genetic operators.
Each solution has a set of properties (called chromosomes
or genotype) which can be recombined, randomly mutated
and altered to form a new set of solutions named generation.
In each iteration the population of solutions is evaluated
considering the fitness of every individuals (usually a value
related to the objective function). The more fit individuals
are selected and survive for consequent iterations. In multi-
objective algorithms, solutions are not comparable because
of the problem of incommensurability. For this reason it is
introduced the concept of Pareto-optimal solutions. Consider
two solutions x and y and a set of objectives that should be
maximized f1, f2, ..., fm, x dominates y if exists a value k
such that: {

fk(x) > fk(y);
fl(x) ≥ fl(y) 1 ≤ l ≤ m ∧ l 6= k.

(8)

If that value of k does not exist, y is non-dominated by x.
The main task of a multi-objective GA is to find a set of non-

dominated solutions (or Pareto-optimal solutions) optimizing
the current problem.

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [8]
is a widely adopted algorithm for solving multi-objective op-
timization problems. NSGA-II has a complexity of O(MN2)
with M the number of objectives and N the population size.
This heuristic sorts the population of solutions into different
non-domination levels with a procedure called ranking: if a
solution p dominates a solution q, then p belongs to a higher
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level than q. This procedure is repeated for every solution
creating different groups or non-domination levels (solutions
of the same group are non-dominating themselves); an integer
value called rank is assigned to each non-domination level
(1 is the best level, 2 is the second best level, and so on).
When applying selection and sorting, NSGA-II is able to deal
with constraints and unfeasible solutions. The alternatives in
comparing two solutions are:

• both solutions are feasible and the one with the best
fitness is chosen;

• only one solution is feasible and that one is chosen;
• both solutions are unfeasible and the one with the smallest

overall constraint violation is chosen.

Using multi-objective optimization, it is necessary to introduce
the definition of constraint domination: a solution i is said
to constrained-dominate a solution j, if any of the following
conditions is true:

1) solution i is feasible and solution j is not;
2) solutions i and j are both unfeasible, but solution i has

a smaller overall constraint violation;
3) solutions i and j are feasible and solution i dominates

solution j.

All feasible solutions are ranked according to their non-
domination level which is based on the objective function
values. Among two unfeasible solutions, the solution with
a smaller constraint violation has a better rank. When the
ranking procedure is carried out, a number of chromosomes
equal to the population size is taken from the best ranked
solutions. If adding a rank of non-dominated solutions implies
exceeding the population size, only a subset of solutions from
this rank are chosen. These solutions are chosen according to
the crowding distance method. The crowding distance value
of a solution provides an estimate of the density of solutions
surrounding it. Crowding distance of point i is an estimate of
the size of the largest cuboid enclosing i without including
any other point (Fig. 3). Boundary solutions which have

Fig. 3. Crowding distance for i-th solution in a two objectives algorithm.

the lowest and highest objective function values are given an
infinite crowding distance. Solution A is better ranked than
solution B if and only if:

non− dominated level(A) < non− dominated level(B). (9)

or{
non− dominated level(A) = non− dominated level(B);
crowding distance(A) > crowding distance(B).

(10)
Once the new population is built, it undergoes the application
of the selection and genetic operators to generate a number of
new solutions, from which the new population will be built
for the next iteration.

IV. EXPERIMENTAL SETUP

In this section we describe the executed tests with the
developed algorithm and the obtained results.

A. Scenario

Data center topology, tasks, servers and values for hardware
power consumption are described in Tables I and II, while
the algorithm configuration setup is presented in Table III.
The number of servers per rack and rack per pod are typical
values for a data center [7], the number of instructions per
second (IPS) is frequent in single core processors such as Intel
Pentium at 1 GHz, the task instruction number and bandwidth
requirement for each task are generated randomly using two
different uniform distributions. In Table II, power consumption
values are reported; for switches idle power consumption is
considered to be the 80% of the peak power consumption
[7]. In Table III, we used the original parameters proposed
for NSGA-II, and we implemented two classical Crossover
and Mutation operators for combinatorial problems like ours
(NSGAII was designed for continuous problems). We encode
solutions as an integer vector of size equal to the number of
tasks. The value assigned to every position of the chromosome
represents a server where the corresponding task is allocated
to (this value ranges from 1 to the number of servers).

TABLE I
TOPOLOGY, SERVER AND TASK RELATED PARAMETERS

Parameter Value
Server per rack 24
Rack per pod 8

IPS 1, 2 ∗ 109[instr/sec]

Task instruction distribution
Uniform in the range
[5; 10] ∗ 109 [instr]

Task bandwidth distribution
Uniform in the range
[1; 1000] ∗ 108 [bps]

TABLE II
POWER CONSUMPTIONS

Parameter Value [W]
Server PSRP 300

ToR PSWP 200
ToR PSWI 160

Aggregation PSWP 2500
Aggregation PSWI 2000

B. Results

Three different experiments were performed. In the first
experiment, we analyse the best solutions taking into account
the two objectives separately in order to explore the two edges
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TABLE III
GENETIC ALGORITHM PARAMETERS

Parameter Value
Population size 100

Evaluations number 25000
Crossover operator One point

Crossover probability 0.9
Mutation operator Random mutation

Mutation probability
1

task number

Selection operator Binary tournament
Search heuristic NSGA-II

of the obtained Pareto front. The second experiment shows an
example of Pareto front obtained and a superimposition of
different Pareto fronts obtained through different experiments
using the number of servers as a parameter of interest. Finally,
the third experiment shows the experimental time complexity
as a function of the number of tasks to allocate. The platform
used to execute these experiments is an Intel I7 3630QM 2.4
GHz equipped with 8 GB RAM with OS Ubuntu 11.04 and
the jMetal framework.

1) Time and Power consumption: The first experiment was
executed with input values presented in Table IV.

TABLE IV
EXPERIMENT 1: INPUT VALUES

Parameter Value [W]
Server number 1536
Task number [500:15000] with steps of 500

Same experiment repetition 40

Figure 4 shows solutions with optimal completion time.
As expected, the observed trend is linear with respect to the
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Fig. 4. Best task completion times.

number of tasks. This set of solutions represent the best time-
performant solutions found by the algorithm. We are looking
now also for the most power performant solutions within the
same experiment. Figure 5 shows the best values of power

consumption retrieved using the same technique as before
to compute best completion times. Here the curve follows a
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Fig. 5. Best power consumption values.

different trend because if the number of server and switches is
constant, after increasing the number of tasks the final effect
is to reach the limit of the sum of the peak power consumption
for every devices into the data center.

2) Pareto-optimal solutions: this experiment shows the re-
lation between solutions of different executions of the problem
for varying server numbers.

Figure 6 shows the Pareto front obtained by the algorithm
for a single instance of 1536 servers and 3000 tasks. In it the
completion time ranges from around 39 seconds to 51 seconds
(best found solutions) while the power consumption is between
425 KW to 443 KW. If power consumption and completion
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Fig. 6. Pareto front obtained by a single experiment.

time could be considered equally relevant the vector with
minimal module can be considered as the best solution. On the
contrary, if power consumption (or completion time) would be
more relevant the two metrics could be weighted to find the
preferred solution.

Figure 7 shows the superimposition of solutions varying the
number of servers; each execution is repeated forty times and
we plot the forty obtained Pareto fronts.
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We can observe how increasing the number of servers, leads
to a deprecation of the results obtained in terms of power
consumption and completion time, as it was expected.

3) Algorithm execution time: last experiment measures the
performance of the framework to compute the solution with
a fixed number of servers (i.e.1536) usually constant for a
specific data center, and varying the task number which is the
only variable input parameter. Figure 8 shows the results with
a trend line. Points are close to the quadratic trend function
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Fig. 8. Execution time of the algorithm.

that fits well the measured values then the algorithm in the
considered range of values has a quadratic dependence from
the number of input tasks.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduce a power efficient resource al-
location algorithm for cloud computing data centers which is
based on genetic heuristics. The proposed approach finds a set
of non-dominated solutions in this multi-objective computation
minimizing makespan and power consumption of the system.
When the execution of the algorithm is completed and optimal

Pareto solutions are obtained, it becomes is possible to fine
tune the trade-off between power consumption and execution
time. The proposed algorithm shows quadratic complexity
dependency on with the respect to the number of tasks to
be allocated.

Future work will focus on model adaptation to dynamic task
allocation, account for internal communications, electricity
cost and data center load factor and provide comparisons with
other state-of-the-art algorithms.
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