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Abstract

The objective of this study is to develop a simulation technique that enables
to describe the interactions between snow and a moving surface. The develop-
ments of this study are focused on the application of the interactions between
a tire tread and a snow-covered road.
Contrary to a continuum mechanics approach snow is considered to exist of
discrete grains which are allowed to bond and collide with each other. There-
fore, a discrete approach based on the extended Discrete Element Method is
applied to the snow. Micro-mechanical models are developed to describe the
deformational behaviour of snow. The micro-mechanical models describe the
deformation and growth of the bonds between grains as well as the contact
behaviour of snow grains on the grain-scale. Further, the age of a snow sample,
the temperature and deformation rate applied are taken into account by the de-
veloped models. The deformational behaviour of snow under brittle and ductile
loading rates is validated with experimental data of common measurements in
the field of snow mechanics. The simulation results successfully recapture the
macro- and micro-scale deformation behaviour of snow and enable to identify
the primary deformation mechanism in charge at the different loading rates,
densities and temperatures.
However, this approach allows treating individual snow grains during loading
due to a rolling tire and predicting both position and orientation of grains. The
micro-mechanical response of each snow grain in contact with the structure of
the tire surface generates a global impact that defines the interaction forces be-
tween the snow and the tire surface, which simultaneously indicate the strength
of traction. In order to predict the elastic deformation of the tire surface the
Finite Element Method is employed.
A coupling method is developed between the discrete approach to characterise
snow and the finite element description of the tire tread. The coupling method
compensates quite naturally the shortages of both numerical methods. Further,
a fast contact detection algorithm has been developed to spare valuable com-
putation time. The coupling approach was successfully tested and validated
with a small scale application but also with the large scale application of tire
- soil interaction. The large-scale simulation results of tire - soil interactions
showed to be accurate in comparison to similar traction measurements.
Finally, the interaction of snow with rigid and deformable tread parts has been
studied in accordance to friction measurements of the field of tire mechanics.
The results show the ability of the simulation technique to describe the targeted
interactions and give valuable insight into the underlying mechanisms.



Nomenclature

α β γ The Greek indices identify the three spatial components of a physical
quantity. α = (1, 2, 3)

~B Three component vector / Tensor first rank.

B Dyad / Tensor second rank.

Bα Components of a first rank Tensor.

Bαβ Components of a dyad.

i j k The roman indices identify one item within a number of entities,
e.g. ith grain of n grains i = (1, 2, ..., n)

B n - Component vectors are single underlined symbols.

B Matrices are double underlined symbols.

Bi Components of n - component vector.

Bij Components of a matrix.

R Gas constant.

λ Material porosity.

σbcs Brittle compression strength of ice.

σdcs Ductile compression strength of ice.

σts Tensile strength of ice.

E Young’s elasticity modulus.

G Shear modulus.

H Material hardness.
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µ Coefficient of friction.

ν Poisson’s ratio.

ρ Material density.

θ Rotational Stiffness.

eice Coefficient of restitution of ice.

e Coefficient of restitution.

k Material Stiffness.

~vij Relative velocity at contact point.

~φ Particle orientation in Euler angles.

~Fb Particle bond force.

~Fc Particle collision force.

~F Particle force.

~Mb Particle moment/torque due to bonding.

~Mc Particle moment/torque due to collision.

~M Particle moment/torque.

~a , ~̇v , ~̈x Particle acceleration.

~b Unit vector of the bending axis of a bended bond.

~db Distance vector between the center of the bond and the particle.

~dc Distance vector between the collision point and the particle center.

~nb,~tb Normal unit vector of the bond and its orthogonal tangential unit vector,
respectively.

~nc,~tc Normal unit vector of the collision point and its orthogonal tangential
unit vector, respectively.

~n,~t Normal unit vector of the point of contact and its orthogonal tangential
unit vector, respectively.

~vij Relative velocity between particle i and j.

~x Particle position.
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~v , ~̇x Particle velocity.

d~ω , d~̇ω Angular velocity of a particle.

d~φ Relative angular displacement.

d~u Relative displacement.

Ab Bond area.

Nb Coordination number, i.e. number of bonds per grains.

Ng Number of grains.

Rij Effective particle radius.

T Particle temperature.

δn Normal particle overlap.

δt Tangential particle overlap.

~ωij Relative angular velocity between particle i and j.

dt Time difference or timestep length.

m Particle mass.

rb Bond radius.

r Particle radius.

tb Bonding time or age of a bond.

tc Contact time or duration of a collision.

t Time or a particular timestep.

~u Nodal displacement vector.

σ, τ Stress

εl Loading rate

ε Strain

ε̇ Strain rate or creep rate.

M Mass matrix of meshed structure.
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RVE Representative Volume Element

CCDM Combined Continuum and Discrete Model

DEM Distinct/Discrete Element Method

DPM Discrete Particle Method

FEM Finite Element Method

MPM Material Point Method

XDEM Extended Discrete Element Method
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Chapter 1

Introduction

The research in snow mechanics is mainly driven by three major fields of applications.
The first larger portion of investigations comes from the field of snow avalanche studies
where the forecast of the release of inclined snow covers and the construction of protective
structures is of principal interest. The winter sport industry delivers the second larger
portion of research knowledge which is concerned with the improvement of security, comfort
and efficiency of their equipment. The third major effort is undertaken by the tire industry
in order to understand the mechanisms of tire - snow traction and thus improve their
products in relation driving safety.
Despite the larger progress in research of natural hazards over the last decades, heavy
snowfalls and resulting avalanches are still the major risk to the population and tourism of
mountain regions. To design protective structures and devices the load developing under
a snow cover has to be predicted. Also the stress developing in the inclined layer of a snow
cover needs to be predicted to estimate the release of an avalanche. Therefore, a larger
effort is put into the development of novel material models and methods able to determine
those quantities.
Ski sport activities increased tremendously over the last century due to the everlasting
competition in the field of winter sports but also due to the boost in tourism in numerous
mountain regions around the globe. This continuous growth is of course followed by several
improvements in the skiing equipment. Thereby, numerical simulations offer very promising
possibilities to predict the interaction between snow and skier or skiing equipment. A larger
portion of the design and construction of alpine skis is already conducted by computer aided
engineering. But also the models of snow - ski interaction are still employed along several
assumptions and thus new approaches and methods are continuously developed.
The transmission of forces between a tire and a snow covered road is the source of driving
safety for any passengers car. But the force transmission also of major interest for landing
stripes of airplanes in cold regions as much as the vehicle mobility on snow covered surfaces
off road is important to the forestry, mining, construction industries and military.
However, in the field of winter tire development large series of outdoor tests are performed
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all around the world. Under outdoor conditions the actual performance of tires is tested
on snow and ice to compare new design concepts, as depicted in fig. 1.1. In the same
time, results of outdoor tests are very sensitive on changing external conditions, like daily
temperature evolution or precipitation.

Figure 1.1: Outdoor test by Testworld.
Figure 1.2: Concave indoor drum test by
Gießler et al. (2007).

Therefore, winter tires are also tested in a controllable indoor environment under artificial
winter conditions. This is for instance performed by using an indoor drum test as conducted
by Gießler et al. (2007) in fig. 1.2.
As the effort and economical costs are high for experiments, increasing portions of the
tire development is based on numerical methods. But the kinematics involved in the
interactions between a tire tread and snow are complex and current modeling still lacks
the understanding of several mechanisms.
All the above mentioned engineering applications are governed by the mechanical behaviour
of snow. This behaviour however has proven to be difficult to model due to the heterogene-
ity of snow as a geo-material. The complex deformation mechanisms of snow are inherited
from its micro-scale (≈ 10−3m).
The micro-structure consists of ice grains connected by bonds which results in an open-foam
like structure. The macroscopic response of a snow pack to loading is therefore determined
by the deformation and failure of these ice bonds and the inter-granular collision and
friction forces during rearrangement of the ice grains.
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To forecast an avalanche from the stress developments in a snow cover, the behaviour of
snow deforming at low strain rates is the governing mechanisms. On the other hand, in
the industrial applications concerning transportation safety, the high strain rate behaviour
of snow controls the force transmission.
Snow behaves very different depending on the rate of the deformation process. At low
rates snow exhibits a ductile deformation behaviour while at high rates it deforms as
brittle material. As snow is ice on micro-scale, these characteristics are inherited from the
material behaviour of ice.
One can easily observe the brittle behaviour of ice when stepping too quickly on a frozen
pond or when crushing ice for a soft drink. Ice fails entirely brittle, i.e. crushes into
pieces, if subjected to rapid loading of seconds or minutes depending on the amount of
load and the spacial dimensions. On the other hand, ice flows plasticly and changes its
shape continuously when loaded slowly and over a long time, i.e. days or even months, as
illustrated by the glacial flow in fig. 1.3.

Figure 1.3: Plastic flow of glacier ice under gravity by Ershkov (2000).

If loaded rapidly, snow fractures in a brittle manner as seen in fig.1.1. One is experiencing
every time as the collapse beneath footsteps when walking through fresh snow. But snow
also flows plasticly if forces act constantly over a long range of time as seen by the deformed
snow cover in fig. 1.4.
There is another mutual phenomena inherited from the ice micro-structure which increases
the difficulties to model the mechanical behaviour of snow. Ice does not only melt due to
temperature, it also relatively rapid melts under pressure. This is demonstrated in fig. 1.5
where a wire is pulled through an ice block under constant load.
The aim of this study is to develop a simulation technique enable to describe the interac-
tions between snow and a moving surface. The developments of this study are focused on
the application of the interactions between a tire tread and a snow-covered road. But the
proposed models and numerical method are also applicable to all mentioned fields of snow
mechanics.
This work proposes inter-granular snow models which are deployed using an extended
discrete element technique. The micro-structure of a snow pack is thereby represented
by generating an ensemble of explicit geometrical shapes describing the individual snow
grains and bonds. In order to predict the deformation of the tire surface the Finite Element
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Figure 1.5: Pressure melting of Ice due to constant long term loading by Veritasium (2011)

Method is employed. A coupling method is developed between the discrete and the finite
element approach for the tire tread.

Figure 1.4: Plastic behaviour under long-
term loading by Nicot (2003).

This study focuses mainly on the high rate
loading of snow. This enables to determine
the ranges of interest for important physical
quantities involved. This delimitation does
not necessarily exclude comparisons with
investigations outside these ranges, but it
sets the focus within the predictions. Re-
sulting from the described outdoor tests,
the interesting temperatures range between
0 and−30 ◦C degree. From the tests in win-
ter tire development, the important snow
densities range from 200 to 600 kg/m3. A

tire is slipping on snow at velocities between the lower limit of 1 mm/s and the higher
limit of 2 m/s. Thereby, loads are developing from of 0.05 MPa up to 0.35 MPa. The
characteristic length of a single tread block is about 25 × 25 mm2 in cross section as an
initial approximation.

This thesis continues with a review chapter of the necessary background knowledge. Thereby,
the current state in mechanical snow behaviour is described along common measurements
followed by a review of numerical modeling in snow mechanics. Chapter 2. also contains
the basics of the tire traction mechanics as well as a review of measurements and current
models in tire-snow interactions. The background chapter is concluded by an insight into
the coupling of discrete and continuum methods.
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Chapter 2

Background

2.1 Snow as Geo-Material

2.1.1 Structure and Sintering of Snow

Snow can be seen as an open-foam like material whereby its micro-structure is composed
of the solid, liquid and vapour phase of H2O, i.e. water. The micro-structure strongly
depends on the amount of solid, liquid and vapour present at the ambient temperature.
Fig. 2.1 was published in the review of Blackford (2007) and gives a detailed overview of
the broad spectrum of micro-structures which are formed by H2O.
Beneath the melting point of solid water, i.e. ice, snow can be assumed as a two-phase-
system. Under this assumption snow consists of an ice matrix and pore space filled with
air and water vapour. As the mass of the pore space is negligible compared to the mass of
ice in a snow sample the density of the sample ρsnow can be calculated as follows:

ρsnow = ρice ·
Vice

Vsnow

=
msnow

Vsnow

where ρice describes the density of ice, msnow the sample mass, Vsnow the sample volume
and Vice the volume of the ice matrix. At the pressures and temperatures of interest in
this study the solid water phase consists of the crystal structure of a hexagonal lattice of
ice, i.e. ice Ih, as depicted in fig. 2.2.
The volumetric portion of the gas phase, i.e. the porosity of the snow Λgas, can be calculated
as follows:

Λgas = 1− Λice = 1− ρsnow
ρice

where Λice describes the volumetric portion of the ice matrix ρice in relation to the total
snow volume ρsnow.
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2. Background

Figure 2.1: Spectrum of micro-structures formed by H2O at a temperature of 0◦C, composed
by Blackford (2007).

Figure 2.2: Phases of H2O.

The density of snow has a large spec-
trum compared to other materials. Freshly
fallen snow usually has a density of about
100 kg/m3, which means that almost 90%
of the volume is filled by the gas phase. Af-
ter a season of undisturbed settling and sin-
tering, a snow cover has densities around
300 to 400 kg/m3. This might seem to be
quite dense snow already, but it still con-
sists of more than 50% of air and water
vapour. If a snow cover survives a summer
period it develops into the so called firn.

Firn is snow densified up to 500 and 600 kg/m3. Even this dense snow consists by most of
65% of ice. Snow can even consolidate further from 600 up to 700 and 800 kg/m3 where it
will become eventually porous ice or glacial ice. Tire-snow tests, which are the main focus
of this study, are performed on specially prepared test track surfaces. The base of these
tracks has a density around 400 to 600 kg/m3, with a layer of relatively low density, loose
snow covering their surface.
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2. Background

The high porosity shows the importance of the micro-structure of snow as only the ice-
matrix can carry any applied load. This relationship between the low volumetric portion of
the ice matrix and its entire responsibility as the supporting structure is one of the principal
factors of the unique mechanical behaviour of snow. Just like other granular materials,
snow consists of single grains. These ice grains, i.e. snow grains, can have very different
sizes and even shapes depending on the metamorphism the snow experienced. But the ice
grains are not just loosely packed together as in other granular materials like sand. Snow
develops a unique deformational behaviour because the ice grains sinter immediately after
contact and form bonds between each other. This composition of ice grains and bonds
thus creates the ice-matrix, responsible for the strength of snow.

Metamorphism of Snow

Freshly fallen snow crystals start to transform in shape and size immediately after their
deposition. The newly formed micro-structure strongly depends on the temperature distri-
bution inside the snow cover. The ground below the snow cover is usually warmer than the
surface and can even heat up the snow to its melting point. On the other hand, the surface
of the snow cover is cooled by winds and the surrounding air temperature. But the surface
temperature is subjected to high fluctuation due to the rapidly changing conditions.
A Temperature gradient develops in the snow cover between surface and bottom tempera-
ture. Due to this gradient neighbouring grains have different temperatures and thus differ-
ent vapour pressures of the ice develop. This plays a major role in the metamorphism of
snow. Depending on the different temperature gradients, different kinds of metamorphism
can be observed: equi-temperature metamorphism, temperature gradient metamorphism
and melting transformation.

Figure 2.3: Snow grain shape developed under equi-temperature metamorphism by Colbeck
(1997) and Meyssonnier et al. (2009).

The equi-temperature metamorphism is present at very low temperature gradients between
0 − 5 ◦C/m. Fresh snow grains are very fine branched ice crystals and thus own a high
surface area in relation to mass. These complex ice shapes seek to reduce their surface area
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2. Background

and to transform into sphere like grains as shown in fig. 2.3. This is forced by different
vapour concentrations due to the different shapes and sizes of the grains in a snow cover.
The temperature gradient metamorphism takes place under high temperature gradients in
the snow cover. High temperature gradients cause an intensive vapour transport through
the pore space of the snow pack and form very faceted and sharp-edged grains. Under this
condition the number of bonds formed between adjoining grains decreases and the snow
weakens.

Figure 2.4: Snow grain shape developed under temperature gradient metamorphism by Col-
beck (1997) .

The melting transformation is caused by the generation of water inside a snow pack when
the temperatures raise above the melting point at the surface. Due to melt water, any
kind of grain shape rounds and bigger grains grow on the cost of smaller ones.
All the observations for the different kinds of snow metamorphism show that the micro-
structure, i.e. grain-scale properties, is strongly affecting the strength and deformational
behaviour of snow. Therefore, the micro-structure of snow has to be taken into account
when modeling its mechanical behaviour.

Grain-Scale Properties of Snow

In the field of snow mechanics, the density of a sample is still commonly used to identify
the strength of snow. However, the density is only one property and not necessarily the
most relevant one to classify snow. Fukue (1977) showed that snow samples of the same
density vary in strength by an order of magnitude with changes in their grain size and
sintering age, i.e. strength and size of the ice matrix.
Therefore within this study, the developments of the models of snow behaviour are based
on the grain-scale properties. Those grain scale properties are the size and shape of snow
grains, the material properties of the grains as well as the thickness and growth behaviour
of bonds between grains itself.
The most straightforward and simplest way to measure the size of grains of a granular
material is sieving. Thereby, sieves of different slot size are used to sieve the material. By
using different sieve slot sizes the distribution of the grain diameter as percentage of the
total sample mass can be predicted.
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Von Moos et al. (2003) sieved the grains of several snow samples between 180 to 440 kg/m3.
The sieve curve of the different snow samples are shown in fig. 2.5. The grain size mea-
surements of Fukue (1977) described similar distributions as shown in fig 2.6.

Figure 2.5: Cumulative distribution function of mass percentage versus grain size of snow,
i.e. slot size, by Von Moos et al. (2003).

Figure 2.6: Mass percentage versus grain size of different snow types measured in several
series A to H by Fukue (1977).

This methodology and the resulting sieve curves of fig. 2.5 can be mathematically expressed
as follows:

Z(rg) =
weight of grains ≤ rg
weight of all grains

(2.1)
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where rg describes the grain radius, i.e. the slot diameter of the sieve. By this method
Von Moos et al. (2003) found a maximum grain diameter of 8 mm and a minimum diameter
of 0.125 mm. The bandwidth of the distribution in fig. 2.5 is quite small compared to
other common granular materials. Fig. 2.7 compares the size distribution of snow grains
to moraine and cement grains. The average grain distribution of snow is however similar

Figure 2.7: Cumulative distribution function of mass percentage versus grain size of snow,
i.e. slot size , by Von Moos et al. (2003) The snow curve is compared to sieve curves of
moraine and cement grains.

to the grain size distribution of sand. A major similarity is that also for the snow grains
80− 90% of the total grain mass is between 0.25 mm to 1 mm in diameter.
On the grain-scale, snow is an ensemble of ice grains connected by frozen bridges, i.e. the ice
matrix. To describe the micro-scale processes during the deformation of snow, the grain-
scale models have to be based on the mechanical properties and deformational behaviour
of ice. The detailed behaviour of ice will be investigated in the following section.
Ice Ih, as shown in fig. 2.2, is a crystalline material. Therefore, before describing the me-
chanical behaviour of ice, the question has to be answered if snow on the grain-scale is
single or poly-crystalline ice. For single crystalline ice, the mechanical properties and defor-
mational behaviour show a strong dependence on the orientation of the crystal axes. The
mechanical properties and deformational behaviour of polycrystalline ice can be assumed
as spatial homogeneous.
Results of Colbeck (1997) showed that ice grains in dry snow generally consist of single
crystals. Other authors, e.g. Hagenmuller (2011), Schneebeli (2004), assume the ice matrix
of snow to be isotropic, i.e. poly-crystalline. But then again others, e.g. Theile et al. (2011),
try to describe the ice at the grain-scale of snow as an anisotropic material, i.e. single
crystal.
The question can be answered by micro-tomographic scans of the ice matrix of a snow
structure. Meyssonnier et al. (2009) conducted such measurements. The technique identi-
fies the orientation of crystalline c-axis and the geometrical shape of each crystal. A look at
the cross section of scans of snow grains in fig. 2.8a reveals that a snow grain is composed
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of a few ice crystals. Hence, the ice grains in a snow pack are neither fully single nor poly-
crystalline ice. Snow grains can be seen as multi-crystals. In general, multi-crystalline ice

(a) 3D image of a coarse-grained snow
coloured by crystal orientation.

(b) Horizontal cross section of adjoined
snow grains composed of a few ice crystals.

Figure 2.8: Micro-scale tomography scans of snow by Meyssonnier et al. (2009).

does not show the pure anisotropic behaviour of a single-crystal. Further, a large number
of multi-crystalline grains exist within a snow pack. Therefore within this study, a single
snow grain is assumed to exhibit isotropic mechanical properties.
The ice matrix, i.e. bond structure, of a snow sample strengthens and weakens depending on
the temperature conditions due to metamorphism in natural conditions. But snow samples
can also strengthen under laboratory conditions of constant temperatures while sealed
inside a container. This transformation is comparable to equi-temperature metamorphism
but due to sealed condition the sample does not experience any changes in mass. For long-
term deformations of snow this phenomena has to be taken into account. The time spent
sintering also gives insight into the initial conditions of a snow sample before it is subjected
to deformation. The ice making up the bond structure of a snow sample does also creep
under applied pressure, i.e. load. Under sudden loading bonds in a snow sample fracture
and grains are rearranged. If grains are pressed against each other, they immediately form
new bonds which grow with time, temperature and pressure.
In the experiments of Kaempfer and Schneebeli (2007), fresh snow was aged and observed
under isothermal and sealed conditions. The time spent ageing is called the sintering
age. Kaempfer and Schneebeli (2007) kept the samples under the constant temperatures
of −2,−8,−19, and −54 ◦C for an entire year. The samples were monthly captured by
micro-tomography scans. A selection of the results is depicted in fig. 2.9.
In fig. 2.9, the ice matrices at −2 ◦C obviously thicken with increasing time and thus
strengthen the snow sample. The ice matrices at week 45 also thicken with increasing
temperature and strengthen the snow sample either. It has to be noticed that the change
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Figure 2.9: Ice-structure scans of isothermal sintering experiments at four different tem-
peratures conducted by Kaempfer and Schneebeli (2007).

of the ice matrix at temperatures beneath −50 ◦C is significantly lower compared to higher
temperatures. At temperatures close to the melting point of ice strong changes can be
observed.
The ice matrix scans were used to gain several valuable micro-structural properties. One
property monitored was the specific surface area of the ice matrix, calculated from trian-
gulations of surfaces captured by the 3D image.
Further, the thickness histograms of the ice matrices have been derived. The mean thick-
ness of the ice matrix is obtained by filling spheres into the triangulated surface structure.
The thickness distribution of the different ice matrices is illustrated in fig. 2.10. A voxel
can be seen as pixel of a photograph where by a voxel is a volume and pixel an area. The
information contained in a voxel is if the capture is of the material ice or pore space. In
fig. 2.10, sample 4 at the temperature of −54 ◦C shows almost no changes in thickness
distribution over time. At temperatures above −50 ◦C, the thickness distribution broadens
and flattens increasingly with increasing time. The tendency of the ice matrices visualises
this behaviour by equalisation of the distribution of mass. The ice-structure thickening
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Figure 2.10: Evolution of thickness distribution of ice matrix of snow samples at four dif-
ferent temperatures derived from isothermal sintering experiments conducted by Kaempfer
and Schneebeli (2007), where sample 1 was at −2 ◦C, 2 at −8 ◦C, 3 at −19 ◦C
and 4 at −54 ◦C. The seven measurement times t = (0, 1, 2, 3, 4, 5, 6) correspond to
t = (0, 5, 11, 17, 23, 30, 45)weeks, respectively.

over time shown in fig. 2.10. A thicker ice-structure is able to carry more load and thus
results in a strengthening of the snow. The effect of strengthening with age on the defor-
mational behaviour of snow has been studied by Yong and Metaxas (1985) and is described
in section 2.1.2.
Szabo and Schneebeli (2007) conducted measurements of the sintering force between two
adjoining ice grains. Within the experiments ice cones with spherical tips of 3 mm radii
have been used. The spherical tips were pushed together by different loads and at different
temperatures. The contact load was kept constant over different time periods to allow
an ice bond to sinter between the grains. After different contact times between 0 and
1000 ms the ice grains were separated and the force to separate the grains was measured.
The measured force is called the sintering force and is shown for the temperatures −1,
−5, −12 and −23 ◦C in dependence of the contact time and load. The sintering force is a
measure of the bonding strength between ice grains. Fig. 2.11 shows that the bond strength
between ice grains grows with increasing contact time and contact load. The growth rate
increases with ascending temperature. This temperature dependence is already seen in
fig. 2.10. Szabo and Schneebeli (2007) related the growth in sintering force to the growth
in bond size. They derived the following growth law of the bond radius:

a =

√
R2 −

(√
R2 − a02 − ε̇ice · l · t

)2
(2.2)

where a describes the bond radius, R the grain radius, ε̇ice the creep rate of ice, l the length
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Figure 2.11: Measurements of bond growth between adjoining ice grains by means of sin-
tering in dependence of contact time and load by Szabo and Schneebeli (2007)

of the bond and t the contact time. The creep rate ε̇ice of ice is thereby a function of the
contact time and contact load. The creep rate of ice will be described in the following
section.

2.1.2 Deformational Behaviour of Ice and Snow

As snow consists of ice on the micro-scale, several principal features of the deformational
behaviour of ice can also be observed in the deformational behaviour of snow. Snow
as of interest in the applications of this study exists close to its melting point. Under
these thermal conditions, the mechanical behaviour of ice shows a strong dependence of
deformation processes to changes in temperature, load and velocity. In other words, the
velocity of the loading process is as important for the resulting strength as the load and
temperature experienced by the ice structure. These dependencies are observed for the
deformational behaviour of snow and ice similarly.
Hence, in this section the deformational behaviour of ice is presented first, followed by a
discussion of the deformational behaviour of snow. The similar behaviour is demonstrated
by relevant measurements of both materials.
Under the various dependencies the loading rate of ice and snow is commonly chosen to
distinguish between the principal deformation behaviours. This loading rate or rate of
deformation ε̇ is defined as follows:

ε̇ =
vL
L

where vL describes the magnitude of the loading velocity and L the characteristic length
in direction of loading.
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Deformational Behaviour of Polycrystalline Ice Ih

As discussed along with fig. 2.8, this study considers polycrystalline ice Ih, also called
terrestrial or normal ice, under engineering condition.

Ductile to Brittle Behaviour

Depending on the rate of loading two principal inelastic behaviours are exhibited by ice.
At low rates, i.e. below 10−4 − 10−3 s−1 > ε̇, ice shows a ductile behaviour. Contrary, at
high rates above 10−4 − 10−3 s−1 < ε̇ ice fractures brittle during straining.

Figure 2.12: Schematic illustration of the strain - stress relationship of ice in dependence
of the strain rate by Schulson (1990).

The transition between ductile and brittle behaviour of ice under tension and compres-
sion was investigated in detail by Schulson (1990). Fig. 2.12 illustrates the strain-stress
relationship of ice under compressive loading in dependence of the strain rate.
At lower strain rates, the strain-stress curves are composed of an ascending and descending
part. With increasing strain the stress increases until it reaches the peak stress, i.e. yield
strength, of ice. Thereafter, ice softens with increasing strain. Over the entire loading
time ice deforms plastic. The deformed ice can show cracks but does not collapse, i.e. does
not show macroscopic failure. Wakahama (1967) conducted load tests on ice under ductile
rates. The straining was stopped during the initial phase of stress increase. The ice started
to relax the developed stress during the constant strain state. This shows that ice creeps
under loading even in the initial phase and does not show pure elastic features. Schulson
(2001) pointed out that the strain hardening is caused by basal gliding and dislocation
climbs of the ice crystals while the strain softening is a result of internal cracking and
re-crystallisation.
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At higher strain rates in fig. 2.12, the strain-stress curves are only composed of a rapid
ascending part. The stress ascends almost linear with increasing strain until it reaches the
brittle strength at which the material ice collapses suddenly. Under the rapid loading the
material ice has not enough time to relax the increasing stress via creep. This explains the
almost linear elastic increase and lack of stress relaxation as it takes place under ductile
deformation. Thus the remaining way to release the stress is sudden failure when the
deformational energy reaches the failure limit.
The investigations of Schulson (1990) also reveal the dependence of the compressive and
tensile strength in terms of the strain rate. Fig. 2.13 shows an increase in the compressive
yield strength with increasing strain rate in the ductile regimes, i.e. ε̇ < 10−3 s−1. This
increase in compressive strength is also schematically drawn in fig. 2.12. Further, the
compressive strength shows a decrease with increasing temperature and increasing salinity
and porosity. Hobbs (1974) is giving a detailed composition of the variety of dependencies
of the mechanical behaviour of ice.

Figure 2.13: Failure strength of ice in dependence of the strain rate by Schulson (1990)

Fig. 2.13 and fig. 2.12 also illustrate the brittle failure strength under compressive straining
for strain rates above ε̇ > 10−3 s−1. The brittle strength reduces with increasing strain
rate. Contrary, the tensile strength does not show to be influenced by any change in strain
rate.
Next to the brittle strength dependencies, Schulson (2001) also investigated in details into
the grain size dependence of ice. The investigations allowed to derive empirical approx-
imations for the strength of ice. The observations pronounce an increase of the brittle
compression strength of ice by a factor 2.5 with a decrease in temperature from −10 ◦C
to −50 ◦C. From the grain size and strain rate dependencies one can assume a brittle
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compression strength of 10 MPa at 0 ◦C, the transition rate of 10−3 s−1 and for a grain
size of 1 mm. The resulting linear approximation for the brittle compression strength of
ice can be formulated as follows:

σbcs [MPa] = [(−3/8)(T/ ◦C) + 10] MPa (2.3)

where T is the ambient temperature in ◦C. The strength of ice decreases with increasing
temperature. Also for the temperature dependence of the strength, the creep of ice is the
underlying mechanics. Close to its melting point ice shows to be more viscous and thus
sustains the load with decreasing strength.

Creep Behaviour of Ice

As mentioned, the creep behaviour governs the mechanical behaviour of ice and its principal
dependencies.
Barnes et al. (1971) conducted an intensive study on the creep and friction of poly-
crystalline ice Ih. The creep experiments included uniaxial deformation tests under con-
stant load and indentation test to measure the hardness of ice for specimens with a grain
size of 1 mm.
During the uniaxial compression tests the ice specimen was compressed between two rigid
plates under various constant loads and temperatures. Barnes et al. (1971) recorded the
strain - time characteristic of the ice specimen. The resulting stress - strain rate relation-
ship, i.e. creep curve of ice Ih, is depicted in fig. 2.14. The uniaxial compression experiments
were conducted for strain rates of 10−9 to 10−2 s−1 and temperatures of 0 to −48 ◦C. The
creep curves of ice show an increase of the creep rate ε̇ice with increasing stress and tem-
perature. Barnes et al. (1971) approximated the creep measurements by using a power
law equation and sinh functions. The model derived from the creep measurements of ice
under constant load can be written as follows:

ε̇ice = A · (sinh(α · σ))n · e−Q

RT (2.4)

where σ describes the applied load, Q the activation energy, R the gas constant, T the
temperature and A, n and α are constants. Barnes et al. (1971) give a detailed description
which values to choose for the constants depending on the temperature regime.
However, for the development of interaction models between snow/ice grains within this
study, the indentation hardness measurements conducted by Barnes et al. (1971) are of
higher interest. Within the hardness measurements, a rigid spherical or pyramidal indenter
is pushed into the surface of an ice specimen for a certain time t and by a known load
f . After removal the projected area a of the indentation is measured which results in the
hardness H as follows:

H =
f

a
The predicted hardnessH is depicted over different temperatures in fig. 2.15. The following
equation of ice hardness Hice has been derived by Barnes et al. (1971) from the indentation
measurements:

Hice = B ·
(
1

t

) 1

m

· e Q

mRT (2.5)
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Figure 2.14: Creep curve of polycrystalline ice obtained in uniaxial compression tests con-
ducted by Barnes et al. (1971) at different temperatures. The lines are predicted by eq. 2.4.

where B and m are constants depending on the temperature. Further, the indentation
hardness measurements show that the strength value can not grow above a certain limit.
As ice starts to melt under pressure this limit is set by the curve of pressure melting or
melting point depression in fig. 2.15. The melting point is depressed under increasing
indentation pressure and causes the ice surface to melt. This is an important phenomenon
when deriving collision models for ice grains in a snow pack.
The creep equation derived from these indention hardness measurements of ice can be
formulated as follows:

ε̇ice =
1

A
· σn · e −Q

nRT (2.6)

The creep rate behaviour described by the model and shown in fig. 2.15 describes similar
curves but lacks the asymptotic behaviour of the creep measurements shown in fig. 2.14.
Indentation tests are conducted by pressing a point-like indenter with its peak end into the
surface of the sample. Hence, the creep rate ε̇ derived from those measurements is closer
to the micro- or meso-scale behaviour. Thus the scale of this relation of ice is naturally
closer to the grain-scale of snow.
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Figure 2.15: Hardness of ice Ih measured by Barnes et al. (1971) by pressing a rigid
indenter into the surface of an ice specimen under different temperatures. The dashed line
describes the pressure melting curve.

Coefficient of Restitution of Ice

During the deformation of snow, the ice grains and ice bonds on the grains scale rearrange,
deform and fracture. Hence, the microscopic deformation processes of ice determine the
macroscopic strength and behaviour of snow. Therefore, next to the deformation and
fracture of ice bonds, the collision behaviour of ice grains during rearrangement is of
importance. This behaviour is also governed by the previously described dependencies of
the mechanical behaviour of ice.
Higa et al. (1998) conducted measurements of the coefficient of restitution of ice by drop-
ping spherical ice grains on an ice plate. The coefficient of restitution is thereby predicted
as the ratio between impact vi and rebound velocity vr:

eice =
vr
vi

(2.7)

The investigations focused on the impact velocity, size and temperature dependencies of the
coefficient of restitution eice. The results revealed a critical velocity vc which distinguishes
the impact behaviour into a quasi-elastic and plastic/brittle regime. The critical velocity
depends on the grain size and temperature. In the case of fig. 2.16 the critical velocity vc
equals 40 cm/s for a grain radius of 1.5 cm and a temperature 261◦K. In the quasi-elastic
regime for vi < 40 cm/s, the restitution coefficient does not change with velocity. The
potential energy is almost entirely recaptured after impact during the quasi-elastic regime.
Higa et al. (1998) reported no visual deformations or change on the impacted ice grains.
During the plastic/brittle regime in fig. 2.16 for vi > 40 cm/s, the ice grains showed plastic
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Figure 2.16: Coefficient of restitution eice versus impact velocity measured by Higa et al.
(1998).

deformation after impact. At even higher impact velocities, the ice grains fractured into
pieces. For the coefficient of restitution eice in fig. 2.16 this results in a decrease with
increasing impact velocity.
From their measurements Higa et al. (1998) derived the following ideal relation:

eice =





∼= 1 vi < vc(
vi
vc

)− log
vi
vc

vi > vc



 (2.8)

The relation assumes no energy loss within the quasi-elastic regime and thus full recovering
of the rebound velocity. This however can not be the case according to the observations of
Szabo and Schneebeli (2007) and Fan et al. (2003) who stated an instantaneous bonding
between ice grains when contacting. Hence, the rebounding energy has to be less than
the impact energy due to the necessary bond fracture. This loss in energy is found in the
measurements in fig. 2.16. Szabo and Schneebeli (2007) calculated the initial bond size by
using the contact theory of Hertz (1881). Together with the tensile fracture strength of
ice, mentioned previously, the calculation predicted the energy loss very precisely.
However, in the case of snow the velocity regime of the plastic-brittle impact found in
the investigations of Higa et al. (1998) correlates with the regime of the second kind of
brittleness of snow reported by Kinosita (1967) and depicted in fig. 2.23. Even more so, the
studies of Yong and Metaxas (1985) reveal the same velocity regime. In this regime, the
age of snow loses its influence on the snow strength which is discussed along with fig. 2.34.
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Coefficient of Ice-Ice Friction

During rearrangement in a snow pack, ice grains are of course able to slide as well. This
situation is governed by the friction behaviour of ice. The ice-ice friction behaviour can be
divided into three regimes which again depend on the rate, i.e. sliding velocity vs. Detailed
measurements of the ice-ice friction coefficient µice by Kennedy et al. (2000) and Akkok
et al. (1987) captured the regimes in fig. 2.17. The first two regimes are thereby governed

Figure 2.17: The ice-ice friction coefficient versus sliding velocity vs as measured by
Kennedy et al. (2000).

by the deformational behaviour of ice as described previously.
In particular, the first regime AB of vs < 10−5 m/s is again controlled by the creep of ice.
As ice sinters immediately, i.e. bonds, friction in this regime develops due to surface creep.
The friction coefficient increases with increasing sliding velocity.
The second regime BC of 10−5 m/s < vs < 10−5 m/s, depicted in fig. 2.17, shows surface
fracture behaviour. Similar to the described ductile to brittle transition of ice deformation,
the friction in this velocity regime develops due to the fracture of the bonded and re-
bonding ice surfaces of the contacting bodies. The friction coefficient shows no change
with changing sliding velocity.
For sliding velocities vs > 10−4 m/s in the third regime CD, the sintering effect of ice loses
its influence. Due to the high velocity, the frictional heat melts the sliding surface which
disables the bonding behaviour. The friction coefficient declines with decreasing sliding
velocity due to increasing surface melting. The decrease of the coefficient is additionally
supported by the pressure melting at the surface.
The measurements of Akkok et al. (1987) and Kennedy et al. (2000) focused on the surface
melting regime and were used to derive the following relation:

µice(T, P, vs, H) = C1 · (Tm − T )a · P−b ·
(

kρc

vs · L

)c

·H−d (2.9)
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Hence, the relation describes the sliding regime governed by surface melting of contact
asperities where Tm, T and p are the pressure depressed temperature, the ambient tem-
perature and the load applied, respectively. L describes the characteristic length of the
sliding body and H is the hardness of ice. The constants a, b, c and d depend on the ma-
terials contacting with ice. Akkok et al. (1987) included a detailed description for several
material pairs. The prediction of the friction coefficient thereby includes the melting point
depression of ice.

Deformational Behaviour of Snow

The study of the mechanical behaviour of snow points back until the first half of the
20th century, Bader (1962), to help forecast natural snow avalanches. For the natural
densification of a snow cover deformations at low strain rates are of interest. Contrary, a
large amount of engineering applications concerned with trafficability and transportation
safety are interested in understanding the physics of snow as well. Engineering applications
are thereby interested in the high strain rate behaviour of snow. Hence both applications
benefit from the study of the mechanical behaviour of snow. A snow pack is composed
of snow grains consisting of multi-crystalline ice as shown by Meyssonnier et al. (2009).
Hence, on the grain-scale snow follows the mechanical behaviour of ice. Further, the snow
grains are connected by bonds which results in an open-foam like structure. Thus, the
macroscopic behaviour of snow under load is governed by the deformation and failure of
micro-scale bonds, inter-granular collision and friction forces during rearrangement of the
ice grains. This approach has already been successfully applied to snow in the micro- to
macroscopic approach of Nicot (2004b).
Due to its micro-structure snow inherits the principal mechanical features of ice plus ad-
ditional properties specific to its granular nature. These principal and additional features
of the deformational behaviour of snow are presented in this section along with relevant
measurements.
As for the mechanical behaviour of ice, the mechanical behaviour of snow can also be
divided into two major regimes depending on the deformation rate or velocity. But contrary
to ice, the transition behaviour between both regimes is distinctively developed for snow.
As a rough approximation the transition behaviour can be defined at strain rates close to
5 · 10−4 s−1.
Hence, at low strain rates of ε̇ < 5 · 10−4 s−1 snow deforms as a ductile material which is
depicted in fig. 2.18a. On the other hand, at high strain rates of ε̇ > 5 · 10−4 s−1 snow
behaves like a brittle material as illustrated in fig. 2.18c.
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(a) Ductile deformation (35%). (b) Initial configuration. (c) Brittle deformation (55%).

Figure 2.18: Cylindrical snow sample under unconfined compression conducted by Kinosita
(1967).

The unconfined compression tests on cylindrical snow samples shown in fig. 2.18 are con-
ducted by Kinosita (1967) over a broad velocity and temperature range. The study cov-
ered ductile and brittle behaviour of snow under no confinement pressure. The tests were
performed on natural snow of 150 − 400 kg/m3 deposited in Hokkaido. Looking at the
microscopic pictures within the study it is obvious that the snow sintered to strong bonded
and rounded grains.
Kinosita (1967) composed the results into fig. 2.19, which serves here as an overview of snow
deformation before going into further details. For brittle deformations the measurements
of Kinosita (1967) in fig. 2.19a show a linear growth of the stress with increasing strain
until the stress reaches the strength limit. Thereafter, the stress suddenly drops. This is
the very same behaviour as observed for ice. After the abrupt decline the stress builds up
with the same inclination onto the almost same level before dropping again suddenly. This
behaviour keeps repeating and thereby forms the typical saw-tooth shape of a deformation
curve of brittle materials. Kinosita (1967) defined the brittle strength of snow as the
maximum stress measured throughout the entire deformation. At the points of sudden
decrease in stress the snow sample shows subsequent fractures, i.e. collapses, as depicted
in fig. 2.18a. On the grain-scale this behaviour can be regarded as the progressing fracture
of bonds and major rearrangement of the ice grains.
In fig. 2.19a, Kinosita (1967) depicted the ductile deformation curve of snow. The strain-
stress curves demonstrate an initial stress increase with a high gradient with increasing
strain until the ductile yield stress. Thereafter, the curves show a change in slope but the
stress keeps increasing with strain which describes a work-hardening behaviour of snow
after the yield point. Over the entire deformation time the snow sample shows an uniform
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(a) Strain-stress relationship. (b) Speed-strength relationship.

Figure 2.19: Schematic illustration of the confined compression tests on snow by Kinosita
(1967).

compaction with no change in shape. Looking at the grain-scale of a snow sample during
ductile compression, the bonds deform plastically and relax the developing stress due to
the creep of ice. Fig. 2.20 illustrates schematically the difference between the ductile and
brittle failure types of snow.
Fig. 2.19b demonstrates a similar strength - strain rate relationship of snow as measured
in compression tests of ice. Strength and deformational behaviour of snow are again a
function of the strain rate, i.e. velocity. The unconfined ductile strength of snow ascends
with increasing velocity applied. At the maximum value of the ductile strength the defor-

Figure 2.20: Schematic representation of the difference between ductile and brittle defor-
mation behaviour of unconfined snow samples by Kinosita (1967).
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mational behaviour undergoes a transition from ductile to brittle behaviour. With further
increase in velocity the unconfined brittle strength reduces and the snow sample is deform-
ing purely brittle as described previously.
Kinosita (1967) reported if one increases the velocity, i.e. strain rate, even further the de-
formation behaviour eventually reaches a second kind of brittle progression with increasing
strain. In the stress - rate relationship of fig. 2.19b this regimes is identified by an almost
constant strength value of snow which barely changes with changing strain rate. Previous
to the regime of second brittleness the maximum and minimum value of the saw-tooth
shape approaching each other with increasing velocity.
In his thesis, Fukue (1977) investigated in detail the performance of snow under load.
The investigations also included unconfined compression tests of snow. The tests thereby
focused on the micro-scale dependencies of the behaviour. Thus Fukue (1977) allowed
snow samples to sinter in sealed isothermal conditions before the unconfined compression
tests were conducted. Due to the sealed container he managed to avoid any changes in
density. This procedure enabled to study the strength of the snow sample in dependence
of the sintering age, i.e. increase in bonding strength. Fukue (1977) performed the un-
confined compression tests with loading rates of the ductile, brittle and transition regime.
Fig. 2.21 illustrates the ductile and brittle deformation behaviour with the dependence on
the bonding strength.

(a) Strain-stress relationship. (b) Speed-stress relationship.

Figure 2.21: Strain-stress relationship of different snow types with constant density mea-
sured by Fukue (1977). The snow type (A) describes strongly bonded snow, (B) moderately
bonded while (C) stands for poorly bonded snow.

The brittle deformation behaviour in fig. 2.21a shows the same stress build up and sudden
release with increasing strain as measured by Kinosita (1967). Also, the ductile curve in
fig. 2.21b shows the same feature as described previously. With increasing strain the stress
grows initially with a high gradient and experiences a decrease in the slope at the ductile
yield strength.
However, fig. 2.21 shows a general increase in strength with increasing sintering time.
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Further, the ductile strain-stress curves in fig. 2.21b demonstrate a distinct change in
slope with increasing sintering age.
Von Moos et al. (2003) and Scapozza and Bartelt (2003) also conducted unconfined com-
pression tests of snow under ductile rates which are depicted in fig. 2.22. The ductile
stress-strain curves demonstrate that the initial stress build up follows a viscous-elastic
path with increasing strain rather than linear progression as suggested in the previous
schematic depictions. Scapozza and Bartelt (2003) defined the ductile strength of snow as
the first stress value at the onset of the second slope.

Figure 2.22: Strain-stress relationship of unconfined compressions tests of snow by Scapozza
and Bartelt (2003) conducted with ductile strain rates.

Von Moos et al. (2003) developed an apparatus to conduct deformation controlled triaxial
tests on snow and enabled the device to apply constant lateral pressure. The apparatus was
used to apply ductile strain rates and different lateral pressures to cylindrical snow samples
at a constant temperature of −12 ◦C. The compression was also conducted without lateral
pressure, i.e. unconfined compression. Their tests mainly focused on ductile strain rates
of 10−7 s−1 up to 10−5 s−1 . Scapozza and Bartelt (2003) analysed the results in order to
reveal underlying relationship of stress and strain in snow.
Kinosita (1967) measured the ductile and brittle strength for snow of densities from 370 to
400 kg/m3. His results are shown in fig. 2.23. The experimental strength is presented as
iso-lines of constant stress values in dependence of the temperature T and loading velocity
vl , i.e. loading rate ε̇l = vl · l−1

cyl where lcyl describes the length of the cylindrical snow
samples. In fig. 2.23 if one follows an isothermal path, the measured unconfined strength
of ductile snow deformation increases with increasing velocity until the transition velocity
vc is reached. Thereafter, with further increase of the loading velocity through the brittle
deformation regime, the strength decreases until the second critical velocity v′c is reached.
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Figure 2.23: The dependence of snow strength on temperature and loading rate from un-
confined compression tests by Kinosita (1967).

In the regime of second kind of brittle deformation the change in velocity and temperature
has almost no influence on the strength of the snow sample.
Despite the second brittle regime, the strength in fig. 2.23 grows with decreasing temper-
ature.
The measurements of Kinosita (1967) reveal that the transition velocity vc, i.e. the tran-
sition rate ε̇c, of ductile to brittle behaviour of snow is not constant. According to the
measurements in fig. 2.23 it depends on the temperature. The transition velocity aligns
between 1− 10 mm/min which relates to a strain rate of 10−4 − 10−3 s−1 when using the
average of lcyl from the measurements of Kinosita (1967). The curve of vc in fig. 2.23 is
provided in the study as follows:

T = (vl − 20 · ρsnow − 3) · 2.5 = (ε̇l · lcyl − 20 · ρsnow − 3) · 2.5 (2.10)

Hence, the approximation of the transition curve states that snow at temperatures closer
to the melting point of ice inherits less brittleness. Similar snow samples loaded under
similar transition rates can develop an increasing strength with increasing temperature.
The transition behaviour stands thereby in contrast to the general behaviour of a decrease
in snow strength with increasing temperature.
Eq. 2.10 also states a dependence of the transition rate on the density of snow. The rate
generally declines with decreasing snow density.
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It has to be noticed that the velocity regime of second kind of brittleness predicted by
Kinosita (1967) correlates with the plastic/brittle velocity regimes found by Higa et al.
(1998). This indicates that at such high rates or velocities the deformation of the ice
matrix of snow experiences fracture only.
Scapozza and Bartelt (2003) also composed their ductile strength measurements which are
shown in fig. 2.24. The figure illustrates the yield stress σ̇y of ductile deformed snow in
relation to the applied strain rate ε̇ for different initial snow densities ρ0. Scapozza and

Figure 2.24: The dependence of snow strength on strain rate predicted in unconfined com-
pression tests on samples of 320 kg/m3 and at −12 ◦C by Scapozza and Bartelt (2003)

Bartelt (2003) capture the same trend in the ductile strength of snow as Kinosita (1967).
The strength increases with increasing strain rate. Further, fig. 2.24 shows an increase in
ductile strength with rising initial density of the snow samples.
Several authors use density as a measure for the strength of snow as the density is simple
to measure compared to the state of sintering. But the strength only increases along with
the density if the snow sintered under similar equi-temperature condition, i.e. as bonds
build-up and grains are rounded. Hence, the density is a very weak and under certain
circumstances even a misleading measure for the strength of snow.
Fukue (1977) demonstrated the weakness of snow density as a strength measure. He
produced snow samples of the same density but at different sintering ages. Those were
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used in unconfined compression tests of snow. Fukue (1977) analysed thin sections cut out
of the ice matrix of the snow samples in accordance to predict the coordination number
and the size of the bonds between the grains. The coordination number Nb is defined as
the average number of bonds per grain. The thin section analysis revealed a growth in
coordination number and size with increasing sinter age. Fig. 2.25 shows the unconfined
compression strength of snow samples at transition and brittle strain rates. The strength
of snow of about 450 kg/m3 is depicted at different sintering ages, i.e. 0.5, 1 and 2 hours
and at 3 and 6 days. The brittle strength in fig. 2.25 declines with increasing strain rate.

Figure 2.25: Brittle compression strength of unconfined snow samples with constant density
and temperature versus sintering age by Fukue (1977).

But it grows with increasing sintering time of the snow samples. On the one hand, this
demonstrates the major influence of the size and number of bonds in a snow sample on its
strength. On the other hand, due to the strong increase in strength for a single snow density
it reveals the weak reliability of the density as a strength measure. In other words, snow
samples of the same density, in fig. 2.24, could take on almost any strength represented
in the graph by a change in sintering age. But, the relation of the density to strength in
fig. 2.24 is valid, because the measurements allow to assume a similar sintering histories of
the samples.
One strain rate regime of the deformation behaviour of snow has to be highlighted individu-
ally, which is the transition between ductile and brittle deformation. Chandel et al. (2014)
conducted unconfined compression tests at transitional rates to derive a finite element
based description of the regime. The tests were performed on samples of 270− 290 kg/m3
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in density and at −20 ◦C. Fig. 2.26 shows the experimental results for two transitional
rates which are 7.2 · 10−3 s−1 and 4.8 · 10−4 s−1.

Figure 2.26: Unconfined compression tests of snow by Chandel et al. (2014) with transition
strain rate, initial density of 270− 290 kg/m3 and at −20 ◦C.

The strain - stress curves measured by Chandel et al. (2014) at the transition regime do not
show any sudden decrease in stress as observed for brittle deformation. The stress ascends
on a similar viscous-elastic path with increasing strain as the ductile curves until the
yield stress is reached. After the yield strength the curves demonstrate a strain-softening
behaviour with increasing strain.
Also Fukue (1977) and Kinosita (1967) measured and described the deformational be-
haviour at the transition regime. Fig. 2.27 represents the measurements of Fukue (1977)
schematically. Fukue (1977) reported a combined behaviour of brittle and ductile deforma-
tion in the transition regime. The transition curve initially shows the feature of a brittle
deformation by a few build ups and sudden stress drops. The build ups increase with
increasing strain until a certain densification is reached at which point the curve follows
the ductile path.
Nevertheless, there is no clear explanation for the different observations of Chandel et al.
(2014) and Fukue (1977) in the transition regime. Although, it has to be mentioned that
the behaviour described by Fukue (1977) is actually common to confined compression tests
of snow which will be discussed below.
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Figure 2.27: Deformational behaviour at the transition regime by Fukue (1977).

Figure 2.28: Three different brittle failure types observed by Fukue (1977).

Fukue (1977) distinguished three different types of brittle failure, which are shown in
fig. 2.28. Type 1 is identified as a complete collapse with observable failure surfaces at
the end plates of the unconfined loading device. This type is also common to other brittle
materials.
The brittle failure type 2 is described as a multiple plane or surface fracture. This kind of
failure is also observable in confined compression tests of snow.
Type 3 is a local crushing and rearrangement of snow grains at the end plates of the loading
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device.
In contrast to the failure under unconfined compression, Narita (1984) investigated in detail
the failure under unconfined tension of cylindrical snow samples. He conducted uniaxial
tensile experiments in a cold laboratory at various temperatures and snow densities ranging
from 240 − 470 kg/m3. The cylindrical snow specimens were subjected to tensile strain
rates of 5.5·10−7 to −2.5·10−3 s−1 . The measurements allowed to distinguish four different
types of deformation, which are labelled a, b, c and d in fig. 2.29.

Figure 2.29: Ductile, transition and brittle failure of snow under tension in dependence of
the strain rate measured by Narita (1984).

Type a and d are thereby similar to the pure brittle and pure ductile failure of snow,
respectively, as described previously for the unconfined compression tests. Type b and c
can be identified as two different types of transition behaviour between the ductile and
brittle ranges of the strain rate.
Type a demonstrates the same sharp inclination and abrupt break up in stress with in-
creasing strain as observed for the brittle unconfined compression. But logically under
tensional deformation there is no subsequent build-up of the stress as the sample pieces
are pulled apart after the first collapse.
Type d presents the ductile deformation with an viscous increase in stress along the in-
creasing strain. There are no cracks or fracture features visual as the ice matrix of the
sample creeps uniformly under expansion.
The transition types b, c show a similar behaviour to the one reported previously by
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Chandel et al. (2014) in the unconfined compression measurements. The stress - strain
curve, i.e. force-strain, curve in fig. 2.29 consist of an ascending branch in stress with
increasing strain and a descending branch which describes the mentioned strain softening
behaviour. The strain softening is thereby caused by an increasing number of micro cracks
developing and expanding over the sample volume with ascending strain.
Fig. 2.30 shows the strength values versus the applied strain rate measured by Narita
(1984).

Figure 2.30: Relationship between tensional strength and strain rate of snow in dependence
of the temperature experimentally predicted by Narita (1984).

The strength of the snow samples is depicted at different temperatures. The strength -
strain rate dependence of the tensile tests demonstrates the same behaviour as already de-
scribed for the unconfined compression tests by Kinosita (1967). Also here, the transition
rate shows a similar temperature dependence as already discussed along with fig. 2.23.
Snow shows less brittleness at temperatures closer to the melting point of ice.

Under confined conditions, the snow grains cannot escape the increasing load. Therefore
the influence of the density of a snow sample increases with growing strain. The resulting
deformation features are presented and discussed below.
Von Moos et al. (2003) compressed snow samples under confining lateral pressure of con-
stant values between 0 and 40 kPa. The samples were strained by ductile rates from
7.4 · 10−7 s−1 to 6.6 · 10−5 s−1. Strain-stress curves for the lateral pressure of 0 are already
shown in fig. 2.22. The shape of the curves stayed generally the same with increasing
confinement pressure but the strength response increased.
Abele and Gow (1975) conducted a series of 52 compression tests on snow in a cylindrical
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container, i.e. under wall confined conditions. The collected fresh snow was sintered at
the temperatures −1, −4, −10 and −32 ◦C for time periods of 0.1, 3, 7 and 16 days. The
container had a cylindrical shape with Teflon walls to eliminate friction. The compressions
were performed by moving the top plate with 40 cm s−1 which corresponds to brittle strain
rates of about 4 to 16 s−1. One can find a detailed description of the sample preparation,
storage and test procedure in the publication of Abele and Gow (1975), which also holds
an analysis of the microstructure of the samples. Their study shows a detailed analysis
of the response of the loaded snow samples in dependence of the initial density , the
sintering age and temperature. As the cross section in this kind of confined compression

(a) Stress-density relationships at −1◦C. (b) Stress-density relationships at −34◦C.

Figure 2.31: Summary of the stress - density relationships for various initial densities of
confined compression measurements by Abele and Gow (1975) .

test stays constant the state of densification and strain are directly related. In general the
stress - density relationships in fig. 2.31 demonstrate an increase in stress with growing
densification. However, the curves revealed a high dependence of the stress in relation
to the initial density of the sample. When comparing the stress state of confined snow
samples at the same state of straining, the stress response increases with increasing initial
density.
The results in fig. 2.31 revealed a difference in the final strength of snow depending on
the temperature. Samples compressed at temperatures below −10 ◦C converged towards a
common stress value with growing compaction independent of the initial densities. This is
exemplified in fig. 2.31b. For temperature above −10 ◦C, i.e. closer to the melting point,
the dependence is presented in fig. 2.31a. Close to the melting point, the final stress value
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grows with growing initial density of the sample. This inherits a turning point between
the different curves of the different initial densities.
Yong and Fukue (1977) and Yong and Metaxas (1985) conducted wall-confined compression
tests on snow of different sintering ages in a cylindrical Lucite tube. The samples are
deformed under transition to brittle strain rates of 8, 8 ·10−3 s−1 and 0, 75 s−1 at a constant
temperature of −13 ◦C. The results showed a difference in the strain - stress, i.e. density
- stress, curves depending on the initial sample density.

Figure 2.32: Threshold density γth of wall-confined compression tests of snow by Yong and
Metaxas (1985).

The measurements revealed that samples of a initial density below a certain threshold
show the brittle features in their density-stress curves. Yong and Metaxas (1985) called
this particular initial density the threshold density γth. Fig. 2.32 shows compression curves
of samples below that threshold density. Initially the stress in these curves increases with
densification showing the mentioned saw-tooth feature of unconfined brittle compression.
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With each subsequent collapse of the confined sample the following stress builds up onto
a higher value. This repeats until the threshold density is reached. Thereafter, the stress
ascends uniformly with densification. The threshold density is thereby the backward pro-
jection of the uniform curve portion onto the density axis as shown in fig. 2.32. Any sample
of an initial density above the threshold density grows uniformly in stress from the onset
of densification, i.e. lacks the saw tooth feature, although brittle strain rates are applied.
Yong and Metaxas (1985) discovered that the threshold density depends mainly on the
strain rate and partially on the grain size of the snow. Fig. 2.33 depicts the threshold
density in dependence of the strain rate for different grain sizes.

Figure 2.33: Threshold density versus strain rate for different grain sizes by Yong and
Fukue (1977).

For lower strain rates close to the transition regime the brittle feature vanishes and thus
the threshold density approaches zero with decreasing strain rate. With increasing brittle
strain rates the threshold density converges onto 400 kg/m3 to 460 kg/m3 depending on
the grain size.
However, Yong and Metaxas (1985) also analysed the confined compression tests in relation
to the sintering age of the samples, similar to Fukue (1977) in fig. 2.25. The samples
sintered under isothermal conditions as well. Fig. 2.34 composes the brittle strength for
different sintering ages in dependence of the loading velocity. The general decrease in
strength with increasing brittle velocity confirms the previous observations. Similar to the
observations in fig. 2.25 the strength of snow in fig. 2.34 grows with ascending sintering
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Figure 2.34: The dependence of the snow strength on isothermal sintering age and velocity
for confined compression tests by Yong and Metaxas (1985)

age. But the growth gradient between the different ages increases with decreasing velocity,
i.e. with decreasing strain rate. This means the sintering age has a higher influence on the
strength of snow at lower strain rates. With increasing strain rate, i.e. loading velocity,
the strength curves converge to a constant value. Fig. 2.34 also shows that above a certain
loading velocity, i.e. strain rate, the strength barely changes with sinter age. This loading
velocity aligns well with the second kind of brittle velocity reported by Kinosita (1967) in
fig. 2.23. At a temperature of −10 ◦C the brittle velocity of second kind is about 10 mm/s.
Kinosita (1967) also reported that the strength takes an almost constant value at higher
velocities.
Next to the compression tests in his thesis, Fukue (1977) also conducted penetration tests
in sintered snow with a thin metal blade, as shown in fig. 2.35. The width of the blade used
was 12 mm and the thickness was 0.6 mm. The penetrated snow had a density of 350 kg/m3

to 480 kg/m3. Blade penetration measurements in snow are easy to conduct outside and
indoors. The thin blade penetration is thereby a measure of the rupture of bonds and grain
structures and minimises the influence of the compaction of snow during penetration. The
blade hardness index or BPF is defined as the maximum force of penetration and is a
highly repeatable measure.
However, this investigation of Fukue (1977) also reveals the previously described rate
dependent behaviour of ductile to brittle failure of snow under load. Fig. 2.36 shows the
ductile, brittle and completely brittle regimes of the blade penetration tests. In the ductile
regime the penetration force increases with increasing penetration velocity as already seen
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(a) Schematic presentation by Fukue (1977)
(b) Field measurements by Borstad and Mc-
Clung (2011)

Figure 2.35: Blade penetrations in snow

Figure 2.36: The dependence of the penetration force on the penetration speed by Fukue
(1977)

for the strength of snow in fig. 2.30 and 2.23. The brittle regime is again identified by
the decrease in penetration force with descending velocity. Interestingly, the regime of
complete brittleness correlates again well with the second kind of brittleness presented by

38



2. Background

Kinosita (1967) in fig. 2.23. In this regime the penetration force is independent of the
velocity as the strength is independent of the rate.
Borstad and McClung (2011) also conducted blade penetration tests in the field and labo-
ratory. The blade used was a 100 mm wide and 0.6 mm thick stainless-steel blade attached
to a digital push–pull gauge. The penetration speed was high to ensure the penetration
force would align within the rate-independent brittle regime identified by Fukue (1977).
The measurements also investigated the density dependence of the penetration force as
shown in fig. 2.37. The naturally sintered snow was penetrated with a speed of about

Figure 2.37: The dependence of the penetration force on the natural snow density by
Borstad and McClung (2011)

100 mm/s. The measured force is comparable to the force measured by Fukue (1977) but
it shows an increase in spread with increasing density. An increase in density in naturally
sintered snow can also be linked to an increase in bonding strength. Therefore, the spread
in the force values at higher densities can be explained by different bonding strengths.
There are far more very valuable experimental predictions in snow mechanics than the
mentioned ones but not all can be discussed here in order to keep the focus onto related
measurements.
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However to name a few, Johnson et al. (1993), for instance, measured the shock response of
snow at an impact velocity of 150.7 m s−1. Lawrence and Lang (1981) conducted uniaxial
compression and tension tests at stain rates around 10−6. They derived a constitutive
description based on their tests. Haehnel and Shoop (2004) modeled uniaxial compression
and plate sinkage tests for vehicle induced strain rates and loads. Their derived models
were validated by the conducted experiments. Yong and Metaxas (1985) also carried out
shear tests in parallel with the above described compression tests. Kirchner et al. (2001)
investigated into the brittle-ductile transition regime of snow. They found values for the
activation energy of snow creep behaviour and analysed the deformation mechanisms from
the point of view that snow is a foam of ice.

For the purpose of developing snow models for the discrete element technique the following
points have to be kept in mind:

• Mechanical behaviour of snow is based on the microstructure

• The microstructure of snow is composed of grains connected by bonds

• Snow grains are composed of multi-crystalline ice

• Mechanical properties of grains are assumed to behave like polycrystalline ice

• The mechanical behaviour of ice and snow can be separated into ductile and brittle
behaviour depending on the strain rate

• Ice creeps under stress which increases with temperature

• The ductile strength of ice and snow increases with strain rate

• The brittle strength of ice and snow decreases with strain rate

• The strength of snow increases with bonding strength, i.e. sintering age

2.1.3 Modeling of the Mechanical Behaviour of Snow

A large number of engineering applications and physical problems in snow mechanics have
been solved by mathematical models and numerical methods from the field of solid me-
chanics.
The problems in snow mechanics are thereby almost exclusively considered by continuum
approaches. Just a few authors have chosen a discrete approach to predict the mechanical
response of snow. Even less problems have been solved based on a hybrid approach.
When modeling the mechanical behaviour of snow by continuum description, the finite
element method is chosen almost solely as the solving tool.
The major physical problems in snow mechanics accounted by numerical methods are stress
development, creep and failure properties of snow as well as snow avalanche release and
weak layer dependencies. But the major engineering applications studied by numerical

40



2. Background

approaches are tire - snow and ski - snow interaction as well as loading of structures of
snow defence.
As mentioned, the finite element method is also in snow mechanics, despite all anisotropies
and heterogeneities of snow, the most used method of all. For the mechanical problems in
snow mechanics described by this method the general goal is to solve for the developing
stress state. The majority of application, as avalanche studies, skier-induced stress and
snow defence structures, are including an angle between the principal problem directions.
Therefore, these problems are solved for the stress state developing in inclined layers or
slopes of snow.
But also the stress developing under simple laboratory condition is widely described by
numerical methods to study the underlying mechanisms and material properties responsible
for the mechanical behaviour of snow.
Very early in the history of the finite element method, Smith (1972) used a two-dimensional
finite element model to compute the stress state in inclined snow layers. His studies also
included the influence of weak layers which is common in the study of avalanches. The
employed models increased in complexity from linear elastic to finally viscous-elastic with
ascending research years.
Very recently Cresseri et al. (2010) developed a highly advanced constitutive model based
on an elastic-viscous-plastic law and included constitutive equations to account for the
sintering effect of snow. By means of FEM simulations the model was very successfully
validated in relation to the rate dependence of snow in the ductile regime by comparing
with the mentioned measurements of Von Moos et al. (2003) and Scapozza and Bartelt
(2003).
In his thesis von Moos (2001) already used his compression measurements to derive a
constitutive model describing the ductile behaviour of snow. The developments of the
model included different steps by starting with a Kelvin-Voigt and Maxwell model and
later combining the elastic and viscous material laws into more complex Burgers-Model.
The derivations also accounted for the actual load carrying ice matrix.
The series of a Maxwell and Kelvin-Voigt material, the so called Burgers material, has
been used before several times to describe the behaviour of snow. Shapiro et al. (1997) are
presenting a detailed description about the Burgers model. It showed to be very suitable
but contains a large number of parameters compared to simpler constitutive laws.
However, viscous-elastic laws have been used since and are still widely used to describe
snow with sufficient success.
Lang and Sommerfeld (1977) model the deformation of sloping snow packs by means of a
viscous - elastic description.
To model creep of snow and loading on snow defence structures, Stoffel and Bartelt (2003)
used a viscous-elastic law in a 2D finite element code.
Schweizer (1993) investigated into skier induced load carried by snow layers. The snow
was thereby described as a linear viscous material.
Along with the viscous - elastic description of snow behaviour an increasing number of
problems were solved by means of constitutive laws with elastic - plastic material descrip-
tions. The snow was described by the Drucker-Prager model, i.e. a modified version of this
elastic-plastic material model.
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Haehnel and Shoop (2004) re-computed confined loading and plate sinkage tests. The
investigation aimed on wheel - snow interactions. They developed a capped Drucker -
Prager model for low density snow. They also compared their finite element simulations
to Abele and Gow (1975).
Gaume et al. (2011) studied the influence of the heterogeneity of snow on weak layers and
on the avalanche release angle. The derived elastic -plastic material described the snow
deformations and accounted for strain-softening due to shear.
In more recent studies, the development of material laws in snow mechanics showed an
increasing awareness that the micro-structure can not be neglected. Hence, very sophisti-
cated constitutive material laws have been developed taking not only the macro but also
the micro-scale behaviour into account.
Nicot (2004a) developed a constitutive material for snow based on a viscous-elastic law
whereby the macroscopic response is founded on the statistical micro-scale properties,
i.e. bonding and bond direction. By means of a directional probability approach the
constitutive model takes the existence and fracture of bonds into account. In a follow up
publication by Nicot (2004b), this model was used to study the interaction of inclined snow
covers on avalanche protection structures.
Also Bartelt et al. (2000) studied the forces exerted onto snow avalanche protection struc-
tures. The viscous elastic snow model used does not only base its prediction on macroscopic
but also on provided microscopic parameters.
However, the finite element method can also be used to fully resolve the micro-scale of
snow, i.e. discretising the real ice matrix. This is usually done together with volumetric
X-ray scans of the underlying ice matrix of a snow sample. Unfortunately, decreases the
describable sample size tremendously with increasing resolution. Therefore, full resolu-
tion simulations are generally used to study the influence of micro-scale properties on the
macroscopic material properties only. Those simulations are also employed to predict the
representative volume of snow. The representative volume element (RVE) thereby repre-
sents the critical size of a simulated volume relevant for a comparison with experiments or
to develop constitutive models of snow deformation.
The first author who fully represented the micro-structure of snow in a finite element
model was Schneebeli (2004). The development of the X-ray microtomography on snow
was used to reconstruct the three dimensional microstructure of a snow sample with a high
resolution. The micro-structure scans were taken as input for the finite element method
to reproduce the elastic behaviour of snow. Hence, Schneebeli (2004) considered the ice
matrix to consist of a pure linear elastic material which of course excluded any strain rate
dependence.
By the same approach, Hagenmuller (2011) obtained finite element meshes from X-ray
microtomography scans of snow fabrics. This ice matrix discretization of snow samples
was used together with a linear elastic material law including a maximal stress fracture
criterion to investigate into the strength of snow. Hagenmuller (2011) also investigated in
the RVE for different snow types in dependence of the failure strength. The investigations
showed that the failure strength converges to a certain value with increasing sample size
as shown in fig. 2.39.
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Figure 2.38: Representative volume ele-
ment of snow (schematically by Hagenmuller
(2011))

Figure 2.39: Failure strength in dependence
of sample volume (schematically by Hagen-
muller (2011))

Hagenmuller (2011) concluded that the RVE of snow is a parameter of the type of snow
and no material constant. Fig. 2.38 shows the three scales which can be distinguished
when determining the RVE in dependence of the failure strength of snow. The microscopic
scale d is the scale at which a crack in the ice structure was measured. The mesoscopic
scale l is the scale at which the snow strength reaches local homogeneity. The third scale is
the macroscopic scale of the material snow which is the scale of experimentally measured
values.
Also Theile et al. (2011) used 3D tomography scans to compute the full microstructure as
a beam network. They simulated the creep by the finite element methods and investigated
into the failure properties of snow. Whereby the material law used was linear elastic
but involved Glen’s law for secondary creep of ice and accounts for the anisotropic creep
behaviour of single crystals.
The full representation of the ice matrix of snow showed to be too computational expensive
to attack full scale engineering applications. Constitutive laws are able to model the snow
behaviour on the macroscopic scale, i.e. engineering scale. But the majority of models
demonstrated either to account too less for the micro-scale dependence or are too limited
to a certain strain rate regime of snow behaviour, i.e. brittle or ductile.
As snow can be considered as an ensemble of ice grains and bonds, the idea of modeling
this construct by a discrete description comes naturally. Modeling each grain and bond
as discrete interacting shape allows to account for the micro-mechanical and sintering
processes acting at the grain-scale. Those processes are bond formation, grain and bond
deformation, rupture and grain rearrangement.
As the first investigators Johnson and Hopkins (2005) developed a micro-structural snow
model, the µ Snow Model, based on the discrete element method. They used cylindrical
shapes with spherical ends to represent the snow grains. The model thereby computes
the forces and moments developed during collision of grains. Grains were also able to
freeze through bonds. These bonds were represented by bond models accounting for the
forces developing due to tension, compression, twisting and bending of the inter-granular
cementations. For the fracture of the bonds a temperature dependent criterion reflecting
the strength of ice was employed. The sintering of new ice bonds between contacting
grains was based on an empirical description. Johnson and Hopkins (2005) did the first
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simulation attempt with this novel method by computing compression and shear tests of
snow.
Next to this study there are currently new attempts to describe the mechanical behaviour
of snow by means of the discrete element method. But the current developments seemingly
base there inter-granular contacts solely on a cohesive force description which again lacks
the strain rate and ice fracture processes taking place on the grain-scale of snow. Hence,
Johnson and Hopkins (2005) published so far the most sophisticated discrete description
of snow.
Nevertheless, the cohesive force models are very successful when it comes to model wet
or sticky granular materials. Richefeu et al. (2009) applied a model of capillary cohesion
to study force transmission in wet granular matter. The model was implemented as a
force law expressing the capillary force as a function of the water content and the distance
between particles.
However, there are other materials that show similar sintering and fracture behaviour as
snow and some of these materials have already been successfully approximated by discrete
models. The sintering materials have been modeled discretely by means of cylindrical bond
descriptions.
Brendel et al. (2006) used a similar DEM approach to describe the caking behaviour of
the bulk materials polyethylene and urea. The investigation successfully modeled the
macroscopic material and yield properties.
Kim and Sasaki (2010) investigated the fracture limits of porous coke material by a similar
discrete element approach. They also modeled cylindrical bonds between spherical coke
particles. The bonds were able to bare forces and moments and to fracture under increasing
deformation. The simulated compression and cleavage tests captured the straining and
brittle behaviour of a coke specimen very satisfactory.
Parallel to this study, Kuzkin and Asonov (2012) developed a vector based bonding model
to describe the elastic behaviour of sintering material by employing the model in discrete
element method. The so called V-Model accounts for longitudinal stretch, shear, torsion
and bending of a bond between adjoining grains by means of two body fixed reference
systems attached to each grain. The model was implemented successfully into the DEM
package LIGGGHTS.
The most recent development in the numerical description of snow behaviour are hybrid
methods. Hybrid methods implicitly describe one portion of the material as a continuum
and the other portion as discrete grains.
So far there is only one investigation known from the field of computer graphics. Thus the
method does not focus on the scientific results, but it is solely based on physical quantities.
Stomakhin et al. (2013) modeled the dynamics of snow with the material point method
as an alternative method with the purpose of visual simulations. Their model uses an
empirical description to recapture the phenomenological behaviour of snow and ice. This
is to keep the model efficient in describing the geometrical details in almost real time.
Basically the MPM relies on the continuum approximation and thus avoids to model each
single snow grain individually as done in DEM. But the MPM method uses a cartesian
grid to make topology changes and conserves mass through the tracking of Lagrangian
particles similar to DEM. To simulate different types of snow, they introduced a stretch
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and compression coefficient to produce chunky or powdery kind of snow. With a hardening
coefficient and the Young’s modulus they acquired ductile or brittle behaviour of snow,
i.e. muddy or dry snow.

2.2 Tire - Snow Interaction

The force transmission between a tire and a snow-covered road can be very low compared
to the force transmission on dry roads. Thereby the strength of the snow influences the
friction coefficient µ even stronger than the tread properties. For tire and snow interactions
without melting effects the measurements of Gießler et al. (2007) showed a significant
increase of µ when the tire was rolling through highly compacted snow with almost no
slip. But contrary in the case of less densified snow higher friction coefficients where
measurable for higher slip values.
The slip is thereby predicted as follows:

s =
(ω ·R− V )

ω ·R
where ω is the angular tire velocity, R the outer radius of the tread and V is tire velocity
in travel direction.
The main mechanisms contributing to the friction of the tire on a snow-covered road are
the compression and shear resistance of the snow, the rubber - snow grain friction and
cornering effects of the tread blocks.
Before looking into the theory and measurements of force transmission between a tire tread
and snow, the terminology and basic rolling mechanism of a tire are presented. Thereafter,
the numerical predictions in the field of snow - tire interactions are discussed.

2.2.1 Tire Terminology and Basics

In this section, the common conventions and rolling mechanics of a modern radial tire are
presented. The travelling direction of a tire is defined as the longitudinal direction. The
so called lateral or transverse direction aligns with the axis of rotation perpendicular to
the longitudinal direction. A modern radial passenger tire is constructed of more than
15 compounds and more than 20 elements of which the principal ones are presented in
fig. 2.40. Each tread element influences the structural performance of a tire under loading.
When analysing the deformations of a tire during contact the three principal parts to keep
in mind are the tread area, the sidewall and the bead area.
A tire tread rolling onto a snow surface transmits a large portion of the traction force due
to stressing the tread enclosed snow blocks. The tread pattern design consists of blocks
generated by grooves cut across the tread ribs as depicted in fig. 2.41. Gießler et al. (2007)
measured that the enclosed area of a tread, i.e. the void space of the ribs created by sipes,
kerfs and slots, correlates with the friction coefficient in snow. When the snow compacts
between the blocks and sipes a higher shear resistance is created which increases the force
transmission.
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Figure 2.40: Radial tire components as presented by Lindenmuth (2005).

Figure 2.41: Design of tread patterns by Lindenmuth (2005).
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However, a tread design as illustrated in fig. 2.41 is constructed of a number of ribs and
grooves which control the hydroplaning performance. The void space, shoulder slots size
and orientation are influencing the traction, handling and the exits for water in the contact
area. The traction, noise and wear off of the tread are controlled by the sequence and
number of pitches.
The contact area between road surface and tire tread reflects the print left by those com-
ponents and is named the tire footprint. Fig. 2.42 exemplifies a footprint whereby the tire
is rolling in X-direction.

Figure 2.42: Footprint geometry by Pottinger (2005).

Looking at a single block during the rolling motion of the tire, the first edge entering the
contact area is commonly referred to as the heel. The edge leaving the contact last is called
the toe.
Under the rolling motion and loading, a tire undergoes various deformations which also
affects the force transmission and deformation of a single tread block in the contact patch
between tread and road surface. The tire deformation is thereby the difference between
the unloaded and the loaded configurations as shown in fig. 2.43.
The tire undergoes a deformation cycle during rolling. The deformations repeat due to
subsequent adaption of the tire to the road surface. This adaption to the road, as depicted
in fig. 2.43, causes a flattening in the contact patch and results in three principal deforma-
tions. The so called tire crown, sidewalls and the bead area are bended. Secondly, shearing
occurs in the tread and sidewalls. Finally, the tread itself compresses onto the surface.
An additional source of stress is shear generated due to acceleration and braking.
Within the contact patch the crown is flattened which results in an infinite radius of
curvature. As the rest of the tire holds its shape approximately, the minimum and the
maximum curvature of the crown develop at the borders of the contact patch.
Hence, the described tire deformations affect the interaction between the tread blocks
in the contact patch and the contacting surface, i.e. also tread and snow covered road.
Additionally, the tire belt beneath the rubber tread is relatively inextensible and thus
forces the tread blocks to follow its progression. A tread block entering the contact patch
in longitudinal direction touches the surface in an angle while leaning backwards which is
illustrated in fig. 2.44. Assuming no slip, the angle of the block can be measured by the
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(a) (b)

Figure 2.43: Longitudinal and transversal bending of a tire in road contact by LaClair
(2005).

position between the green point attached to the belt and the red point in contact with the
surface. The belt progresses which straightens the tread block gradually into the center of
the contact patch. Just before leaving the contact patch the block is sheared which makes
it lean forward in the final location. The bending of the crown in transversal direction also
exerts shear stress into the contact patch. When designing the crown profile of a tire its
generally desired to minimise the stress and thereby reducing the rolling resistance.

2.2.2 Tread - Snow Traction Mechanism

For the force transmission between a tread block and snow several mechanisms have been
reported by Gießler et al. (2010), Fukuoka (1994) and Gießler et al. (2007) which depend
on the specific conditions of the contact situation. The mechanism can be separated into
3 principal types. The first mechanism can be described as rubber - snow friction which
depends on speed and temperature, i.e. frictional heat converted into snow melting. This
portion is marked by (K) in fig. 2.45.
The second type of force is exerted due to cornering of the snow with the tread blocks.
Gießler et al. (2010) named this type form closure which is marked by (F) in fig. 2.45.
The third type of forces develops due to snow - snow friction or shear resistance of snow
compacted into the sipes or between blocks. Fig. 2.46 depicts snow trapped in tread sipes
of a footprint after driving by Goodyear Advertisement.
Fig. 2.45 illustrates two rubber blocks progressing through the contact patch of a tire
rolling on snow as described in fig. 2.44. The rubber blocks deform due to the acting
compression and shear. If there is no cornering of the blocks, the only force exerted would
be due to friction or adhesion (K) between the rubber and snow surface.
However, usually the tread blocks incline when moving along the longitudinal direction
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Figure 2.44: Movement of a tread block motion through the contact patch for no-slip rolling
tire by LaClair (2005).

Figure 2.45: Form closure (F) and rubber-snow friction (K) portion of force transmission
by Gießler et al. (2010).

due to shear. This results in a cornering between the sipe edges and the snow in front of
the block. The developing portion of the force (F) due to form closure increases with the
number of sipes as stated by Gießler et al. (2007).
On one hand, the form closure is dependent on the rubber deformation and thus on the
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Figure 2.46: Snow trapped in tread sipes by Goodyear Advertisement.

material properties. On the other hand, the force transmission due to form closure is even
more dependent on the mechanical properties of the snow.
When a portion of the total force in the contact patch is transmitted through the enclosed
snow in the sipes, as shown in fig. 2.46, this mechanism is commonly called interlocking.
In that case snow is compacted into the sipes, shear stress develops in the enclosed snow
block and transmits forces. If the shear caused fracture between the enclosed snow and
surface snow the forces are transmitted by snow - snow friction.
Gießler et al. (2010) observed that at high slip values when the shear resistance of the
interlocking snow is reached the tread blocks slide with high speed. The high velocity
sliding generates frictional heat. In that case the friction coefficient drops due to melting
and generation of a liquid layer at the contact surface. This of course depends also strongly
on the temperature of the snow and is further influenced by the heat loss over the snow
pack and the tread.
The described mechanisms show a strong dependence of the force transmission on the
properties of the snow surface, i.e. temperature, strength and densification.

2.2.3 Modeling of Tire - Snow Interaction

The modeling approaches of tire - snow interaction which can be found in the literature so
far are all continuum based description.
Haehnel and Shoop (2004) simulated the tire - snow interaction by means of the finite ele-
ment method. They composed an extensive study with own field measurements to compare
with their FEM simulations. The constitutive model used was elastic-plastic, i.e. a modified
version of the Drucker-Prager model for low-density snow. The model was successfully val-
idated with own conducted compression and plate-sinkage tests. The simulations of wheel
rolling through deep and shallow snow were also compared to measurements conducted in
the same study.
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Lee (2009) conducted finite element simulations of plate indentation tests and the sinkage of
pneumatic tires into snow. Both studies revealed the relation between common indentation
tests and the sinkage of pneumatic tires. In these simulations the elastic-plastic Drucker-
Prager model was used but additionally included a snow hardening law. The simulations
and comparison with measurements revealed different deformation zones of the snow under
the vehicle wheel. Within the study, models have been derived to describe the deformation
zones.
Seta et al. (2011) also conducted finite element predictions of the tire - snow interaction.
They used a crushable foam model to describe the snow deformation. The numerical
models were parametrised by laboratory experiments in order to reflect the properties of
a snow-covered road. The simulations estimated the force factors in good agreement with
tire traction tests on compacted snow.
The continuum nature of the finite element method disables to account for the discrete
micro-scale properties of snow, i.e. distribution and size of grains and bonds. However, the
discrete element method enables to take these measurable properties into account when
modelling the mechanical behaviour of snow. One objective of this study is to relate
the results to the micro-scale structure of snow. Therefore, in this study the mechanical
behaviour of snow is described by the discrete element method.
So far there is no attempt known which approaches the problem of tire - snow interaction
by coupling continuum and discrete methods.

2.3 Coupling of Discrete and Continuum Approaches

A broad range of engineering applications are facing multi-scale problems. A large number
of these problems involve heterogeneous materials such as granular media. Applications
in fracture mechanics, soil-structure interaction, fluidised particle beds and tire-terrain
interaction are major fields to name when it comes to dealing with different length scales.
The ever increasing computation power allows to account for these problems by different
numerical simulation techniques.
The combination of discrete and continuum approaches (CCDM - Combined Continuum
and Discrete Model) is a powerful tool to account for different scales within problems.
Hereafter, different methods of combined discrete and continuum models are reviewed and
discussed. Traditional numerical methods, such as the Finite Element Method (FEM),
describe materials as continuous entities. This assumption allows an increasing number
of engineering problems to be solved conveniently at the macroscopic scale by means of
numerical simulations. But this approach inherits one fundamental drawback: the ho-
mogenisation of individual characteristics of the micro-scale. However, high performance
computer technique now enables the employment of methods, such as the Discrete Element
Method (DEM), able to account for the individual behaviour of each grain within a gran-
ular assembly. This allows to derive the macroscopic characteristics from the behaviour
observed at each single grain. But since the discrete approach requires contact detection,
calculation of all contact reactions and a high temporal resolution, the method inherits
large computation times as a significant disadvantage. Hence, the idea seems quite natural
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to utilise the advantages of both the continuum and the discrete approach and thereby
compensating the shortages of each method.
Numerical methods of coupling continuum and discrete approaches are under constant
development with the purpose to resolve different scales within engineering applications.
The field of coupling between continuum and discrete methods can be separated into two
parts: methods with overlapping and methods with separated physical domains.
One typical field of application connected to overlapping domains is computations of frac-
ture and fragmentation of materials and structures.
For instance, Morris et al. (2006) simulated crack propagation within rock structures of
tunnels. A combined DEM - FEM method was use by employing discrete approaches in
necessary regions. If the yield stress is reached within the FEM domain, the crack region
and new generated fracture surface are handled by DEM related description.
To solve multiscale problems, Nitka et al. (2009) derived a two scale approach to predict
the behaviour of heterogeneous materials. The different scales were resolved by computing
the micro-scale behaviour by DEM and the macro-scale with the FEM method. The
different length scales were linked by a homogenisation method of the micro-response.
The resultant stress was then fed into the macroscopic quantities of the FEM description.
Thus, the macro-scale models depended on the discrete micro variables.
The approach of coupling between discrete particles and FEM with overlapping domains
finds its application also in the field of hypervelocity impacts on structures. Beissel et al.
(2006) predicted the burst of materials due to hypervelocity impacts. Thereby, the devel-
oped method relies on the conversion of finite elements into particles. After the conversion
the particle-like pieces propagate further based on a meshfree Lagrangian description.
Further effort comes from research of fluid flows in interaction with solid structures or
with floating solid parts. Generally in the field of fluid flows, when it comes to continuum-
discrete coupling, algorithms with an interface for transport phenomena are employed
instead of overlapping domains. But PFEM is a Lagrangian formulation to calculate
Fluid-Solid Interaction and an exception in this research field. The method discretizes
any domain by means of FEM, but the mesh nodes are tracked like individual particles,
Idelsohn et al. (2006). The Lagrangian formulation allows to handle the nodes like solid
particles. This enables to compute the separation of fluid particles from the main domain.
As mentioned before, in the field of coupling methods with non-overlapping domains major
contributions evolved from the research of fluid flows with solid parts and flows through
porous media. The purpose of these methods is to share or transport quantities, like drag
forces and heat flux, see Tsuji et al. (1993) and Xu and Yu (1998), between the different
domains through the particle-fluid interface. Coupling methods with separated physical
domains logically involve an interface, which provides the flexibility to apply different
models for the exchange of information. This encompasses a natural link to coupling
models for contact problems. This field of research is also addressed within this current
study. To analyse different length scales in structural mechanics the coupling between the
discrete element method presenting solid particles and the finite element method reflecting
a deformable structure is most suitable.
Valuable effort comes from the field of soil mechanics and terramechanics where soil struc-
tures have to be reinforced or solid bodies are build into the underground. Villard et al.

52



2. Background

(2009) presented a coupling approach between a finite element model used to describe
a geosynthetic sheet and the discrete element method used to describe the behaviour of
granular soil. They paid special attention to friction laws between the finite and discrete
elements in contact. In this approach both methods are governed by the Newtonian laws
of motion. The numerical model has been validated by means of an analytical solution and
experimental results. Their FE mesh consists of triangular elements describing the geosyn-
thetic sheet as a membrane like geometry. In an iterative approach the static equations
of large deformations are solved within the coupling method. To describe the granular
material they employed a discrete element method based on spherical particles. The par-
ticle contact force was described using a elastic-perfectly-plastic law. The normal contact
force between a finite and discrete element is based on the overlap of both. The tangential
force is kept under a certain limit of the normal force and is predicted independently. The
interface model of the tangential force depends on the incremental relative displacement,
a micro-mechanical stiffness modulus of the interface and the influence area of a contact
computed by means of the particle radius.
Applications of DEM - FEM coupling with a more dynamical interaction come from vehicle
- soil or tire - terrain interaction. Nakashima and Oida (2004) and Nakashima et al.
(2009) employed a two dimensional FE-DE method to describe tire-soil interaction and
the traction dependency of a tread. For this purpose, they derived their model in a similar
manner as described above. Both domains were governed by the fully time dependent
discretization of Newton’s second law. The contact force developed at the interface between
particle and surface element was also based on the overlap. The counter part of the contact
force is interpolated to the nodal points of the surface element based on a virtual work
equivalent. Horner et al. (2001) used the same virtual work approach to map forces between
discrete and finite elements. Both employed linear triangular elements to approximate
the surface. Horner et al. (2001) discussed his approach in the view of large parallel
computations of applications for vehicle - soil interaction. Despite the advantages of these
coupling approaches, in many fields it is still more common to approximate the behaviour
of granular materials with continuum models.

2.4 Review Conclusions and Manuscript Outline

The objective of this project is to develop a simulation technique able to describe the
interactions between a tire tread and a snow-covered road. Therefore, after reviewing
the current state of art, three principal developments of the simulation technique can be
addressed:

1. Inter-granular snow models need to be developed which have to account for the
properties of ice and snow summarised at the end of subsection 2.1.2. Deploying an
extended discrete element technique, the micro-structure of a snow pack has to be
represented by generating an ensemble of explicit geometrical shapes describing the
individual snow grains and bonds.

2. For the purpose of predicting the deformation of the tire surface, the Finite Element
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Method needs to be employed. A fully time dependent model of elastic deformation
would be most suitable in relation to the fully time dependent description of snow.

3. An efficient coupling procedure between the FEM and DEM domain has to be de-
rived. On one hand, this includes an efficient algorithm for a fast prediction of
potential contact pairs between snow grain and tread element. On the other hand,
the contact force and displacement have to be shared properly at the interface of the
domains.

This chapter reviewed the necessary background knowledge.
The third chapter contains the developed inter-granular snow models and derived material
laws of the grain-scale. It further describes the principal equations beyond the extended
discrete element method as well as the developed algorithms to enable sufficient simula-
tions. In addition, the method to generate virtual snow samples is also presented in chapter
three.
The fourth chapter explains the finite element method and the differential equations used
to describe the elastic deformations of the tire tread.
Chapter five contains the coupling procedure of the discrete and finite element method.
It also describes a homogenisation method enabling to compare discrete and continuous
simulation results.
Finally, several micro- and macro-scale simulations are conducted in chapter six to validate
the derived simulation technique. The simulations are conducted along and compared to
related measurements.
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Chapter 3

Extended Discrete Element Method
(XDEM)

Engineering applications governed by snow behaviour have been proven difficult to solve
due to the spatial heterogeneity of the geo-material. The complex deformation mechanisms
of snow are inherited from the inhomogeneities on the micro-scale (10−3m). In general,
continuum models are employed to predict the material behaviour at the local scale of
snow. Those models are developed from the concept of a representative volume element
(RVE), which has been shown already in fig. 2.38. But this concept logically requires the
ability to accurately represent the micro- to RVE scale of a material. This results in an
homogenisation of the micro-mechanical processes. In the case of snow deformation, the
micro-mechanical processes are complex due to inter-granular bonding, rate dependent
creep and fracture of grains and bonds involved. Consequently, the development of an
accurate RVE description accounting for such a high amount of complexity is difficult and
limited.
However, a discrete element approach allows to describe explicitly each grain of an en-
tire ensemble and micro-mechanical processes between neighbouring grains directly. To
overcome the continuum limitation, an extension of the discrete element model is devel-
oped to represent the motion of each snow grain individually and explicitly model the
micro-mechanical interaction at each contact point. Hence, the Extended Discrete Ele-
ment Method (XDEM) introduced in this chapter considers the geo-material snow as a
granular material.
This chapter proposes inter-granular snow models developed and deployed using an ex-
tended discrete element technique. The developed approach predicts the displacement of
the individual grains due to inter-granular contact and bonding forces. The micro-structure
of a snow pack is represented by generating an ensemble of explicit geometrical shapes de-
scribing the individual snow grains and bonds. The developed inter-granular bond models
assume a cylindrical neck between adjoining snow grains. Material properties and con-
stitutive models of polycrystalline ice (Ih) are used to describe the material behaviour of
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each individual bond and snow grain during loading. The developments aim to study the
dependencies of the macroscopic snow behaviour from its micro-structural and mechanical
properties on grain-scale, particularly for the mentioned high strain applications. Despite
any temperature distribution over a snow pack, this dissertation focuses on the isothermal
behaviour.
The assumptions of the developed models in this chapter are:

• Snow on grain-scale is consisting of polycrystalline ice (Ih)

• A snow pack is loaded under isothermal conditions

With increasing computational power over the last decades, see Moore (1965), computer
simulations have become a powerful tool in the everlasting ambition of engineers and scien-
tists to describe physical phenomena. In the field of granular matter, the Discrete Element
Method is the leading approach to describe numerically the kinematics of a granular ensem-
ble, see Poeschel and Schwager (2005). Cundall and Strack (1979) presented the method
first and stated that the DEM is a numerical approach where statistical measures of the
global behaviour of a phenomenon are computed from the individual motion and mutual
interactions of a large population of elements. A very detailed description by Radjai and
Dubois (2011), highlighting all aspects of computations in granular matter by means of
discrete element modeling, was recently published.

3.1 Time-Driven Approach

In discrete element modeling, either an event- or time-driven method is employed to sim-
ulate the behaviour of granular materials. Event-driven methods have successfully been
applied to applications where the interaction time between particles is small compared to
the time of free inter-particle motion. This is the case in granular gas motion where gravity
can be neglected, as shown by Goldhirsch and Zanetti (1993). The event-driven approach
is also known as the hard particle approach. This is due to the fact that the method could
also be used in cases where the particles are very hard, i.e. their deformation during contact
is small compared to the time the particles move freely. When particle interactions are
enduring in comparison to free motion, a time driven or soft particle approach has shown
to be most suitable, as described Campbell (1982).
Within the context of XDEM, a time driven method is employed as the main use are
granular matter applications with closely packed particle beds. Thus, the Lagrangian
Time-Driven Method is applied to each discrete particle of a moving ensemble. The en-
semble is thereby defined as a system of a finite number of particles with a distinctive
shape and material properties.
The state of the particles is computed through integration in time of the equations of rigid
body motion. Thereby, the timescale is subdivided by the discrete timestep length ∆t. The
state of each particle in the granular ensemble, such as position, velocity, orientation and
angular velocity, is calculated at every discrete timestep ti. Alternatively to the equations
of motion, the displacement of each particle could also be gained by calculations based on
the equations of equilibrium, as successfully done by van Baars (1996). But in the current
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study, Newton’s second law for translation and rotation of each particle in the ensemble is
integrated over time. Therefore, all forces and torques acting on each particle need to be
determined at each timestep.

Figure 3.1: Particle deformations modeled by shape overlap

The described method models every single particle as a deformable body. Two collid-
ing bodies experience small deformations which cause stress to develop at the contacting
surfaces. In the case of an elastic collision, repulsive forces develop to resolve the stress
state. The deformations between two colliding particles, also named gains in the following
context, are modeled by means of an overlap δ between the two geometrical shapes as
shown in fig. 3.1. Hence, the developing collision forces are derived from the overlapping
geometry, material properties and kinematic quantities of the adjoining particles. Within

Figure 3.2: Bond shape modeled as cylindrical neck

this study the classic DEM description was extended by additionally modeling the bond-
ing behaviour between contacting gains. Following the objectives, two particles in contact
are allowed to sinter a neck at the contact point. Natural bond geometries can be quite
complex due to their dependence on the material inherited sintering process. This is also
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the case for the sintering between snow grains as investigated in detail by Colbeck (1997).
Therefore, in this study the material neck is described as a finite cylindrical bond aligning
between the adjoining grains, as depicted in fig. 3.2. When deformed, due to displacement
of the adjoining grains, the bond develops an internal stress state which recursively results
in forces and torques acting back on the adjoining grains. The deformations of a bond are
modeled by means of the relative translational and rotational displacement, d~u and d~φ, of
the adjoining grains. The resulting bond forces and torques are depending on the bond
deformation state, the rate and material properties of the bond. Additionally, bonds be-
tween adjoining grains rupture if their stress state exceeds certain limits. Contrary to the
classic collision modeling, this means that resulting bond forces cannot only be repulsive
but also be attractive and vanish in the case of stress relaxation or bond fracture.
Similar bonding approximations have already been proposed and successfully employed in
related discrete and constitutive models in the field of snow deformation by Johnson and
Hopkins (2005) and Nicot (2004a), respectively. But snow is not the only sintering mate-
rial which has been modeled discretely by means of cylindrical bond descriptions. Brendel
et al. (2006) used a similar DEM approach to describe the caking behaviour of the bulk
materials polyethylene and urea. Kim and Sasaki (2010) investigated the fracture limits
of porous coke material with the same method.

3.2 Material Properties

This section lists all derived material laws and selected parameters which are used within
the snow models presented in this chapter. In this study, a snow grain is assumed to
consist of ice Ih as shown in fig. 2.2. A snow grain can be seen as multi-crystalline ice,
as shown by Meyssonnier et al. (2009). Thus material properties of poly-crystalline ice
are assumed. Therefore, the following section describes the elastic parameters, creep rate,
hardness, restitution and friction of poly-crystalline ice. Further, resulting from this as-
sumption, the density of a snow grain is assumed to be constant at the density of ice Ih,
i.e. ρice ≃ 920 kg/m3.

Elasticity of Ice

Ice cannot be considered as a linear elastic material solely as described in section 2.1.2.
Although it shows a linear behaviour until a certain state of deformation, the initial state
is not retrieved entirely when releasing the load.
However, table 3.1 lists the elastic properties of polycrystalline ice found in literature.
Gammon et al. (1983) showed that the temperature dependency of any of the elastic
parameter can be approximated linearly by X(T ) = X(T0)[1 + 1.42 · 10−3K−1 · (T −
T0)]. This temperature approximation is valid for the commonly used higher part of the
temperature range of snow, 0 ◦C to −30 ◦C, as shown by Gammon et al. (1983).
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Table 3.1: Average values of elastic properties of ice

Parameter At −5 ◦C At −16 ◦C
composed from Hobbs (1974) by Gammon et al. (1983)

Young’s Modulus E 9.3 GPa 9.33 GPa
Shear Modulus G 3.562 GPa 3.52 GPa
Poisson’s Ratio ν 0.33 0.352

Creep Rate of Ice

The viscous-plastic creep behaviour of ice affects the snow grain collision and bonding
significantly. In this study two different power laws are used which are derived by Barnes
et al. (1971).
The first relation 3.1 is based on measurements of the creep rate ε̇ of ice samples under
constant load and can be written:

ε̇vol = A · (sinh(α · σ))n · e−Q

RT (3.1)

where σ is the applied load, Q is the activation energy, R is the gas constant, T is the
temperature and A, n and α are constants. Barnes et al. (1971) gives a detailed descrip-
tion which values to apply for the constants depending on the temperature regime. This
creep relation is a macroscopic relation because it describes the creep behaviour of a rep-
resentative volume of polycrystalline ice. The dependence of the creep rate on load and
temperature is depicted by the grey curves in fig. 3.3 along with the measured data of
respective tests by Barnes et al. (1971). The curves show an increase in the creep rate
with increasing temperature and stress whereby the later dependence shows an asymptotic
behaviour.
The second creep relation of eq. 3.2 is derived from measurements of the indentation
hardness of polycrystalline ice.

ε̇ind =
1

A
· σn · e −Q

nRT (3.2)

As indentation tests are conducted by pressing a conical indenter with its peak end into the
surface of an ice sample. The creep rate ε̇ derived from indentation measurements is closer
to the micro- or meso-scale behaviour. Thus the scale of this relation of ice is naturally
closer to the grain-scale of snow. The quantities are the same as described in eq. 3.1. The
dependence of the creep rate on load and temperature is depicted by the black curves in
fig. 3.3. The curves resulting from the indentation relation show the same dependencies
on increasing temperature and stress. But this relation lacks the asymptotic behaviour of
eq. 3.1. Further, details on the experiments and derivation are described in chapter 2.1.2
or by Barnes et al. (1971).
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Hardness of Ice

Eq. 3.3 predicts the hardness H∗ of ice Ih and has been derived by Barnes et al. (1971)
from the previously mentioned indentation measurements.

H∗ = B ·
(
1

t

) 1

m

· e Q

mRT (3.3)

In the equation above, σ describes the applied load, Q is the activation energy, R is the
gas constant, T is the temperature and B and m are constants. In this case, t describes
the time that the indenter has been acting on the ice surface. Fig. 3.4 shows a comparison
between eq. 3.3 and measurements. The hardness decreases with increasing indentation
time, but increases with decreasing temperature. However, if the load applied on ice Ih
reaches a certain value, depending on the ice temperature, the loaded surface starts to
melt due to pressure. This of course prevents any further increase of the measured force.
Therefore, relation 3.3 is limited by the melting pressure curve of ice. This correlates well
with the measurements, shown as symbols in fig. 3.4. Pressure melting change is the upper
limit for ice loading. Here, the Clausius - Clapeyron equation 3.4 is used to predict the

Figure 3.3: Creep rate of ice versus stress at different temperatures. The black and grey
lines are predicted according to eq. 3.2 and eq. 3.1, respectively. Symbols denote measure-
ments of the creep tests of ice conducted by Barnes et al. (1971)
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Figure 3.4: Hardness of ice versus temperature at four indentation periods of 1.5s, 10s,
103s and 104s. The lines are predicted according to eq. 3.3 and the symbols represent
measured data by Barnes et al. (1971). The melting point depression is shown by the grey
curve.

melting pressure p∗ as follows:

p∗ =
dL

T0 · dV
· (T − T0) + p0 (3.4)

where dL is the latent heat, dV is the change in volume and T is the temperature at
the point of transition, T0 and p0 are the ambient temperature and pressure, respectively.
Eq. 3.4 accounts for the phase transition between the solid and liquid phase of water during
the loading of ice. Eq. 3.5 composes the relations used to predict the hardness H of ice.

H =




B · (t)

−1

m · e Q

mRT : H∗ < p∗

dL

T0 · dV
· (T − T0) + p0 : H∗ ≧ p∗

(3.5)

The relation above is plotted in fig. 3.4 and is used frequently in this study.

Coefficient of Ice-Ice Friction

The friction coefficient µice for ice-ice contacts employed in this study is derived from
measurements and observations by Akkok et al. (1987), which are depicted as symbols in
fig. 3.5. The lines in fig. 3.5 are predicted by the following equation:
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Figure 3.5: Friction coefficient of ice-ice contact versus sliding velocity at different temper-
atures and contact pressures. The lines represent eq. 3.6 and the symbols are measurements
by Akkok et al. (1987) and Kennedy et al. (2000)

µice(T, p, v,H) = (Tm − T )a · p−b ·
(
kρc

vL

)c

·H−d (3.6)

where Tm, T , v and p are the pressure depressed temperature, the ambient temperature,
the sliding velocity and the load applied, respectively. L describes the characteristic length
of the sliding body and H is the hardness of ice. Eq. 3.6 is valid for the higher velocity
behaviour of the friction coefficient, i.e. for v ≧ 10−4 m/s. Akkok et al. (1987) included a
detailed description of the constants a, b, c and d for several material pairs. The relation
describes the sliding regime governed by surface melting of contact asperities. However,
the regime of the lower sliding velocities, i.e. for v < 10−4 m/s, is governed by creep and
fracture of the contacting surface. This behaviour is accounted by the bond deformation
and fracture, i.e. frozen contacts. The models of bond deformation and fracture will be
derived in section 3.4.3

3.3 Equations of Rigid Body Motion

In this study, the translation of a rigid body, i.e. discrete particle, is described by the
explicit integration of Newton’s second law. Further, Euler’s equation of rotational motion
is used to determine the evolution of the orientation of a particle over time, see Radjai and
Dubois (2011).
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3.3.1 Particle Translation

Notation

The position of a rigid body in space is defined uniquely by the three component vector xα

referring to the three spacial dimensions. The change in position occurs due to the force
~Fi acting on a particle. As shown in fig. 3.6, a change in position causes a new state of the
three components x1, x2 and x3 on the three orthogonal axes of the space-fixed reference
system ~XS.

Figure 3.6: Change of position

Particle Forces

The force vector ~Fi acting on a particle i is the sum of all collision ~F c
i , bonding ~F b

i ,

gravitational ~F g
i and external forces ~F e

i in eq. 3.7.1

~Fi = ~F c
i + ~F b

i + ~F g
i + ~F e

i (3.7)

For example, the sources of external forces are interactions between electromagnetic charged
particles, drag of surrounding fluids or attraction forces. Due to the objective of this thesis
to describe snow behaviour, the focus herein lies on the collision and bonding forces and the
corresponding developments for XDEM and its software architecture. The collision force
~F c
i of a particle i is the sum of all collision forces ~F c

ij generated while colliding with the
neighbouring bodies j. This is mathematically described by eq. 3.8 where n is the number
of neighbouring particles in contact and boundary shapes interacting with the particle i.

~F c
i =

n∑

j=1,j 6=i

~F c
ij (3.8)

1The roman indices i, j, k identify the ith particle out of n, i.e. i = (1, 2, ..., n)
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Figure 3.7: Particle force due to colliding with particle 2 and 3

Fig. 3.7 shows the collision forces acting on a particle while colliding with two neighbours.
At the point of collision, each collision force is composed of a tangential and normal
component. The normal unit vector ~nc

ij points from the center of the particle j to the

center of i with the tangential direction ~tcij orthogonal to ~nc
ij.

The bonding force ~F b
i experienced by the particle i is the sum of all bonding forces plus

forces caused by moments generated due to bond deformation. Hence, the vector ~F b
i can

be separated into a sum of forces ~F b
ij and a sum of forces due to bond moments ~F bm

ij as
follows:

~F b
i = ~F bf

i + ~F bm
i =

n∑

j=1,j 6=i

~F b
ij + ~F bm

ij =
n∑

j=1,j 6=i

~F b
ij + ~M b

ij × ~dbij
−1

(3.9)

Figure 3.8: Particle force generated by bonding forces of the joints 2 and 3
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Figure 3.9: Particle force generated by torques of the bonds 2 and 3

The bonding forces and moments in eq. 3.9 are depict in fig. 3.8 and 3.9, respectively. In
fig. 3.8, the forces ~F b

ij generated in each bond center due to deformation are acting in the

normal ~nb
ij and orthogonal tangential ~tbij direction of the joint. Additionally, as shown in

fig. 3.9, the moments ~M b
ij develop inside a deformed bond and contribute to bond forces

experienced by a particle i. Thus, together with the according lever ~dbij, between the bond

center and the center of particle i, each moment ~M b
ij results in a force ~F bm

ij acting at the
particle center.

Time Integration of the Particle Position

The translation of a rigid body, i.e. discrete particle, is described by Newton’s second law.
Newton’s well-known equation 3.10 relates to the kinematic quantities at the center of
gravity of a particle i as follows:

d~xi
2

dt2
=

d~vi
dt

= ~ai =
~Fi

mi

(3.10)

where mi denotes the particle mass, ~vi is the velocity, ~ai is the acceleration, ~xi is the center
of gravity and ~Fi describes the force acting on the particle.
Consequently with the summation of all forces acting on a particle, Newton’s second law
3.10 is used to obtain the particle acceleration. To further follow the evolution of a granular
ensemble, the new position ~xi

t+∆t and new velocity ~vi
t+∆t of every particle are computed

by numerical integration over every discrete time ∆t between t and t+∆t. The procedure
of obtaining the new state from the particle acceleration, i.e. forces, is commonly expressed
by:

ẍ −→ ẋ −→ x

For the software environment of XDEM, different algorithms have been derived to perform
the integration in time. All available integration schemes are listed in table 3.2. In the
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study of Samiei (2012) a very detailed discussion of all schemes is presented. He points
out that the performance of any integration scheme is only challenged in a contact situ-
ation between particles and does not differ considerably in free motion of particles. The
study compares the accuracy of the integration schemes in relation to the chosen contact
resolution CR, which is defined as follows:

CR =
tcontact
∆t

(3.11)

The contact resolution is a coefficient identifying how many discrete timesteps ∆t resolve
the duration of a collision. From the investigations of Samiei (2012), this study draws the
conclusion to employ the Velocity Verlet method. The Velocity Verlet method showed the
best balance between accuracy and computational effort in relation to the snow simulations
ahead. Thus here only the Velocity Verlet method is used and introduced.

Table 3.2: Time Integration Schemes

Integration method Velocity, ~vt+∆t Position, ~xt+∆t

Symplectic Euler ~vt +∆t~at ~xt +∆t~vt+∆t

Taylor ~vt +∆t~at ~xt +∆t~vt +
∆t2

2
~at

Position Verlet
1

2
(~xt+∆t − ~xt−∆t) ·∆t−1 2~xt − ~xt−∆t +∆t2~at

Velocity Verlet ~vt +
∆t

2
(~at + ~at+∆t) ~xt +∆t~vt +

∆t2

2
~at

Gear 4th order ~vt +
7∆t

12
~at +

5∆t

12
~at+∆t ~xt + ~vt∆t+

5∆t2

12
~at

+
11∆t2

12

∂3~xt

∂t3
+
∆t2

12
~at+∆t +

∆t3

12

∂3~xt

∂t3

Derivation of the Velocity Verlet Scheme
All schemes presented in table 3.2 can be derived by an approximation of a Taylor series
of eq. 3.12.

f(t+∆t) = f(t) +
f ′(t)

1!
∆t+

f ′′(t)

2!
∆t2 +

f (3)(t)

3!
∆t3 + ... (3.12)
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Thus, the method proposed by the French physicist Loup Verlet, Verlet (1967), can also
be derived by means of a Taylor series. The basic Verlet method makes use of a cen-
tral difference approximation. Employing the Taylor polynomial, the first derivative of a
function f can be gained by deriving the polynomial to the second degree for the back-
ward and forward time direction. The two directions are shown in the following equations,
respectively.

f(t+∆t) = f(t) + ∆t · f ′(t) +
1

2
·∆t2f ′′(t) (3.13)

f(t−∆t) = f(t)−∆t · f ′(t) +
1

2
·∆t2f ′′(t) (3.14)

Thereafter, the two derivations are subtracted from one and another. This results in a
central difference approximation for the first derivative of the function f as written in
eq. 3.15.

f ′(t) =
f(t+∆t)− f(t−∆t)

2∆t
(3.15)

Further, the Taylor polynomial needs to be formed again for both time direction, but this
time truncated after the third degree. By summing these derivations, the second derivative
of a function f takes the form of eq. 3.16.

f ′′(t) =
f(t+∆t)− 2f(t) + f(t−∆t)

∆t2
(3.16)

Using eq. 3.16 on the acceleration of a particle, where the second derivative f ′′(t) equals
~ai(t) = ~̈xi(t), the eq. 3.17 yields a relation for the new position ~xi(t+∆t) of a particle i.

~xi
t+∆t = 2~xi

t − ~xi
t−∆t + ~ai

t ·∆t2 (3.17)

The current acceleration ~ai
t is obtain from the sum of all forces according eq. 3.10. Further,

using the first derivative f ′(t), a relation for the velocity ~vi(t) = ~̇xi(t) can be derived as
follows:

~vi
t =

~xi
t+∆t − ~xi

t−∆t

2∆t
(3.18)

Looking at Eq. 3.18 one notices that the velocity is still one step behind the position.
To retrieve the position and the velocity at the new time t + ∆t simultaneously further
derivations are undertaken in this scheme. Hence, eq. 3.18 is resolved to the position term
~xi

t−∆t and placed into eq. 3.17. In this scheme, the new particle position ~xi
t+∆t is now

predicted by eq. 3.19.

~xi
t+∆t = ~xi

t + ~vi
t∆t+

1

2
~ai

t ·∆t2 (3.19)
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By choosing this approach the new particle velocity ~vi
t+∆t is determined as follows:

~vi
t+∆t = ~vi

t +
1

2
(~ai

t + ~ai
t+∆t)∆t (3.20)

where ~ai
t is the sum of all current and ~ai

t+∆t is the sum of all new forces. Concerning
the implementation, this approach does not allocate additional memory as the prediction
of the new velocity is split into a predictor and a corrector phase of the procedure. In
details this means that the current acceleration ~ai

t−∆t is determined and added on the new
velocity ahead of the prediction of the new forces. After the prediction of the new forces
the new velocity object is corrected by adding the new acceleration.

3.3.2 Particle Rotation

Notation

The orientation of a rigid body in space can be defined by the three Euler angles φα.
The change of orientation occurs with a torque ~Mi acting on a particle. A change in
orientation causes a new state of the Euler angles. Hence, the angles present a sequence
of three rotations about the axes of the reference system. The sequence of rotation is
depicted in fig. 3.10. By definition in XDEM, the first rotation is about XS

3 by the angle

Figure 3.10: Sequence of rotation

φ1, the second about X ′S
1 by the angle φ2 and the final rotation is again around X ′′S

3 but
by the angle φ3.
However, the new orientation, i.e. the new Euler angles, can be derived in all three spacial
dimensions from the total torque ~Mi acting on a particle. But this inherits somehow more
complexity compared to translational motion. Therefore, different co-coordinate systems
have to be defined for the derivation of the new orientation. The following description will
distinguish between the space-fixed, the co-moving and the body-fixed coordinate system.
All three are simultaneously exemplified in fig. 3.11. First, the space-fixed coordinate
system ~XS is self-explanatory fixed in space and time, which consequently means it does
not dependent on the motion of the body in a system. Therefore, the space-fixed system is
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Figure 3.11: Different coordinate systems: Space-fixedS, Co-movingC and Body-fixedB

the reference system for all derived equations of motion and for the simulation environment
of XDEM. Secondly, for a clean handling and understanding, the rotational motion can be
treated separately from the translation by introducing the co-moving coordinate system
~XC , as seen in fig. 3.11. The origin of the co-moving system is aligned with the body
center and the axes direction are aligning with the space-fixed coordinate system. Thus
it relates to the space-fixed system by pure translation and the position vector of the co-
moving system equals the position vector of the particle ~XP . The origin of the body-fixed
coordinates ~XB is similar to the co-moving but its axes directions orient with the principal
axes of the moving body at the particular time t. Hence, contrary to the space-fixed
system, this coordinate system translates and rotates through time according to the body
motion. But the state of the body-fixed system can be described by pure rotation of the
co-moving coordinate system.

Particle Torques

The total torque ~Mi on a particle i is composed of collision ~M c
i and bonding moments

~M b
i acting on adjoining particles. Eq. 3.21 includes the described sources of torques and

additionally accounts for external moments ~M e
i , for instance moments experienced by a

particle due to friction with a surrounding fluid.

~Mi = ~M c
i + ~M b

i + ~M e
i (3.21)

The torque ~M c
i on a particle i developed during a collision is the sum of all the forces ~F c

ij

acting at the collision point times the relative distance ~dcij to the center of mass of the
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particle:

~M c
i =

n∑

j=1,j 6=i

~M c
ij =

n∑

j=1,j 6=i

~dcij × ~F c
ij (3.22)

The mathematical formulation of eq. 3.22 is illustrated accordingly in fig. 3.12. Additionally,

Figure 3.12: Particle torque during collision with two neighbours

the torque experienced by a particle i further includes all moments developing due to bond
deformations. Thus, the vector ~M b

i contains the sum of all torques ~M b
ij and ~M bf

ij as follows:

~M b
i =

n∑

j=1,j 6=i

~M b
ij + ~M bf

ij =
n∑

j=1,j 6=i

~M b
ij +

~dbij × ~F b
ij (3.23)

Fig. 3.13 illustrates the torques ~M b
ij generated in each bond center due to deformation.

The sum of these torques, ~M bm
i , results in the center of gravity of the particle i. The

moments ~M bf
ij develop as a product of the according bond force ~F b

ij times the according

lever ~dbij. These moments result in the particle center and are depict in fig. 3.14.

Time Integration of the Particle Orientation

In XDEM, the Euler equation of rotational motion is applied to predict a change of the
particle orientation. Details about the derivation of the Euler equations from Newton’s
equations or the Lagrange equation of motion can be found in the publications of Radjai
and Dubois (2011), Poeschel and Schwager (2005), Dziugys and Peters (2001) and Tatum
(2010). Euler’s equation in the body fixed coordinate system can be written as follows:




MB
1

MB
2

MB
3


 =




I11ω̇
B
1 − ωB

2 ω
B
3 (I22 − I33)

I22ω̇
B
2 − ωB

3 ω
B
1 (I33 − I11)

I33ω̇
B
3 − ωB

1 ω
B
2 (I11 − I22)


 (3.24)
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Figure 3.13: Particle torque induced by bond moments with adjoining particles

Figure 3.14: Particle torque due to bond forces of two bonds

where ~MB and ~ωB describe the torque and the angular velocity of the bodies in the body-
fixed coordinate system, respectively. To make use of the moment of inertia Iαβ in the
principal directions, i.e. I11, I22 and I33, of a shape, the torque in eq. 3.24 has to be
transformed into body-fixed coordinates. In case the moments would be given in space-
fixed coordinates, the moment of inertia results in a time-dependent tensor dyad Iαβ which
in all probability contains off-trace elements.1 However, the three equations in 3.24 are
solved for the three unknown angular velocities ωB

α of a particle. Thereafter, the change

1The Greek indices α, β , γ identify the three spatial components of a quantity.
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in Euler angles φ̇α is predicted by making use of the relations in eq. 3.25.




φ̇1

φ̇2

φ̇3


 =




ωB
x sinφ3 + ωB

y cosφ3

sinφ2

ωB
x cosφ3 − ωB

y sinφ3

ωB
z − (ωB

x sinφ3 + ωB
y cosφ3)

cosφ2

sinφ2




(3.25)

However, it needs to be mentioned that the eq. 3.25 inherits singularities when the Eu-
ler angles take the values 0, π, 2π, .. etc. To avoid complications, XDEM makes use
of quaternions internally to describe rotations. This is simply a different method to ex-
press the orientation of a body in space. A quaternion is a vector with four components
qi = (q0, q1, q2, q3) which have to satisfy the following constraint:

q20 + q21 + q22 + q23 = 1 (3.26)

The relation between quaternions and Euler angles used can be expressed as follows:




q0
q1
q2
q3


 =




cos
φ2

2
cos

φ1 + φ3

2

sin
φ2

2
cos

φ1 − φ3

2

sin
φ2

2
sin

φ1 − φ3

2

cos
φ2

2
sin

φ1 + φ3

2




(3.27)

With the particle orientation expressed by a quaternion, the eq. 3.28 computes directly
the change in orientation from the angular velocities of the eq. 3.24.




q̇0
q̇1
q̇2
q̇3


 =

1

2




−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


 ·




ωB
x

ωB
y

ωB
z


 (3.28)

Simultaneously, the eq. 3.28 accounts for the final backwards transformation from body-
fixed to space-fixed coordinates of the angular velocities, which are the reference coordi-
nates for all spacial quantities.

3.4 Interaction Models of Snow and Ice Grains

The grain-scale properties and processes affect the behaviour of snow under load on differ-
ent time scales.
One time scale is the long-term evolution of the micro-structural properties of a snow
sample due to metamorphism. The micro-structural properties depending on this evolution
of the snow sample are the grain geometry, bond size, coordination number and the ice
matrix, i.e. foam structure, of the whole sample. The isothermal observations conducted by
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Kaempfer and Schneebeli (2007) at different temperatures describe the evolution of these
particular snow properties in a very detailed analysis. Yong and Metaxas (1985) aged
samples in similar isothermal conditions and showed that the strength of a snow sample
increases with increasing age, i.e. increasing bond size and number. These properties
constitute initial conditions for models derived in this chapter. Chapter 3.5 describes
the preparation and pre-processing of a snow specimen as well as the setup of the above
mentioned initial bulk and micro-structural properties.
The second time scale governing snow behaviour is the characteristic rate applied to a snow
sample during loading. As described in chapter 2.1, the transition between ductile and
brittle material behaviour of snow is inherited from ice on the micro-scale. This transition
behaviour depends on the strain rate acting during the deformation process. Kinosita
(1967) and Schulson (1990) described this macroscopic transition phenomena in detail.
Consequently, the derivations of the inter-granular models are focused on the reproduction
of these phenomena of snow on the macroscopic scale. Therefore, the creep behaviour of
ice is employed on the grain scale by the power law of Barnes et al. (1971).
The rate dependence is the major characteristic of snow behaviour. But snow behaviour
also shows strong dependencies on the ice temperature T and the loading pressure p. Thus,
the collision and bonding models between snow grains also account for temperature and
contact pressure, i.e. stress, dependent behaviour. Thereby, the description of the elastic
viscous-plastic deformation and the growth of a bond between two adjoining grains is based
on the material properties and the creep behaviour of ice. Furthermore, the bond fracture,
impact fracture and pressure-melting of colliding grains is represented by the models in
this study.
All the above-mentioned micro-scale characteristics of snow are accounted for to approxi-
mate the macroscopic behaviour. How much each characteristic participates to the macro-
scopic behaviour of snow will be discussed along with the simulation results in chapter
6.

3.4.1 Contact Properties

The forces and torques developing between colliding or bonding grains are estimated from
the contact properties at the point of contact. The properties are described within the local
contact frame which is defined by the normal ~nij and tangential ~tij unit vector at the contact
point, as shown in fig. 3.15. Along with the specific collision and bonding properties, which
are described in the following sections 3.4.2 and 3.4.3, the relative velocity ~vij at the point of
contact is applied for interaction. In this section, the mathematical relationships describing
the dynamics of a contact are derived. The normal direction ~nij of a contact is given by
eq. 3.29 and points always from grain j to grain i.

~nij =
~xi − ~xj

|~xi − ~xj|
(3.29)

Having the normal direction estimated the location of the point of contact ~xc
ij itself is

given by eq. 3.30.
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Figure 3.15: Contact configuration and normal overlap of grain i and j

Figure 3.16: Velocity at the point of contact

~xc
ij = ~xi + ~nij · (rj − |~xi − ~xj|) (3.30)

The velocity ~vij at the contact point is predicted by eq. 3.31 taking into account the angular
and translational velocities of the contacting particles, as shown in fig. 3.16.

~vij = (~ωi × ~dcij + ~vi)− (~ωj × ~dcji + ~vj) (3.31)

The normal and tangential velocity, ~vnij and ~vtij respectively, at the point of contact are
defined as:

~vnij = (~vij · ~nij) · ~nij (3.32)
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~vtij = ~vij − ~vnij (3.33)

The tangential direction ~tij of the contact configuration is defined as the direction of the
tangential velocity at the contact point by eq. 3.34.

~tij =
~vtij∣∣∣~vtij
∣∣∣

(3.34)

The effective radius Rij and reduced mass mij of two grains in contact are determined by
eq. 3.35 and eq. 3.36, respectively.

1

Rij

=
1

ri
+

1

rj
(3.35)

1

mij

=
1

mi

+
1

mj

(3.36)

3.4.2 Grain Collision

Collision Properties

The forces developing between colliding grains are estimated from the collision properties
at the point of contact. The characteristics of a collision are the duration of a contact
tc, the normal δnij and tangential overlap δtij and the relative velocity ~vij at the point of
contact. Here, the normal overlap δnij represents the deformation of the grains in normal
direction. As deformation causes stress, the normal overlap is finally used to estimated the
resulting normal force ~F c,n

ij . Hence, the tangential overlap represents the deformation of
the asperities at the grain surface. Therefore, the tangential overlap is employed to predict
the frictional force ~F c,n

ij in tangential direction.
Equation 3.37 evaluates the normal overlap δnij with the radii ri and rj of the spherical
particles and is presented in fig. 3.17.

δnij = ri + rj − |~xi − ~xj| (3.37)

The duration of a collision tc is defined as the time in which normal overlap is existing
continuously. The collision time is estimated as follows:

tc = t− tc0 = ic ·∆t (3.38)

where t denotes either the end time of the contact or the current time, tc0 denotes the start
time of the contact and ic the total number of time steps in contact. The number of time
steps of a contact is given by ic = tc/∆t.
As shown in fig. 3.18, the tangential overlap derives from the relative tangential path taken
by the point of contact over the entire time spent in a collision. Therefore, the tangential
overlap δtij is calculated as follows:

δtij(t) =
∣∣∣~δtij(t)

∣∣∣ ~δtij(t) =
ic∑

i=1

~vtij(t
c
0 + i ·∆t) ·∆t (3.39)
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Figure 3.17: Normal overlap of grain i and j

Figure 3.18: Tangential overlap of grain i and j

where t equals the current time step, tc0 is the start time of the contact and ic is the
total number of time steps during a contact. Thus eq. 3.39 predicts δtij as the sum of all
tangential velocities over the contact time.
According to Hertz (1881), the effective Young’s modulus Eij at the interface of two col-
liding grains is given by:

1

Eij

=
1− ν2

1

Ei

+
1− ν2

2

Ej

(3.40)

Hardness - Creep Model

In this study, the collision model for snow grains is based on the linear hysteretic model
developed by Walton and Braun (1986), which accounts for the effect of plasticity. This
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collision model aims to describe the elastic and viscous-plastic response of colliding snow
grains. The deformed grains do not fully recover their initial shape at the end of a collision.
This is arranged by defining a plastified portion of the normal overlap δnij denoted δn,pij . The

rate of the overlap is identified as δ̇nij. During collision, the model distinguishes between

loading δ̇nij > 0 and unloading phase δ̇nij < 0 ∧ δnij > δn,pij of the collision. The responding

normal force ~F c,n
ij is predicted as follows:

~F c,n
ij = ~nij ·

{
−kn

l · δnij : δ̇nij > 0

−kn
unl · (δnij − δn,pij ) : δ̇nij < 0 ∧ δnij > δn,pij

(3.41)

where kn
l and kn

unl denote the loading and the unloading stiffness, respectively. In hys-
teretic models, different rheological models are used in loading and unloading phases as
demonstrated in fig. 3.19. The unloading part can be described as a elastic perfectly

Figure 3.19: Schematic demonstration of hardness-creep impact model

viscous-plastic model, which is also known as a Bingham-Maxwell model or the Bingham-
Norton model. For such rheological models the sliding friction element and the damper
are arranged in parallel and additionally mounted in series to the elastic spring element.
Thereby, the elastic part employs the described hardness of ice and the viscous-plastic part
is based on the indentation creep behaviour of ice. Therefore, loading and unloading stiff-
ness are determined from the hardness of ice by eq. 3.5. The hardness of ice is employed
for two reasons. First, the hardness reflects the response force of an indenter colliding
punctual with an ice surface. This is a natural link to the response experienced by two
colliding ice grains. Second, the hardness law of eq. 3.5 accounts for the pressure melting
effect of ice. This prevents implicitly the development of any unnatural collision energy.
Hence, the loading stiffness kn

l is predicted as follows:

kn
l = H(tc, T ) ·

√
Rij · (δnij,max − δn,pij ) (3.42)
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where H(tc, T ) stands for the hardness of ice, Rij the effective radius, δn,pij the plastified
portion and δnij,max is the maximum normal overlap of the collision. To reflect the plastifi-
cation while unloading, the unloading stiffness kn

unl is predicted as follows:

kn
unl =

δnij,max

(δnij,max − δn,pij )
· kn

l (3.43)

Thereby, the unloading stiffness is derived in relation to the loading stiffness.
The plastic overlap is predicted incrementally by summing up all viscous-plastic deforma-
tions ε̇ind(tc) occurring at each time step tc of the collision. This is done by eq. 3.44, where
ε̇ind(tc) is the creep rate by eq. 3.2.

δn,pij (t) =
t∑

tc

ε̇ind(tc) ·∆t · (δnij,max − δn,pij ) (3.44)

Plastic deformations during a collision are only caused while compressing the contact
area. Thus, the plastic overlap only grows during the loading phase. The creep rate
ε̇ind(t) = f(σc

ij, T ) is a function of the current contact pressure σc
ij and the ambient tem-

perature T . As only the elastic part of the deformation can undergo further plastification,
the Hertzian contact eq. 3.45 is used to predict the current stress σc

ij acting at the collision
area of two grains.

σc
ij =



6 ·
∣∣∣~F c,n

ij

∣∣∣ · Eij

π3 ·R2
ij




1/3

(3.45)

In eq. 3.45, ~F c,n
ij is the predicted normal force, Eij the effective Young’s modulus by eq. 3.40

and Rij the effective radius.

Friction

For all collision models derived in this study and commonly used in the literature, the
tangential collision force ~F c,t

ij is predicted from the static friction between the particles and
is limited by a dynamic friction force. This can be written as follows:

Ft = min (static friction, dynamic friction)

Hence in this study, the tangential collision force F c,t
ij between two grains is determined as

follows:

~F c,t
ij = ~t ·min

( ∣∣∣~F b,t
ij

∣∣∣ , µice ·
∣∣∣~F c,n

ij

∣∣∣
)

(3.46)

where ~t is the tangential direction, ~F b,t
ij denotes the tangential bonding force, µice the ice-

ice friction coefficient and ~F c,n
ij the normal collision force. In eq. A.8, the dynamic part of

friction is based on the Coulomb’s law of friction. The friction coefficient µice employed is
given by eq. 3.6 derived by Akkok et al. (1987). The static friction can be estimated as a
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viscous damping force using a viscous constant and the tangential overlap, e.g. ctδ̇t. This
is for instance the case in the common discrete element models described in Appendix A.1.
However, in this study the grains are able to bond for the simulation of snow behaviour.
The bonds develop tangential forces under deformation. Therefore, the static friction force
is predicted by the bonding models of section 3.4.3. Thus the static friction force ~F c,t

ij

equals the tangential bond force ~F b,t
ij in eq. A.8.

Dissipation

During a collision between two grains a part of the deformational energy dissipates. Hence,
every collision force ~Fc predicted at the point of collision experiences damping. For this
purpose, a counter directional force ~Fc,d, which reflects the dissipated energy, is added to
~Fc. The energy dissipation is based on the theory proposed by Hertz (1881). The formula

for the dissipation force ~Fc,n,d in normal direction can be written as follows:

~F c,n,d
ij = cd ·

√(
5

6
· kl ·mij

)
· |vnij| · ~nij (3.47)

where kl stands for the loading stiffness, mij is the reduce mass, cd is the dissipation
coefficient and vnij is the normal velocity at the point of contact. The dissipation coefficient
is derived by Tsuji et al. (1993) and is determined as follows:

cd =
2 · ln ed√

π2 + (ln ed)2
(3.48)

where ed is a coefficient of restitution. It has to be noted that the coefficient of restitution
ed in eq. 3.48 is not related to the restitution of ice mentioned earlier. The restitution
coefficient ed is defined as the ratio between the impact and the rebound velocity, i.e. ed =
vi
v0
. Thereby, the coefficient ed controls the amount of energy that dissipates generally

during any collision. In this study, a coefficient of restitution ed of 0.95 is used. This results
in a lost of approximately 10% of the kinetic energy during a collision. The dissipation
during a collision can have several sources which are not entirely clarified at this point. A
dissipation of ≈ 10% showed to be a reasonable size to assume within the DEM predictions
of this study.

3.4.3 Bond Deformation

Bonding Properties

The forces and torques developed due to the deformation of a bond between adjoining
grains are estimated based on the bonding properties of the current bonding configuration.
Those properties are the temporal and geometrical properties of a bond and its state of
deformation.
The life time of a bond tb can be estimated using the number of time step ib, at which the
bond is intact, as follows:

tb = ib ·∆t = tbf − tb0 (3.49)
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where tbf describes the time of fracture of a bond, which can be calculated together with

the time of creation tb0 as follows: tbf = ib ·∆t+ tb0
A bond can be either defined as an initial condition of a simulation or is generated at
first contact between two grains. A bond is represented by a cylindrical geometry of the
length Lb and the radius rb, as shown in fig. 3.20. The cylindrical bond geometry is an

Figure 3.20: Bonding geometry and configuration

approximation of a natural bond between snow grains which can have a very complex
shape.
The bond properties are described in the local contact frame. The local contact frame is
defined by the normal ~nij and tangential ~tij unit vector at the contact point ~xc

ij. Further,
the center of a bond is always positioned at the center between the adjoining grains.
Therefore, the bond center ~xb equals the point of contact ~x

c
ij which is estimated by eq. 3.30.

As depicted in fig. 3.20, the length of a bond Lb is aligned with the normal direction. Hence,
the cross section perpendicular to the normal direction of a bond is denoted as the area of
a bond Ab = π · rb.
In this study, the following four displacements define the state of deformation of a bond:

1. Deformation along the normal direction by the normal displacement dun

2. Shearing along the tangential direction by the tangential displacement dut

3. Torsion about the normal direction by the relative angular displacement dφn

4. Bending by the relative angular displacement dφb around the bending axis ~bij per-
pendicular to the bond normal

The normal and tangential displacement of a bond are depicted in fig. 3.21a and 3.21b,
respectively. Further, the bending and torsional displacement of a bond are depicted in
fig. 3.22a and 3.22b, respectively. The relative angular velocity of two adjoining particles
can be predicted as follows:

~ωij = (~ωi − ~ωj) (3.50)
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(a) Tension deformation of a bond in normal direction.

(b) Shear deformation in tangential direction.

Figure 3.21: Bond stretch and shearing.

where ~ωi and ~ωj are the angular velocity of the adjoining particles in space-fixed coordi-
nates. Using the relative angular velocity, the bending axis can be estimated as follows:

~bij =
~ωij

|~ωij|
− ~nij (3.51)

While the torsional displacement is acting about the normal axis, the bending displacement
takes place about the bending axis. The bending axis is the difference between the resultant
angular direction and the normal direction. The two angular displacements of a bond are
depicted in fig. 3.22. Hence in this study, the relative displacement vector ~duij of a bond
contains the following four components:

~duij =




dun
ij

dut
ij

dφn
ij

dφb
ij


 = ∆t ·




~vij · ~nij

~vij · ~tij
~ωij · ~nij

~ωij ·~bij


 (3.52)

where ~vij is the relative velocity and ~ωij is the relative angular velocity which are predicted

81



3. Extended Discrete Element Method (XDEM)

(a) Torsion of a bond around normal direction.

(b) Bending deformation perpendicular to bond normal.

Figure 3.22: Torsion and bending of bond.

by eq. 3.16 and eq. 3.50, respectively. Within eq. 3.52 each displacement describes the
incremental displacement at the current time step. A homogeneous stress and strain state
is assumed to develop over the length of the cylindrical bond. The displacement vector ~duij

and the characteristic length Lb are used to estimate the four strain components, i.e. εnij,
εtij, γ

n
ij and γb

ij, as follows:

~εij =




εnij
εtij
γn
ij

γb
ij


 =

1

Lb

·




dun
ij

dut
ij

dφn
ij

dφb
ij


 (3.53)

The displacements are estimated between the previous and the current step. Thus, the
strain components are the incremental strain components of the current time step.
The stress inside a bond is assumed to develop homogeneously. Each of the four resultant
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stress components is a function of the according strain component which can be written:

~σij =




σn
ij

(
εnij
)

σt
ij

(
εtij
)

τnij
(
γn
ij

)

τ bij
(
γb
ij

)


 (3.54)

Each stress component is thereby predicted individually. The finally multiplication of the
stress components and the bond area results in two bond forces and two torques. The bond
forces are a force ~F b,n

ij in normal direction and a second forces ~F b,t
ij in tangential direction.

The resultant bond torques are a torque ~M b,n
ij due to torsion about the normal direction

and a second torque ~M b,b
ij resulting from bending of the bond.

Elastic Viscous-Plastic Model

This bond model describes the deformations of a bond between two adjoining snow grains
based on an elastic viscous-plastic material law. The elastic part is arranged in series to
the parallel arranged viscous-plastic element which is depicted in fig. 3.23. The elastic

Figure 3.23: Schematic representation of the elastic viscous-plastic material behaviour of
a bond

properties, provided in table 3.1 by Gammon et al. (1983), are used to relate the strain to
the stress state of the bond. The viscous-plastic part of the deformation is accounted for by
the creep relation of ice. In this model the creep rate is estimated by eq. 3.2. Furthermore,
the model includes a law for the bond growth derived from the observations of Szabo and
Schneebeli (2007) which are also employed for validation. The bond growth relation allows
to predict the creep expansion of a bond under compression. In addition, the model also
includes a temperature-dependent relation for the rupture of a bond derived by Schulson
(1990).
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In the described configuration of the elastic viscous-plastic model, under any applied axial
stress, the total stress σt and the total strain εt can be defined as follows:

σt = σe = σvp and εt = εe + εvp (3.55)

where the subscript vp indicates the viscous-plastic element which is assembled by a damper
and a friction slider element in fig. 3.23. The subscript e indicates the elastic spring element.
As previously mentioned, such a material law is also known as a Bingham-Maxwell or the
Bingham-Norton model. For such a material law the elastic and viscous-plastic stress are
equal. Thus, the prediction of the resultant elastic stress part is enough to estimate the
resultant forces and torques generated during deformation of the bond. Therefore, the
strain relation in eq. 3.55 can be re-writing as follows:

εe = εt − εvp = εt − ε̇ind ·∆t (3.56)

to predict the elastic strain εe. The viscous-plastic part of the bond strain εvp = ε̇ind ·∆t
is estimated by the creep law of eq. 3.2. Applying eq. 3.56 to the strain vector in eq. 3.53,
the elastic strain components are estimated as follows:

~εeij =




εn,eij (t)

εt,eij (t)
γn,e
ij (t)

γb,e
ij (t)


 =

ib∑

i=1




εnij(t)− ε̇ind
(
σn
ij(t−∆t), T

)
·∆t

εtij(t)− ε̇ind
(
σt
ij(t−∆t), T

)
·∆t

γn
ij(t)− ε̇ind

(
τnij(t−∆t), T

)
·∆t

γb
ij(t)− ε̇ind

(
τ bij(t−∆t), T

)
·∆t


 (3.57)

with t = tb0 + i ·∆t

where the elastic strain ~εeij is the sum of total strain ~εij minus the viscous-plastic strain
~εvpij over the bonding time. In eq. 3.57, the viscous-plastic strain ~εvpij is a function of
the previous stress state ~σij(t−∆t) and the ambient temperature T . As the total stress σij

equals the elastic stress part σe
ij, the elastic parameters are used to predict the total stress

acting in a bond as follows:

~σij =




σn
ij

σt
ij

τnij
τ bij


 =

E

(1 + ν)(1− 2ν)
·




(1− ν)
2 · (1− 2ν)

(1− 2ν)
(1 + ν)(1− 2ν)

·
·
·
·

εnij
εtij
γn
ij

γb
ij


 (3.58)

where σn
ij describes the stress developing due to tension or compression. σt

ij is the stress
component due to shear, τnij denotes the stress component due torsion and τ bij describes the
bending stress of the ice bond between the adjoining grains i and j. The Young’s modulus
E = f(T ) and the Poisson’s ratio ν = f(T ) are the elastic parameters by Gammon
et al. (1983) shown in table 3.1. The temperature dependence of the elastic parameters
is accounted by the linear approximation by Gammon et al. (1983). The resultant bond

force ~F b
ij and moment ~M b

ij are estimated from the stress state at the current time step.

Multiplying the bond area Ab and the normal stress component σn
ij, the bond forces ~F b,n

ij

results as follows:
~F b,n
ij = σn

ij · ~nij · Ab
ij(t) (3.59)
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The force ~F b,n
ij is acting in normal direction on the adjoining grains i and j due to tension

and compression experienced by the bond. The bond force ~F b,t
ij resulting from the shear

stress σt
ij times the bond area can be written as:

~F b,t
ij = σt

ij · ~tij · Ab
ij(t) (3.60)

The shear force ~F b,t
ij acts in tangential direction on i and j due to the shearing of the bond.

The torsion of a bond generates the torque ~M b,n
ij about the normal direction ~nij which can

be written as follows:
~M b,n
ij = τ n

ij · ~nij · Ab
ij(t) (3.61)

where τnij describes the shear stress due to torsion and Ab
ij is the current bond area. The

bending stress τ bij multiplied by the bond area results in the second torque ~M b,b
ij as follows:

~M b,b
ij = τ b

ij ·~bij · Ab
ij(t) (3.62)

where ~bij is the bending axis predicted by eq. 3.51.
Along with the predictions of the bond forces and torques the bond area is predicted at
each time step. The current bond area Ab

ij(t) = f
(
σn
ij(tm−∆t), T

)
is a function of the

previous normal stress σn
ij(t−∆t) and the ambient temperature T and is predicted by the

following equation:

Ab
ij(t) = π ·

(
Rij

2 −
(√

Rij
2 − rbij(t−∆t)

2 − ε̇ind
(
σn

ij(t−∆t), T
)
· Lb ·∆t

)2
)

(3.63)

where Rij is the effective radius, r
b
ij(t−∆t) is the previous bond radius, ε̇ind is the creep rate

and Lb is the length of the bond. Eq. 3.63 is based on the sintering model of ice grains
by Szabo and Schneebeli (2007). The relation is used to predict the current bond area
before the force and torque prediction. The bond growth model of eq. 3.63 predicts the
expansion or shrinking of the bond area due to compression or tension stress acting inside
the bond. In fig. 3.24 the growth of the bond area is depicted in dependence to contact
time and contact load. The predictions and measurements in fig. 3.24 describe the growth
of a bond between two spherical ice grains of 3 mm radius. The grains are pressed together
in normal direction at different temperatures, for different periods of time and by different
forces. The measurements in fig. 3.24 indicate an immediate bond creation at the point
of contact. This is apparent as the bond area size does not decrease beneath a certain
value. This initial size of the bond area correlates with the contact area produced by the
elastic deformation of the ice grains at initial collision. Hence, the initial bond area can
be predicted according to the Hertzian contact theory. Hertz (1881) analysed the stress in
the contact area of two elastic bodies. According to Hertzian theory, if two elastic bodies
collide on their central line by a force F c,n

ij , the radius of the contact area can be estimated
as follows:

rbij =



3 ·
∣∣∣~F c,n

ij

∣∣∣ ·Rij

4 · Eij




1/3

(3.64)
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(a) Bond growth over contact time under the constant loading of 2 N.

(b) Load dependence of the growth of the bond area after 0.25 s compression.

Figure 3.24: Growth of a bond between two spherical ice grains of 3 mm radius due to
compressive load at four different temperature (−1,−5,−12,−23 ◦C). The lines are the
values predicted by eq. 3.63 and the symbols are measurements by Szabo and Schneebeli
(2007).

where Eij is the effective Young’s modulus and Rij describes the effective radius of cur-
vature. For the evolution of an ensemble of snow grains, every new collision instanta-
neously establishes a new bond between the colliding grains. Hence, the initial bond area
Ab

ij(t
b
0) = π · rbij(tb0) is estimated by eq. 3.64.

Further, this model accounts for the fracture of a bond. A bond ruptures as soon as
one of the stress components reaches the strength limit of ice. These employed strength
limits are derived from the observations by Schulson (1990). His investigations provide
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detailed insights into the compressive and tensile strength of ice. His observations reveal
the dependencies on the temperature, strain rate and grain size of a loaded ice sample for
ductile and brittle behaviour.
The measurements of Schulson (1990) show the constancy of the tensile strength against
all the mentioned dependencies. Thus, the tensile strength of ice can be assumed constant
for brittle and ductile loading rates. The tensile strength σts of an ice bond is 1.1 · 106 Pa
as shown in fig. 2.13.
During ductile loading the compression strength σdcs of a bond is accounted by the creep
law 3.57 intrinsically. This approximation is validated in section 6.1.2.
However, the brittle failure of a bond under rapid loading, i.e. above the rate of 10−3 s−1,
is accounted for by the brittle compression strength σbcs. The brittle compression strength
is approximated as follows:

−σbcs = 10 MPa− 3

8

(
T
◦C

)
(3.65)

Eq. 3.65 is an empirical formulation of the brittle compression strength derived from the ob-
servation of Schulson (1990). Schulson (1990) and Petrenko and Whitworth (1999) showed
an increase of the brittle compression strength of ice by a factor of 2.5 with decreasing
temperature from −10 ◦C to −50 ◦C. From the grain size and strain rate dependency
published by Schulson (2001) a brittle compression strength of 10 MPa can be assumed for
0 ◦C and a grain size of 1 mm at the transition rate 10−3/ s. Eq. 3.65 provides the brittle
failure limit in MPa in dependence of the temperature T in degree Celsius ◦C.
By means of the derived strength limits, the failure or survival of a bond during loading
of a snow sample is estimated at each time step as follows:

−σbcs ≥ σn
ij ≥ σts

∣∣σt
ij

∣∣ ≥ 1
3
· σbcs

∣∣τnij
∣∣ ≥ 1

3
· σbcs

∣∣τ bij
∣∣ ≥ 1

3
· σbcs





= Bond Failure (3.66)

The tensile stress is thereby defined to be positive and compression negative. Hence, a
bond fails when the normal stress σn

ij reaches the tensile strength −σts or below the brittle
compression strength σbcs. A bond also fails if the magnitude of any of the three shear
components σt

ij, τ
n
ij or τ bij equals or exceeds one third of the brittle compression strength

σbcs. Thus, a new bond between the according grains i and j can only be formed by a new
contact.

Dissipation

Along with the forces and torques generated during bond deformation dissipative forces
~Fb,d and torques ~Mb,d are employed. During a bond deformation between two adjoining
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grains, portions of the deformational energy dissipates. In this study, every bond force ~Fb

and torque ~Mb generated by a deformed bond experiences dissipation.
Therefore, the counter directional forces ~Fb,n,d and ~Fb,t,d which reflect the dissipated energy

are added to the resultant bond forces ~Fb,n and ~Fb,t, respectively, as follows:

~F b,n,d
ij =

√
mij · kb,n

ij · |dun
ij| ·∆t−1 · ~nij

~F b,t,d
ij =

√
mij · kb,t

ij · |dut
ij| ·∆t−1 · ~tij

(3.67)

where mij is the reduced mass, kij describes the stiffness, ~F
b,n,d
ij is the dissipation in normal

direction, ~F b,n,d
ij is the shear force and ~duij/dt are the according displacement rates of the

bond. The normal and shear stiffness of the bond is thereby predicted as follows:

(
kb,n
ij

kb,t
ij

)
=




E
(1−ν2)

√
Rij · |εnij| · rbij

· 4E
2(1+ν)·(2−ν)

·
√

Rij · |εtij| · rbij


 (3.68)

Further, the counter rotational torques ~Mb,n,d and ~Mb,b,d are added to the torques due to
torsion and bending, respectively, and can be written as follows:

~M b,n,d
ij = 1

4

(
rbij
)2 ·
√
mij · θb,nij · |dφn

ij| ·∆t−1 · ~nij

~M b,b,d
ij = 1

4

(
rbij
)2 ·
√

mij · θb,bij · |dφb
ij| ·∆t−1 · ~bij

(3.69)

where rbij denotes the bond radius, θij is the rotational stiffness, ~M b,n,d
ij is the dissipation of

the torsional deformation, ~M b,b,d
ij dissipates during bending and ~dφij/dt are the according

displacement rates of the bond. The rotational stiffness es used for torsion and bending
dissipation are predicted as follows:

(
θb,nij

θb,bij

)
=




4E
2(1+ν)·(2−ν)

·
√
Rij · |γn

ij| · rbij
E

(1−ν2)
·
√

Rij · |γb
ij| · rbij


 (3.70)

A similar approach for the bond dissipation has been used by Brendel et al. (2006). In
eq. 3.67 and 3.69,

√
mij · kij describes the critical damping. The critical damping can be

used because deformations are slow which makes details of the dissipation irrelevant. Slow
deformations have to fulfil the following condition:

v =
rb

2 · σs√
m · k

(3.71)

where v is the deformation induced velocity and σs is the strength limit.

3.5 Creation of Snow Samples

Snow can be described as an open foam structure assembled by ice grains and bonds. The
snow forming processes take place over hours and up to months as described in detail in
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chapter 2.1.1. The sintering processes inside the ice matrix and pore space of snow define
the grain and bond size of a specimen. Those metamorphic processes can change the
grain-scale properties dramatically. But it is not in the interest of this study to investigate
the history of a snow sample. The current conditions of a snow sample will be prepared
before the deformational process is simulated. This section describes the initiation of
size and distribution of the snow grains and the adjoining bonds. As the size of a snow
grain ranges from 0.125 mm to 8 mm it is clear that the RVE of snow is not a material
constant. Hagenmuller (2011) predicted the RVE for different snow types in dependence
of the strength as presented in fig. 2.39.
The tests run within this study showed that a number of thousand grains and above are
more than sufficient to reproduce identical simulation results.

3.5.1 Preparation of Snow Samples

This section describes the generation of the initial positioning of snow grains, i.e. particles,
within a prepared sample.

Gravitational Deposition Method

The most natural way to obtain an virtual snow sample is to rain snow grains into a
fixed form. Then, the snow grains are allowed to settle until the disappearance of all
kinetic energy, i.e. transformation into potential energy. This method is generally called
the gravitational deposition method. A predefined container volume is filled from above
with particles. Layer after layer is produced and deposited into the containing volume
under gravity as depict in fig. 3.25. The particles are generated randomly on an predefined
inlet plane with the size distribution described in section 3.5.2.
With this method, snow samples of density about 500 kg/m3 to 600 kg/m3 can be reached
by disabling the bonding between colliding grains. If bonding is enabled very low density
samples of almost 200 kg/m3 can be generated. Another way to generate samples of lower
densities is by ending the settled grain structure. Thereby, particles inside a prepared
specimen with a low coordination number are erased. However, to gain specimens of
higher densities the grain structure can be compacted, i.e. loaded, by confining walls until
the aimed density is reached.

3.5.2 Grain Size Distribution

As discussed in section 2.1.1, the bandwidth of the grain size distribution of snow is
quite narrow compared to other common granular materials. Fig. 3.26 compares the size
distribution of snow grains to the one of moraine and cement grains. In this study, the
size generation of a snow grains is based on a linear distribution function D(rg) which can
be written as follows:

D(rg) =
1

rmax − rmin

· (rg − rmin) for rmin ≤ rg ≤ rmax (3.72)
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Figure 3.25: Example of filling by gravitational deposition method.

Figure 3.26: Sieve curves of snow, moraine and cement grains. The grey band corresponds
to sieve curves measured by Von Moos et al. (2003), the dotted black lines by Fukue (1977)
and the solid black line equals eq. 3.75.
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where rg describes the grain radius and rmin and rmax are the minimum and maximum
grain radii, respectively. The probability density function P (rg) is defined as the derivative
of the distribution function D(rg) and thus can be written as follows:

P (rg) =
1

rmax − rmin

for rmin ≤ rg ≤ rmax (3.73)

Both functions are depicted in fig. 3.27 and are defined by the two parameters rmin and
rmax. The probability density is thereby described by a rectangular functions. Hence, for

Figure 3.27: Cumulative distribution D(rg) and probability density function P (rg) .

this probability density the actual distribution of the grain radius rg is predicted as follows:

rg = rmin + (rmax − rmin) · x̃ with x̃ = random(0...1) (3.74)

where x̃ is computed by a random generator. The black line in fig. 3.26 is the corresponding
sieve curve of the grain size distribution for rmin = 0.25 mm and rmax = 1 mm. The sieve
curve can be predicted by integration of the distribution function D(rg) in the following
way:

Z(rg) =
weight of grains ≤ rg
weight of all grains

=
Wg(rg)

Wg(rmax)
with Wg(x) =

∫ x

rmin

D(rg) drg (3.75)

3.5.3 Initiation of Bond Structure

As mentioned, if snow grains collide newly the bond radius rb is predicted by eq. 3.64. But
the bond radius rb and the entire bond structure, defined by the coordination number Nb,
are also established before the time integration.
The coordination number Nb of a snow sample is predicted as follows:

Nb =
1

Ng

·
Ng∑

i=1

N b
i (3.76)

where N b
i is the number of bonds of the grain i.

The initial generation of the bond structure is established in accordance to the pre-defined
coordination number Nb. The desired coordination number Nb, i.e. bond structure, is
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3. Extended Discrete Element Method (XDEM)

Figure 3.28: Generation of bonds by the pre-defined factor C2.

established by means of the scale factor C2 as shown fig. 3.28. If two scaled grain radii
overlap by the normal overlap δn(C2) a bond is generated between the adjoining grains as
follows:

if δn(C2) ≥ 0 ⇒ Bond Generation with ⇒ rbij = C1 · rij (3.77)

where C1 is the predefined size ratio of rb
rg
.

While pre-processing, the scale factor C2 is iteratively modified and the initial bond struc-
ture re-computing until the desired coordination number Nb is reached.

3.6 Complex Boundary Shapes

To account for complex geometries, e.g. a tire tread during the interaction with snow
grains, the geometry of any surface is represented as a polygonal mesh. The polygonal
mesh is thereby an ensemble of vertices, edges and faces that approximate the shape of
a polyhedral object. The faces are described by linear triangles as depicted for a double
sinus surface in fig. 3.29. The triangulated surface provides a high flexibility in describing
any complex geometry.
These face - vertex meshes are implemented as a list of faces and a list of vertices. This is
the most common mesh representation and is used as typical input in modern computer
graphics. This storing method of meshes allows an explicit look-up of the vertices of a face
and the faces surrounding a vertex.
Each triangle of such a surface is handled individually during contact with particles or
during translation and rotation of the surface.
Hence, in difference to single triangle the compound is now moving in relation to the center
point of the surface. The surface owns an absolute vector pointing to its center of mass
and relative vectors pointing to each center of a surface triangle.
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Figure 3.29: Polygonal mesh of sinus surface by triangular elements.

In case of contact with particles, the contact between a spherical sub-shape of a particle
and a surface triangle is predicted individually. In this contact situation, the deformations
between two colliding objects are modeled by means of a representative overlap δ between
the particle and the surface triangle. Hence, the developing collision forces are deriving
from the overlap geometry, material properties and kinematic quantities of the colliding
objects.
The exact prediction of the overlap δij and point of contact ~xc

ij is described in section 5.3
as this approach was developed in the context of the coupling between discrete and finite
elements.
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Chapter 4

Finite Element Method (FEM)

The Finite Element method is a highly practical and common tool used in engineering
and research. The amount of problems attacked with this method became as numerous as
articles and books in this field. Felippa (2004), Betten (2003) and Bathe (1982) are just a
few of a number of respectable works.

Figure 4.1: Finite element mesh of a portion of a tire tread.

The tire treads and tread parts investigated in this study are described as continuous
bodies. The displacement or change of the configuration of a continuous body is the sum
of motion, i.e. translation and rotation, and the deformation of its shape. Thereby, the
deformational part reflects the stress act inside the body. A configuration of a continuum
body describes a continuous number of material points occupying a certain amount of
space at a particular time. Deformation, i.e. the change of shape or size of the body,
equals the change between the initial and the current configuration. The deformation can
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thereby be described as the change in distance of two neighbouring material points in the
initial and current configuration. To analyse the evolution of deformation of a continuous
body it is necessary to describe the change of configurations throughout time.
For this purpose, the finite element method is used to describe the deformation of the
continuous bodies, i.e. tire treads and tread parts. Therefore, the method discretized the
volume of a body by means of a mesh, as exemplified in fig. 4.1. This mesh is represented by
a finite number of nodes spanning a finite number of elements over the body volume. The
displacements of the body shape are predicted at the mesh nodes and thus the deformations
and stresses are derived over the finite elements.
However, in this study the finite element method is employed for linear elastic deformations.
Hence, the investigated tire treads and tread parts are described as linear elastic materials.

4.1 Elastic Body Deformation

This section covers the description of a fully time dependent model of elastic deformation
with thermal expansion effects. The mathematical model of elastic deformation of solid
bodies is also based on Newton’s second law, which has already served as the foundation
of the discrete element method. Additionally, for the description of deformation a con-
stitutive relation between stress and strain has to be incorporated. Thereafter, the finite
element formulation is introduced as a general numerical approach to discretize the derived
mathematical models and to solve the established PDE’s. The continuum description of
elastic deformation by means of finite element method played a key role and was a the
biggest success while establishing mathematical modeling and scientific computing into the
engineering world.
The deformation of an elastic continua is described by the differential form of Newton’s
second law of eq. 4.1. 1 Contrary to the discrete approach this equation is valid in every
volume point of the continuum.

ρ
∂u2

α

∂t2
=

∂σαβ

∂xβ

+ ρ bα (4.1)

Notice within this context uα describes the displacement where in the discrete form the
position ~xi is placed. The usage of the indicial notation is widespread in solid mechanics.
Thus, α, β and γ are indices of the spatial dimensions. In eq. 4.1 ρ is the density, σαβ

reflects the internal forces due to stresses and the final term represents body forces ~b.
The main interest is usually to study the stress. If the stresses exceed certain limits, the
material might rupture or the validity limits of the elastic model are reached and need to be
replaced. As the density and body forces are prescribed, six unknowns remain within the
symmetric stress tensor by three equations. To yield closure of the system the stresses and
deformations are linked by Hooke’s generalized thermo-elastic law which can be written as
follows:

1The Greek indices α, β, γ identify the three spatial components of a physical quantity,
i.e. α = (1, 2, 3)
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σαβ = λ
∂uγ

∂xγ

δαβ + µ

(
∂uα

∂xβ

+
∂uβ

∂xα

)
− α (3λ+ 2µ)(T − T0) δαβ (4.2)

where σαβ describes the stresses, λ and µ are the Lame’s linear elastic parameter, α the
thermal expansion coefficient and T and T0 are current and reference temperature, respec-
tively. In this section δαβ describes the Kronecker symbol. The law describes the isotropic
linear elasticity as well as isotropic expansion and contraction in case of heating and cooling
respectively.

4.2 The Finite Element Formulation

The problem and the governing eq. 4.1 are fully time dependent. Hence, the discretization
of the equation has to be temporal and spatial.
The discretization in time is described by a three-point central difference scheme. The
scheme is employed by introducing the superscript t reflecting the time level. Therefore,
the time discrete equations can be written as follows:

ρ
ut−∆t
α − 2ut

α + ut+∆t
α

∆t2
=

∂σt
αβ

∂xβ

+ ρ btα (4.3)

where all quantities super-scripted with t are time dependent and ∆t sets the time step
length.
For the spatial approximation the straightforward Galerkin method is applied to the gov-
erning equation. Thereby, the displacement field is approximated at n discrete nodal points
of finite element mesh as follows:

ûα =
n∑

j=1

uα
j ·Nj(xα) (4.4)

where Nj are trial functions of the finite element and uα
j contains n · 3 unknowns.

As the Galerkin method inserts the approximation ûα for uα, a residual results. By mul-
tiplication with the trial function the resulting residual is required to vanish.
The final discretized form of the governing eq. 4.1 to compute isotropic elastic deformation
shows eq. 4.5.

ut+∆t = 2ut − ut−∆t +M−1∆t2 ·
(
−Kut + bt

)
(4.5)

where M = Mαβ
ij being the mass matrix of the system. Mαβ

ij thereby holds the following
entries:

Mαβ
ij =

∫

Ω

·Ni ·NjdΩ (4.6)
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where Ω describes the whole domain of the body and is replaced by the domain Ωe of the
element e, restricting i and j to be nodes of the finite element. Further, −Kut + bt is the
discretized form of σt

αβ,β + ρbtα. K thereby equals the stiffness matrix of the system with

the entries Kαβ
ij . The stiffness matrix holds thereby the following entries:

Kαβ
ij =

∫

Ω

[ µ (Ni,γ ·Ni,γ) · δαβ + µ ·Ni,α ·Nj,β + λ ·Ni,β ·Nj,α ] dΩ (4.7)

where i and j run over all nodal points n of the mesh while α, β and γ are presenting
the three spatial dimensions (= 1, 2, 3). The term b holds all nodal forces. In the
discretized form the force term b also holds the forces due to thermal effects which have
been introduced with the Hooke’s model Equation (4.2).

4.3 The Computational Algorithm

Looking at the time-stepping scheme of eq. 4.5 one notices that it gains the new value
ut+∆t just by conducting vector addition, matrix-vector and scalar multiplication. Hence,
the scheme is an explicit procedure where no linear equation system needs to be solved.
Eq. 4.5 is assuming that ut and ut−∆t are already predicted. Therefore, the computational
algorithm starts at t = t0 by solving the stationary elasticity problemKut0 = bt0 implicitly
before it enters the time loop. Thus, the linear equation system Kut = bt needs to be
solved ones for t = t0 by an iterative method. The solution provides ut0 . Thereafter, ut0

and ut are equalised which implies the entire system is stationary unless bt changes which
is a reasonable assumption. While solving eq- 4.5 at every time step t0 + i ·∆t the initial
gained stiffness matrix K of the stationary solution is reused.

4.4 Isoparametric Elements

The deformable body needs to be meshed by finite elements to assemble the matrices and
vectors of eq. 4.5 to solve the problem. To do so in this study isoparametric elements
are employed, in particular linear tetrahedral elements containing 4 nodes. This approach
is chosen to allow the later presented coupling method, between DEM and FEM, handle
the surface elements of a mesh as linear triangular elements. As the biggest portion of a
coupled computation is spent on contact predictions, the contact between spherical grains
and linear triangles are relatively simple to compute while triangles still allow to describe
complex geometry.
The key idea of the isoparametric concept is to use the shape functions N e

j to represent
both the geometrical description of an element and the unknowns of the problem. In this
section, e describes the element number whereby the roman index j describes a node of
(1, 2, ..,m) of the m nodes of the element e.
Any quantity, e.g. the displacement −→u = uα, velocity vα, force fα or the temperature
T , may be interpolated over an element by means of the shape functions as well as the
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element geometry xα. This can be formulated as follows: 1.

1 =
m∑

j=1

N e
j xα =

m∑

j=1

xj
αN

e
j uα =

m∑

j=1

uj
αN

e
j T =

m∑

j=1

T jN e
j (4.8)




1
xα

uα

T


 =




1 1 .. 1
x1
α x2

α .. xm
α

u1
α u2

α .. um
α

T 1 T 2 .. Tm


 ·




N e
1

N e
2

..
N e

m


 (4.9)

Therefore, isoparametric shape functions have to be derived from natural coordinates of
a master element. A master element represents the basic shape of an element with an
interpolated shape. For instance, the master of a curved triangular element is a triangle
with straight sides. This concept enables to construct shape function for elements with
curved boundaries which fulfil the consistency requirements. Further, even for high or-
der elements, the integral expression of the stiffness matrix and nodal quantities can be
described in simple closed forms.
In the following the linear tetrahedral and linear triangular elements and their shape
functions are introduced. As linear tetrahedral elements are employed in this study then
shape functions are necessary while deriving the stiffness and mass matrix in eq. 4.5 and
interpolating the particle forces onto the FEM structure, as described in the following
coupling chapter.

Natural Coordinates of a Triangle

Any point
−→
P aligning in the plane of a triangle may be located in terms of natural coor-

dinates ζi, depict in fig. 4.2.

Figure 4.2: Constant lines of natural coordinates of a triangle.

The range of the natural coordinates of a triangle thereby writes:

0 <= ζi <= 1 (4.10)

1spatial index α ε(1, 2, 3)
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Figure 4.3: Natural coordinates of a triangle.

so that the sum of the coordinates has to fulfil the following constraint:

ζ1 + ζ2 + ζ3 = 1 (4.11)

For triangles with non-curved sides these natural coordinates can be interpreted by means
of area coordinates Ai as formulated in eq. 4.12 and depict in fig. 4.3.

ζ1 =
A1

A∆

ζ2 =
A2

A∆

ζ3 =
A3

A∆

(4.12)

However, the relation of eq. 4.12 is not carried over to general isoparametric triangles with
curved sides. Thus the universal description is to consider ζi as curves of constant value
within a triangle, rather than areas, which is depict in fig. 4.2 for a linear triangle.
Hence, in natural coordinates the three node points ~Pi(ζ1, ζ2, ζ3) are located at (1, 0, 0),
(0, 1, 0) and (0, 0, 1) while the centroid of a triangle is (1

3
, 1
3
, 1
3
).

To transform a point ~P (x1, x2, x3) from global coordinates into natural triangle coordinates
~P (ζ1, ζ2, ζ3), the point has to lie in the plane spanned by the three triangle vertices. This

is secured when ~P fulfils:

−→n · (~P − ~Pj) = nα · (Pα − P j
α) = 0 (4.13)

where ~n is the plane normal and ~Pj can be any of the three vertices of the triangle.
When solving the linear equation system 4.14 the components Pα are transformed into the
natural coordinates ζi.




1 1 1
P 1
1 P 2

1 P 3
1

P 1
2 P 2

2 P 3
2

P 1
3 P 2

3 P 3
3


 ·




ζ1
ζ2
ζ3


 =




1
P1

P2

P3


 (4.14)
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This can be written in a general way as follows:




1 1 1
x1
1 x2

1 x3
1

x1
2 x2

2 x3
2

x1
3 x2

3 x3
3


 ·




ζ1
ζ2
ζ3


 =




1
x1

x2

x3


 (4.15)

Linear Triangular Elements

In case of a linear triangular element, as seen in fig. 4.4, the natural coordinates equal the
shape functions of eq. 4.16.

Figure 4.4: Linear triangle plus linear interpolation of field u1(ζi).

ζj = Nj → N1 = ζ1 N2 = ζ2 N3 = ζ3 (4.16)

Following eq. 4.8 any quantity to be described over the element may be interpolated by
means of the natural coordinates of eq. 4.17.




1
xi

ui


 =




1 1 1
x1
i x2

i x3
i

u1
i u2

i u3
i


 ·




N e
1

N e
2

N e
3


 =




1 1 1
x1
i x2

i x3
i

u1
i u2

i u3
i


 ·




ζ1
ζ2
ζ3


 (4.17)

Fig. 4.4 exemplifies a linear distribution of the displacement component u1. In case of the
linear triangle the master element and linear triangle are similar shaped.

Natural Coordinates of a Tetrahedron

For a linear tetrahedral element one can extend the approach of the linear triangular

element by using volume instead of area coordinates. Hence, also any point
−→
P aligning in

the volume of a tetrahedron can be described in terms of the natural coordinates ζi of a
tetrahedron as depicted in fig. 4.5.
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Figure 4.5: Natural coordinates of a tetrahedron, i.e. linear tetrahedral element .

The natural coordinates of a tetrahedron can be interpreted by means of volume coordi-
nates Vi in the following manner:

ζ1 =
V1

V
ζ2 =

V2

V
ζ4 =

V4

V
ζ4 =

V4

V
(4.18)

where Vi describes the portion of the tetrahedral volume and V the entire volume of the
tetrahedron. Also here the sum of the natural coordinates has to fulfil:

ζ1 + ζ2 + ζ3 + ζ4 = 1 (4.19)

To transform a point (x1, x2, x3) from global coordinates into natural tetrahedral coordi-
nates (ζ1, ζ2, ζ3, ζ4), the following linear equation system has to be solved:




1 1 1 1
x1
1 x2

1 x3
1 x4

1

x1
2 x2

2 x3
2 x4

2

x1
3 x2

3 x3
3 x4

3


 ·




ζ1
ζ2
ζ3
ζ4


 =




1
x1

x2

x3


 (4.20)

where xj
α are the nodal points of the tetrahedron with j holding the node number and α

the spatial component.

Tetrahedral Elements

In case of a tetrahedral element, the natural coordinates equal the shape functions as
follows:

ζj = Nj → N1 = ζ1 N2 = ζ2 N3 = ζ3 N4 = ζ4 (4.21)

101



4. Finite Element Method (FEM)

Thus, following again the approach of eq. 4.8, any quantity to be described over the element
can be interpolated by means of the natural coordinates as follows:




1
xi

ui


 =




1 1 1 1
x1
i x2

i x3
i x4

i

u1
i u2

i u3
i u4

i


 ·




N e
1

N e
2

N e
3

N e
3


 =




1 1 1 1
x1
i x2

i x3
i x4

i

u1
i u2

i u3
i u4

i


 ·




ζ1
ζ2
ζ3
ζ4


 (4.22)

Fig. 4.6 exemplifies a linear interpolation of the displacement ~u by the shape functions ζi.

Figure 4.6: Linear tetrahedral element with linear interpolation of field ~u(ζi).

Also in case of the linear tetrahedral element the master element and linear tetrahedron
are similar shaped.

4.5 Linear Equation System

In most cases when discretising partial differential equations by the finite element method, a
system of linear algebraic equations has to be solved. In this study the C++ libraries of the
finite element toolbox DiffPack are utilised to assemble and solve such a system. For that
purpose the libraries offer direct and iterative methods and provide flexible functionality
to utilise the specific matrix and vector structure assemble.
As the main part of the finite element solution in this study, the time-stepping scheme of
eq. 4.5 does not force any solving of a linear equation system. But the initial prediction of
the stationary elasticity problem Kut0 = bt0 is a solution of a system of linear algebraic
equations. Therefore, the linear equation system Kut0 = bt0 needs to be solved for n · 3
unknowns which are contained in the vector u.
In this study, the Conjugate Gradient Method as an successful iterative method to solve
A · x = b linear systems is chosen to do so.
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Chapter 5

Efficient XDEM - FEM Coupling
Method

The coupled computation conducted in this study are separated into two domains, namely
the Finite Element and the Discrete Element simulations. These two domains stay sep-
arated through the entire time loop and integrate their quantities without interferring.
Only at characteristic points within the time loop necessary data is shared to update each
domain.
In the following the coupling procedure is described within the time loop. Thereafter, the
key parts of the coupling are presented in detail. The first key part is the efficient algorithm
for a fast prediction of potential contact pairs between particle and surface element. After
the prediction of potential contact pairs, the actual intersection of particle and surface
element of the FE mesh is explained. Finally, the interpolation of the contact force onto
the element nodes is derived.
Additionally, a spatial homogenisation of discrete quantities is presented to allow later
comparison to a continuum field.

5.1 Coupling Procedure

Within the context of explicit time integration the procedure of the DEM - FEM coupling
algorithm is relatively straightforward. The procedure is schematically depicted in fig. 5.1.
Before the procedure enters the time loop to predict the motion of particles and the de-
formation of the solid body an initiation phase is required to establish the foundation for
later information exchange. While generating the mesh of the solid body one has to take
care of meshing the surface of the body with linear triangular finite elements. The efficient
contact detection is based on the intersection between spheres and triangles.
As depicted in fig. 5.1, the initiation starts with solving the stationary problem within the
FEM domain. This step provides two information to the procedure.
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Initiation

7→ solve → Ku0 = b0

7→ mirror displaced surface elements

Time Loop → i → ti = t0 + i ·∆t

7→ integrate time step ti of particle motion, eq. 3.10 & 3.24

7→ transfer contact forces

7→ predict potential contact pairs

7→ compute contact forces

7→ interpolate forces to finite element

7→ integrate time step ti of body deformation, eq. 4.5

7→ update boundary shapes

Figure 5.1: General Procedure of the Coupling Algorithm

First, the matrices and initial displacement values for eq. 4.5 of the FEM domain are
established. This predicts the first deformed structure for the DEM domain.
The second step of the initiation phase mirrors the deformed surface elements of the FEM
mesh into DEM domain. Hence, at all time the surface geometry of the deformed body
exists in a similar way inside the DEM domain. The DEM domain sees the deformed
surface elements of the finite element mesh as geometrical boundary conditions. On this
basis the coupling algorithm is linking the particular surface element with the according
boundary shape between FEM and DEM domain.
The loop over time is separated into four major parts. The order of the computations
follows the physical events logically.
First, the motion of the granular assembly is integrated. Following this step, the impacts
between particles and the elastic body are predicted. Thereafter, the deformation of the
elastic body due to the impacting forces can be solved by the FEM scheme. The last part
of the procedure updates the position of the boundary shapes before the particle motion
is re-predicted within the new time step.
Within a single time loop the motion of the granular material is predicted first. This
step integrates the position and orientation of particles according to eq. 3.7 and 3.25. The
change in the dynamic quantities can also be due to forces of previous interactions between
particles and solid body.
Logically, between the integration of the motion of particles and the integration of the defor-
mation of the elastic body contact forces need to be computed and transferred. Therefore,
the step of transfer of contact forces aligns between them at the second position within
the time loop. This step is partitioned into three sub steps.
First, the potential contact pairs are detected by means of an efficient contact detection
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algorithm. The algorithm spares valuable computation time by a fast selection of the
important particle - element pairs from all possible pairs in the system. The fundamentals
of the algorithm are explained below.
The next sub-step computes contact forces for all pairs provided by the contact detection
algorithm. The contact force between particle and triangular element is derived from a
representative overlap as described for particle - particle contacts in section 3. The overlap
prediction in this particular geometrical case is described in the following sections. The
contact force is decomposed into normal and tangential components which depend on
displacements and velocities normal and tangential to the point of contact between the
particle and surface element. The contact force is added to the particle force and the
counter force is transferred to the according surface element of the FE mesh.
Thus, the third sub-step executes the interpolation of counter force onto the nodal forces
of the finite element. After the transfer of contact forces the computations of elastic
deformation are executed. This step incorporates the insertion of interpolated contact
forces into the force vector bl of the finite element formulation.
Thereafter, the new displacement value ul+1 will be gained by solving eq. 4.5.
Finally, before the new loop starts over, each boundary shape within the DEM domain
is updated according to the appropriate surface element. Therefore, the position and
displacement vector of every nodal point of the surface mesh are added and the appropriate
vertex of the triangular boundary shape is undated with the result.

5.2 Contact Detection

For an efficient coupling of discrete and finite elements the contact situation has to be
clarified as quick as possible. The coupling and quantity exchanging procedure is based on
the information that pairs of particles and elements are in contact. To avoid testing the
contact situation of each pair, an algorithm for quick contact detection has been developed.
The algorithm is based on a binary tree structure storing cubic bounding volumes. Fig. 5.2
shows such a binary at the example of a tire tread. The binary tree holds bounding volumes
at every tree level.
The root node encapsulates all surface elements of the meshed body. By accessing a lower
level of the tree the bounding volume of the previous level split in half by spatial dimensions
and number of elements encapsulated. The final branches of the binary tree only hold the
reference to a single surface element.
For the prediction of contact pairs, the algorithm simply runs along the branches. It
predicts if a particle is within the dimensions of a bounding volume. If this is the case
the algorithm repeats the prediction on the next lower level. As the algorithm reaches a
bottom node of the binary tree, the particle and the remaining surface element will be
returned as a potential contact pair. In any other case the contact detection algorithm
ends.
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Figure 5.2: Binary tree with stored bounding volumes exemplified by a tire tread. The root
bounding volume encapsulates the entire surface elements while the bottom branch holds a
single surface triangle.
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5.3 Contact Prediction

For each detected contact pair of particle and finite element, the particular overlap δij and
point of contact ~xc

ij are predicted. These predictions are provided to the force computation
described in chapter 3.
Each particle is composed of spherical shapes. Therefore the following procedure follows
the contact prediction between sphere and triangle. The contact prediction between a
sphere and triangle can be separated into three contact situations as depicted in fig. 5.3.
The spherical particle can intersect with the interior, the edges or a vertex of the triangular
shape.

Figure 5.3: Three contact situations of sphere - triangle intersection: contact point within
triangle dimensions, triangle edge intersection and triangle vertex contact, respectively.

By means of the natural coordinates of a linear triangle an efficient and quick prediction of
the contact situation is enabled. The natural coordinates can be presented as the portion
of the area Ai of the entire triangle area A∆ which is depicted in fig. 4.3 and already
formulated in eq. 4.12.
In the following the exact contact prediction implemented will be described demonstra-
tively.
The prediction is based on seven input values which are the three triangle vertices ~P1

~P2

and~P3, the triangle normal ni =
np
i

|~np| , the centroid
~MT , the sphere midpoint ~M and radius

r. The normal can also be predicted by the vertices as follows:

np
i = ǫijk

(
P 1
j − P 2

j

)
·
(
P 3
k − P 2

k

)

where ǫijk is the permutation tensor.
The values gained from the contact prediction for use in the subsequent force computations
are the overlap δ of spherical sub shape, the contact position ~xc and the contact direction
~nc.
First, the prediction of the intersection between sphere and triangle plane is conducted.
The distance D between midpoint and plane is thereby computed as follows:

D = ni ·Mi − (ni · P 1
i )

If the distance D ≤ |r|, an intersection with plane is predicted, as depict in fig. 5.5. In this
case the predictions proceed other wise the contact loop progresses with the next triangle
provided by the contact detection algorithm of section 5.2.
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Figure 5.4: Projection of ~M on triangle
plane, if D > |r| → no intersection with
plane.

Figure 5.5: Projection of ~M on triangle
plane, if D <= |r| → intersection with
plane.

Further, the projection of the spherical midpoint on the plane Cp
i = Mi−ni·D is calculated

and transformed into triangular coordinates ζi. This transformation is accomplished by
solving the linear equations system ζi = Pji · Cp

j .
If ζi ≤ 1 || ζi ≥ 0, the projection Cp aligns within the triangle dimensions and an intersec-
tion occurs as shown in fig. 5.6.

Figure 5.6: Intersection within triangle di-
mensions.

Figure 5.7: Contact point xc
i and direction

nc
i if intersection takes place within triangle

dimensions.

Hence, the overlap equals δ = |D| − |r|, the contact normal gives nc
i =

Mi−Cp
i

| ~M− ~Cp|
and contact

position is predicted as follows xc
i = Cp

i +
1
2
· δ · nc

i .
In this case the prediction ends and the algorithm proceeds with the next surface triangle
detected. If the intersection does not occur within the triangle dimensions, the prediction
progresses to check for edge or vertex intersection. If ζi > 1 || ζi < 0, the sphere intersects
with an edge or a vertex of the triangle as depicted in fig. 5.9 and fig. 5.8, respectively.
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Figure 5.8: Intersection with a vertex. Figure 5.9: Intersection with an edge.

First, the check for closest vertex is conducted by means of:

D = min
(
|~Pi − ~M |

)

At this stage the closest point ~Cp between the triangle and the sphere is set equal with the

closest vertex ~Pi. Thereafter, the checking proceeds with the closest edge using the height
between the three edges and the midpoint ~M as shown in fig. 5.10.

Figure 5.10: Three triangles formed by edges and midpoint.

Every obtuse triangle fulfilling c2+b2 < a2 or c2+a2 < b2 can be neglected. If the distance
D is larger than the height hi of any of the three triangles, an intersection with an edge
will be predicted. This can be written as follows:

D > hi =
|Ai|
|ci|

where ci describes the length of the edge i. For the case D > h1 the closest point on the
edges id predicted by:

~Cp = ~P1 +



~c1 ·

(
~M − ~P1

)

~c1 · ~c1


 · ~c1
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If 0.0 ≥ | ~M− ~Cp|−r, the edge contact is confirmed and the contact properties are predicted
as follows:

~nc =
~M − ~Cp

| ~M − ~Cp|

δ =
(
| ~M − ~Cp| − r

)
· 1
2

~xc = ~Cp +
1

2
· δ · ~nc

5.4 Discrete to Continuum Conversion

The contact between a continuous and discrete approached media requires transformations
between continuum and discrete quantities. This implies certain difficulties caused by the
fundamental differences of the approaches. However, the purpose here is to transfer impact
values from DEM to FEM.

5.4.1 Point Force to Nodal Force

The computation is virtually separated into two domains, the FEM and the DEM domain.
The DEM domain sees the surface elements of the finite element mesh as geometrical
boundary conditions. The nodal positions of this surface elements are updated at each
time step as the finite mesh moves and deforms. This means within a single time step
a particle contacting a finite element impacts a static wall. Thus the calculation of the
impact forces at the contact point are in accordance to the description in chapter 3.
Within the FEM domain impacting particles are recognised as point forces acting on the
surface of an element, see fig. 5.11. But the displacements are computed at the nodal
points of an element. Hence, the point has to be interpolated consistently onto the nodes
to account for them within the finite element formulation of eq. 4.5. The force interpolation
is based on the virtual work equivalent to secure consistent nodal forces for FEM. This
equivalent states that the work of the particle force paired with the interpolated displace-
ment equals the work achieved by the nodal forces and nodal displacement. Nakashima
and Oida (2004) and Horner et al. (2001) used the same approach of DEM - FEM coupling
to analyse vehicle - soil and tire - soil interactions.
Looking at the contact situation in fig. 5.11, the finite element sees a point force acting
on certain point of its surface. A point force can be written as the force multiplied by the
Dirac functions. Eq. 5.1 represents the particle force ~F acting on the point P (ζP1 , ζ

P
2 , ζ

P
3 )

of the triangle surface in natural coordinates.

Fj · δ(ζ1 − ζP1 ) · δ(ζ2 − ζP2 ) · δ(ζ3 − ζP3 ) (5.1)

Let δ~un be the virtual node displacement and ~fn the paired nodal force, the left side term
of eq. 5.3 represents the virtual work at the nodes. The right side term is the virtual work
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Figure 5.11: Particle force interpolated onto a linear triangle element.

achieved by external forces.

∑

n

δWn = δWS (5.2)

∑

n

~fn · δ~un =

∫

S

~fs · δ~u dS (5.3)

∑

n

~fn · δ~un =

∫

S

~fs ·
(
∑

n

Nn · δ~un

)
dS

In eq. 5.3, δ~un is the virtual nodal displacement and Nn(ζn) · δ~un its associated variation.
The interpolated virtual displacement for a linear triangle is described as follows:

δ~u = N1(ζ1) · δ~u1 +N2(ζ2) · δ~u2 +N3(ζ3) · δ~u3

Introducing this into eq. 5.3 and cancelling δ~un from both sides yields the following equa-
tion:

~fn =

∫

S

~fs ·Nn(ζn) dS (5.4)

Interpreting the surface integral by means of the natural coordinates and substitute the
particle reaction force in eq. 5.4 by eq. 5.1 the following equation yields:

~fn =

1∫

0

~F · δ(ζn − ζPn ) ·Nn(ζn) dζn (5.5)

a∫

b

Q(x) · δ(x− y) dx = Q(y) → a ≤ y ≤ b (5.6)
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Using the integration law 5.6 of a Dirac function, the distribution of the point force ~F
onto the nodal forces can be predicted by means of the shape functions, as formulated in
eq. 5.7.

(
~fn = Nn(ζ

P
n ) · ~F

)e

(
fn
i = Nn(ζ

P
n ) · Fi = ζPn · Fi

)e
(5.7)

5.4.2 Homogenisation of Discrete Quantities

Analysis of the discrete results involves mostly comparison to macroscopic measurements.
Measurements are necessarily presented as or in relation to continuum quantities, e.g. vol-
ume, density or pressure. Thus it is often convenient and sometimes even necessary to
find a continuum representation of discrete results, e.g. position and force. In this study,
three-dimensional Voronoi tessellation of Rycroft (2007) is used to connect the discrete
representation of a particle ensemble to a bulk continuum description. The developed
Voronoi library thereby carries out the computations of a Voronoi cell, i.e. volume, for
each particle individually. Fig. 5.12 shows the example generation of Voronoi cells from
the grain distribution of a cylindrical snow sample of macroscopic density of 408 kg/m3.
Having a cell volume associated with each particle allows to relate any discrete quantity of

Figure 5.12: Voronoi cells of a cylindrical snow sample of macroscopic density of
408 kg/m3.

the particle to the continuum cell. In the following the generation of a density and stress
field is introduced from a discrete grain position and force distribution, respectively.
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Density Distribution

The density of a cell volume ρc is predicted as follows:

ρc =
Vp

Vc

· ρp (5.8)

where Vp denotes the particle volume, Vc is the Voronoi cell volume and ρp is the particle
density. Fig. 5.13 exemplifies the density distribution of a cylindrical snow sample with a
macroscopic density of 400 kg/m3. The density of a snow grain ρp ≃ ρice ≃ 920 kg/m3

is assumed to be the density ice Ih.

Figure 5.13: Density distribution by Voronoi cells in a cylindrical snow sample of macro-
scopic density of 408 kg/m3.

Continuum Stress Field

The stress tensor σαβ of cell volume Vi related to the particle i and resulting from contact
j is predicted as follows:

σi
αβ(t) =

1

Vi

·
n∑

j=1,j 6=i

F ij
α (t) · dijβ (t) (5.9)

where ~Fij is the contact, ~dij distance vector between the two particle centers and n the
number of all interactions.
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Chapter 6

Results and Discussions

6.1 Validation at the Grain-Scale

6.1.1 Bond Growth and Fracture

Szabo and Schneebeli (2007) conducted measurements of the sintering force between two
adjoining ice grains. Within the experiments two conical ice cylinder with a spherical tip of
3 mm radius have been pushed together under a constant load of 2 N. The measurements
were performed at the temperatures of −1 ◦C and −12 ◦C . The contact load was applied
for different time lengths to sinter an ice bond between the grains.

Figure 6.1: Fracture of freshly sintered bond between two spherical ice grains by Szabo and
Schneebeli (2007).

The ice grains were separated after different contact times between 0 and 1000 ms. Fig. 6.1
shows the force measured during the separation of the grains. The measured force is called
the sintering force and is shown by symbols in fig. 6.2.
The experiments were numerically repeated by pushing together two spherical ice grains of
the same size and under the same load and temperatures. After the different contact times,
i.e. sintering times, the ice grains were separated and the resulting force, i.e. sintering force,
was recorded.
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t1 t2 t3

Figure 6.2: Two ice grains pushed together under constant normal load 2 N at t1 and t2
and pulled apart by constant velocity at t3. The bond grows under load between the two ice
grains.

Figure 6.3: Experimental, analytical and numerical predicted sintering force between two
ice grains. The bond grew under a constant load of 2 N and at temperature of −1 and
−12 ◦C. The blue lines illustrate the predicted results, the black lines are predicted by
eq. 3.63 and the symbols are the measurements of Szabo and Schneebeli (2007)

The sintering force is a measure of the bonding strength between ice grains. Fig. 6.3
shows that the sintering force between the ice grains grows with increasing contact time
and ascending temperature. The developed bond growth model of eq. 3.63 is re-capturing
the bond growth between two adjoining ice/snow grains very well. The model accounts
for the pressure, the rate and the temperature dependence. It has to be noticed that the
experimental and numerical results in fig. 6.3 never approach zero. The initial bond area
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is resulting from the elastic deformation during the grain collision. According to Hertz
(1881), the contact area is predicted by eq. 3.64.

6.1.2 Ductile and Brittle Bond Deformation

Each bond between a pair of snow grains is assumed to be a continuous cylindrical ice
bridge. In this section, two ice grains with a predefined bond size are compressed. The
predictions were carried out for six selected configurations, shown in table 6.1. These
configurations describe the typical characteristics of snow grain deformation in dependence
of different strain rates and temperatures.

Table 6.1: Strain Rate and Temperature Configurations

ε̇ [s−1] 1 · 10−6 2 · 10−5 2 · 10−5 5 · 10−4 5 · 10−4 1 · 10−1

T [◦C] −12 −5 −12 −1 −5 −1

Within the predictions are conducted with the brittle strain rate of ε̇ = 10−1 s−1, the
transition rate of 5 · 10−4 s−1 and the two ductile rates of 2 · 10−5 s−1 and 10−6 s−1. The
stress response of the bonds to increasing strain is shown in fig. 6.4.

Figure 6.4: Bond deformation of the six selected configurations of different strain rates and
temperatures. The predicted results are coloured by strain rate and marked by the applied
temperature.
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The overall strength of the ice bond increases with decreasing temperature which correlates
with the observations by Schulson (1990) described in section 2.1.2.
The black and blue curves in fig. 6.4 show the predicted results of the low strain rates of
2 · 10−5 s−1 and 1 · 10−6 s−1. With increasing strain, the stress increases until it reaches
the yield strength of ice. Thereafter, the straining proceeds, i.e. bond deforms, without
any change in stress. The curves shows the typical ductile deformation behaviour at such
low strain rates. This behaviour is predicted by the applied creep model of eq. 3.2.
In fig. 6.4, the green curve shows the bond deformation under the high strain rate of
1 · 10−1 s−1. The curve describes a saw-tooth shape due to subsequent stress build up
and fracture of the bond. This is the typical shape of the strain-stress curve of brittle
deformation behaviour.
The violet curves in fig. 6.4 illustrate the results of the transition rate of 5 · 10−4 s−1.
The stress-strain curves show a mixture of ductile and brittle behaviour. For −5 ◦C, the
stress increases viscous-elastic with ascending strain until the fracture strength is reached
by eq. 3.65 of the bond model. For −1 ◦C, the creep law of eq. 3.2 relaxes the stress before
the fracture strength can be reached under the straining. The decrease in brittleness closer
to the melting point was also observed in measurements of snow deformation, e.g. fig. 2.23.
For transitional and brittle behaviour, the highest stress reached during straining is defined
as the strength. The strength - strain rate relationship is shown in fig. 6.5.

Figure 6.5: Bond strength versus strain rate at different temperatures. The grey rectangular
symbols are measurements of the compressive ice strength by Schulson (1990). The coloured
symbols are the simulation results. A circle describes ductile and a star describes brittle
behaviour of the ice bond.

Fig. 6.5 shows the predicted results at the different strain rates together with the compres-

117



6. Results and Discussions

sive ice strength measured by Schulson (1990).
The results show an increase in the compressive yield strength with ascending strain rate
in the ductile regimes. Furthermore, the compressive strength decreases with increasing
temperature. The brittle failure strength under compressive strain reduces with increasing
strain rate. The stress-strain and strength-rate relationships of the ice bond deformation
correlate very well with the experimental results. Also the temperature dependence is
captured by the developed bond model. It has to be noticed that there is no reason for the
results to diverge from the physics as a phenomenological model used. The model includes
all principal physics observed in the experiments.

6.2 Macroscopic Predictions of Snow under Load

The objectives of the predictions of this section are to validate the derived snow models at
the macroscopic scale. Therefore different load tests are simulated with representative snow
samples. The tests are related to common phenomenological and mechanical experiments
from the field of snow mechanics. Further, the results are compared and discussed in
relation to measurements and experimental data found in the literature. The validation
will be done in order to increase the complexity of the tests with confirmation of valid snow
behaviour. The comparison with the experimental data is analysed and discussed along
the characteristic features measured during the tests. Snow shows a strong dependence on
test temperature, load, velocity as well as on the sample density and sintering strength.
Thus, all numerical setups are studied with a representative collection of those parameters.

6.2.1 Compression Tests

Compression tests of simple geometries are the most common characteristic tests to study
the mechanical behaviour of granular materials. These tests are widely used in the field of
soil mechanics and have also been adopted in the field of snow mechanics. Thus, measure-
ments of compression tests on snow samples are relatively numerous in the literature. In
this section, two different kinds of compression tests are simulated in relation to conducted
experiments of different authors. The first test is an unconfined compression test with a
deformation controlled load plate. The second test is an one-dimensional compression test
with the same controlled deformation rates but confining walls. For later comparisons,
both tests are conducted on the same variety of virtually prepared snow samples. The
test parameters varied are the loading rate ε̇l and the temperature T . Further, the sample
parameters were varied during preparation to study there influence on the snow strength.
The sample parameters studied are initial snow density ρ0, grain size rg and distribution,
coordination number Nb of the bonds as well as initial bond strength rb, i.e. size.
The predictions of the unconfined compression test follow the measurements of Kinosita
(1967) as well as Von Moos et al. (2003) and Scapozza and Bartelt (2003).
The rigid-confined compression tests are compared to the measurements of Abele and Gow
(1975), Yong and Fukue (1977), Fukue (1977) and Yong and Metaxas (1985).
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6.2.1.1 Experimental Setup

To avoid edge effects most compression tests are conducted on cylindrical snow samples,
e.g. Kinosita (1967) or Von Moos et al. (2003). Hence, the predictions in this section
are conducted on cylindrical snow samples of radius rc and height hc. Fig. 6.6 shows a
schematic representation of the wall confined compression test whereby fig. 6.7 shows the
unconfined compression test.

Figure 6.6: Schematic presentation of confined one-dimensional compression test.

Figure 6.7: Schematic presentation of unconfined compression test.

In both configurations, the cylinder axis of the sample is aligned with the z or x3 direction
of the coordinate system. The cylindrical snow samples are thereby assembled between a
bottom plate and a top load plate. The plate normals point in z direction. The origins of
the cartesian coordinate system (x1, x2, x3) are aligned within the plane of the bottom plate.
Fig. 6.6 and 6.7 also indicate the cylindrical coordinate system (r, θ, z) aligning with the
Cartesian. Generally, the quantities in this study are described in Cartesian coordinates
but for these predictions it is more convenient to apply cylindrical coordinates. Thus,
spatially dependent quantities with the indices r, θ, z describing a component in cylindrical
coordinates while of course the Cartesian components carry the indices 1, 2, 3.
In both compression tests the top plate compacts the sample with a constant load rate
ε̇l which acts in −z, i.e. −x3, direction. The bottom plate is fixed (ε3 = 0) throughout
the entire compression. The confining walls within the one-dimensional compression test
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of fig. 6.6 prevent any deformation εr = 0 in radial direction at r = rc. In the unconfined
compression test the radial deformation of the snow sample is not prevented. Thus, the
radial stress σr = 0 at r = rc is constant throughout the entire deformation. The response

Table 6.2: Temperatures and Strain Rates of Compression Tests

T [ ◦C] −1 −4 −10 −16 −32

ε̇l [ s
−1] 4.0 0.4 4 · 10−2 4 · 10−3 4 · 10−4 4 · 10−6

of a snow sample during compression is studied at different temperatures and with different
strain rates which are listed in table 6.2. The investigations of Abele and Gow (1975)
showed a change in the mechanical behaviour of snow above and below temperatures of
−10 ◦C. Thus, the temperatures are chosen to study the ability of the newly developed
snow models to capture the behaviour close to the melting point as well as at the low
temperatures with very little creep of ice. Several authors showed the transition from
ductile to brittle deformation behaviour of snow with an increase of the loading rates
above transition rates of 4 · 10−3 to 4 · 10−4 s−1. Therefore, the compression tests are
conducted at the six different strain rates reported in table 6.2 to study the validity of the
models at ductile, transitional and brittle deformations of snow.

6.2.1.2 Snow Sample Preparation

Cylindrical snow sample of three different initial densities, ≅400 kg/m3, ≅500 kg/m3 and
≅600 kg/m3 have been prepared by the gravitational deposition method of section 3.5.1.
The snow samples are setup with three different grain size distributions of two different
radii. The different grain size distributions are produced by the method described in
section 3.5.2. The two average radii rg are shown in table 6.3 together with the three
distributions of rmax and rmin. In table 6.3, ±s describes the maximum and minimum
deviation with respect to the average radius rg. Hence, the average radii are distributed
by the rectangular probability function with the deviations of 30%, 15% and 5%.
Table 6.4 shows the initial dimensions and properties of the prepared snow samples. In
table 6.4 ρ0 describes the initial density, rc the initial sample radius, hc the initial sample
height and Ng the number of grains inside a sample. The initial density is thereby predicted
as follows:

ρ0 =
1

Vc

Np∑

i=1

Vp (6.1)

where Vc denotes the cylinder volume and Vp a single particle volume. The presented
initial densities deviate negligibly with the grain size distributions ( max. ±0.8%). The
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Table 6.3: Grain Size Distribution of Snow Sample of Compression Tests

rg [ mm]

2.480 0.124

±s [%] rmax rmin rmax rmin

±5 2.604 2.356 0.1302 0.1178
±15 2.852 2.108 0.1426 0.1054
±30 3.224 1.736 0.1612 0.0868

Table 6.4: Initial Dimensions and Densities of Snow Sample of Compression Tests

Sample ρ0 [kg/m3] 2 · rc [ mm] hc [ mm] Ng

1. 408 ±0.7% 58.0 86.0 ≅1700

2. 509 ±0.6% 2.9 3.92 ≅1700
3. 509 ±0.7% 5.8 8.4 ≅13950
4. 509 ±0.7% 116.1 167.3 ≅13950
5. 511 ±0.8% 58.0 74.4 ≅1700

6. 580 ±0.7% 5.8 7.4 ≅13950
7. 580 ±0.7% 116.1 147.4 ≅13950

compression tests are conducted on samples with about 1700 and 13950 grains per sample.
This large difference was chosen to prove the independence of the results on the number
of grains.
Fig. 6.8 shows the samples 1, 5 and 7 to visualise the properties of table 6.4. The figure
shows the sample structure by grains and adjoining bonds in the left column. The initial
densities increase from top to bottom together with the number of grains.
In the right column of fig. 6.8 the respective density distributions are shown. These initial
density distributions are predicted by eq. 5.8 by means of the Voronoi tessellation. The
Voronoi tessellation is described in chapter 5.4.2 and in detail by Rycroft (2007).
Fig. 6.9 depicts a slice through the density distribution of fig. 6.8. With increasing initial
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sample density the slices depict the densification of the field.

S.1. ρ0≅408kg/m
3 Ng≅1700

S.5. ρ0≅511kg/m
3 Ng≅1700

S.7. ρ0≅580kg/m
3 Ng≅13950

Figure 6.8: Grain and Bond Structure of three cylindrical snow sample in left column.
Density distribution in right column.

Also the dependencies of the initial bond strength and coordination number are supposed
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(a) S.1. of 408 kg/m3 (b) S.5. of 511 kg/m3 (c) S.7. of 580 kg/m3

Figure 6.9: Density distribution in slice through cylindrical snow samples.

to be studied by the compression tests. Therefore, table 6.5 shows the variation of the

initial properties of the preprocessed bond structure. The ratio
rb
rg

between bond and

Table 6.5: Initial Bonding Properties of Snow Sample of Compression Tests

rb
rg

0.0 0.1 0.3 0.3 0.3 0.5 0.5 0.9

Nb 0.0 1.0 2.5 3.0 3.5 3.0 3.5 4.0

grain radius is used to setup the initial bond size according to eq. 3.77. The average
number of bonds per grain Nb of a snow sample is predicted by eq. 3.76. In table 6.5, the

bonding configuration of
rb
rg

= 0.0 and Nb = 0.0 indicates that no initial bond structure is

constructed. Fig. 6.10 shows three example bond structures of the three samples already
used in the previous figures.
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S.1.
rb
rg

= 0.5, Nb = 3

S.5.
rb
rg

= 0.5, Nb = 3.5

S.7.
rb
rg

= 0.1, Nb = 3

Figure 6.10: Bond Structure of three cylindrical snow sample.
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6.2.1.3 Unconfined Strain - Stress Relationship of Snow

A large number of predictions of compression tests of cylindrical snow samples have been
conducted under unconfined conditions and various parameter configurations. Under the
various parameters studied the strain rate ε̇l of the tests appeared to be most suitable to
characterise the principal deformation behaviour of snow. By this measure the relation-
ship between stress and strain can be divided into brittle and ductile behaviour of snow.
Further, a third additional regime can be defined as a combined behaviour of brittle and
ductile, hereafter called the transitional behaviour. This separation of the mechanical snow
behaviour by the strain rate is well established in the field snow mechanics and thus has
been found and stated previously in several experimental studies, for instance by Kinosita
(1967), Narita (1984) and Fukue (1977). From the experimental results of Kinosita (1967)
and Fukue (1977) the transitional behaviour can roughly be defined at strain rates close
to 5 · 10−4 s−1. The brittle behaviour of snow is therefore apparent at strain rates above
the transition rate while the snow deforms plastic at rates below 5 · 10−4 s−1. These strain
rate dependent behaviour was also found within the predictions of snow under load in this
study. This section starts with the description of the typical features of the three individ-
ual regimes observed in the predictions. Those descriptions are followed by an overview on
the relationship between strain rate and behaviour as well as strength of snow. The two
final sections analyse the micro-structural and temperature dependence of the unconfined
snow performance. The results are compared to measurements found in the literature.

Brittle Deformation Behaviour

Fig. 6.11 depicts typical strain-stress curves observed in the predictions of brittle defor-
mation of unconfined snow samples at strain rates equal to and larger then 4 · 10−3 s−1.
The two curves were predicted at similar initial sample densities, i.e. 408 kg/m3, but at
two different compression rates, i.e. 4 · 10−2 s−1 and 4 · 10−3 s−1. Fig. 6.11 also depicts
an experimental curve of the unconfined compression tests by Kinosita (1967) at a simi-
lar strain rate of ε̇l = 10−3 s−1.The predicted curves show the same saw-tooth shape as
the experimental result. The difference in strength due to rate, temperature and bonding
properties will be discussed in the following sections. The saw-tooth shapes of the curves
is a typical characteristic of the brittle deformation behaviour and similar to other brit-
tle material, as already shown in fig. 2.19 and 2.21 and discussed in section 2.1.2. The
strain-stress curve of brittle deformation of snow has been described by several authors as
a roughly linear increase of the stress with increasing strain. When a certain stress value
is reached, an abrupt decrease in stress with no notable portion of plastic deformation can
be observed. With further progressing strain the stress increases again with almost the
same gradient as the previous increase. When the stress reaches approximately the same
threshold the sudden rupture of the curve reoccurs. The maximum stress reached over
the repeated ruptures is defined as the strength or yield stress σy of the brittle deformed
sample. The build up and sudden decrease in stress is repeated over the entire time of the
sample deformation. This was the case throughout all brittle predictions of the sample
with similar bonding properties as shown in fig. 6.11. Fukue (1977) also observed this
behaviour in his unconfined compression tests specifically for moderately bonded snow.
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Figure 6.11: Unconfined compression of a cylindrical snow sample with brittle loading
rates. The green lines are the predicted results of the initial sample density is 408 kg/m3

at different brittle rates. The black curve is a unconfined compression test of Kinosita
(1967) at the brittle rate of about 10−3 s−1.

In fig. 6.12, the deformed sample of the curve corresponding to a strain rate of ε̇l =
4 · 10−2 s−1 in fig. 6.11 is shown at four progressing strain states. The four states are
labelled with (a),(b),(c) and (d) on the ε axis of fig. 6.11. The snow sample is compressed

at a temperature of −16 ◦C and has initial bonding properties of Nb = 3.0 and
rb
rg

= 0.5.

Fig. 6.13 visualises the bond structure at the selected states of deformation. Thereby,
the bond structure is coloured by its normal stress component. Only half of the sample is
shown to allow an inside view. Negative normal stress is thereby defined as stress developed
due to compression while positive stress indicates the tension of a bond.
The continuous build up of stress peaks is caused several mechanism interacting. After
each rupture loose grains re-arrange and re-bond and thereby forming new force, i.e. stress,
chains. Also the remaining bond structure builds up a new stress distribution and forms
new bonds and contacts with the re-arranged grains.
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(a) (b)

(c) (d)

Figure 6.12: Unconfined compression of a cylindrical snow sample by a brittle compression
rate of 4 · 10−2 s−1. The initial sample density equals 408 kg/m3. The temperature is

−16 ◦C and the initial bonding parameters are Nb = 3.0 and
rb
rg

= 0.5.

The continuous rupture of the brittle strain-stress curve about an almost constant mag-
nitude is caused by a pure surface fracture close to the ends of the snow sample. This
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(a) (b)

(c) (d)

Figure 6.13: Unconfined compression of a cylindrical snow sample by the pure brittle com-
pression rate of 4 ·10−2 s−1. The bond structure of the sample is depict at increasing strain
states and coloured by the normal stress component (- compression / + tension). The ini-
tial sample density equals 408 kg/m3. A temperature of −16 ◦C is applied and the initial

bonding parameters are Nb = 3.0 and
rb
rg

= 0.5.
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surface fracture is depicted in fig. 6.12.
Kinosita (1967) described this type of brittle fracture as a non-uniform contraction with
break downs concentrated at the sample end. The failure is taking place at the top or
bottom of the snow cylinder. In fig. 6.12, the snow sample starts to rupture at its bottom
part. Several small portions and single grains are breaking off. The fracture progresses
into the sample with progressing strain while the upper portion remains unchanged by
the brittle deformation. The bonds between grains, in fig. 6.13, rupture and the grains
are either ejected or packed into the center between sample and end surface. The same
behaviour was observed by Kinosita (1967) in his brittle compression tests of unconfined
snow samples which are depicted in fig. 2.18. In fig. 6.13, it has to be noted that exclusively
the bonds near the end of the sample are broken. The upper or remaining part of the bonds
are almost entirely unaffected by the brittle deformation. The majority of bonds in the
remaining portion of the sample develops minor or no stress as depicted by the normal
component in fig. 6.13. Under the high strain rate applied, this and the almost linear stress
increase of the curves indicate that the bonds have no time to relax stress. Thus, the creep
of ice employed by the models of eq. 3.57 and 3.63 does not play a significant role in this
deformation mechanism.
The phenomenon of no bond stress in the remaining sample portion is even more apparent
with higher strain rates and denser samples as exemplified in fig. 6.14.

The snow grains are coloured to allow visual
tracking.

The bond structure is coloured by the normal
stress component.

Figure 6.14: Unconfined compression at 8.8% strain of a cylindrical snow sample by a
brittle compression rate of 4 · 10−1 s−1. The initial sample density equals 511 kg/m3. A
temperature of −10 ◦C is applied and the initial bonding parameters are Nb = 3.5 and
rb
rg

= 0.5. The arrows indicate the particle velocity.
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(a) (b)

(c) (d)

Figure 6.15: The density distribution of the sample is depicted at increasing strain states
for an unconfined compression of a cylindrical snow sample by a brittle compression rate
of 4 · 10−2 s−1. The initial sample density equals 408 kg/m3. A temperature of −16 ◦C is

applied and the initial bonding parameters are Nb = 3.0 and
rb
rg

= 0.5.

The snow sample depicted has an initial density of 511 kg/m3 and is loaded with a rate
of 4 · 10−1 s−1. The snow grains and bond structure are shown at a strain state of 8.8%
together with the velocity field of the particles.
In fig. 6.14, the sample fracture onsets at the upper load plate and progresses with increas-
ing strain. In this case the remaining part is the lower portion of the sample. The velocity
field visualises the break off of the upper snow grains. For the higher density and rate
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compression of fig. 6.14, the remaining bond structure carries almost no load. Under high
rate loading almost all deformation energy is released by the surface fracture mechanism.
As mentioned, Kinosita (1967) observed the fracture behaviour on either end of the snow
samples. Also in the predictions of this study the samples fractured brittle on one of the
ends of the cylindrical samples which is already exemplified by the two samples in fig. 6.12
and 6.14, respectively. The predictions showed that the onset of the fracture surface
correlates with lower density end of the sample. Fig. 6.9a and 6.9b show the initial density
distributions of the represented 408 kg/m3 and 511 kg/m3 snow sample, respectively. The
sample with initial density of 408 kg/m3 shows a slight decrease in density towards the
bottom while the sample of 511 kg/m3 is weakest at the top end. In both cases this is the
location of the onset of brittle fracture. A lower density causes less bonding possibilities
and thus results in a weaker snow layer compared to the rest of the sample.
Fig. 6.15 shows the density field of the snow sample of 408 kg/m3 used in fig. 6.12 at
the selected strain states. The figure shows a slice through the center over the sample
height. The density fields remain almost constant in the unfractured upper part of the
snow sample at the increasing strain states.

Transitional Deformation Behaviour

Three typical strain-stress curves of unconfined compression tests at the transition rate of
4 · 10−4 s−1 are shown in fig. 6.16. The profiles shown in fig. 6.16 are predicted at equal
initial densities of 408 kg/m3, but at the three temperatures −4 ◦C, −10 ◦C and −16 ◦C,
respectively. Fig. 6.16 also contains experimental predictions by Chandel et al. (2014) at
similar strain rates of 4.8 · 10−4 s−1 and 7.2 · 10−3 s−1.
The strain-stress curves predicted in transition regime between brittle and ductile be-
haviour lack any abrupt rupture. The stress increases viscoelastic with strain, until the
yield stress is reached, followed by a strain-softening behaviour. The viscous stress build
up and decrease, i.e. subsequent strain hardening and softening phases, can re-occur sim-
ilarly once or twice after the first stress decrease with progressing compression as shown
fig. 6.16. Eventually, all predicted curves in the transition regime show a decrease in stress
with ascending strain caused by strain-softening of the samples. The measurements by
Chandel et al. (2014) identified a rate of 2 ·10−4 s−1 as the strain rate of snow at which the
softening effect is mainly observed. This coincides very well with the predicted results in
this study. The strength σy of the snow sample deformed under a transition rate is defined
as the maximum stress reached over the entire deformation.
Fig. 6.17 visualizes the sample at the temperature of−10 ◦C of fig. 6.16. The bond structure

of the sample has a coordination number of Nb = 3.5 and a bond radius of
rb
rg

= 0.5. The

deformed sample is shown with an axial strain of 1.6%, 5.2%, 20.8% and 27.6%. The bond
structure of the same snow sample is depict in fig. 6.18 at the same states of deformation.
The sample is again cut along its length to depict the bond structure coloured by its
normal stress component. Negative normal stress is thereby defined as stress developed
due to compression while positive indicates tension of the bond. Fig. 6.19 shows the density
field of the snow sample of 408 kg/m3 used in fig. 6.17 at the same strain states.
Fig. 6.17a at the strain state of 1.6% shows the deformed sample during the phase of
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Figure 6.16: Unconfined compression of a cylindrical snow sample of 408 kg/m3 in the
transition regime between ductile and brittle behaviour. The purple curves show the pre-
dicted results at different temperatures. The black curves depict unconfined compression
tests of Chandel et al. (2014) at transition rates.

the initial viscoelastic stress increase. At this state the sample in fig. 6.17 is contracted
uniformly with no change in shape. The bond structure at the strain state of 1.6% in
fig. 6.18a has not experienced any fracture. Further, the bonds developed a stress state in
accordance to the deformations undertaken by the sample. Under the lower strain rate in
contrast to brittle rates, the developed bond stress and the non-linear stress increase of the
curves reveal that the bonds have time to grow and relax stress due to the creep models
employed, eq. 3.57 and 3.63. However, the bonds can still not avoid failure entirely. These
circumstances result in the subsequent strain hardening and softening phases observed in
fig. 6.16.
The strain states of 5.2% and 20.8% depict the sample at the first and final onset of
strain-softening identified in fig. 6.16. In fig. 6.17b at the strain of 5.2%, the snow sample
apparently still holds the cylindrical shape while at 20.8% a non-uniform deformation is
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(a) (b)

(c) (d)

Figure 6.17: Unconfined compression by a transition rate of 4 · 10−4 s−1. The initial
sample density equals 408 kg/m3. The temperature is −10 ◦C and the bonding parameters

are Nb = 3.5 and
rb
rg

= 0.5.

observable. At the strain state of 20.8%, fig. 6.17c shows major pieces, i.e. grain agglomer-
ations, of the sample have broken off. In fig. 6.18 both strain states show the same failure
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(a) (b)

(c) (d)

Figure 6.18: The bond structure is depicted at increasing strain states and coloured by the
normal stress component (- compression / + tension). An unconfined compression rate of
4 · 10−4 s−1 is applied. The initial sample density equals 408 kg/m3. The temperature is

−10 ◦C and the bonding parameters are Nb = 3.5 and
rb
rg

= 0.5. A red dashed line indicates

a fracture surface.
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(a) (b)

(c) (d)

Figure 6.19: The density distribution is depicted at increasing strain states. An unconfined
compression rate of 4 · 10−4 s−1 is applied. The initial sample density equals 408 kg/m3.

The temperature is −10 ◦C and the bonding parameters are Nb = 3.5 and
rb
rg

= 0.5.

patterns. The majority of bonds beneath a certain fracture plane vanished. The fracture
surface is identified as an inclined plane through the sample which is indicated by the red
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dashed lines in fig. 6.18b and 6.18c. After each stress build up a new fracture surface
develops due to the rupture of the majority of bonds between the new and the previous
surface. Fukue (1977) observed a similar fracture type which is shown as type 2 in fig. 2.28.
He described this type of fracture as multiple plane failure. The remaining bonds between
the grains above and below any fracture surface still develop stress in accordance to the
sample deformation. Within the volume of fracture below the fracture surfaces a certain
portion of bonds remained. These bonds are mainly oriented into the direction of loading.
This indicates the rupture of bonds was caused by the shear stresses developed.
The strain state of 27.6%, in fig. 6.16, indicates that the sample during the final period of
strain-softening breaks apart gradually. Due to the decreasing number of bonds, particu-
larly in the direction perpendicular to the loading direction, the sample weakens gradually.
Major cracks develop along the length of the sample which are also visible in the final
density distribution of fig. 6.19.
At any stage of the deformation of an unconfined snow sample by a transition rate the
intra- and inter-granular creep models of ice employed, by eq. 3.2, play a major role for the
macroscopic observed behaviour. Under a slower sample deformation, the bonds between
grains are able to relax portions of the stress due to creep but can still not avoid failure
entirely. Hence, the employed bond growth of eq. 3.63 has time to act at the transition
strain rate. New bonds have time to develop under stress between compressed grains, but
they do not reach enough strength to prevent failure of the sample.

Ductile Deformation Behaviour

Two typical strain-stress curves predicted by the unconfined compression tests at the duc-
tile strain rate of 4 · 10−6 s−1 are shown in fig. 6.20. The numerical samples are of equal
initial densities 408 kg/m3 but different initial bonding properties, i.e. the coordination

numbers Nb = (3.0; 4.0) and the bond radii
rb
rg

= (0.5; 0.9). Fig. 6.20 also includes experi-

mental results by Scapozza and Bartelt (2003), von Moos (2001) and Chandel et al. (2014)
at similar strain rates and temperatures.
In fig. 6.20, the strain-stress curves predicted under ductile deformation demonstrate an
initial viscous-elastic stress increase with a high stiffness. The increase vanishes when
the ductile yield stress σy is reached. Thereafter the simulated curves show almost no
change in stress, i.e. hold the yield value, with increasing strain. The initial stiffness of

the ductile simulated curves increases with increasing bonding properties, i.e. Nb and
rb
rg
.

This matched well with the observations of Fukue (1977) shown in fig. 2.21, which states
that the strength and stiffness increases with increasing sintering time for similar density
samples. Also von Moos (2001) observed an increase of the stiffness but related it to an
increase in density. The increase of the stiffness can also be observed in the experimental
curves depicted in fig. 6.20.
After yield strength is reached, the experimental curves show a change in slope. But the
predictions don’t change in strength after yielding. This work-hardening behaviour of snow
after the yield point is reported by several authors, e.g. Fukue (1977),von Moos (2001) and
Scapozza and Bartelt (2003). The predicted curves did not show any work-hardening with
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Figure 6.20: Unconfined compression of a cylindrical snow sample by ductile rates at dif-
ferent temperatures. The blue curves are the predicted results for a sample of an initial
density of 408 kg/m3. The grey and black curves are unconfined compression measurements
by Scapozza and Bartelt (2003), von Moos (2001) and Chandel et al. (2014).

progressing plastic deformation. This effect shows that the creep of a bond under stress,
by eq. 3.2, is too strong. This has to be investigated in future studies as the mechanism
of the work-hardening remains unknown.
Fig. 6.21 visualises the sample of the dark-blue curve in fig. 6.20. The deformed sample
is shown at the axial strain of yield of 4.4% and at three further states, i.e. 10.0%, 16.0%
and 20.0%, during the plastic deformation phase. The corresponding bond structure is
depicted in fig. 6.22 at the indicated states of deformation. The bond structure of the
sample is again shown in the half open view and coloured by its normal stress component.
Under ductile deformation the bond structure of the snow sample experiences no bond
failure as depicted in fig. 6.22. During the entire deformation process, the majority of
bonds develops stress . The strain state of 4.4% in fig. 6.21a shows the deformed sample at
the point of yield. The yield point, i.e. the yield strength is thereby the point at the onset
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(a) (b)

(c) (d)

Figure 6.21: Unconfined compression of a cylindrical snow sample for a ductile compression
rate of 4 · 10−6 s−1. The initial sample density equals 408 kg/m3. The temperature is

T = −4 ◦C and the bonding parameters are Nb = 3.0 and
rb
rg

= 0.5.

of change in slope. At the strain state of 4.4% the sample is compacted uniformly with no
change in shape. With ongoing plastic deformation the sample keeps compacting almost
uniformly. But at higher strain states, i.e. 20% of deformation, a larger radial deforma-
tion towards the bottom of the sample can be observed. This causes an inhomogeneous
distribution of stress throughout the bond structure whereby the stress increases towards
the bottom of the sample. Also, an increasing number of bonds, oriented perpendicular
to the loading direction, experiences tension due to the higher radial deformation towards
the sample bottom. Under the low strain rate, the bonds are able to relax the stress and
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thus avoid failure due to creep of ice described by eq. 3.2.

(a) (b)

(c) (d)

Figure 6.22: The bond structure of the sample is depicted at increasing strain states and
coloured by the normal stress component (- compression / + tension). Unconfined com-
pression of a cylindrical snow sample under the ductile compression rate of 4 · 10−6 s−1.
The initial sample density equals 408 kg/m3. The temperature is T = −4 ◦C and the

bonding parameters are Nb = 3.0 and
rb
rg

= 0.5.
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Snow Strength - Strain Rate Relationship

Figure 6.23: Unconfined compression strength versus strain rate for snow densities of 400
to 500 kg/m3. The lines fit the measurements by Fukue (1977) and Scapozza and Bartelt
(2003). The distribution of the predicted results are indicated by the symbols.

Fig. 6.23 gives an summary of the strength - loading rate relationship of snow in unconfined
compression tests. The experimental and simulated data depicted are coloured by the
mechanical behaviour of snow, i.e. ductile, transient and brittle. This highlights the regimes
and shows the behaviour of snow observed at the different strain rates.
In fig. 6.23, unconfined compression tests under brittle compression rates conducted by
Fukue (1977) are depicted at a temperature of −13 ◦C. His investigation focused on the
dependence of the brittle strength in relation to the sintering age of snow, i.e. bonding
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properties. Thus, the prediction of Fukue (1977) are marked with the sintering time,
i.e. hours and days the sample spent under isothermal conditions before the compression
test were conducted. The bonding properties in the predictions and thus the sintering age
in the experiments have shown to be the most significant factors influencing the strength
of a snow pack. Hence, the curves of Fukue (1977) are chosen with the purpose to visualise
the spread in strength depending on the history of snow.
Fig. 6.23 also includes a curve of Fukue (1977) identifying the ductile to brittle transition
rate. This curve shows the transition rate as a function of the isothermal sintering time
of snow. Fukue (1977) showed that the transition rate increases with decreasing sintering
time while Kinosita (1967) observed a decrease with decreasing temperature.
Fig. 6.23 further includes measurements of Scapozza and Bartelt (2003) of unconfined
compression tests under ductile compression rates at a temperature of −12 ◦C. The data
is shown for two densities of snow, i.e. 350 and 435 kg/m3, similar to the densities used in
the predictions of this study. As Scapozza and Bartelt (2003) used naturally sintered snow
in their investigation the increase in density is an indicator for a longer sintering time.
The yield strength of snow predicted in the unconfined tests of this study is depicted
as symbols for two densities, i.e. 408 and 511 kg/m3. The predicted data in fig. 6.23
demonstrates the strength of the snow samples at temperatures from −4 ◦C to −16 ◦C

and bonding properties of Nb = 3.0 − 4.0 and
rb
rg

= 0.3 − 0.9. The variations of the

temperatures and bonding properties are chosen from the micro-scale measurements of
von Moos (2001).
Strength and behaviour of snow are clearly a function of the strain rate applied which is
apparent in fig. 6.23. The unconfined brittle strength of snow increases with decrease of
the rate applied to deform the snow sample. At the maximum brittle strength the brittle
behaviour converts into the ductile behaviour of snow. This transition zone can be defined
by a critical strain rate. However, the critical strain rate was shown to be dependent on
temperature and sintering age itself by several investigators. Further decrease of the strain
rate decreases the unconfined ductile strength as well and the snow sample is deforming
purely ductile.
The yield strength extracted from the simulated data fits quite well into the overall strength
- rate relationship of snow. Also the different mechanical behaviours of snow dependent
on the strain rate have been observed.

Snow Strength dependent on Initial Bonding

The sintering process in a snow strengthens the bonding structure between grains due to an
increase in size and number of bonds. Thus an increase in sintering time, i.e. age of snow,
equals an increase in the bonding properties, i.e. coordination number Nb and bonding

radius
rb
rg
. In natural snow a higher density is often an indicator for longer sintering times.

But this indicator might be misleading as a higher density is not necessarily a link to a
stronger bonding structure.
In order to investigate into the dependence of the sintering time on the strength of a snow
sample, the sample has to sinter in sealed isothermal conditions before the unconfined
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compression tests are conducted. Fukue (1977) used a sealed container to avoid density
changes. Fukue (1977) performed investigations with loading rates of the brittle and
transition regime. Fig. 6.24 shows his measurements at four different sintering times, i.e. at
0.5, 1 and 2 hours and at 3 days, and at three increasing strain rates. The experimental
data is approximated by black solid lines, calculated with cubical-splines.
The brittle compression strength of unconfined snow samples extracted from the predicted
data is presented at the three brittle strain rates 0.4, 4 · 10−2 and 4 · 10−3 s−1 and at the
transition rate 4 · 10−4 s−1. The predicted results are further depicted for the following
three bonding configurations:

rb
rg

0.3 0.5 0.9

Nb 2.5 3.0 4.0

The different bonding configurations are identified by different symbols and their trend is
indicted through dashed lines.
In fig. 6.24, the predicted and measured results of snow show an increase of the unconfined
compression strength with increasing bonding properties or sintering age, respectively.
Both results further describe an increase in strength with decreasing strain rate which is
very uncommon to other brittle material.
Further, it can be observed that the differences in strength between different bonding
properties grows significantly larger with small loading rates. This is another similarity to
the experimental curves which show the same difference between different sintering ages
of snow. Due to longer deformation time, the bonds are able to relax the developed stress.
This is predicted by the elastic - viscoplastic bond model eq. 3.57, which employs the
creep model of ice described by eq. 3.2. Yong and Metaxas (1985) described this effect as
a ’healing’ process of snow.
For engineering applications of high velocities, it is useful to notice that the strength of the
snow may decrease with increasing brittle rates, but the strength does not decline below
a certain value. This effect has been described by Kinosita (1967) as the second kind of
brittle behaviour. His investigations revealed that the strength of snow does not change
any more above a certain strain rate. Also the confined compression tests by Yong and
Metaxas (1985) demonstrate this phenomena as shown in fig. 2.34.
According to the predictions of Kinosita (1967), the transition between from brittle to
second kind of brittleness takes place at a rate of about 5 · 10−2s−1 for temperatures of
about −7 to −8 ◦C. This matches quite well with the trend seen in the predicted curves in
fig. 6.24. Above this rate the strength does barely change with increasing rate, temperature
and bonding properties.
Finally, it has to be noticed that the predictions and the experiments show that below a
certain size in bonding properties, i.e. sintering time, the bonding structure of a sample
loses its influence on the strength almost entirely.
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Figure 6.24: Unconfined compression strength versus the bonding strength, i.e. sintering
age, and strain rate. The solid lines are the measurements by Fukue (1977). A dashed line
indicates a predicted result. The different bonding strengths are indicated by colour and the
different sintering ages of snow within the measurements are noted next to the curves.

For future engineering applications of the bonding models of this study it would be very
useful to investigate into a mathematical relation between natural sintering time ts and

the bonding properties, i.e. Nb and
rb
rg
.

Snow Strength - Temperature Relationship

Kinosita (1967) conducted compression tests on unconfined cylindrical samples of natural
snow with initial lengths from 1 to 14 cm and initial densities from 370 to 400 kg/m3.
His investigation focused on a temperature range from 0 to −30 ◦C. His results for the
compressive strength of snow at ductile straining of 5% are shown as blue lines of constant
stress in fig. 6.25. The green lines show the brittle strength of snow, i.e. the maximum
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stress value measured. Further, the transition regime between ductile to brittle behaviour
of 300 to 500 kg/m3 snow is depicted as dashed purple lines. Finally, the transition
between brittle to second kind of brittleness is plotted as a solid line coloured similar
to the first transition regime. Kinosita (1967) and Yong and Metaxas (1985) observed
that the strength of a snow sample above the second transition rate does not change with
increasing strain rate. The different regimes, i.e. ductile, transitional, brittle and brittle
second kind, are identified by different colours.
In fig. 6.25, the unconfined brittle strength of snow predicted for the initial density of
408 kg/m3 is shown by symbols. The strength is illustrated at the three strain rates
4 · 10−1 s−1, 4 · 10−2 s−1 and 4 · 10−3 s−1 and for the three temperatures −16 ◦C, −10 ◦C
and −4 ◦C, respectively. The strength is depicted for samples with the initial bonding

properties Nb = 4.0 and
rb
rg

= 0.9.

Figure 6.25: Relations of unconfined compression strength, temperature and strain rate of
snow under load. The dotted lines are iso-lines of constant strength predicted by Kinosita
(1967) and the symbols are the predicted results. All values are presented in MPa. The dif-
ferent regime, ductile, transitional, brittle and brittle second kind, are indicated by different
colours.
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The transitional and ductile strength of snow in fig. 6.25 is presented at the strain rates
4 · 10−4 s−1 and 4 · 10−6 s−1 for the temperatures −4 ◦C and −10 ◦C, respectively. The
predicted strength of snow in fig. 6.25 aligns well with the lines of constant strength values
measured by Kinosita (1967). The ductile strength of snow is also presented at the strain
rate of 4 · 10−6 s−1 for the temperature of −4 ◦C.
In fig. 6.25, the predicted brittle strength of second kind is shown for the initial densities

408 kg/m3 and 511 kg/m3 and initial bonding properties of Nb = 3.0 and
rb
rg

= 0.5. The

results are shown for different initial densities to emphasis the fact stated by Kinosita
(1967) that the strength above the second brittle transition rate does not change anymore
with strain rate and temperature.
In fig. 6.25, it can be observed that the measurements and predictions show an increase in
strength in the ductile, transition and brittle regime with decreasing temperature. Further,
it can be observed that the brittle strength of snow increases with decreasing strain rate
while the transitional to ductile strength decrease with decreasing strain rate.
The experimental curves show an increase of the transition rate between ductile and brit-
tle behaviour with increasing temperature T . Hence, with increasing temperature the
brittleness of snow decreases.
Fig. 6.16 also demonstrates this behaviour in the predicted transition curves. The com-
pression curve predicted at −4 ◦C shows the lowest fluctuations about its average value.
This is a characteristic of ductile deformation behaviour. However, the curve of −16 ◦C
shows the highest fluctuations. This is a characteristic of brittle deformation behaviour.
This characteristic of snow is inherited from its ice matrix on the micro-scale. The closer
the temperature raises to the melting point of ice the stronger becomes the creep behaviour
of ice. Increasing temperatures also cause a softening of the ice. Hence, in the applied
creep model of ice, eq. 3.2, the creep rate increases with increasing temperature. Further,
the hardness of ice predicted by eq. 3.5 decreases with increasing temperature.
Another very unique characteristic to investigate in future works is the sudden jump in
strength at the transition rate. Due to the increase of the transition rate with increasing
temperature, it is possible that a higher temperature sample can show a higher strength
compared to a lower temperature sample compressed under the same strain rate. Parallel
to Kinosita (1967), this has also been observed in the tension tests conducted by Narita
(1984).

6.2.1.4 Confined Density-Stress Relationship of Snow

In confined compression tests, the cross section of the sample stays constant. Therefore,
the strain state εl and the current density ρt of a sample during compression can be directly
related as follows:

ρt = ρ0 · (1− εl)
−1

where ρ0 describes the initial density and εl the strain state of compressed sample. Hence,
the strain - stress and density - stress performances describe the same behaviour of snow in
confined compression tests. However, the initial density plays a significant role in confined
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brittle compression tests of snow as already shown by Abele and Gow (1975), Yong and
Fukue (1977), Yong and Metaxas (1985) and Fukue (1977).

Stress - Initial Density Relationship

Abele and Gow (1975) conducted confined compression tests on isothermally sintered snow
with a brittle strain rate of 4 s−1 and at temperatures of −1 ◦C, −4 ◦C, −10 ◦C and −32 ◦C.
The measurements were performed on a wide range of initial densities and are represented
as grey curves in fig. 6.26 for temperatures above −10 ◦C. The measurements are shown
for sintering times of 3 to 7 days.

Figure 6.26: Confined compression of a cylindrical snow sample at T > −10 ◦C. Different
initial densities are compressed under a high rate of 4 s−1. The grey curves are confined
compression measurements by Abele and Gow (1975).

The predicted results of the performed brittle compression tests of confined snow samples
in fig. 6.26 are depicted as blue and green curves for the initial densities of 408 kg/m3,
511 kg/m3 and 578 kg/m3. The predicted curves are shown for different initial bonding
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properties which are emphasised in the figure legend. The predictions are conducted at a
strain rate of 4 s−1.
Fig. 6.27 shows the predicted results of confined compression tests at and below −10 ◦C.
The initial densities, initial bonding properties and the strain rates are similar to fig. 6.26.
Fig. 6.27 also shows the measurements of Abele and Gow (1975) conducted at temperatures
of −10 ◦C and −32 ◦C. The measurements are also shown for sintering times of 3 to 7
days.

Figure 6.27: Confined compression of a cylindrical snow sample at T ≤ −10 ◦C. Different
initial densities are compressed under a high rate of 4 s−1. The grey curves are confined
compression experiments by Abele and Gow (1975).

Independent of the temperature, the predicted curves in both figures agree well with the
experimental curves of the different initial densities. Experiments and predictions illus-
trate that the strength at any fixed strain state increases significant with increasing initial
density.
In fig. 6.26 and 6.27, the curves of the high initial density 578 kg/m3 show a continuous
stress increase with increasing strain. After an initially high increase the slope of the curves
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decreases continuously, without any abrupt change.
The confined curves for the initial density of 511 kg/m3 also start with a high stiffness and
increase continuously in stress with increasing strain. But the slope of the curve changes
abruptly when it reaches the yield value. Thereafter, the stress continues to increase under
a smaller slope.
The predicted results for the lower initial density of 408 kg/m3 present an entirely dif-
ferent shape of the curve which has also been reported by Fukue (1977) and Abele and
Gow (1975). The first part of the curves demonstrates the saw-tooth shape which is a
typical characteristic of the brittle deformation behaviour. The initial part of the curve
is constructed of a subsequent stress build-up and stress release whereby the mean stress
value ascends with increasing strain. This saw-tooth effect is caused by a progressing bond
fracture through the snow sample with increasing strain. Each subsequent stress build-up
thereby reaches to a higher strength then its predecessor. With increasing densification
beyond the initial phase of bond fracture the previous continuous growth of the higher
density samples is reproduced.
Fukue (1977) investigated in detail this effect. A schematic representation of the described
effect by Fukue (1977) is shown in fig. 2.32. In his investigation he projected the continuous
part of the curve backward on the strain axis. Thereby, he predicted the threshold density
at which the saw-tooth shape of the lower initial density curve turns into the continuous
increase. The investigations of Fukue (1977) revealed the dependence of the threshold
density on the strain rate and grain size as shown in fig. 2.33.
For a brittle strain rate of 4 s−1, Fukue (1977) measured threshold densities between 420
and 460 kg/m3. The threshold density predicted from the predicted curve of 408 kg/m3

in fig. 6.26 and 6.27 is about 450 kg/m3 for Nb = 3.0 and
rb
rg

= 0.5. Such a unique and

general consistency between measurements and predictions is a very good indicator for the
reliability of the developed snow models.
Abele and Gow (1975) also reported the threshold effect for samples with initial densities of
300 to 400 kg/m3. They observed a change in curvature at densities of 400 to 500 kg/m3

which equals about 20 to 40% in strain. This change in curvature in the experimental
curves can also be seen in fig. 6.26 and 6.27.

Stress - Temperature Relationship

The difference in temperature dependent behaviour in confined brittle compression tests
is again a result of the creep of ice on the micro-scale. The ice on the grain-scale becomes
softer and more viscous with higher temperature.
In fig. 2.31a and 2.31b, Abele and Gow (1975) showed that the brittle compression be-
haviour can be divided into a behaviour for T > −10 ◦C and T ≤ −10 ◦C. The temperature
dependent behaviour is apparent at the high strains as seen in fig. 6.26 and 6.27. In fig. 6.26
where snow is compressed at temperature > −10 ◦C, experiments and predictions demon-
strate a continuous decrease of the gradient of the curves with increasing strain. This is
particularly apparent for the predicted curve of −1 ◦C as this temperature is the closest to
the melting point of ice. In fig. 6.27 where snow is compressed at temperatures ≤ −10 ◦C,
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experiments and predictions increase in stress by a constant gradient at high straining
portion of the curves.

6.2.2 Blade Scratch Tests

As shown in fig. 2.44 the motion of a tread block in the contact patch of a rolling tire is
composed of penetration and scratch phases through the snow surface. Therefore, the pre-
dictions in this section approximate the procedure by penetrating and scratching through
snow with a rigid metal blade. The blade proceeds through the snow by different velocities,
at different temperatures and for different bonding properties. The penetration and scratch
force exerted on the blade by the snow grains are recorded within the predictions. Thin
blade penetrations are commonly conducted in the field of snow mechanics as shown in
fig. 2.36. The predicted snow behaviour is studied and compared to these measurements.
Further, the computed forces are validated with the experimental data by Borstad and
McClung (2011) and Fukue (1977).

6.2.2.1 Experimental Setup

The predictions are composed of two phases of controlled blade motion which are an
initial penetration and a subsequent scratch phase as depicted in fig. 6.28. The blade

Figure 6.28: Penetration and scratch phase of the metal blade through the snow surface.

is initially positioned above the snow surface. During the initial penetration phase the
blade penetrates the snow surface under the constant penetration velocity vp. It stops the
penetration after 12 mm, which equals the penetration depth of 10 mm, used by Fukue
(1977), plus the maximum grain diameter.
After the penetration phase, the blade scratches through the snow surface at the constant
penetration depth with the scratch velocity vsc over a distance of 30 mm.
Table 6.6 composes all properties describing the blade motion through the snow. The
penetration and scratch tests are conducted with two different velocities.
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Table 6.6: Kinetic Properties

Penetration Velocity vp [mm/s] 10.0 20.0

Scratch Velocity vsc [mm/s] 10.0 20.0

Penetration Depth +Z [mm] ≈ 12.0

Scratch Distance +Y [mm] 30.0

Fig. 6.29 shows the initial configuration of the metal blade and the prepared strip of the
snow surface as well as the initial density distribution of the strip.

Figure 6.29: Initial snow and blade configuration as well as initial density distribution.

The spatial dimensions of the blade and the snow strip are documented in table 6.7. The
snow strip contains spherical particles of random radii generated by the method in section
3.5. The minimum and maximum radius of the grains are presented in table 6.7 as well. In
a previous simulation the grains were settled to approximate a natural distribution. Two
different temperatures and three different bonding configurations are used for the snow
strip of 410.0 kg/m3. The snow strip is confined by rigid side and bottom walls, which are
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assumed to be of the material snow as well. The bottom wall describes a hard layer of snow
beneath the looser top layer of snow. The contacts between grains as well as the contacts
between grains and confining walls are described by the models developed in section 3.4.
The collision forces developing during the interaction between the snow grains and the

Table 6.7: Metal Blade and Snow Strip Properties and Dimensions

Metal Blade

Blade Width [mm] 20.0

Blade Thickness [mm] 1.7

Young’s Modulus E[GPa] 200.0

Shear Modulus G[GPa] 78.125

Friction Coefficient µ 0.1

Snow Strip

Initial Density [kg/m3] 410.0

Temperature [◦C] −1.0 −16.0

Strip Length [mm] 210.0

Strip Width [mm] 46.0

Strip Height [mm] ∼ 20.3

No. Grains 7862

Grain Radius [ mm] > 1.0 < 0.19

Bond Size
rb
rg

0.1 0.3 0.5

Number of Bonds per Grain Nb 2.5 3.0 3.5

blade are predicted by the Hertz Mindlin model, described in appendix A.1.5. The blade
is assumed to be of the material steel and its material parameters are also shown in table
6.7.

6.2.2.2 Penetration and Scratch Performance

Fig. 6.30 illustrates the penetration force experienced by the blade during the penetration
and scratch phase of vp = vsc = 20 mm/s. The force is presented for the two different
temperatures and the three increasing bonding configurations. Similar, fig. 6.31 depicts
the corresponding resistance force in +Y - direction.
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(a) T = −1.0 ◦C

(b) T = −16.0 ◦C

Figure 6.30: Penetration force versus penetration depth and scratch distance for a velocity
of 20 mm/s and at different temperatures and bonding configurations of the snow.
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(a) T = −1.0 ◦C

(b) T = −16.0 ◦C

Figure 6.31: Resistance force versus penetration depth and scratch distance for a velocity
of 20 mm/s and at different temperatures and bonding configurations of the snow.

153



6. Results and Discussions

During the penetration phase in fig. 6.30, the penetration force increases with penetration
depth. The resistance force in fig. 6.31 shows no influence during the penetration phase.
During the scratch phase the penetration force decreases to its minimum and a resistance
force is exerted on the blade by the snow surface.
The velocities of the blade are identified by Fukue (1977) as velocities of the completely
brittle regime in fig. 2.36. At these velocities the force curves in fig. 6.30 and 6.31 present
the typical saw-tooth shape as already observed in the previous compression test under
brittle strain rates. Within the force curves it is obvious that the resistance and penetration
force increase with increasing bond number Nb and size rb/rg. Also the difference between
peak and drop of the curves increases with increasing bond number Nb and size rb/rg.
The maximum force value reached during penetration was defined as the blade hardness
index or the blade penetration force (BPF) by Borstad and McClung (2011) and Fukue
(1977), respectively.
Fig. 6.32 illustrates the blade penetration tests in the field conducted by Borstad and
McClung (2011). The thin blade penetration force reflects the bonding strength of snow
due to the low influence of snow compression.

Figure 6.32: Penetration force versus snow density. The predicted penetration force is
shown for all three bond configurations.

With increasing density one can observe an increasing variation between the measured
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forces in fig. 6.32. Due to the increase in density the bonding possibilities multiply. To-
gether with the increase in possibilities the variation in bonding strength increases as well.
Fig. 6.32 also includes the predicted results of all three bond configurations. The differ-
ences between the penetration forces of the different bonding configurations agree well with
the variation of the measured forces by Borstad and McClung (2011).
Fig. 6.33 illustrates the maximum penetration force for velocities of the ductile, brittle
and completely brittle regime of snow behaviour. The measured force of Fukue (1977) is
depicted for sintered snow of 350.0 to 480.0 kg/m3 and at −13 ◦C. The maximum pene-
tration force of the predictions is represented in the figure as well. The results shown are
the predictions of the bonding configuration Nb = 2.5 and rb/rg = 0.1 which corresponds
to a snow sintered for several hours as shown in fig. 6.24.

Figure 6.33: Penetration force versus penetration velocity vp.

Fig. 6.34 illustrates four subsequent times during the blade penetration phase. The four
times are marked in fig. 6.30 by the respective subfigure labels (a),(b),(c) and (d). In
fig. 6.34, a slice of the snow surface beneath the blade is viewed in the Y − Z plane. The
whole snow structure and the bond structure only are depicted for each subsequent time.
The four times selected are the initial configuration, the first penetration force build up
and two subsequent force build ups, as marked in fig. 6.30. The bond structure is coloured
by the normal stress component.
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(a) At t = 0 s and Z = −12 mm.

(b) At t = 0.2 s and Z = −8 mm.

(c) At t = 0.25 s and Z = −5 mm.

(d) At t = 0.54 s and Z = −1.25 mm.

Figure 6.34: Grain and bond structure at selected penetrations depths marked in fig. 6.30.
The snow has an initial bond configuration of Nb = 3.0 and rb/rg = 0.3 and a temperature
of −1 ◦C. The bonds are coloured by the normal stress component.

Fig. 6.34 presents how the grains are pushed aside and are partially compressed beneath
the blade. At the penetration velocity applied the initial bond structure fractures and
reduces subsequently after each force build up. Therefore, new contacts and new bonds
form which carry an increasing portion of the load with each subsequent reduction of the
initial bond structure. The new contacts and bonds also fail after each force build up
recorded in fig. 6.30. In fig. 6.34b at the penetration depth of the initial force build up,
the initial bond structure experienced only a few failures so far. The biggest portion of the
penetration is loaded onto the initial bond structure. In this view, the stress propagates
mainly into the right part of the structure as the blade contacts the snow surface with its
right edge first. After the initial build up, the initial bond structure experiences the first
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major failure and reduces to the structure depicted in fig. 6.34c. An increasing portion of
the penetration load is now also carried by new bonds and contacts. However, the initial
bond structure also rebuilds stress due to the loading and keeps failing subsequently as
illustrated by the differences between fig. 6.34c and fig. 6.34d. In fig. 6.34d at the last
penetration force build up of fig. 6.30, the initial bond structure fails in all directions
around the tip of the blade.
Fig. 6.35 illustrates three subsequent times during the scratch phase of the blade. The
times are marked in fig. 6.31 by the respective subfigure labels (a),(b) and (c). The grains
and bonds are illustrated in the same way as in the previous figure. The three times
selected are the onset of scratch and two subsequent build ups of the resistance force, as
marked in fig. 6.30.

(a) At t = 0.6 s and Y = 0 mm.

(b) At t = 0.95 s and Y = 7 mm.

(c) At t = 1.64 s and Y = 20.75 mm.

Figure 6.35: Grain and bond structure at selected scratch distances marked in fig. 6.31.
The snow has an initial bond configuration of Nb = 3.5 and rb/rg = 0.5 and a temperature
of −16 ◦C. The bonds are coloured by the normal stress component.

Fig. 6.35 illustrates that also at the scratch velocity applied the initial bond structure
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fractures subsequently after each build up of the resistance force. With progression through
the snow surface the initial bond structure fails in front and beneath the blade. The
portions of the snow which failed in front of the blade pile up. These portions of the snow
show a cohesive behaviour due to the formation of new bonds. They are piled up between
the progressing blade and the non-fractured snow portion in +Y - direction.
Finally, a rectangular trace is shaped into the snow reflecting the progression of the blade
through the surface. The snow wall of the backside of the trace in −Y - direction is held
up by the bond structure remaining after the penetration phase. The snow layer beneath
the trace of the blade remains in position with its initial bond structure fractured entirely.

6.3 XDEM - FEM Predictions of Tire Tread - Terrain

Interaction

6.3.1 Tread Block - Snow Interaction

The motion of a tread block in the contact patch of a rolling tire is composed of pene-
tration and scratch phases as already illustrated in fig. 2.44. The penetration and scratch
performance of a tread block through a snow surface are predicted. The predictions are
conducted similar to the blade penetration and scratch test of section 6.2.2. However, the
tread block is able to deform during the interaction.

6.3.1.1 Experimental Setup

The predictions are composed of two phases of constant velocities of the tread block.
Initially the block penetrates the snow surface followed by a horizontal scratch as depicted
in fig. 6.36. The tread block is initially placed above the snow surface. The coordinate

Figure 6.36: Penetration and scratch phase of the tread block through the snow surface.

origin aligns about 12 mm beneath the block. During the penetration phase the block
moves down under the constant velocity vp. It stops the penetration after 12 mm. In the

158



6. Results and Discussions

subsequent scratch phase the block moves horizontally by the scratch velocity vsc. It stops
after a distance of 30 mm.
Table 6.8 summarises the properties of the procedure.

Table 6.8: Kinetic Properties

Penetration Velocity vp [mm/s] 20.0

Scratch Velocity vsc [mm/s] 20.0

Penetration Depth +Z [mm] ≈ 12.0

Scratch Distance +Y [mm] 30.0

Fig. 6.37 shows the initial configuration of the tread block and the snow strip. The initial
density distribution of the strip is presented below.

Figure 6.37: Initial snow and tread block configuration and initial density distribution.

The tread block is composed of two rectangular rubber blocks leaving a gap between them.
The gap describes the sipe between two block on a winter tire tread. The sipe is aligned
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in the X − Z plane perpendicular to the scratch direction. The dimensions and material
parameters of the tread block are presented in table 6.9.

Table 6.9: Tread Block Properties and Dimensions

Tread Block

Block Width [mm] 25

Block Length [mm] 27.5

Block Height [mm] 25

Sipe Size [mm] 2.5

Young’s Modulus E[MPa] 0.31 3.05 5.38

Poisson’s Ratio ν 0.499

Density ρrubber 1100

Within the predictions three different Young’s Moduli are used. The moduli describe a
hard, a soft and a very soft rubber to study the influence of the rubber composition. The
deformation of the tread part is predicted by the linear elastic FEM model of chapter 4.1.
The interaction between the snow and the tread block is accounted by the coupling method
of chapter 5. The collision forces generated between the snow grains and the tread block
are predicted by the Hertz Mindlin model, described in appendix A.1.5.
The spatial dimensions and properties of the snow strip are documented in table 6.10.

Table 6.10: Snow Strip Properties and Dimensions

Snow Strip

Mean Initial Density [kg/m3] 410.0

Temperature [◦C] −1.0 −16.0

Strip Length [mm] 210.0

Strip Width [mm] 46.0

Strip Height [mm] ∼ 20.3

No. Grains 7862

Grain Radius [ mm] > 1.0 < 0.19

Bond Size rb/rg 0 0.5

Number of Bonds Nb 0 3.5

Thus, the snow strip contains spherical particles of random radii generated by the method
in section 3.5. The minimum and maximum radius of the grains are presented in table
6.10. In a previous prediction the grains settled to approximate a natural distribution.
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Two different temperatures, i.e. T = −1 ◦C and T = −16 ◦C, are used for the snow strip
with a density of ρ0 = 410.0 kg/m3. The predictions were conducted with two different
bonding configurations. The first configuration was initially unbonded, i.e. granular snow,
which is allowed develop bonds during the prediction. The second configuration was a
strong bonded snow structure. The large difference in initial bonding is applied to study
the influence on the brittle behaviour of the snow at the high velocity. The snow strip is
confined by rigid side and bottom walls which are assumed to be of the material snow as
well. They describe the hard layer beneath the looser top layer of snow. Grain - grain and
grain - wall contacts are described by the models developed in section 3.4.

6.3.1.2 Penetration and Scratch Performance

Fig. 6.38 shows the force experienced by the tread block during penetration. The penetra-
tion force is shown for the initially non-bonded and strongly bonded snow at two different
temperatures.

(a) T = −1 ◦C (b) T = −16 ◦C

Figure 6.38: Penetration force versus penetration depth and scratch distance for a velocity
of 20 mm/s and different temperature at different elastic moduli of the rubber and bonding
configurations of the snow.

The curves show the increase of the penetration force with ascending penetration depth and
the decrease of the force with onset of the scratch phase. The predicted results in fig. 6.38
reveal that the influence of the elastic modulus of the rubber is negligible compared to the
influence of the initial bonding strength of the snow. The initial bonding strength changes
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the force response significantly. Shape and maximum force of the penetration curve are
strongly dependent on the snow type.
The strong influence on the maximum penetration force was already recognised in the thin
blade penetrations in fig. 6.30. But in the tread block penetrations the large contact area
and the deformation of the block have an increasing influence on the shape of the curve
with increasing initial bonding strength.
Despite the saw-tooth shape of the curves, the curves in fig. 6.38 of no initial bonding
represent an almost ideal plastic progression with increasing penetration depth. The force
builds up onto a rather low force value. With further penetration depth the curves show
the common saw-tooth shape of brittle behaviour but in average they keep the low force
value.
In fig. 6.38, the curves of the strong initial bond configuration show a strong initial increase
followed by a sudden failure. During the release, the force can drop to zero before it builds
up again, which is for instance the case for the green curve in fig. 6.38a. The maximum
penetration force thereby correlates well with the unconfined brittle compression strength
predicted in fig. 6.24.
Fig. 6.39 represents four penetration times of the black curve in fig. 6.38b. The four times

(a) At Z = −10 mm. (b) At Z = −8.55 mm.

(c) At Z = −7.2 mm. (d) At Z = −1.6 mm.

Figure 6.39: Grain and bond structure at selected penetrations depths marked in fig. 6.38b.
The snow has no initial bonding and a temperature of −16 ◦C.

are marked in fig. 6.38b by the respective subfigure labels (a),(b),(c) and (d). The figure
shows a slice of the snow surface beneath tread block in the Y −Z plane. Each subsequent
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time depicts the snow structure with grains and bonds. The selected times are an initial
time step with no interaction at Z = −10 mm, the initial build up of the penetration force
at Z = −8.55 mm and two subsequent times at increase penetration depth. The tread
block is coloured by its strain component ε33 = εZZ in the direction of penetration.
Fig. 6.39a illustrates the penetration step when the tread touches the snow surface for the
first time. In the second figure, fig. 6.39b, the penetration force is fully built up for the
first time. Between this two steps the tread block develops a strain and stress state which
does not change much in magnitude during the rest of the penetration. This of course
correlates with the almost constant force in fig. 6.38.
During the entire penetration of the tread block into the initially unbonded snow the grains
are continuously compressed beneath the tread block. Due to the progressing compression
of the grains into the hard ground they are forced to escape into the looser snow sideways
to the tread block. This lifts the snow surface next to the tread blocks. The side flow
of the grains continuously deforms each single rubber block into +Y and −Y direction,
respectively. Consequently, the gap between the rubber blocks widens and grains are
increasingly compressed into the tread sipe with increasing penetration depth.
However, the penetration of the initially strong bonded snow, see fig.6.40 and the related
green curve in fig. 6.38a, does not show the almost continuous plastic deformation of the
initial unbonded snow.
Fig. 6.40 represents four subsequent time steps of the green curve in fig. 6.38a during the
penetration phase. The first step shows again the initial configuration with no interaction
between tread and snow at Z = −10 mm. Fig. 6.40b shows the tread block at the pen-
etration position Z = −8.55 mm which correlates with the peak point of the maximum
penetration force of the green curve in fig. 6.38a. Fig. 6.40c illustrates the drop of the
penetration force in the curve. The final build up of the force is shown by fig. 6.40d.
Together with the initial strong increase of the penetration force, in the green curve in
fig. 6.38a, the tread block develops a distinct strain state presented in fig. 6.40b. Due to
the high bonding strength of the snow, the rubber blocks deform distinctively along the
shape of the surface. Along with the strain concentrations developing in the tread block,
the bonds of the grains in contact with the rubber build up high stress values.
When the strength limit of the ice bonds is reached they break and the deformation energy
is suddenly released into the remaining snow grains and bond structure. This results into
a total failure of all bonds beneath the tread block and a fracture of the surrounding bond
structure into large individual snow pieces as shown in fig. 6.40c. The figure also shows that
a large portion of the deformation energy is converted into kinetic energy. The unbonded
snow grains are partially ejected off the snow surface.
After the fracture of the entire initial bond structure beneath the tread block the pene-
tration progresses similar to the penetration of the initially unbonded snow. Fig. 6.40d
illustrates the penetration into the remaining granular snow beneath the tread block. This
observation also explains the re-build of the penetration force onto the force value of the
unbonded snow in fig. 6.38.
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(a) At Z = −10 mm.

(b) At Z = −8.55 mm.

(c) At Z = −7.2 mm.

(d) At Z = −1.6 mm.

Figure 6.40: Grain and bond structure at selected penetrations depths marked in fig. 6.38a.
The snow has an initial bond configuration of Nb = 3.5 and rb/rg = 0.5 and a temperature
of −1 ◦C. The bonds are coloured by the normal stress component.

6.3.2 Tire Tread - Soil Interaction

The coupling approach between XDEM and FEM described in chapter 5 is employed to
predict the tractive performance of a rubber tire in interaction with soil terrain. This
allows to resolve the response of the rolling tire during the interaction with the terrain as
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well as the reaction of the soil bed on the tread. The prediction is set up according to the
measurements of Shinone et al. (2010) for later comparisons with the numerical results.

6.3.2.1 Experimental Setup

The prediction is composed of two phases which are a phase of vertical tire sinkage followed
by the horizontal motion of the tire through the granular terrain by the angular velocity ωt

and translational velocity vt. Fig. 6.41 depicts the two phases of tire travel schematically.
During the sinkage phase the tire sinks into the soil bed under the constant velocity vs

Figure 6.41: Sinkage and travel phase of tire - soil interaction

until the contact force Fs is reached. Fs is thereby the sum of all vertical forces.
Thereafter the tire rolls through the soil bed in horizontal direction with a predefined tire
slip sT .

sT =
(ωt ·RT − Vt)

ωt ·RT

During the horizontal motion of the tire through the soil bed, the running resistance TR,
gross tractive effort TH and drawbar pull TP are recorded for later comparison with the
experimental results. The running resistance TR is predicted as the sum of all forces
opposite to the direction of travel which develop between the tire surface and the grains
in contact. This is indicated in fig. 6.41. The gross tractive effort TH is the counter part
of the resistance TR, which are computed as follows:

TH =
∑

ft > 0 TR =
∑

ft < 0

Finally the drawbar pull is calculated using the TR and TH as follows:

TP = TH − |TR|

All properties describing the tire motion through the soil bed are composed in table 6.11.
The spatial dimensions of the tire tread and the soil bed are documented in table 6.12.
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Table 6.11: Tire Travel Properties Dimensions

Sinkage Velocity vs [m/s] 0.1

Contact Force Fs [N] 5000

Horizontal Velocity vt [m/s] 0.976

Angular Velocity ωt [rad/s] 1.80

Tire Slip sT [%] 5.0

Table 6.12: Tire Tread and Soil Bed Dimensions

Tire Tread

Tire size 165/65R13

Radius RT [m] 0.544

Tread Width [m] 0.165

Wall Thickness [m] 0.016

Groove Depth [m] 0.015

Inflation Pressure [MPa] 0.14

No. Elements 24287

Soil Bed

Bed Length [m] 1.0

Bed Width [m] 1.0

Bed Height [m] ∼ 0.14

No. Grains 21812

Grain Diameter [ mm] 15.6, 7.8, 6.9 ±0.345

Fig. 6.42 shows the initial configuration of the meshed tire volume and the settled soil bed.
The soil bed contains three layers of spherical particles of different radii. The biggest
radius is initially positioned at the bottom of the soil bed. The top layer consists of
particles with the smallest radius which have been randomly distributed and settled in a
previous prediction to approximate a natural terrain environment. The bed is confined
by rigid walls with the same material properties as the soil particles. Thus, the soil bed
bottom is approximated as hard soil ground.
The tire tread consist of a lug pattern whereby the lugs are arranged in a alternating
apposition. Further, the tire tread is approximated by tetrahedral finite elements with
linear shape functions. However, the displacements at the nodes of the tire tread contacting
the rim are fixed. The inner surface of the tread experiences the normal stress resulting
from the inflation pressure.
The element of the outer surface of the tire tread are allowed to interact with soil grains
according the coupling procedure described in chapter 5.
The deformation of the tire is predicted by the linear elastic finite element description of
chapter 4.1. Further, the soil bed motion is computed by the discrete element method
described in chapter 3. During the interaction, forces developing between a soil grain and
a finite element are computed based on the representative overlap. Thus, the collision
forces developing during the interaction between soil grains as well as between a soil grain
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Figure 6.42: Initial soil bed and and tire configurations.

and a tire element are predicted by the Hertz Mindlin model, described in appendix A.1.5.
The material properties used in the FEM, DEM and coupled predictions are stated in
table 6.13. The tread and soil properties were taking from 2D FEM-DEM predictions
by Nakashima et al. (2009). In their predictions they found the material parameters in
correlation with the experiments of Shinone et al. (2010).

Table 6.13: Material and Contact Parameters

Tire Tread Soil Grains
Density ρ [ kg/m3] 1100.0 2600.0

Young’s Modulus E [kPa] 20000.0 57.0

Poisson Ratio ν 0.45 0.3

Shear Modulus G [kPa] 27586.2 78.6

Friction Coefficient µ 0.3 0.6

6.3.2.2 Traction Performance and Deformation

Shinone et al. (2010) measured the drawbar pull and torque of lugged tire treads at different
slip configurations. The investigations were conducted with a single-wheel tester composed
of a soil bin and a driving unit of the tire. The tires measured had a similar nominal size as
the numerical tire tread, i.e. 165/60R13, with 535 mm diameter and 170 mm width. The
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Figure 6.43: Gross Tractive Force, Running Resistance and Drawbar Pull versus tire slip.
The black symbols indicate the measurements by Shinone et al. (2010) of lugged tire treads
at different slip values. The blue symbols and error bars show the mean, min and max of
the predicted results at a slip of 5%.

measured torque of the tire was used to predict the gross tractive effort TH = M/RT . The
running resistance R was then predicted from the difference of gross tractive effort and
drawbar pull |TR| = TH–TP . The measurement results for lugged tire treads are shown as
black symbols in fig. 6.43 for different slip values.
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(a) Final position after penetration

(b) The tire during travel through the soil bed

Figure 6.44: Back view in travel direction of the tire during interaction with soil. The
deformed tire is depicted and coloured by the strain component ε33 in the direction of
sinkage. The soil grains are coloured by their velocity in the direction of travel.
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(a) Final position after penetration

(b) The tire during travel through the soil bed

Figure 6.45: Side view perpendicular to the travel direction of the tire during interaction
with soil. The deformed tire is depicted and coloured by the strain component ε33 in the
direction of sinkage. The soil grains are coloured by their velocity in the direction of travel
and the bed is depict clipped beneath the tread.
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Fig. 6.43 also contains the results of the coupled XDEM - FEM prediction at the slip
value of 5.0%. The predicted results are shown as blue symbols of the mean value together
with the min and max bars. The overall traction performance has been predicted very
successfully even though the tire mesh and soil resolution are rather coarse. This proves
the validity of the method for the application of tire traction performance.
Fig. 6.44 shows the tire from the backward position in the direction of travel. The soil
grains are coloured by the velocity component in the direction of travel. Due to the
interaction with the tire tread, the soil grains are compacted below and displaced onto
the side of the tire. Two progressing time steps are shown in fig. 6.44. The first depicts
the tire at the final sinkage position and the second during travel through the soil bed.
The tire is represented in its deformed state and coloured by the strain component ε33 in
sinkage direction. The displacement of the soil next to the tire is clearly visual as well as
the deformation of the tire wall due to the interaction forces.
Fig. 6.45 represents the same two timesteps shown in fig. 6.44 but in a side view. The soil
bed is thereby cut open beneath the tire tread to allow an interior view. The colouring
of the soil and tire is still by travel velocity and sinkage strain, respectively. This view
visualizes clearly the maximum strain of the tire at the upper portion of the side wall due
to the compression of the tread into the soil bed. Further, the acceleration of the soil
grains beneath the tread against the direction of travel is visible when one compares the
two timesteps depicted. The increase in velocity of the grains results from the grip of the
tire into the bed during forward motion.
This grip of the footprint of the tire tread into soil bed is even more apparent in fig. 6.46.
Fig. 6.46 shows a layer of the soil bed at the height of the tire lugs. With the motion of the
tire into the direction of travel the majority of particles beneath the tread experiences an
acceleration against the travel direction of the tire under the applied slip. This portion of
the particles causes the gross tractive effort predicted. A minor portion of the soil grains
is pushed ahead of the tread. These grains develop forces against the travel direction of
the tire and thus cause the running resistance. Also, under the rolling of the tire tread
through the bed the lugged tread patterns are pressed into the soil due to the traction
developed.
Fig. 6.47 depicts the bottom view of the tire tread at the same two timesteps. The tire
is coloured by the strain component ε33 in direction of sinkage and the component ε22 in
the direction of travel. The arrow in fig. 6.47 indicates the travel direction. Component
ε33 indicates the maximum deformation on the tread shoulder under the load pressure
developed between tire and soil during sinkage. The first moment shows a symmetric
distribution of the strain at the end of the sinkage phase. For the component ε22 the
maximum of the strain develops at the front part of the footprint due to the soil grains
producing the running resistance.

171



6. Results and Discussions

(a) Final position of the tire after penetration

(b) Tire during travel through the soil bed

Figure 6.46: Top view of soil bed during interaction with the tire. The soil grains are
coloured by their velocity in direction of travel.
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6. Results and Discussions

(a) Final position after penetration (b) Final position after penetration

(c) Tire during travel through the soil
bed

(d) Tire during travel through the soil
bed

Figure 6.47: Bottom view of the tire during interaction with soil. The deformed tire is
depicted and coloured by the strain components ε22 of direction of travel and ε33 of direction
of sinkage.
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Chapter 7

Conclusions

Within this thesis a simulation technique has been successfully developed to describe the
interaction between a tire tread and a snow covered road. It supports understanding the
nature of traction which consequently reveals measures to improve both traction and driv-
ing safety. Among the measures addressed can be form, orientation and geometry of a tire
tread.

The Extended Discrete Element Method (XDEM) is employed to describe the mechanical
behaviour of snow. Contrary to a continuum mechanics approach snow is considered to
exist of discrete ice grains that are allowed to bond and collide with each other. Thereby,
the individual grains and bonds build up an open-foam like structure. Snow behaves very
complex during deformation due to its heterogeneity on micro-scale. Therefore, micro-
mechanical models are developed to account for the micro-structural aspects of snow and
in order to describe the interaction between snow and a tire tread. The micro-mechanical
response of each snow grain in contact with the tire surface is transferred to the tread by
means of an interface coupling. The interface couples the micro-scale nature of snow grains
to the macro-scale of the tread surface. Due to the response forces the tire tread develops
deformations which are described by a continuum description. Therefore, the tire tread
itself is described by the Finite-Element-Method (FEM), in chapter 4, which evaluates the
elastic deformation due to contact forces of the terrain.
Hence, the two key developments of this study are:

• the DEM - FEM interface coupling

• the discrete approach for snow behaviour

The first key development of the DEM – FEM interface, in chapter 5, meant to derive
a coupling algorithm which enabled to connect the two domains efficiently. These devel-
opments first allowed the efficient detection of contact between the grains and the tread
surface They also enabled the transfer of forces and geometrical information between the
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DEM and FEM domain. The coupling algorithm transfers the forces caused by the impact-
ing grains onto the appropriate finite elements. Thereafter, it updates the surface of the
tire tread in accordance to the deformation predicted by the finite element solver. In order
to describe the complex surface of a tire tread, the DEM software needed to be extended
by a triangulated surface approximation. These triangular elements of the surface reflect
the surface elements of a FEM mesh. A binary tree based algorithm has been developed
and successfully employed for an efficient detection of contacts between the grains and the
complex FEM surface.
The second key development of the discrete approach of snow, in chapter 3, included the
implementation of a hierarchical algorithm into the employed software environment. The
algorithm accounts for the inter-granular forces and moments within a loaded snow pack
resulting from grain collisions, bond generations, deformations and fractures.
Based on the hierarchical algorithm, the material models for bond deformation and grain
collision have been developed on the assumption that a snow pack is an ensemble of indi-
vidual ice grains connected by cylindrical bonds. As snow behaviour is strongly dependent
on its micro-structure, the material models had to be derived in order to describe the
grain-scale features. The features implemented are:

• elastic-plastic grain collision

• inter-granular friction

• bond growth due to creep of ice

• elastic viscous-plastic bond deformation

• bond fracture

Additionally, these features account for the dependence on pressure, temperature and load-
ing rate. The micro-scale models of bond formation and growth were thereby derived based
on the ice-ice sintering measurements of Szabo and Schneebeli (2007), the contact theory
of Hertz (1881) and the creep models of ice developed by Barnes et al. (1971). The models
describing the bond deformation are set up to account for tension, compression, bending
and torsion of the cylindrical ice neck between two adjoining snow grains.

In chapter 6.1, the developed snow models were validated in accordance to describe the
grain-scale behaviour of snow and ice. The fracture and compressive response of a bond
were accurately described by the models in comparison to the deformational behaviour of
ice measured by Schulson (1990). Also the bond growth description predicted the time,
pressure and temperature dependent relationship measured by Szabo and Schneebeli (2007)
successfully. Further in appendix B.1, the elastic plastic behaviour during ice-ice collision
was implemented into the micro-scale description of snow. The predictions by means of
this model correlated very well with measurements of the coefficient of restitution of ice
grains conducted by Higa et al. (1998).
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In chapter 6.2, the validation of the discrete approach was undertaken to describe accu-
rately the macroscopic behaviour of snow under load. Predictions of confined and uncon-
fined compression tests of snow were conducted in relation to the measurements by Ki-
nosita (1967), Von Moos et al. (2003), Abele and Gow (1975), Fukue (1977) and Yong and
Metaxas (1985). These common experiments from the field of snow mechanics were pre-
dicted to show the validity of the developed models and to predict the dependencies of the
snow behaviour in relation to several mechanical parameters. The parameter dependencies
studied included micro-structural and mechanical properties and macroscopic dimensions.
The studied parameters have been the bond and grain size, mechanical properties of ice,
temperature of ice, coordination number, initial sample density, sample dimension, strain
rate and grain distribution.
The strain-stress relation was captured accurately in the predictions of unconfined com-
pression tests of snow samples at strain rates equal to and larger then 4 · 10−3s−1. The
typical saw-tooth shape of the strain-stress curve of a brittle failing sample was re-captured
as described by several authors. Also the predicted brittle strength of snow in dependence
of the temperature, strain rate and sintering age correlated well with the measured depen-
dencies.
Furthermore, the transition and ductile deformation of unconfined snow samples at strain
rates about and smaller then 10−4s−1 were predicted successfully by the developed ap-
proach. The strain softening behaviour of the transition regime was shown by the predicted
strain-stress curves in comparison to the measurements. Although the ductile behaviour
lacked the work-hardening effect under unconfined conditions, as found by several experi-
mental investigators, the particular dependencies and characteristics related to the initial
density and temperature could be described accurately. The strain rate - strength relation-
ship in the transition and ductile regime agreed rather well with the measured relationship.
In the confined compression tests the grain-scale models managed to predict the density
and temperature dependent mechanical behaviour of snow in accordance to the measured
behaviour. The predictions and measurements followed the same strain-stress relation in
dependence of the initial sample density.
The strong dependence of the strength of snow on the sintering age, as measured by
Fukue (1977), was accurately described by the developed models of snow behaviour. The
strain rate and the sintering age, i.e. the history, were shown to be the most influential
parameters on the strength of a snow pack in the experiments and predictions. The
strength - strain rate relationship of snow was captured properly in almost all conducted
predictions compared to the strength measurements of Kinosita (1967).
In future developments of the snow models, the lack of work-hardening under ductile un-
confined conditions should be addressed. For future engineering applications of the bonding
model, a mathematical relation between natural sintering time and the bonding properties
should be derived.

In chapter 6.3, the simulation technique proves to be able to predict accurately the traction
behaviour of tire tread -terrain interactions. The gross tractive effort, rolling resistance and
draw-bar pull have been compared successfully to measurements by Shinone et al. (2010).
The principal deformations of the tire tread and the granular terrain could be described by
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the DEM - FEM coupling method. However, the linear elastic description of the tire tread
and the approximation as a whole rubber body are a very coarse approach. For future
works the tire model should be extended to non-linear deformations. The different layers
and compounds of a modern high-tech tire have to be accounted for in future predictions.
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traitement des risques naturels, volume Habilitation. Institut National Polytechnique de
Grenoble, 2003. 4, 178

Francois Nicot. Constitutive modelling of snow as a cohesive-granular material. Granular
Matter, 6:47–60, 2004a. 42, 58

Francois Nicot. From constitutive modelling of a snow cover to the design of flexible
protective structures Part 1 – Mechanical modelling. International Journal of Solids
and Structures, 41:3317–3337, 2004b. 22, 42

Michal Nitka, Gabriela Bilbie, Gael Combe, Cristian Dascalu, and Jacques Desrues. A
DEM—FEM two scale approach of the behaviour of granular materials. AIP Conference
Proceedings, 1145(1):443–446, 2009. doi: 10.1063/1.3179957. 52

B. Peters. Classification of combustion regimes in a packed bed based on the relevant time
and length scales. Combustion and Flame, 116:297–301, 1999. 201

B. Peters and C. Bruch. Drying and pyrolysis of wood particles: experiments and simula-
tion. Journal of Applied and Analytical Pyrolysis, 70:233–250, 2003. 201

V F Petrenko and R W Whitworth. Physics of ice. Oxford University Press, USA, 1999.
87

192



REFERENCES

Thorsten Poeschel and Thomas Schwager. Computational Granular Dynamics. Springer,
Berlin, 2005. 56, 70

M. G. Pottinger. The Pneumatic Tire, chapter Contact Patch (Footprint) Phenomena,
pages 233–281. NHTSA, 2005. 47, 180

F Radjai and F Dubois. Discrete element modeling of granular materials, volume 41. ISTE
Ltd and John Wiley & Sons, Inc, 2011. 56, 62, 70
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Appendix A

Extended Discrete Element Method

A.1 Discrete Collision Models

This chapter lists further collision models of discrete particles developed and used in this
study.

A.1.1 Coefficient of Restitution of Ice

The coefficient of restitution eice of ice used in this study has been derived by Higa et al.
(1998). The impact and rebound velocity of ice spheres on an ice plate was measured to
define the coefficient of restitution of ice. Their investigations revealed the dependencies
of eice on the impact velocity, size and temperature of the ice spheres. They derived the
following ideal relation:

eice =





∼= 1 : vi < vc(
vi
vc

)− log
vi
vc

: vi ≧ vc
(A.1)

where vi stands for the component of the impact velocity normal to the plain and vc
describes the critical velocity. The critical impact velocity distinguishes between elastic
and plastic-brittle impact behaviour. In fig. A.1, both regimes are separated by the critical
velocity of vc = 0.73 m/s. The elastic regime is defined ideally by no energy lost during
the impact. The plastic-brittle regime can be approximated by an exponential decrease
with increasing velocity due plastic deformation and fracture during impact. Higa et al.
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Figure A.1: Coefficient of restitution of ice versus impact velocity for an ice sphere of
15 mm in diameter and a temperature of −12◦ C. The line represents eq. A.1 and the
symbols stand for the measurements by Higa et al. (1998)

(1998) derived the following relation to predict the critical velocity:

vc =





5.72 · 10−4 · e Q

2RT · (1 + γ3)
3

4

(1 + γ)
7

4

( ri
0.015

)−1

2

: T ≧ 229 K

180 · (1 + γ3)
3

4

(1 + γ)
7

4

( ri
0.015

)−1

2

: T < 229 K

(A.2)

where ri denotes the radius of ice sphere i and γ = ri/rj is the ratio of the impacting ice
spheres. The critical velocity vc = f(ri, T ) depends strongly on the size of the ice grains
and on the temperature.

A.1.2 Elastic Brittle-Plastic Model for Snow and Ice Grains

This grain collision model is based on the linear hysteretic model developed by Walton
and Braun (1986). The model is well suited to describe the plastic to brittle collision
behaviour of snow and ice grains at high deformation rates. This feature is inherited
from the restitution coefficient of ice, eq. A.1, which accounts for the plasticity of this
model. The responding normal force ~F c,n

ij is also predicted by eq. 3.41. The loading part
of the rheological model is still described as pure elastic. The stiffness is predicted by the
Young’s modulus of ice. But the unloading part is represented as an elastic plastic model,
as depicted in fig. A.2, where the plastic part employs the restitution of ice derived by
Higa et al. (1998).
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Figure A.2: Schematic demonstration of the material law of the elastic plastic impact model

Thus, in this model the loading stiffness kn
l is predicted as follows:

kn
l = Eice ·

√
Rij · δnij · (1− νice)

−1 (A.3)

where Rij denotes the effective radius, δ
n
ij the normal overlap, Eice is the Young’s modulus

and νice denotes Poisson’s ratio. The Young’s modulus and Poisson’s ratio of ice are given
in table 3.1 by Gammon et al. (1983). The unloading stiffness is determined as follows:

kn
unl =

kn
l

eice
(A.4)

Eq. A.4 employs the coefficient of restitution eice according to eq. A.1. As already men-
tioned the coefficient of restitution eice = f(T,Rij, vimp) is a function of the temperature,
the ratio of the radii and the impact velocity. The impact velocity is assumed to be the
initial velocity, i.e. the velocity vimp = ~vnij(t

c
o) at the time of the first contact. The

plastic overlap is than simply the relation of eq. A.5 between the loading kn
l and unloading

stiffness kn
unl times the maximum normal overlap δnij,max.

δn,pij (t) =
kn
unl − kn

l

kn
l

· δnij,max (A.5)

A.1.3 Linear Spring Dashpot I

This section presents a damped linear spring model for the prediction of a collision force
derived by Cundall and Strack (1979). The normal collision force is composed of a linear
spring force and a dashpot force. The spring results in an elastic repulsive force and the
dashpot contributes as a damper which can be written as follows:

F n
ij = mij δ̈nij = −(knδ

n
ij + cn ˙δnij) (A.6)
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where δnij is the normal overlap and mij, kn and cn are the reduced mass, the normal spring
stiffness and the normal dissipation coefficients, respectively.
The normal dissipation coefficient is predicted as follows:

cn = ln e

√
4mijkn

π2 + ln e2
(A.7)

where e denotes the coefficient of restitution.
The tangential force is computed by a static friction force which is limited by a dynamic
friction force. The static friction is a viscous damping force and the dynamic friction is
obtained from Coulomb’s law of friction as follows:

F t
ij = min(ctδ̇

t
ij, µF

n
ij) (A.8)

where ct is the tangential damping coefficient and µ is the Coulomb’s friction coefficient
whereas ˙δnij describes is the relative tangential velocity.

A.1.4 Linear Spring Dashpot II

The second linear spring dashpot model presented in this section is an improved version
of the previous model. In this model the normal stiffness is derived from the maximum
strain energy of a Hertzian contact and can be written as follows:

kn =
16

15
R

1

2

ijEij(
15mijv

2

16R
1

2

ijEij

)

1

5

(A.9)

where Rij, Eij and vnij are the reduced radius, effective young modulus and the collision
velocity respectively.
Therefore, the normal collision force can be written as:

F n
ij = mij δ̈ = −(

16

15
R

1

2

ijEij(
15mijv

2

16R
1

2

ijEij

)

1

5

δnij + cn ˙δnij) (A.10)

The tangential force is also composed of a static and dynamic friction part whereby the
static part is based on a spring-dashpot model:

F t
ij = min(ktδ

t
ij + ctδ̇

t
ij, µF

n
ij) (A.11)

where δtij is the tangential displacement.
The tangential dissipation coefficient is derived from the tangential stiffness similar to the
normal dissipation coefficient as follows:

ct = ln et

√
4mijkt

π2 + ln et2
(A.12)

where et is the coefficient of tangential restitution.
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A.1.5 Hertz-Mindlin

The Hertz-Mindlin model is based on the theory of Hertz (1881). The normal elastic force
and the normal energy dissipation are modeled based on the theory proposed by Mindlin
(1949). The formula for the normal force can be written as follows:

F n
ij = mij δ̈nij = −(

4

3
Eij

√
Rijδ

t
ij

3

2 + cnδ
t
ij

1

4 ˙δtij) (A.13)

The equation for the normal dissipation coefficient cn is proposed by Tsuji et al. (1992) as
follows:

cn = ln e

√
5mijkn

π2 + ln e2
with kn =

4

3
Eij

√
Rij (A.14)

The tangential force is a function of static and dynamic friction whereby the static friction
is modeled by a spring-dashpot model:

F t
ij = min(ktδ

t
ij + ctδ̇

t
ij, µF

n
ij) (A.15)

where δtij is the tangential spring displacement which is defined as the total displacement
in the tangential direction since the beginning of this contact. The tangential stiffness is
estimated by eq. A.16.

kt = 8Gij

√
Rijδ (A.16)

where Gij is the effective shear modulus defined in eq. A.17.

1

Gij

=
2− νi
Gi

+
2− νj
Gj

(A.17)

The tangential dissipation coefficient is derived from the tangential stiffness using eq. A.18.

ct = ln e

√
5(4mijkt)

6(π2 + ln e2)
(A.18)
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A.2 Software Design

The software design DPM is organised as a C++ library and a set of simulation drivers
designed to provide high quality and fast simulations of different physical phenomena in
granular matter.
DPM supports multi-physics simulations via different simulation modules. Currently, two
simulation modules for granular materials are available:

1. motion of a granular ensemble is available via the Dynamics module

2. chemical conversion between grains is provided by the Conversion module

The design is meant to be flexible so that additional simulation modules can be added
easily. Predictions with only one module or in a coupled mode are possible. Fig. A.3
presents the two modules schematically.

Figure A.3: Conversion and motion module in DPM.

DPM has been successfully used for the prediction of convective heat transfer by Estupinan
et al. (2013) and combustion processes in packed beds by Peters (1999), drying and pyrol-
ysis in particulated systems by Peters and Bruch (2003), iron ore reduction by Hoffmann
and Peters (2011), particle motion and conversion processes on backward and forward act-
ing grates by Samiei (2012) as well as to predict the interaction between bulk materials
and deformable bodies by Michael et al. (2012).

Workflow

A prediction operates on a set of particles and boundaries which can be of various shape
and material. The initial state of a prediction is setup during the initialisation step and
all the information required for this are read from the input file. The initial state of a
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particle is defined, among of other values, by its position and orientation, its velocity and
angular velocity, its shape , its material, its temperature. The input is stored in the flexible
HDF5 file format, see The HDF Group, where the information is organised hierarchically.
Particles sharing the same shape and material are grouped together into piles.
Boundaries are treated a special case of particles. In contrast to particles, boundaries do
not accelerate do to forces experienced. Thus they are not accounted for when solving the
equations of inertia.
After the state of the system has been initialized, the prediction starts which represents
most of the computation. The prediction is an iterative loop in which each iteration
corresponds to a timestep of the prediction. For each timestep t, the new state of the
system at t+∆t is computed. During a timestep, the computation is split in two phases:

1. the interaction step

2. the integration step

Figure A.4: Computation phases during a timestep t: interaction and integration steps.

Fig. A.4 illustrates the procedure during a single timestep of the time loop. At timestep
t, all particle pairs are considered. During the interaction step, the contact properties
between a particle pair are computed to predict the resultant interactions, e.g. force and
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torque, between the particles. Thereafter, the integration step integrates to the new state
of the particle system, such as position, velocity, temperature, by solving the respective
partial differential equations in discrete formulation. These two steps are described in
details in the following sections.

Interaction step

In the model, different kinds of interactions are possibles between the particles. First,
some are specific to a given simulation module, e.g. impact/collision interactions are only
considered when the motion simulation module is enabled. Additionally some interactions
depend on the materials of the particles interacting. Nevertheless, each interaction depends
on the contact / interaction properties between the two particles. For instance, for collision
or heat transfer between particles contact has to appear but radiation effects are considered
over a particular distance between particles.
During the interaction step, the contact / interaction properties are evaluated for all par-
ticle pairs and then interactions are considered if the particles are able to influence each
other depending on the inter-granular model employed. As a result, interactions will only
take place between neighbouring particles. For two interacting particles, the resultants
of the interaction are predicted. For instance, collision or bonding interactions result in
forces and torques that are applied to the particles. But chemical reactions result in specie
transfers and radiation results in heat flux.
Because a given particle can interact with many other particles during a single timestep, the
contribution of all these interactions must be taken into account. Thus all the interaction
resultants are accumulated for particles. The resultants are temporary values whose scope
is limited to the current timestep. They are used to update the particle states during the
integration step.

Integration step

As shown in fig. A.4, the integration step computes the new state of each particle by
taking into account the contributions of all interactions in which the single particle has
been involved during the interaction step. Thus, this step can be performed independently
for all the particles in the system as it only relies on single particles data.
The integration itself solves the respective equations of energy and/or inertia to gain the
new states. New values for acceleration, velocity, position, are obtained for each parti-
cle. These values describe the new state of the particle system. Thereafter, the updated
particles will be used in the next timestep at t+ dt.
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A.3 Algorithms of Computational Efficiency

Computational efficiency is the major challenge when applying discrete element simulations
to engineering applications. One challenge is the validity of the discrete approach with
small time steps. The other challenge is that the number of particles involved can easily
increase up to millions in engineering applications. Therefore, different approaches are
implemented and presented in this section to increase the efficiency of the computational
efforts.

Link Cell Algorithm

On of the highest computational costs in a DEM simulation are caused by the detection
of contact partners. At each time step t, all the contact partners for each particle have to
be detected. To identify the contact partners of a certain particle, the simplest approach
would be to loop over all other particles in the system and predict the overlap according
eq. 3.37. This requires n(n−1)/2 evaluations of overlap δnij at each time step. The number
n thereby describes the total number of particles in the domain. This is inefficient for large
systems.
However, the loop over all particles is not necessary as potential contact partners are in the
neighbourhood of the particle. Therefore, checking contact with the neighbouring partners
only is far more sufficient and reduces the number of contact evaluations significantly. This
idea is implemented by the Link Cell Algorithm. Furthermore, the method is straight
forward compatible with the parallelisation presented in the following section. The basic
principle of the Link Cell Algorithm is to divide the domain into a number of rectangular
cells. Each cell is identified by an index. Those indices represent location of a cell in the
domain. By this approach the minimum cell size is limited to the largest particle size:

lcell ≥ 2 · rg (A.19)

where lcell denotes the minimum length of the cell and rg is the maximum radius of a
particle in the domain.
For a given simulation domain from (xmin, ymin, zmin) to (xmax, ymax, zmax) , the number
of cells nx , ny and nz in spatial direction is computed as follows:

nx = int

(
xmax − xmin

lcell

)
(A.20)

ny = int

(
ymax − ymin

lcell

)
(A.21)

nz = int

(
zmax − zmin

lcell

)
(A.22)

With the simulation domain divided into cells, the next step links particles to the containing
cells. Therefore, each particle is referred by a unique integer and each cell is identified
by the three integers (i, j, k) corresponding to the indexes of the cell. A particle in the
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simulation domain can be contained by only one cell. Linking of particles to cells is handled
by a linked-list associated with each cell. To be associated to a cell list the centroid of a
particle has to align within the cell dimensions. For a particle with location (x, y, z), the
containing cell (i, j, k) is predicted as follows:

i = int

(
x− xmin

lcell

)

j = int

(
y − ymin

lcell

)
(A.23)

k = int

(
z − zmin

lcell

)

During the detection of contact partners for a particle, the loop covers particles of the
containing cell and the direct neighbouring cells. As each cell is described as a rectangle it
has twenty six direct neighbour cells in the domain, except a cell at the domain boundaries
which has less.

Parallelization

Parallelization of the computational effort is increasingly applied in computer science to in-
crease efficiency. The process of solving a problem can be usually divided into independent
parts. Those parts of a prediction can be executed simultaneously under sufficient co-
ordination. The performance and efficiency of the parallelization depends thereby mainly
on the partitioning of the simulation domain onto different processors. A principal diffi-
culty is the load balance and communication between processors. Hence, a appropriate
decomposition or partitioning method is the challenge when targeting for more efficiency
by parallelization.

Orthogonal Recursive Bisection

In this study, the domain decomposition method by Berger and Bokhari (1987) called
Orthogonal Recursive Bisection is used. This method considers the spatial coordinates
of the particles for the distribution onto different processors. Thereby, particles that are
close to each other are assigned to the same processor. Also the implementation of a ORB
algorithm is based on a cell structure.
Two principal C++ objects enable an ORB algorithm:

1. the domain object which defines the simulation space, the simulation cells, the weight
of the cells and the decomposition algorithm

2. the sub-domain object which stores the cells belonging to a processor after the de-
composition
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Figure A.5: A simple particle arrangements with the rectangular domain follow by hori-
zontal decomposition and finalised by a vertical, depicted from left to right respectively.

The weight of a ORB cell is related to the number of particles contained by that cell.
This assumes that all the particles are of similar computational load. By weighting the
cells the ORB approach constructs domain partitions of higher quality compared to simple
geometrical divisions. Fig. A.5 depicts the decomposition of a domain into sub-domains
of similar weights for a simple particle arrangements. The decomposition of a domain into
N sub-domains thereby requires N -1 processes.

Message Passing

Parallelisation onto distributed memory requires message passing. In this study the Mes-
sage Passing Interface (MPI) is used. The MPI implementation provides low commu-

Figure A.6: The rectangular particle domain is divided into four sub domains whereby the
particles i, j, k are seen as ghost particles by the according neighbouring sub domains.

nication overhead and code portability for Linux and Windows operating systems. The
message exchange between processes do thereby fulfil two informational purposes:
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• particles crossing from one processor, i.e. partition, to a neighbouring partition

• updating of the neighbouring particles seen by a process

Ghost particles are a particles contacting the cell boundaries of different sub-domains as
shown in fig. A.6. Hence, those particle are potential contact partners with particles of the
other sub domains. Thus, any sub domain needs the information about the ghost particles
bordering in addition to the sub domain they belong to.
An MPI interface class for message buffering is available by means of the MPI libraries. The
buffer class controls all packing/unpacking and sending/receiving functionality. It further
contains the functionality for buffer maintenance such as updating buffer pointers, setting
buffer sizes and specifying data packing sizes. The buffer class packs or unpacks all C++
data types needed to send between the processors. It further aims to reduce redundant
calls by packing all data first and sending it with a single call rather than sequentially.

Figure A.7: Conceptual message flows.

Hence, for the purpose of data exchange, each C++ object contains a packing and un-
packing function. Therefore, the message exchange between two sub-domains, illustrated
in fig. A.7, proceeds as follows when sending an object:

• the sender sub domain creates a buffer object which calls the packing function of the
object

• the object in turn calls the packing function of the buffer object for each data to be
sent
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• the sub domain calls the sending method of the buffer object

When receiving data of an object, the exchange proceeds as follows:

• the receiver sub domain creates an buffer object and calls its the receiving function

• this creates the object and calls the unpacking function of the object with the buffered
data provided
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Validations

B.1 Validation on a Grain-Scale

B.1.1 Grain Collisions

In here, the measurements of the coefficient of restitution of ice by Higa et al. (1998) have
been numerically predicted. Within the measurements ice spheres were impacting on an
ice plate in normal direction as shown in fig B.2. The impact and rebound velocity, vi and
vr, respectively, were measured and the coefficient eice was predicted as follows:

eice =
vr
vi

The investigation yielded the dependencies of the coefficient of restitution on the impact
velocity, size and the temperature of the ice grains. From the measurements, Higa et al.
(1998) derived the ideal relation of eq. 2.8, where vc describes the critical velocity dividing
the elastic and the brittle-plastic regime of the relation.

t0 t1 t2 t3

Figure B.1: Ice grain approaching onto an ice plate by vi at t0 and t1, impacting and
bonding at t2 and rebounding by vr at t3.
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The relation assumes no energy loss within the quasi-elastic regime and thus full recovering
of the rebound velocity. Fig. B.3 depicts the prediction by the analytical relation of eq. 2.8.
The experimental, analytical and numerical predictions illustrated in fig B.3 are conducted
for ice spheres of a radius of 1.5 cm and a temperature of −12 ◦C. Fig. B.1 demonstrates
a simulation sequence of a spherical ice grain approaching the ice plate by vi, impacting
and bonding with the plate and rebounding by vr.

Figure B.2: Measurement device of Higa et al. (1998).

The experiments showed a critical velocity vc of 0.4 m/s for a grain radius of 1.5 cm and
−12 ◦C. The predicted coefficient in fig B.3 describes the experimental results very well.
In the quasi-elastic regime for vc < 40 cm/s the restitution coefficient predicted by the
ideal relation of eq. 2.8 does not change with velocity.
In the experimental predictions the potential energy is not entirely recaptured after impact
during the quasi-elastic regime. Szabo and Schneebeli (2007) and Fan et al. (2003) observed
instantaneous bonding between ice grains when contacting. The bonding model of section
3.4.3 used in this predictions also allows instantaneous creation of a bond.
Hence, the rebounding energy has to be less then the impact energy due to the necessary
bond fracture. This is the case for the experimental and predicted results in fig. B.3. The
predicted coefficient increases slightly with impact velocity in the elastic regime, because
at lower velocities the bond has more time to grow and thus its fracture consumes a bigger
portion of the rebound energy.
During the plastic/brittle regime in fig. B.3 for vc > 40 cm/s, Higa et al. (1998) reported
the observation of plastic deformations after the impact. At even higher impact velocity
the fracture of the ice grains was observed. For the coefficient of restitution eice in fig. B.3
this results in a decrease with increasing impact velocity. The applied collision model of
section A.1.2 recaptures this behaviour very well.
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Figure B.3: Experimental, analytical and numerical predictions of the coefficient of resti-
tution eice dependent on the impact velocity vi. The ice sphere has a radius of 1.5 cm and
was impacting the ice plate at −12 ◦C.

B.2 Validation of XDEM - FEM Coupling

B.2.1 Elastic Sheet Enforcement of Granular Ensembles

In this section a benchmark case is used to study the influence of the resolution of the
finite element mesh and the number of particles on the results of a DEM - FEM coupling
simulation. The case chosen is an elastic sheet which served to enforce a granular ensemble
and thus deforms under the mass of the ensemble. The analytical solution of an elastic
sheet under constant area load is used as reference to study the influence and convergence
of the parameters studied.

B.2.1.1 Experimental Setup

The bench mark case consists of a granular layer of spherical particles which settle on an
elastic sheet.
The deformation of the sheet is predicted by the linear elastic finite element approach of
chapter 4.1. The granular settling is computed by the discrete element method described
in chapter 3. The interaction between both are accounted for by the coupling procedure
of chapter 5.
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The elastic membrane has a length of l = 10 m and a width of b = 0.5 m. The sheet
has an free deforming section of 2 m in length as shown in fig. B.4. The origin of the

Figure B.4: Configuration of bench mark case.

coordinate system is aligned in the center of the free section at 4 m along the length of the
sheet. The deformations uz in Z - direction are fixed for uz(−4 m < x < −1 m) = 0 and
uz(1 m < x < 6 m) = 0. In X - direction the deformations ux are fixed for ux(−4 m) = 0.
Also the deformations uy = 0 in Y - direction are fixed over the entire sheet area. This
results in a free deforming sheet for −1 m < x < −1 m.
The mass of the granular ensemble is kept constant, thus the upper sheet area is always
loaded by a constant stress of q = 8.5 kPa. The density of the sheet and grains as well as
the contact and material properties are presented in table B.1.

Table B.1: Material and Contact Parameters

Sheet Grains

Density ρ [ kg/m3] 1270.0 1732.93

Young’s Modulus E [MPa] 220.0 0.162

Poisson Ratio ν 0.3 0.3

Shear Modulus G [MPa] 84.61 0.062

Normal Stiffness kn [N/m] 1.1 · 106 13660

Tangential Stiffness kt [N/m] 1.1 · 106 11612

Friction Coefficient µ 0.6 0.6

In the following the resolution of the finite element mesh and the number of particles are
the parameter studied in relation to the sheet deformation. This benchmark contains two
simulation domains, i.e. the FEM and the DEM domain. To arrive at the proper solution
the necessary resolution of both domains needs to be predicted.
Fig. B.5 exemplifies one configuration of 1000 settled particles on the sheet mesh of 60 nodes
in X, 10 nodes in Y and 2 nodes in Z - direction. The particles are initially generated
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Figure B.5: Example result.

as an uniform rectangular grid before they settle on the sheet as shown in the fig. B.5.
The contact model used in this prediction is the linear spring-dashpot model presented in
section A.1.4. This configuration is used as the reference configuration for the following
variations.
The predicted results are evaluated by the vertical displacement uz(x) in the free region
−1 m < x < −1 m of the sheet. The free region has a length of lf = 2 m. As the
displacements in Y - direction are fixed over the entire sheet area, the analytical solution
can be evaluated in one dimension by the beam theory. Assuming a beam fixed on both
ends the vertical displacement uz(x) can be calculated as follows:

uz(x) =
q · b · l4f
24 · E · Iy

·
((

x

lf

)2

− 2 ·
(
x

lf

)3

+

(
x

lf

)4
)

(B.1)

where Iy the moment of inertia, which is calculated as follows: Iy =
1
12

· b · h3

B.2.1.2 Mesh Resolution

In this section, the resolution of the finite element mesh is studied. Therefore, in this
section the resolution of the FEM domain will be modified. The resolution of the DEM
domain is fixed at 1000 particles which is more than sufficient as concluded in the in next
section. The resolution of the FEM mesh which matches the analytical solution needs to
be predicted. Table B.2 presents the simulated mesh resolutions, scaled in relation to the
reference configuration, by their number of nodes in X and Y - direction.
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Table B.2: Mesh Resolutions

X Y Z

0.75x 45 7 2

1.0x 60 10 2

2.0x 120 20 2

3.0x 180 30 2

Fig. B.6 presents the vertical displacement along the longitudinal X - direction for the four
different mesh resolutions. The vertical displacements are normalised by the maximum
displacement of the analytical solution.

Figure B.6: Influence of the mesh resolution.

With increasing mesh resolution the displacement results converge to the analytical solu-
tion of eq. B.1. The fourth mesh resolution matches the analytical solution very well.
On one hand, a higher number of finite elements does result in a higher resolution of the
FEM domain. On the other hand, the finer mesh results also in a finer resolution of the
contact patch between both domains.
The benchmark case showed to converge to the analytical solution at a resolution of the
FEM domain of 180 x 30 x 2 nodes.
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B.2.1.3 Number of Particles

The parameter varied in this section is the number of particles forcing the sheet to deform.
The number of particles describes the load distribution on the elastic sheet. In this section,
the resolution of the FEM domain is fixed while the resolution of the DEM domain will be
modified. The resolution of the FEM domain is fixed at 180 x 30 x 2 nodes which is more
than sufficient as concluded in the in previous section.
Table B.3 presents the three numbers of particles N and the resultant grain radii rg.

Table B.3: Simulated numbers of particle

N 100 500 1000

rg [mm] 181 106 84

As the load on the upper face of the sheet is suppose to be constant, the grain density ρg
is used to predict the radius rg as follows:

r3g =
3

4
· q · As

N · π · ρg · g

where As describes the upper face area of the sheet and g is the gravity of the earth.
Fig. B.7 illustrates the free vertical displacement for the different numbers of particles.
The vertical displacements are normalised by the maximum displacement of the analytical
solution.

Figure B.7: Influence of number of particles.
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The vertical displacement smoothens between 100 and 500 particles due to the more uni-
form distribution of the load. From 500 to the configuration of 1000 particles the vertical
displacement of the sheet converges to one displacement. The analytical solution of eq. B.1
is matched by the higher number of particles. Hence, the load distribution is resolved prop-
erly at a number of 500 particle and higher in this benchmark case.
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