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Abstract

A simple concept that has emerged out of the notion of heterogeneous distributed computing is that
of Cloud Computing (CC) where customers do not own any part of the infrastructure; they simply
use the available services and pay for what they use. This approach is often viewed as the next ICT
revolution, similar to the birth of the Web or the e-commerce. Indeed, since its advent in the middle of
the 2000’s, the CC paradigm arouse enthusiasm and interest from the industry and the private sector,
probably because it formalizes a concept that reduces computing cost at a time where computing
power is key to reach competitiveness. Despite the initiative of several major vendors to propose CC
services (Amazon, Google, Microsoft etc.), several security research questions remain open to transform
the current euphoria into a wide acceptance. Moreover, these questions are not always tackled from
the user’s point of view. In this context, the purpose of this thesis is to investigate and design novel
mechanisms to cover the following domains:

• Integrity and confidentiality of Infrastructure-as-a-Service (IaaS) infrastructures, to
provide guarantees on programs and data running in a virtualised environment, either before,
during or after a deployment on the CC platform.

• Software protection on Software-as-a-Service (SaaS) and Platform-as-a-Service (PaaS)
architectures, using code obfuscation techniques.

This dissertation details thus two main contributions. The first one is the development and
implementation of CertiCloud, a CC framework which relies on the concepts developed in the Trusted
Computing Group (TCG) together with hardware elements, i.e., Trusted Platform Module (TPM) to
offer a secured and reassuring environment within IaaS platforms. At the heart of CertiCloud reside
two protocols: TCRR and VerifyMyVM. When the first one asserts the integrity of a remote resource
and permits to exchange a private symmetric key, the second authorizes the user to detect trustfully
and on demand any tampering attempt on its running VM. These protocols being key components in
the proposed framework, their analysis against known cryptanalytic attacks has been deeply analysed
and testified by their successful validation by AVISPA [1] and Scyther [66], two reference tools for the
automatic verification of security protocols.
The second major contribution proposed in this manuscript is an obfuscation framework named
JShadObf, designed to improve the protection of Javascript-based software running typically on
SaaS and PaaS platforms. This framework combines obfuscation transformations, code complexity
measurements and Multi-Objective Evolutionary Algorithms (MOEAs) to protect Javascript code, the
most ubiquitous programming language at the heart of most modern web services deployed over those
CC infrastructures such as Google Office Apps, Dropbox or Doodle.
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This Chapter introduces the thesis context, develops the motivations for the work and presents the
different contributions.

1.1 Context

At the beginning in the mid 1990s the term “cloud” was used to represent the computing space between
the provider and the end user. The term Cloud Computing (CC) was mentioned in academia for
the first time by Professor Ramnath K. Chellappa in 1997 [102] where he defined CC as a computing
paradigm where the boundaries of computing will be determined by economic rationale rather than
technical limits alone.

CC is therefore not only about computing but also about economics; in practice, the CC paradigm
regroups many existing Information and Communications Technologies (ICTs) ranging from web-
hosting to grid-computing and applies a pay-for-use model on these services. Users of CC platforms
have access to many services and pay for what they actually use in a flexible way; this approach is
often viewed as the next IT revolution, similar to the birth of the Web or the e-commerce.

Flexibility is the main keyword that characterizes the CC paradigm, it allows the user to modify
on-demand many aspects of the service he receives. For instance, in the case of web-hosting it is
possible to increase the memory size allocated to the user’s web-site or in the case of an email service
to increase the disk space for storing messages. All these modifications are transparent, increasing the
quality of service and providing a better user experience of CC services.

Another important advance in computing is the virtualisation technology, allowing the creation of
a new type of CC which is based on the provision of an infrastructure to the user. This technology
allows the execution of multiple virtual environments, each having a dedicated Operating System (OS),
on a single host. The user has full control over his virtual environment called a Virtual Machine (VM)
on which he can install, remove, develop and manage any software. This environment allowed the
CC provider to pool VMs on a single machine regardless of the interaction between users as they are
evolving in logically isolated environments. In addition the VMs have virtualised disks allowing easy
backup, copy and migration. A multitude of new services emerged from this new possibility going from
natural disaster recovery to duplication of servers in combination with an elastic load balancers [36] to
distribute the load across the servers in case of heavy usage (or even in case of Distributed Denial of
Service (DDoS) attack).

However CC suffers from many security issues, as illustrated by the fact that 41% of respondents
in the CDW 2011 tracking poll [59] are concerned about these issues, making security in CC the first

1



2 CHAPTER 1. INTRODUCTION

reason for holding organizations back from adopting the Cloud. This thesis attempts to deliver a set of
novel security mechanisms operating both at middleware and software level, providing users with a
more secure experience of CC platforms.

1.2 Motivations

The security issues raised by the Cloud paradigm are not always tackled from the user’s point of view.
For instance, considering an Infrastructure-as-a-Service (IaaS) Cloud, it is currently impossible for
the user to certify in a reliable and secure way that the environment he deployed (typically a Virtual
Machine (VM)) has not been corrupted, whether by malicious acts or not. The following legitimate
questions are not answered by current security protections dispensed by the CC companies:

• Can I be sure that my environment and its associated data remain confidential on such a shared
platform?

• Is there a way to ensure that the cloud resources are not corrupted?

• Once deployed, is there a way to assert on demand and trustfully the integrity of my environment
to detect undesired system tampering (typically by means of rootkit or malware)?

Yet having these features would enhance the confidence in the IaaS provider and therefore attract new
customers.

The work done in the first part of the dissertation tries to answer these three questions within the
CertiCloud framework. However in the proposed solution which stands at the IaaS level, the user
still has to trust a trusted party that control the physical access to the machine (which can be CC
provider). To offer a decent software protection at the other Cloud layers, namely PaaS and SaaS,
this thesis investigates novel obfuscation techniques to grant security guarantees to the user at an
application level. As of now, the vast majority of CC-based web-services (such as Google Office Apps,
Dropbox or Doodle just to cite a few of them) are relying on the JavaScript programming language
to interact with the user as all modern web browsers – either on desktops, game consoles, tablets or
smart phones – include JavaScript interpreters making it the most ubiquitous programming language
in history. The protection of the programs at the heart of these services becomes thus more and more
crucial, especially for the companies making business on top of these services. We have therefore
decided to focus on the protection Javascript-based software. In this context, we have designed an
obfuscation framework named JShadObf which corresponds to the second main contribution of this
thesis.

1.3 Contributions

This section details the contributions as well as the different publications produced during the thesis.

Integrity in IaaS Cloud Computing platform has been the first problem studied to address the lack of
security of data and computation from the user’s point of view. Indeed in current CC configurations and
platforms, the user has to trust completely the Cloud Provider. This research led to the development
of a framework called CertiCloud based on a cloud middleware.

CertiCloud relies on the concepts developed in the Trusted Computing Group (TCG) together
with hardware elements, i.e., Trusted Platform Module (TPM) to offer a secured and reassuring
environment. These aspects are guaranteed by two protocols: TCRR and VerifyMyVM. When the first
one asserts the integrity of a remote resource and permits to exchange a private symmetric key, the
second authorizes a user to detect trustfully and on demand any tampering attempt on its running VM.
These protocols being key components in the proposed framework, we take very seriously their analysis
against known cryptanalytic attacks. This is testified by their successful validation by AVISPA and
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Scyther, two reference tools for the automatic verification of security protocols. CertiCloud relying
on the above protocols, provides the secure storage of users’ environments and their safe deployment
onto a virtualisation framework.

While the physical resources are checked by TCRR, the user can execute on demand the VerifyMyVM
protocol to certify the integrity of its deployed environment. Experimental results operated on a
first prototype of CertiCloud demonstrate the feasibility and the low overhead of the approach,
together with its easy implementation on recent commodity machines. The CertiCloud concept and
its protocols have been published in [48] and in [49].

This allowed to increase the user’s security, but one still argues that the CC provider cannot
be trusted. Then to hide the algorithm developed by the user another approach has been studied:
Obfuscation. Even if proven impossible by [45], the aspect of time limited black box security intuitively
stated that a security for a finite period of time might still be achievable (for example, it is possible to
find a RSA private key from the public key but due to the size of the key used, it is impossible in a
reasonable period of time considering actual computing power).

This leads ot JShadObf (Chapter 9), a JavaScript Obfuscator based on Multi-Objective Evolu-
tionary Algorithm (MOEA) which takes into account different aspects such as execution time, size of
code, number of predicates to make source code unintelligible. The Obfuscation of source code is a
mechanism to modify a source code to make it harder to understand by humans even with the help
of computing resources. More precisely, the objective is to conceal the purpose of a program or its
logic without altering its functionality, thus preventing the tampering or the reverse engineering of the
program. That’s probably why a company such as Google heavily uses obfuscation for most of its web
services (Gmail, Google Docs etc.) Measuring the obfuscation capacity within JShadObf is based
on the combination of well known metrics, coming from Software Engineering, which are optimized
simultaneously thanks to Multi-Objective Evolutionary Algorithms (MOEAs). The framework has been
tested with a simple multiplication matrix program and a widely used library on the web: JQuery.js.
The results regarding source to source obfuscation have been published in [51] and [50].

The JavaScript language can therefore be used to develop obfuscated server side applications
running on a CC platform with CertiCloud to ensure the user that neither the physical node nor his
VM have been compromised.

These two approaches have been presented in international conferences and published in journals
with peered review. It is also worth to mention that in complement to the work presented in this
manuscript and the associated publications, the candidate used to collaborate on several pedagogical
contributions such as a book chapter on the security of distributed systems from a practical point of
view [47]. Also due to space restriction, it was not possible to detail the work carried on during the
master’s training of the candidate [157] despite its direct influence on the choice for this thesis. This
PhD thesis was carried out in the CSC, under AFR fellowship.

Publications

Whether directly i.e. linked to the work presented in this manuscript or through a more general
context, this dissertation led to peer-reviewed publications in journals, conferences proceedings or
books as follows:

• 1 book chapter [49];

• 1 journal article [47];

• 4 articles in international conferences with proceedings and reviews [50, 52, 48, 157];

• 4 articles in international workshops with reviews [26, 28, 25, 29];

• 2 articles in French national conferences with reviews [46, 31].

These publications are now detailed.
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Peer-Reviewed Journal (1)

[49] B. Bertholon, S. Varrette and P. Bouvry. CertiCloud, une plate-forme Cloud IaaS sécurisée,
Technique et Science Informatiques, Lavoisier, 2012 .

Book chapter (1)

[47] B. Bertholon, C. Crin, C. Coti, J.-C. Dubacq and S. Varrette. Distributed Systems (volume
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International Conferences with proceedings and reviews (3)
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1.4 Dissertation Outline

The thesis is organised as follows: the first part (Part I) presents the basic information for reading
the dissertation. The second part of the thesis (Part II) presents a way to increase security for IaaS
platforms using hardware security equipments and security protocols which have been validated. The
third part of the thesis (Part III) focuses on obfuscation techniques to increase security for PaaS and
potentially SaaS platforms.
We now briefly review the outline of the successive chapters of this manuscript.

Part I

Chapter 2 presents Distributed Systems in general and Cloud Computing (CC) in particular with an
overview of the different types of CC and of the existing IaaS middleware used to deploy Virtual
Machines (VMs) into a Cloud environment.

Chapter 3 introduces the cryptographic primitives used in this thesis, specially in the CertiCloud frame-
work. A brief presentation of the symmetric and asymmetric cryptosystems and how they can be
used, combined with secured hash functions, to communicate in a secure way between parties.

Chapter 4 outlines hardware attacks on secured chips, and presents the TPM, an hardware based protection
which has been used in CertiCloud.

Chapter 5 presents the existing software protections either at the OS level or at the Software level, impacting
either the security in IaaS platform or in PaaS and SaaS platforms.

Part II – CertiCloud

Chapter 6 introduces briefly the different methods and tools used to verify the security protocols using
automatic verification.

Chapter 7 presents one of the main contributions of the thesis which is the development and the implemen-
tation of CertiCloud, a TPM-based framework that increases the security of a user’s VMs in
IaaS platforms.

Part III – JShadObf

Chapter 8 contains an overview of the obfuscation techniques that are used in JShadObf. It provides as
well some definitions and describes the metrics used to evaluate software complexity.

Chapter 9 presents the second main contribution of this thesis, namely the JShadObf framework, by
detailing its implementation and explaining how the different transformations are combined with
Evolutionary Algorithm (EA) to produce obfuscated JavaScript code. This allows to protect
code running on PaaS of SaaS platforms.

At the end of the manuscript, a final part features the Chapter 10 which summarizes the dissertation
by presenting conclusions of the work performed together with outlines on future work and perspectives.
The Figure 1.1 presents dependencies between the different chapters and therefore proposes a reading
order for the thesis.
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Figure 1.1: Graph of dependencies between the different chapters of the thesis.
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Cloud Computing and Distributed Systems
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2.4.1 Computing performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4 Information security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

The aim of the work presented in this thesis is to increase the security in Cloud Computing (CC)
platform from the point of view of the user, it is therefore necessary to recall what is CC and where it
comes from. This chapter is dedicated to the presentation of Distributed Systems in general and Cloud
Computing in particular.

2.1 Distributed Systems

Prior to the emergence of the CC, the existence of distributed system already tried to tackle the
problem of using multiple machines to perform computations. Computing platforms can be divided
into two categories:

• Hard Coupled Systems: these systems communicate using interaction through shared memory,
they have a centralized control and usually based on multiprocessor system. Examples of such
systems are Massively Parallel Processors (MPPs) like BlueGene/Q 1 with more like 5 TFlop/s
and 458752 cores.

• Loosely Coupled Systems: theses systems communicate via messages and have a more decen-
tralized control, the global state of the computation is not known. They are as well referred as
Distributed systems.

1http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/bluegene/
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Definition 1 (Distributed Systems [147]) A distributed system is a collection of independent
computers that appears to its users as a single coherent system.

2.1.1 Deployment types of Distributed Systems

There are two types of deployment of distributed systems:

• Client / server model where all the information is centralized on one or more servers, while the
nodes (clients) connect to them to request information.

• Peer2peer model where every node is both a client and a server. The information is distributed
within the peers ensuring a better load balancing.

In all cases a distributed system tries to aggregate the maximum number of nodes to increase its
number of computations per second and therefore to decrease the time of the calculation.

2.1.2 Types of Distributed Systems

Distributed Systems can be classified into two types:

• Computation based: in this case a high number of machines with performant Central Process
Units (CPUs) are required to increase the computational power of the system.

• Storage based: such system tries to increase the number of bytes it can store and later access.

The essential technical basic blocks necessary to build Cloud Computing (CC) platforms can
be found in distributed system, specially for the IaaS type of Cloud that will be described later in
Section 2.2.3.

2.2 The Cloud Computing Paradigm

Cloud Computing ([40], [156]) is a recent computing paradigm which is based on the on-demand
access to computing services over the network and with its elastic-provisioning the user can modify his
resources and request new ones at any time. This gives to the user an impression of an infinite number
of resources, allowing small companies to increase their consumption to follow their needs. Combined
with the pay as you go model of Cloud Computing, the service provider charges the user depending on
the resources he requested. The CC paradigm is one of the fastest growing markets in ICT as shown
in Figure 2.1 ([80]).

2013 20170
10
20
30
40
50
60
70
80
90

100
110

Sp
en

di
ng

 [i
n 

bi
llio

n 
$]

12.3B$
31.1B$

29.8B$

62.1B$

5.3B$

14B$

Worldwide Public IT Cloud Services
Spending by Segment

IaaS
PaaS
SaaS

Figure 2.1: Cloud Computing: a fast growing market segment.
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Figure 2.2: General classification of Cloud Computing platforms: a stack overview.

Cloud Computing services regroup different categories of services which range from access to virtual
machines to web-hosting and redundant storage. A commonly used classification of the CC services is
divided into three major categories [158], SaaS, PaaS and IaaS described in Figure 2.2. CC is however
not limited to these three categories, one can cite for example Hardware as a Service (HaaS) [145]
where the provider gives access to hardware such as graphic cards or special equipment.

The next sections offer a characterization of each class over three attributes: user, user’s acquisition
and payment method.

2.2.1 Software-as-a-Service (SaaS)

This category regroups the services where an end-user’s software, which is running on the service
provider’s infrastructure, is accessed on-demand by the user. This category of cloud computing is
the oldest, the term Software-as-a-Service (SaaS) is even anterior to the CC, it dates to the 1990s
when the “Web services” emerged. The cloud provider manages and controls the application so that
no intervention from the user is needed. In this case, the user does not need to own and update the
software but rather pay for its use, for example through a web API.

Users:

• Employees accessing the organization software, e.g. webmail.

• Private individuals using online applications such as Google Apps [93], Google webmail Gmail [92],
Facebook [165], the blog hosting service wordpress [155].

• Companies relying on SaaS to share and edit their documents e.g. using Google Docs [94].

User’s acquisition:

Access of the online application.
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Payment:

The payment method of this category depends on the service provided, it can be determined by the
number of users, the network bandwidth, the quantity of storage used, it can be free but relying on the
advertisements based on the user’s data, etc.

2.2.2 Platform-as-a-Service (PaaS)

The PaaS category allows the user to have more control over applications but as well more obligations.
The service provider chooses, installs and updates the programming languages and tools that the users
will have access to. The users deploy their applications on the PaaS cloud using a remote control
shell or a web interface. More customizable web-hosting allows the user to choose, to install and to
maintain a website providing only scripting languages support and disk storage. This model is used by
[97] or [105] which can run websites of multiple clients on a single server. The platform is responsible
for allocating resources to the user’s applications according to the user’s demands. The user can for
example ask for more storage, more Random Access Memory (RAM) or more network speed.

Users:

• Application developers, testers and deployers, who design, implement, test and deploy an
application’s software.

• Users of the developed application.

User’s acquisition:

Access to the CC provider’s tools and resources.

Payment:

Based on the number of users, storage, CPU time, network, software licences used.

2.2.3 Infrastructure-as-a-Service (IaaS)

Finally IaaS, the lowest category i.e. the closest to the hardware. IaaS authorizes the deployment
and the execution of an environment fully controlled by the user – typically a Virtual Machine (VM) –
on the Cloud resources. The user will have full control over its environment i.e. will be root on the
machine, and will be able to install the software he needs. Instead of purchasing servers, software,
data center resources, network equipment and the expertise to operate them, the user can buy these
resources as an outsourced service delivered through the cloud. The main advantage of this category is
its elasticity, as the users can scale their virtual infrastructures on demand. For example, a service
provided by the user might have more and more clients, it can then be scaled up and request more
CPU and memory. This is what Amazon EC2 proposes with the Auto Scaling of resources on its
cloud [38].

Users:

System administrators, programmers.

User’s acquisition:

Access to VMs, data storage and network bandwidth.
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Figure 2.3: IaaS platform.

Payment:

Usually depends on the time spent by the user and the number and size of the VM requested.

IaaS platforms can be deployed on Public, Private of Hybrid Cloud. It is the type of Cloud which
offers to the user the most control over the machine. It allows him to install the OS he desires and
to have total control over the system. Since the release of Amazon EC2 in 2006, the number of open
source CC middlewares increased with, for example, Eucalyptus [77], Nimbus [126], OpenNebula [10],
and OpenStack [11]. These middlewares will be detailed in Section 2.3.

A general overview of an IaaS platform management is proposed in Figure 2.3. The user has access
to a front end through a web interface, a command line or an Application Programming Interface (API),
allowing him to perform actions involving VM images which are files containing a disk image, it is the
representation of a raw disk or partition, therefore the size of these images can go from hundreds of
megabytes to hundreds of gigabytes depending on the usage made by the user. The VM images are
stored in the CC provider’s mass storage, for example in the case of Amazon, the name of the service
for the storing of Amazon Machine Image (AMI) is S3 [35].

The following actions are the basic ones available by default on any IaaS CC platform:

• Uploading VM images: the user prepares his virtual machine locally and sends it to the CC mass
storage. The CC provider often supplies the user with existing images for widely used OS such
as Windows, Ubuntu, CentOS or RedHat.

• Starting VM: the user can start a VM image by creating one or more instances that will use the
image as reference i.e. it will copy the image as many times as the number of instances created.

• Terminate VM: the user can as well terminate a VM from the front end, allowing to bypass any
shutdown problems.



14 CHAPTER 2. CLOUD COMPUTING AND DISTRIBUTED SYSTEMS

• Saving VM: the user can save the VM image in order to commit all changes performed. This
new image can be later used to create multiple instances of a customized environment.

The following actors present in the IaaS scenario can be found in every implementation of the CC
platform under different names. The role of the front-end, the Virtual Machine Manager (VMM) and
the storage are briefly explained here.

Front-end

The front-end is the access interface from which the user can connect to the IaaS. It is dealing with
many important aspects of the service such as authentication, account management, billing, scheduling
of the user instances, etc. If the user wants to perform any of the actions described earlier, he has
to connect with the front-end endpoint. For big CC platform, this endpoint is of course composed of
more than one server. The API used to contact the front end is very often following Amazon EC2
API. Indeed due to the size of Amazon and its early implantation in the IaaS world, the open-source
CC middlewares often follow the same API (within the bounds of their possibilities). However other
API such as Open Cloud Computing Interface (OCCI) [27] are in development within the open-source
community and might in the future be part of CC middlewares.

Cloud storage

The Cloud mass storage or Virtual Machine Image (VMI) repository is used to store the default images
as well as the customized environment created by the users. These customized environments might
come from the modifications performed on a default VMI supplied by the CC provider and saved
by the user or simply coming directly from a VMI created by the user and uploaded on the mass
storage. For performance reasons the VMI has to be transferred and copied on the Virtual Machine
Manager (VMM). Indeed any I/O access, i.e. writing or reading on the disk would require a network
communication, this is very costly in terms of performance for the VMI containing the OS, as the OS is
usually composed of many small files (configuration files, library ... ). It would result in many network
communications delaying the OS accesses and overloading the network. However extra persistent
storage on the network is sometimes included in the platform.

Virtual Machine Manager node

The VMM nodes are responsible for the management of VMs. On these nodes, the hypervisor software
responsible for the virtualisation of the hardware and the virtual network connections is installed.
Many hypervisors exist such as Xen, KVM, VMWare ESX, Microsoft Hyper-V, OpenVZ, Virtualbox.
They are able to simulate hardware (like CPU, Disks, Networks ...) and allow the creation of a
virtualized environment. In this virtualized environment, an OS such as Linux, Unix or Windows can
run, believing that it is running on a physical machine. But all the hardware it sees is only emulated
by the hypervisor. In such case the user is completely free to operate his environment as he wishes
because it does not have any effect on the host system. Another positive point for this architecture is
the containment between the VM. As they think they are alone on the machine, they cannot (at least
should not be able to [134]) interfere with other VMs simulated hardware.

2.2.4 Deployment models

After the different categories of CC, the types of deployment are as well important for the user. Indeed
the Cloud Computing services that he will use can be deployed either on public cloud, on community
cloud, on private cloud or on a hybrid version. These types of deployment are mainly for the IaaS
category, but can be relevant as well for an SaaS service. Indeed the SaaS service provider does not
have to own the resources, he can use an IaaS service to deploy his SaaS or PaaS services.
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Public Cloud

The public cloud is provided by companies selling their infrastructure to allow clients to use it for
outsourcing their computing hardware. This is the business model of companies like Amazon with
EC2 [37] or Microsoft with Azure [122].

Community Cloud

The community cloud is an infrastructure dedicated exclusively to a specific community of consumers
from organizations sharing the same goals, policy, security requirements, etc. It is owned by one or
more of the organizations or by a third party or any combination involving these actors.

Private Cloud

A private cloud is managed and used exclusively by a single organization. This idea of resource sharing
is not new (e.g. existence of computing grid) but the emergence of CC allows the use of virtualized
environment and the tools provided by the middlewares such as migration, creation of snapshots or
redundancy. The IT infrastructure of the organization is therefore enhanced with extra capabilities
providing resilience and easier management. And even if this model does not use actual billing as it
usually appears within an organization, it allows cost evaluation for reporting purposes.

Hybrid Solution

Common APIs allow hybrid solution for a user or a group of users within an organization to scale up
their private cloud and request resources from a public cloud in case of high demand. The low price
of private cloud is therefore combined with the feeling of infinity of resources provided by the public
cloud.

2.3 Overview of the main Cloud Computing Middlewares

This section presents some of the well known middlewares available to deploy Virtual Machines (VMs)
in an IaaS Cloud environment. We will see Eucalyptus [77], Nimbus [126], Open Stack [11] and Open
Nebula [10] which are the four principal non-commercial CC platforms.

The commercial solutions such as Amazon EC2 [37] and Microsoft Azure [122] are not detailed due
to the lack of information on their internal structure.

The Table 2.1 compares the most used open-source middlewares for Cloud Computing (CC) as
well as vCloud. The open-source middleware has been tested to include in the table a parameter called
implementation feasibility of CertiCloud, characterised by multiple criteria such as the accessibility
of the source code, the languages used, the simplicity of the architecture, the robustness, the clarity of
the log files. This metric is however subjective and has not been formalised using the criteria mentioned
previously.

2.3.1 Eucalyptus

Eucalyptus is a CC middleware composed of five elements. They are all acting as standalone web
services:

• CLC: The CLoud Controller is handling the different cluster controllers. It is acting as well as
the front-end, therefore communicating with the users and administrators through a web-based
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Middleware: vCloud Eucalyptus OpenNebula OpenStack Nimbus

License Proprietary BSD License Apache 2.0 Apache 2.0 Apache 2.0
License License License

Supported VMWare/ESX Xen, KVM, Xen, KVM, Xen, KVM, Xen, KVM
Hypervisor VMWare VMWare Linux Containers,

VMWare/ESX,
Hyper-V,

QEMU, UML
Last 5.1.2 3.3 4.2 7 (Grizzly) 2.10.1

Version
Programming N.A. Java / C Ruby Python Java / Python

Language
Host OS VMX server RHEL 5, ESX RHEL 5, Ubuntu, ESX Ubuntu,

Debian, Fedora, Debian, Fedora, Debian, Debian,
CentOS 5, CentOS 5, RHEL, SUSE, RHEL, SUSE,

openSUSE-11 openSUSE-11 Fedora Fedora
Guest OS Windows Windows Windows Windows Windows

(S2008,7 ), (S2008,7 ), (S2008,7 ), (S2008,7 ), (S2008,7 ),
openSUSE, openSUSE, openSUSE, openSUSE, openSUSE,

Debian, Debian, Debian, Debian, Debian,
Solaris Solaris Solaris Solaris Solaris

Integration
Possibility - - - + + + - + + +
CertiCloud

Table 2.1: Summary of differences between the main Cloud Computing (CC) middlewares.

interface or through command lines tools. It is as well responsible for high level scheduling of the
work load and its API is using Amazon Standard.

• Walrus: The cloud storage controller is handling the transmission of the VM images (references
and customized). It is as well responsible for storing persistent data for the user using buckets
and objects. It is accessible from both inside the CC platform and outside.

• CC: The Cluster Controller is interfacing between the computing nodes and the cloud controller.
It schedules the tasks to do within the cluster of computing nodes it is controlling.

• SC: The Storage Controller is providing the VM with storage volumes which are dedicated to
a VM and cannot be shared between VMs. It is however possible to create snapshots of these
volumes and share the snapshot within the availability zone. This concept is similar to Amazon
Elastic Block Store (EBS).

• NC: The Node Controller is driving the hypervisor software handling the VM. It is as well
responsible for retrieving VM images on the Walrus controller and maintaining the cache of these
images.

The Eucalyptus virtualisation is using either Xen, Kernel-based Virtual Machine (KVM) or VMWare
and has its API compatible with Amazon EC2 and Amazon S3.

At the security level, Eucalyptus groups and rules for the firewall similar to EC2 with a network
isolation using Virtual Local Area Network (VLAN). As often the confidentiality and the integrity of
communications is based on the WS-agreement protocol enforcing the use of timestamps to prevent
replay attacks. Often similar measures are available in other middlewares but none of them is able to
answer the questions raised by CertiCloud.

2.3.2 OpenNebula

OpenNebula is a simple CC middleware composed of two elements:
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• Front-end: on which the OpenNebula services are installed and should have access to the
Datastores as well as to every host. The installation includes the management services, the
monitoring and accounting services the web interface and the API servers.

• Cluster nodes (Host): no OpenNebula installation is needed on the nodes, only an access from
the front-end to them and rights well configured to be able to launch the hypervisor commands
to run or terminate the VMs.

The installation on the front-end is very light (∼ 10 MB), and no installation of the nodes is
required. However the network has to be well configured to handle the VMs’ communications.

2.3.3 OpenStack

OpenStack is the most recent open-source CC middleware of the selection, it has been developed
originally by Rackspace [14] and NASA [8], then well known commercial companies such as AT&T,
Nebula, RedHat, IBM, Ubuntu, Hp, Dell, Cisco, Citrix, Intel, VMware, joined the development.

OpenStack is divided into seven core components running as independent projects:

• Glance: proposes a catalogue of reference VM images for common OS installed as well as
customized images. This service is used to reference the different available images (depending on
the credentials of the user), but the storage itself can be done using a swift service, a normal
file-system, Amazon S3 or a http server.

• Nova: it is installed on the computing nodes, this project drives the hypervisor installed on
the system. The compatible hypervisors are KVM, LXC, QEMU, UML, VMware, Xen. This
is the most complex and distributed component of OpenStack. It includes many programs and
modules such as nova-api supporting different API, OpenStack Compute API, Amazon EC2
API and a special admin API used by administrator of the platform, nova-compute which is
responsible for driving the hypervisors, nova-schedule responsible for scheduling the VMs on
the node, nova-network for manipulating the virtual network and the bridges, nova-novncproxy
for accessing the screen of the instances.

• Horizon: proposes a dashboard which is a web-based user interface to manage VMs. This service
needs to have access to the same network as the user and to most of other services running on
the platform.

• Keystone: provides the authentication for all other OpenStack services.

• Quantum: provides network connectivity between the applications managed by other OpenStack
services. This service allows the users to create their own networks and then attach interface.
The main interaction this service has is with the other nova services.

• Swift: proposes an object storage allowing user to store and retrieve files. It is distributed
to prevent single point of failure, includes a proxy server swift-proxy-server which accepts
requests using the OpenStack Object API, account servers for the rights, container servers for
folders and object servers for actual files.

• Cinder: is the other service linked to storage, allows the users to store their volumes which is an
additional persistent storage. The API allows the manipulation of volumes containing the VMI.

Due to the implication of many different well known companies, OpenStack is the most promising
open-source project for Cloud Computing (CC). However due to its multiple projects, its installation
and modification through the mean of plugins requires extensive knowledge of the middleware.
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2.3.4 Nimbus

Nimbus is an open source middleware based on Globus [81] and composed of two elements:

• Service Node: managing the authentication of the user and its access to the cloud, plus the
storage system called Cumulus.

• Virtual Machine Manager: which is the node controller driving the hypervisor.

Nimbus only relies either on Xen or KVM technologies. However it has been chosen for our work
due to it simplicity regarding the number of actors and the usability. The concept is nevertheless
extensible to other middlewares.

2.4 Promises and Open Issues in IaaS Cloud Computing

The promises of CC are presented in [44], it details what the users of CC services are expecting.

• Availability: the availability of resources is measured as percentage of resource uptime. This
percentage usually appears within the Service Level Agreement (SLA) and is ranging generally
from 99.5% to 100% of guaranteed uptime. However the computation method of the availability
might be different depending on the service provider.

• Failure handling: this defines how the service provider should compensate the downtime, i.e.
periods when the service is unavailable. The provider can for example offer some credit for further
use of the CC platform.

• Data preservation: the data of the user has to be kept for a certain period of time even if the
user has not fulfilled its payments.

• Privacy of data: one of the hardest promises to verify, the service provider has to guarantee
not to sell, license or disclose any of the user’s data and programs.

The limitations linked to the previously mentioned promises are the following:

• Scheduled outage: any outage which has been scheduled, announced and bounded in time is not
counted as downtime.

• Force majeure: any outage due to an event outside the control of the provider is not counted as
downtime.

• SLA changes: the user is responsible for checking any modifications in the SLA. These changes
however have to be published with advance notice.

• Security: providers generally do not take responsibility for security breaches or for security in
general. This means that in case of disclosure of the user’s data due to a malicious activity the
provider disclaims security responsibility. It is however hard to prove for a user that a disclosure
was indeed the result of a malicious attack outside the service provider’s control.

• API: due to the evolution of the middleware and the addition of new services, providers reserve
the right to modify the API.

As an emerging technology, Cloud Computing (CC) has still numerous open issues. Often these
issues were present in other domains but with the increase of popularity of the CC paradigm, they
became more relevant. The next subsections will present some of these open issues, which are relevant
for this work.
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2.4.1 Computing performances

The cloud performances requirements are linked to the services provided by the user e.g. a web
server which is generating web pages for human reader has less requirements than an High Perfor-
mance Computing (HPC) computation. The computing performances characterised by the following
constraints.

• Latency: the latency is the time for the service to answer the user. This time is at minimum the
time for the request to travel through the network infrastructure. The closer (physically) the user
is to the cloud providers, the lower the communication delays are. The increase of the network
infrastructures and VLAN between the user and its VMs or the VMs running the service leads
to higher latency and therefore a decrease in the Quality of Service (QoS).

• Scalability: program running on desktop or even cluster has to be adapted to the cloud to benefit
from the elasticity of the infrastructure.

• Data storage: computing performances are dependent on the data location: the closer to the
computing unit the smallest the retrieving time is. This means that the location of data influences
the computing unit.

2.4.2 Reliability

Reliability is a key issue in CC. When the users depend on the availability of their computing resources
to run their business and the service provider is committed to his SLA, minimising the downtime is
crucial.

The network connectivity is essential for a CC service to be run. Obviously interruption of network
services leads to interruption of the whole system itself. A lot of applications need a continuous
communication and are sensitive to interruptions e.g. an HPC computation might crash in case of
network errors. CC services are created and administrated by man in an unpredictable world, therefore
utility outage is inevitable whether from malicious attack, administration errors, hardware failure or
natural causes. Depending on the reliability level needed, solutions such as redundancy of hardware
might be necessary. In case of critical infrastructure, disaster recovery policies e.g. mirroring the whole
service on a different physical location, could be considered.

2.4.3 Interoperability

Efforts have been done by the open source community to develop a common standard or to be compliant
with the Amazon API, but the migration of an application from one CC provider to another is still a
non-trivial problem. Interoperability between the different CC platforms implies standardisation at
many levels of the different basic blocks composing the platform. For example, transferring a VMI
running on Microsoft Azure to a Nimbus based CC platform requires the conversion of the VMI to be
readable by the hypervisor supported by Nimbus and network reconfiguration might be needed. For
SaaS services it is even more application dependent e.g. changing from Gmail web-mail service to
Yahoo and transferring the content of the mailbox is impossible.

2.4.4 Information security

Information security is one of the key issues of the Cloud Computing (CC) environment leading to the
fact that many businesses are reluctant to externalise their IT services to the Cloud due to security.
The polls in Figure 2.4 ([59]) present the three main reasons for companies not to migrate to the CC.

In certain cases they have legal obligation that obliges them to keep the data or programs within
their control. All categories of CC are affected by security, specifically the IaaS category, where the
logical compartmentalisation of OS creates a false sense of security. Indeed compartmentalisation
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Figure 2.4: Top three reasons not to migrate to the cloud.

increase security but is not unbreakable and breaches have been found multiple times like in [134] and
[128].

Data protection

Data in a public cloud has a different security exposure compared to an on-site environment. First
of all a cloud infrastructure containing data from multiple sources is more attractive for a malicious
attacker than a single site. Their security level or procedures are as well unknown to the user of the
platform and certain requirements from the user have to be specifically handled by the service provider,
e.g. the encrypted storage of the email of an email hosting company might not be feasible according to
the service provider’s architecture.

System Integrity

Cloud Computing platforms have to ensure the integrity of their systems to the clients, from the host
OS to the applications depending on the kind of services they are providing. The partition of rights
either in the file system itself or within the application using, for example, distinct groups has to be
well defined and applied correctly throughout the system.

In the case of SaaS, the verification of the system integrity by the user is hardly feasible, leading to
a blind trust to the cloud provider to ensure system integrity.

This dissertation will focus on the Data protection and the Integrity of the user’s VM.
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One of the critical issues remaining in Cloud Computing (CC) platforms is the security of the
resources composing the Cloud Computing systems. This topic is strongly linked to computer system
security, indeed Cloud Computing security is based on notions coming from the computer security
community. This Chapter is describing some of these concepts that will be used in the thesis. First we
will define what computer security means and then we will describe some of the means used to secure
computer systems.

3.1 Introduction

A secure computer system is the key to usability. Attacks to steal private information or to affect the
correct behaviour of the system are common, therefore security measures need to be taken to secure
data and infrastructure.

The terms defined bellow will be used in this dissertation.

Definition 2 (Attack) An attack is an intentional action attempting to cause failure in a system or
to gain information which the security policies do not allow you to have.

Definition 3 (Vulnerability) A vulnerability is a point in a system where an attack can be performed.

The CIA model presented in Figure 3.1 for ICT security involves the following concepts:

• Confidentiality: private information should be protected to prevent its disclosure to any malicious
attacker.

21
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Figure 3.1: CIA security model (in blue domains holding contributions from this thesis).

• Integrity: a system should not be altered by a malicious user without being detected. In the case
of data transmission, if a malicious attacker tampers the data during a communication then it
should lead to a detection from the legitimate parties.

• Availability: the service should be available for legitimate users. A highly available system should
always be active, even in case of attack, hardware failure, software error, or power outage.

Another concept which is often added to the CIA model is the non-repudiation, which is the
impossibility for an actor to repudiate the fact that a message or communication has been performed
by himself.

3.2 Encryption

The war between cryptographer and cryptanalysts exists since there is a need for secure communications.
In the old times communication channels between parties were the messengers. Techniques to hide or
crypt the messages appears to prevent a compromised messenger, i.e. caught by the enemy or with
malicious intentions, from revealing confidential information. These techniques are called cryptographic
techniques where cryptography literally means “secret writing”. The history of cryptography [100] can
be divided into categories depending on the tools they used:

• Pre 1920: Paper-and-pencil with substitution, transposition, Caesar cipher, Vigenere cipher,
Vernam cipher.

• 1920 - 1970: Machine ciphers with Enigma, Purple, Hagelin.

• 1970 - now: Computer Based with the algorithm: RSA, DSA, EC, DES, 3DES, AES .

• Future: Quantum cryptography?

Machines and after computers increased the computing power and helped alternatively the crypt-
analysts and the cryptographers, leading to stronger cryptographic methods and ciphers to replace old
and broken algorithms.
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When dealing with cryptography theory the following definitions are used to depict the context.
The following conventions and definitions are often used when describing a scenario: Alice and Bob are
legitimate users and Eve is a malicious one as in Figure 3.2.

Definition 4 (Plain text) the term “plain text” represents a non-encrypted text which can be read
by anyone. This text is usually represented by the letter M .

Definition 5 (Cipher text) a “cipher text” is an encrypted version of a plain text. This text is
usually represented by the letter C.

Definition 6 (Encryption) to encrypt a text means to make it unreadable. This encryption process
is usually done by a function E and uses a key Ke.

Definition 7 (Decryption) To decrypt a text means to make it readable. This decryption process is
usually done by an function D and use a key Kd

Definition 8 (Insecure Channel) an insecure channel is a mean of communication between two
parties which is unsecured i.e. that a malicious party can read or alter.

An example of an insecure channel is typically the Internet as the routers between Alice and Bob are
not under their control.

Definition 9 (Cryptosystem) a cryptosystem is set of algorithms needed to implement an encryption
decryption system.

A cryptosystem is often composed of three algorithms: one for encryption, one for decryption and one
for key generation.

Figure 3.2: Principle of encryption.

One important principle in cryptography is how the security is measured, the following principle
summarises good practise in conception of cryptographic systems:

Definition 10 (Kerckhoffs’ principle [103]) The security of a Cryptosystem should not be con-
tained in the algorithm with which the cipher text is generated but rather in the secret key used to
encrypt the message.
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This principle basically means that even if adversaries do whatever is possible (stealing machines,
reverse engineering, bribing, kidnapping, etc.) to obtain useful information, they should not be able to
use any encrypted data unless they have the secret key. The basic assumption is that Eve has access
to everything, e.g. algorithms, [Pseudo]-Random Number Generators (PRNGs), hardware equipment,
etc, except the key K.

To protect messages from disclosure, two types of encryption have been developed, historically the
first one is the symmetric encryption (with methods as old as the Caesar shifting cipher), then the
asymmetric encryption which is more recent (in the late 1970s).

3.2.1 Symmetric Encryption

One type of encryption used to protect the data is symmetric encryption. Symmetric encryption means
that there is only one key to cipher and decipher the data which means: EK(M) = C and DK(C) = M
are using the same key K to perform both operations. Therefore the key K is the secret that an
adversary will want to have if he wants to understand the communication.

Caesar, Vigenère and Vernam ciphers

These three ciphers are categorised in the pre 1920s section. They use shifting which means that a
letter is shifted to another letter e.g. the Caesar cipher is using a shifting of 3 which means that the ’a’
letter is replaced by ’d’, the ’b’ by ’e’, the ’c’ by ’f’ ... The decryption is quite simple and needs to
shift the same number of letters but in the other direction.

The Vigenère cipher has the same principle but the number of shifting is determined by a password
and the position in the text, in the following encryption C[i] refers to the ith letter of the cipher text,
M [i] refers to the ith letter of the plain text and K[i] refers to the ith letter of the key (the addition
has to be replace by subtraction in the case of decryption):

C[i] = M [i] +K[i mod lenght(K)]

The Vernan cipher is using the same principle as the Vigenère cipher with a key as long as the
message itself. This cipher is unbreakable but very difficult to use in practise do to the key distribution
problem.

The shifting in these ciphers uses a particular case of the substitution methods used in today’s
algorithm.

DES

The Data Encryption Standard (DES) [65] was invented by IBM and reviewed by the National Security
Agency (NSA). It is a block cipher of 64 bits which means that it encodes data by dividing the input
into blocks and it uses keys of size 56 bits. It is composed of permutations and substitutions operations.
However due to the size of keys in the DES algorithm, brute force attacks are possible since the early
2000s, making it unsuitable for acceptable confidentiality. It was used as the standard for encrypting
communication from 1976 to 2001 when it has been replace by AES.

Advance Encryption Standard

In 1997 the need for a more secure and fast symmetric encryption algorithm lead to an international
competition for a new symmetric encryption which brought to light a new algorithm: the Advance
Encryption Standard (AES) [67]. This algorithm is as well composed of multiple rounds of permutations
and substitutions operations but the size of the keys varies from 128 bits to 256 bits.
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3.2.2 Asymmetric Encryption

The asymmetric encryption is quite new compared to symmetric encryption. The first publicly available
encryption scheme using asymmetric key is RSA developed in 1977 (found earlier by Clifford Cocks, a
British mathematician and cryptographer at the Government Communications Headquarters (GCHQ)),
but Diffie and Hellman in 1976 used a key exchange based on asymmetric cryptography. Asymmetric
encryption means that the key to encrypt the cipher text is different from the key to decipher it. It
results that EKe(M) = C and DKd

(C) = M are using different keys Ke and Kd the encryption and
decryption operations. This new cryptographic paradigm allowed secure communications between two
entities without sharing a common secret, leading to easier key distribution.

Asymmetric encryption schemes are based on mathematical problems which are hard to solve. The
computations needed to encrypt and decrypt are usually more time consuming than for symmetric
cryptography, this is why they are used to encrypt small messages or even keys for symmetric
cryptographic algorithms.

Diffie-Hellman Key Exchange

The Diffie-Hellman [73] key exchange is based on the difficulty of the discrete logarithms problem. The
typical scenario for an exchange is the following:

• Alice or Bob selects a large prime number p and a primitive root α. p and α are public.

• Alice and Bob choose their private keys, respectively x and y.

• Alice and Bob exchange their public keys which are αx mod p and αy mod p.

• Alice and Bob can compute the key K = (αx)y mod p = (αy)x mod p.

In this scenario it is very hard for an attacker to retrieve x and y from αx mod p. Retrieving this
information is called the discrete logarithms problem.

Based on the same mathematical problem, the ElGamal [76] encryption scheme allows not only to
exchange a common secret such as session key but also to send encrypted messages without needing an
bi-directional communication between the two entities.

Rivest Shamir Adleman (RSA)

The RSA cryptosystem [138] is based on the factorisation problem. The following steps briefly describe
the algorithm:

• Bob chooses two secret primes p and q and computes n = pq

• Bob chooses e with gcd(e, (p− 1)(q − 1)) = 1

• Bob computes d with de = 1mod((p− 1)(q − 1))

• Bob’s public key becomes n and e and his private key is p q d

• Alice encrypts m using the function c = En,e(m) = memod(n)

• Finally Bob can decrypt c using the function m = Dp,q,d(c) = cdmod(n)
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Elliptic Curve (EC)

EC cryptosystems [162] are more recent and are based on the Elliptic Curve Discrete Logarithm
Problem. It has the advantages of having smaller key sizes and keys faster to generate than RSA
decreasing the computing power needed and making EC more convenient.

The asymmetric cryptography allows Alice to send a message to Bob without having to share a
common secret with him. Alice just needs the public key of Bob to send him a message that only he
can decipher. This allowed more possibilities than the symmetric cryptography, where the common
secret has to be shared over a secure channel or prior to the communication. However, there is still a
key distribution problem which is how Alice can be sure that the key she has is indeed Bob’s public
key.

3.3 Hash Functions

Hash functions are very useful in computer science and telecommunication, they are used to verify
that a communication or a message has not been modified.

3.3.1 Checksums

Check-sums are used in error detection in telecommunication to ensure that the message sent has not
been modified by a bad communication channel e.g. radio communication interferences. A well known
check sums function is the Cyclic Redundancy Check (CRC) which has the advantage of being fast
and easily implemented in hardware.

3.3.2 Cryptographic Hash

Check-sums function such as CRC are not suitable for cryptographic purposes as collisions are easy to
find. The properties of a cryptographic hash function h – also called “message digest” as they are a
“summary” of the message – are the following:

• Given the message m, the function h(m) is fast to compute.

• It is a one way function, meaning that given d which is the result of the function h(m) = d it is
hard to find a m′ such as h(m′) = d.

• It is collision free, meaning that it is computationally infeasible to find two m1 and m2 such as
h(m1) = h(m2).

The Table 3.1 is referencing some exiting cryptographic hash functions as well as their complexity
and if they are resistant or not.

Function Size Brute force attack Collision resistance Attack complexity

MD5 [137] 128 bits O(264) broken [142] O(230)

SHA-1 [75] 160 bits O(280) broken [161] O(263)

SHA-256 [24] 256 bits O(2128)

Whirlpool [136] 512 bits O(2256)

SHA-3 [53] 224, 256, 384 and 512 bits O(2112) - O(2256)

Table 3.1: Existing Hash functions.
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Secure Hash Algorithm (SHA)

Developed by the NSA, the SHA-1 used to be the hash algorithm recommended by the National
Institute of Standards and Technology (NIST) until 2012. It is composed of multiple rounds of bit
shifting, word rotation, and bit operations such as or, xor and and. The NIST now recommends
SHA-2 functions which have a similar algorithm than SHA-1 but no attack have been found on the full
SHA-2. How ever attacks and weaknesses have been discovered on parts of SHA-2, i.e., the reduction
of the number of rounds in the algorithm allows an attacker to find collisions (two inputs resulting in
the same hash value).

Therefore the NIST launched a competition [127] for a new SHA-3 which finished in 2013 making
the new next standard based on Keccak [86] familly functions.

3.3.3 HMAC

HMAC is a special type of hash function used to for authentication of the message using a common
secret. Indeed due to its construction and the one-wayness of hash functions, it is impossible to
construct a correct HMAC value of a message M without knowing the secret K. It therefore can be
used to authenticate a remote user with a challenge M to verify that the user is in possession of the
common secret. In this case no encryption is needed to authenticate the remote user. The HMAC
function is based on a cryptographic hash function h and is usually computed as follow:

HMACK(M) = h((K ⊕ ipad)||h((K ⊕ opad)||M))

With ipad and opad, two constants formed using the values 0x36 and 0x5c times the size of a hash
block. Knowing the message and the common secret Alice will be able to verify the HMAC sent by
Bob by computing the function. Alice will be sure that the message has been hashed by Bob.

3.4 Public-Key Infrastructure and Digital Signatures

The asymmetric cryptography have public and private keys allowing asymmetric encryption and digital
signature, but the public key distribution problem arises.

3.4.1 Digital Signature

The principle for Digital Signature is as well based on public and private keys. Instead of encrypting
with public keys and decrypting with private keys, the parties sign messages with private keys and
verify signatures using the public key. Most of the asymmetric cryptosystems can be modified such as
they can be used to perform signing and verifying operation. For instance, RSA cryptosystem has the
following property: encryption and decryption functions are commutative, i.e.:

DKpriv(EKpub
(M)) = EKpub

(DKpriv(M))

It is therefore possible to use the DKpriv as a signing function SKpriv , and the EKpub
as a verification

function VKpub
. This property is inherent to the mathematical problem it results from, e.g. for the

Diffie-Hellman encryption (αx)y = (αy)x. It allows to “decrypt” before the encryption. When the
decryption process happens on the message M rather than on the cipher text C it is called signature.
If a message M is signed by Alice using her private key it means that anyone having Alice’s public key
can verify that the message was indeed signed by Alice.

In practise it is not the message itself which is signed but rather its “summary” i.e. the hash of
the message. There are two reason for signing only the hash of the message: the first reason is that
asymmetric cryptosystems are slow, therefore it is faster to sign only a hash of the message and the
second reason is that if the message is big, it has to be divided into blocks to be signed. As each one
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of these blocks is signed, a malicious user can rearrange or remove some of them in order to change
the meaning of the message e.g. if the block size is the size of an unicode character, the attacker can
generate a completely different document but considered as signed.

3.4.2 Key Distribution

As seen previously with asymmetric cryptography there is no need to share a common secret prior to
the communication between the two parties. However to send a message to Bob, Alice needs to know
his public key. The key distribution over an insecure channel is subject to Man In The Middle (MITM)
attacks, which means that a man in the middle (Eve) can impersonate Bob in the eyes of Alice, and
Alice in the eyes of Bob, then relaying all the communications transparently. To solve this issue there
are two main ways which are the use of a Certificate Authority (CA) or a web of trust.

Certificate Authority (CA)

A CA is a trusted third party that signs the public keys of different actors. The public key of the CA
is conventionally possessed by all the actors.

Private key
Public key

Alice

Certificate Authority

Alice Bob

Digital signature

Alice
CA

Alice
CA Alice

Message

Alice
CA

CA

verify signature

Alice

Alice
extract public key

Alice
Message

verify signature

Message
read

Prior to Communication

Sending a digitally signed message

Figure 3.3: Scenario of Alice sending a signed message to Bob with a key signed by the CA.

The configuration seen in Figure 3.3 is the typical scenario happening on secured internet websites
e.g. internet banking or webmail, where the websites have their public key signed by a CA. This
signature is stored in a certificate which can be distributed to the users of their services. The users
have the public keys of the main CAs within their web browsers which verify the certificate of the
service providers.

This is a centralised approach which requires the trust of all the actors in the CA.
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Web-of-Trust

The web-of-trust is the decentralised approach used in Pretty Good Privacy (PGP) [82] to solve the
key distribution problem; a user does not trust a CA to sign the different keys but rather his network
as well as the networks of his network, it is therefore based on the notion of “transitive trust”. For
example, if Alice trusts Mark and signed his key, and Mark trusts John and signed his key, and John
trusts Bob and signed his key, then Bob can send a signed message to Alice and she will be able to
verify his signature because she will know that the private key used to sign the message is indeed Bob’s
key by deriving trust through Mark and John.

3.5 Open issues in Computer Security

Computer security mostly relies on cryptography. But new attacks are discovered every day, computers
have more and more computing power allowing stronger brute-force attacks.

However errors in the implementation of the algorithms make attacks possible without calling into
question the difficulty of the mathematical problem.

Even if a cryptosystem is considered as unbreakable within reasonable time it does not make a
computer system secure. Indeed the cryptographic algorithms are only one basic block, a tool, it does
not make a system secure. To be secure, a system has to use hardware and software protection against
the attacks.
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This Chapter presents a classification of hardware chip’s attackers and a description of the Trusted
Platform Module (TPM) which has been used in CertiCloud (see Chapter 7). This cheap hardware
chip is already embedded in many motherboards, trying to provide basic cryptographic capabilities
and platform security assessment.

4.1 Taxonomy of Hardware Attacks

This section will present the different hardware attacks by classifying the types of attackers, the types
of attacks and the different methods for attacking hardware components.

4.1.1 Class of Attackers

The following classification of attackers has been given by [33]:

• Class I adversaries are considered as clever outsiders. They have neither knowledge about
the system nor very sophisticated equipment. They usually try to take advantage of existing
vulnerabilities.

• Class II adversaries are Class I adversaries with detailed understanding of parts of the system.
They have access to highly sophisticated tools.

• Class III adversaries are funded organisations composed of Class II adversaries. They can design
sophisticated tools specifically to attack the system.

31
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4.1.2 Type of Attacks

A common classification of the types of attacks is based on the degree of invasiveness as in [133] or
[144].

Non-invasive

The non-invasive attacks do not violate the physical integrity of the hardware component which means
that the attack is done only by analysing the response of the device. A typical non-invasive attack is
the side channel attack. A side channel attack is the analysis of a side channel to deduce what happens
in the device.

For example, the side channel can be the power consumption of the device and its analysis can
reveal what kind of operation the device is performing [106]. Time can be used as a side channel,
indeed the analysis of the response time of a device to different requests might result in a gain of
information [107]. A mid range oscilloscope is enough for these two attacks to measure with precision
the variation in voltage and time response. Another side channel is the electromagnetic emissions
produced by the device itself while running [135]. To analyse this channel both electromagnetic sensors
and electromagnetic isolation are required.

The side channels are interesting to analyse during a normal scenario of the utilisation of the
device but they often leak more information when used in unexpected conditions. These unexpected
conditions are badly formed requests, incoherent data injection, a clock given to the device which is not
in the range of the frequencies given by the device’s specification, a lower voltage leading to errors, etc.

Other non invasive attacks are the attacks targeting software and protocol errors or using debug
interfaces in an unintended way.

Semi-invasive

A semi invasive attack [144] is an attack which requires the exposition of the die of the device i.e. the
plastic cover or part of it has to be removed. The exposition of the chip allows the attackers to inject
more easily errors using laser pointers, photographic flash guns or UV light. These error injections use
light, it is therefore possible to target specific zone of the chip e.g. cache memory or Arithmetic logic
unit (ALU). With the exposition of the die the non-contact probing it is as well more reliable.

Invasive

Invasive attacks remove both the device package and the passivation layer i.e. the die of the chip is
directly accessible. It is therefore possible for the attacker to perform modifications to the circuit by
adding or removing parts. These kind of attacks is destructive, the process of removing the passivation
layer alters the die integrity, therefore it requires high specialisation of equipment as well as skills and
most attackers do not have such laboratory equipment to perform.

The available options to an attacker can be classified into three methods:

• Probing: mechanical probing implies physical connections using a probe to monitor the circuit.
It requires the removal of the passivation layer used to protect the die from oxidation damages.

• Circuit editing: the modification of the circuit implies the creation and removal of some of the
circuit connections. This often implies deterioration leading to possible destruction of the circuit.

• Reverse engineering: complete circuit netlist, i.e. connections between element of an electronic
design, is extractable but destructive and requires many chips to extract the complete transistor
or gate-level netlist information [154].

From a general point of view, semi-invasive and invasive attacks are only available to Class III attackers.
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Tool based classification

Another classification of attacks’ types is proposed in [151]. It is not based like the previous one on
how the attack is performed and how invasive it is but rather depends on the tools necessary to achieve
an attack. It defines three types:

• Hack attack: the attacker is only able to execute software attacks.

• Shack attacks: the attacker has access to equipment from a store such as Radio Shack. He has
physical access to the device but lacks equipment or expertise to attack the device from within.

• Lab attacks: the attacker has access to high precision lab equipment such as microscopic logic
probes to influence the device.

Summary of classifications

The attacks’ classifications are summarised in Figure 4.1 which regroups the different types of attackers,
their equipments and the types of attacks they are able to perform. Obviously the strongest type of
attackers is the Class III, they can perform all the types of attacks defined previously.

Figure 4.1: Summary of the attackers and types of attacks with the relation between them.

4.2 Trusted Platform Modules

A TPM [99] is a small tamper-proof hardware chip embedded in most recent motherboards. In
order to be protected from software attacks affecting the OS, it has been designed as a stand alone
hardware module. It is designed to resist to tampering attacks which means that it should be very
hard for Class III (see Section 4.1) attackers and impossible for Class II and Class I attackers to
perform some alterations to the device. Its specification [149] originated from the Trusted Computing
Group (TCG) [19], a worldwide consortium involving the main actors of modern computing (HP,
IBM, Intel, Microsoft, AMD etc.). It follows that TPMs are assumed to become a de facto standard
component in future computers. A core concept elaborated by the consortium on top of the TPM is
the notion of Trusted Computing (TC) which is now recalled.

4.2.1 Trusted Computing (TC) and the Chain of Trust

The basic idea is the creation of a chain of trust between all software elements in the computing
system, starting from the most basic one, i.e., the BIOS. In a TC scenario, a trusted application runs
exclusively on top of trusted and pre-approved software and hardware. The trusted hardware parts that
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form the Core Root of Trust for Measurement (CRTM) are composed of the following Trusted Building
Blocks (TBB): the CPU, the memory, the motherboard controller, the keyboard, the first software
that is executed on the computer within the BIOS and finally the link between these components. The
TPM does not require trust because it contains hardware protection, making it difficult to attack.

The chain of trust is derived using induction. As seen previously, the first software running on
the machine is considered as trusted. This first software will read the next software to be executed
on the machine and will generate a cryptographic hash (see Section 3.3) using the TPM representing
the next software. It then will be able to verify that the hash corresponds to the fingerprint of the
expected software. This assumes of course that the first software has in his data section an hash value
representing the expected next software. By induction i.e. each software executing on the machine
checking the next software, the chain of trust is therefore built.

Such a chain is represented in Figure 4.2 and is called the Root of Trust for Measurement (RTM)
in the TC terminology.

Figure 4.2: Root of trust for measurement.

4.2.2 TPM Components

In practice, the heart of the TPM chip consists of a cryptographic co-processor and two kinds of
memory, one permanent (i.e. non-volatile) and physically shielded (i.e. resilient to interferences and
prying), the other volatile. The coprocessor is a common architecture that comprises a secured random
number generator and is capable of performing various cryptographic operations such as encryption,
decryption, signature checking, 2048 bits RSA-key generation and SHA1 hashing. More precisely and
according to the TPM specification [150], the cryptographic co-processor must be able to perform the
following operations:

• Asymmetric key generation/encryption/decryption/signature (RSA) (see Section 3.2.2) with
support for key length 512 bits, 1024 bits and 2048 bits.

• Hashing using the SHA-1 function (see Section 3.3.2).

• Symmetric encryption: for authentication and transport sessions, the mandatory mechanism is a
Vernam one-time-pad with XOR (see Section 3.2.1).

• HMAC H(Key XOR opad , H(Key XOR ipad , text)) (RFC 2104) (see Section 3.3.3).

• A true random-bit generator used for key generations and nonce creation.
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• The TPM may implement other algorithms as well, but this will be platform specific.

Memory

The TPM has two kinds of memory: one volatile, the other non-volatile. The TPM can also extend its
memory using the memory of the computer, in which case it has to crypt this data using keys stored
within the TPM or keys stored externally but encrypted with a key stored in the TPM.

The volatile memory is used to store Platform Configuration Register (PCR): a PCR value is
160 bits long and is able to hold an unlimited number of measurements by chaining the value to hash
with the precedent hash value:

new PCRi = Hash(old PCRi ||value)

These PCR values have to be reset at system start. The PCR registers 0-7 are reserved for TPM use,
and the 8 to 15 are available for the operating system and application use.

Figure 4.3: key hierarchy in the TPM.

The non-volatile memory is shielded (resistant to interferences and prying) in order to protect
data. This memory stores three kinds of keys (see figure 4.3):

• Endorsement Key (EK): the TPM entity, typically the TPM manufacturer, generates the
endorsement key (EK) and signs the credential. This must be a 2048 bits RSA Key. This key
cannot be used for signing – it is only used when somebody wants to take the ownership of the
chip.

• Shared Secret: a secret which is shared between the TPM owner and the TPM, this secret is
defined when somebody with a physical presence (person present near the machine) takes the
ownership of the platform.
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• Storage Root Key: as the memory in a TPM is limited, the Storage Root Key is used to
manage keys stored elsewhere in the computer (but encrypted with this key). This key is
generated at the command tpm takeonwership, and is associated with the owner of the TPM.

• Persistent flag: some values like the state register of the random number generator, flags for
the Opt-In, etc ...

Other kind of keys exist such as the Attestation identity keys (AIKs) which is used to sign data but
never for encryption. These are 2048 bit RSA keys, which can be stored inside or outside (encrypted)
the TPM and cannot be moved to another TPM.

The TPM doesn’t perform any monitoring nor control, measurements are done by the computer
and then sent to the TPM. The TPM cannot control the execution of the computer nor its state. The
owner can deactivate the TPM whenever he wants, he controls the use of keys as well.

Among all the built-in functions available in the TPM, the protocols defined in this thesis make
use of the following procedures:

• TPM UnBind(msg,’K’): decrypts message msg encrypted with a public part of a binding key K;

• TPM Extend(value,i): adds a new integrity measurement (value) to a PCR identified by its
index number i. This operation is performed by a cryptographic hash function as follows:

PCRnewi = H(PCRoldi ‖value) and PCRiniti = 0

• TPM Quote(’AIK ID’,nonce,i1,...,ik): provides cryptographic reporting of PCR values (for the
register indexes i1, . . . , ik) signed with an AIK, i.e., SIGNAIK(H(PCRi1 , . . . , PCRik), nonce).
It therefore permits the measurement (via a cryptographic hash) of the configuration of a remote
platform identified by its AIK which is of prime importance for this work operating in the CC
context.

4.2.3 Open-source Community and the TPM

The development of open-source tools for the TPM at the different levels of the Root of Trust for
Measurement (RTM) allows open-source Operating Systems (OSs) to take advantage of the existing
hardware present on the motherboard. The Figure 4.4 presents some of the exiting open-source software
used to communicate with the TPM, it exposes as well where in the software stack these programs are
used.

Open-source BIOS

coreboot is an open-source BIOS which includes TPM support [16]. However, when present on a
mother board, the TPM is usually handled by the proprietary BIOS, without forbidding the use of
open-source OS.

Trusted Boot

A boot loader is the software program which runs after the BIOS. It is responsible for loading and
transferring control to the OS kernel software. GRand Unified Bootloader (GRUB) [17] is an open-
source multiboot boot loader. The trusted boot version of GRUB [18], called grub-tcg, is a patched
version of the GRUB boot loader. It adds the TCG measurement capability to the GRUB boot loader.
The stage 1 of grub (Master Boot Record (MBR)) is measured by the BIOS, but the stage 1.5 (or
stage 2) is measured by the trusted boot and sent to the TPM. The PCRs values are updated with the
values corresponding to the GRUB software. It allows as well the integrity measurement for some key
files within the File System (FS) such as /bin/sh, /bin/ls, /bin/qemu-kvm, /usr/bin/python etc.
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Figure 4.4: Open-source software solutions relying on TPMs – and their level in the boot sequence

TPM kernel module

The drivers for different TPM chips are already in the Linux kernel (starting version 2.6.12 for some
manufacturers) and are thus available for all the open-source OS that rely on the Linux Kernel.

TrouSerS and tpm-tools

Trouser is the open-source TCG Software Stack. It includes the services to communicate with the
TPM drivers using a service called tcsd to allow the tpm-tools to perform actions using the TPM
such as taking ownership or retrieving the public key of the EK key.

The tpm-tools software contains different command line programs to set up the TPM and to seal
data. These tools are limited and do not allow the user to perform all the possible actions proposed by
the TPM.

TPM/J

The TPM/J is a Java library that provides communication with the TPM for Java programs. It allows
the user to send all possible commands to the TPM, for example to read or modify the PCRs values
or to use the keys stored in the TPM to encrypt, decrypt, verify or sign data.

TPM emulator

The TPM emulator is a program that can simulate one or more TPMs on the machine. This emulator
is based on the specifications of the TCG and contains all the operations that a normal TPM would
do. The TPM creates a virtual device on the computer which is accessible using TPM/J, or TrouSerS.
It can be used as well to allow a VM to use a TPM, e.g., Xen hypervisor has such option.

With the open-source software, it is possible to interface most of the functions provided by the
TPM devices, they allow communication with the device as well as the set up of the chain of trust
certifying that the OS has not been modified.
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4.3 Open issues in Hardware Security

4.3.1 No Unbreakable Hardware

Every chip, even the most heavily protected one, is not impenetrable by Class III attackers using highly
sophisticated lab equipment and a lot of resources. However different protections such as shield make
it very costly for an attacker to penetrate. The cost of an attack on a protected hardware should be
higher than the gain that the attacker would obtain in case of successful extraction of data.

For example Christopher Tarnovsky [148] managed to reverse engineer a TPM chip from STMicro-
electronics by removing the protection layers and to extract the private key stored inside the device.
But the price of a TPM chip is very low compared to the cost of extracting information from it, unless
the secrets stored in the TPM are very valuable. It makes the hardware protection given by the TPM
better than an unprotected machine. One can even imagine a TPM chip with very high protection
using for example an autodestruction mechanism in case any tamper is detected. Such techniques exist
using power a battery within the chip to keep the detection system activated even when the chip is
powered off.

The verification of the integrity of a machine based on the chain of trust and using a TPM is
vulnerable to Time Of Check Time Of Use (TOCTOU) attacks. Indeed, between the computation of
the PCR values and the actual check, the system might have been compromised without performing
any PCR modification, i.e. letting the PCR values correct on a compromised system.

4.3.2 User’s Privacy Concerns

The TPM allows tied selling, forcing the user to use only one kind of OS. Therefore open source
community has not been very enthusiastic about the TPMs due to the fear of loosing control of
one’s computer. Recently the German Federal office for Information Security (BSI) 1 has warned
that combination of TPMs and Windows 8, in case of a misuse of hardware or OS, might result in
a permanently unusable system. This is however not an issue with the TPM itself because even in
version 2.0, according to the specifications, the TPM chip is only a passive piece of hardware, i.e. it
does not have any control on the machine and acts as a standalone hardware. However based on the
TPMs’ measurement the OS, the boot loader or the BIOS can choose not to launch the next level, e.g.
a BIOS, detecting that the legitimate Microsoft boot loader is not present on the disk, might choose
not to launch it and to crash, preventing the installation of any other OS.

In another register, Intel developed a hardware protection mechanism against thievery embedded in
the professional versions of their processors [95]. This technology embeds a 3G communication device
within the Intel processor with its own operating system allowing the control of the laptop/computer if
in range of a 3G antenna even if powered-off. Used by an attacker, this technology might lead to the
disclosure of information contained in the user’s computer that even an encrypted hard-drive using a
TPM cannot protect. Indeed, during execution of the machine the disk is unencrypted on-demand,
therefore, controlling the CPU allows the attacker to decrypt any part of the disk he wants.

The need for hardware protection is indisputable for better security. However it needs the trust
of all the actors involved, which includes the users. However, these specifications are not enough to
ensure such guarantee, only open hardware i.e. the schematic plan of the netlist and gates contained
in the die of the chip.

4.3.3 TPM protections for CC platforms

The open specifications allow already to verify that the enumerated functions do not provide, in theory,
possibilities for the manufacturer to gain control of the machine. Being a cheap and widely used
hardware chip, TPM is good candidate for increasing the security of a machine at a low cost. Already

1https://www.bsi.bund.de/DE/Presse/Pressemitteilungen/Presse2013/Windows_TPM_Pl_21082013.html

https://www.bsi.bund.de/DE/Presse/Pressemitteilungen/Presse2013/Windows_TPM_Pl_21082013.html
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deployed even on servers, this TPM chip can be used by the nodes of the Cloud Computing (CC)
providers to increase the security level of the service. The Chapter 7 will present how CertiCloud
uses TPMs to increase user’s security.
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Software protection can be applied at different levels in Cloud Computing (CC): at the Operating
System (OS) level and at the application level. This allows to secure the different types of Clouds,
IaaS, PaaS and SaaS.

5.1 Software Security: Operating System Level

5.1.1 Anti-virus and Malware

Malware is a specific category of software which has a malicious behaviour, it is a general term including
viruses, worms, Trojans and other forms of programs which act in an autonomous or semi-autonomous
way to attack computer systems in a large scale.

Viruses

A virus is a piece of code that infects another file i.e. attaches itself to another program and propagates
when the file is sent to another computer typically using the network or the intervention of the user
e.g. a infected file might be copied on a USB key and transferred to another computer.

Worms

Unlike a virus, a worm does not infect other files which means that it is a standalone program. It
sends itself to other computer systems typically using a breach in a remote system.

The purpose of these types of malware is to reproduce and to install malicious payloads. These
payloads are codes that execute on the machine and that can be harmful to the machine itself or can
only open a backdoor on the system for future intrusion or commands.
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Botnets are composed of a large number of machines that are controlled by malicious entities to
perform attacks on other systems. They are usually created using worms or viruses.

Anti-virus

To detect the viruses and prevent spreading, anti-viruses can be used. An Anti-virus is a program
running directly on the machine to protect and scan principally the files of the OS and the programs
which are executed in order to detect viruses. It uses a database containing the fingerprints of known
viruses and malware.

The main issue of anti-viruses is that they rely on a database to find the malware, which means
that in case of the attack of an unknown virus, it cannot detect it without updating its database. This
requires permanent surveillance of the network attack by the antivirus software companies to react fast
enough to contain the attack. And during the phase of fingerprinting, the new malware has the time
to spread and potentially harm systems.

5.1.2 Firewall

Firewalls are network protection against intrusion. They can be located on the machine which needs
to be secured or directly on the router to protect the whole network. Network connections are made
using network addresses on a port. A server is waiting for connection on a specific port number by
asking the operating system to open it. The firewall is protecting the network by filtering network
communications through inspection of the source address and the destination address as well as the
source port and the destination port. Predefined rules allow to block the traffic from, for example, a
web service which should be only available to the local network.

5.1.3 Intrusion Detection Systems

Intrusion Detection Systems (IDSs) prevent attackers from accessing a computer system. There are
two kinds of IDS [129], network based or host based. The network based IDS are detecting abnormal
behaviours on the network, they are reporting any unexpected action e.g. high traffic at 2 a.m. when
no one is at the office. They have as well in their databases known scenario of different attacks. The
second kind of IDS is host based: it tries to detect any suspicious behaviour using the monitoring of
different components of the OS such as log files, file modification, network access, etc.

An interesting tool-suite in this last context is Tripwire [104] which periodically computes checksums
of the main system files and folders. These checksums are then compared with reference values stored
in a remote database hosted on the trusted computer.

The IDSs are usually only used for reporting intrusion and do not stop the attacker directly. The
main issues with these systems are the false-positive i.e. the IDS reporting a legitimate user as an
intruder due to an unconventional comportment.

5.2 Software Security: Application Level

5.2.1 Anti-debugger

An anti-debugger is a piece of software that can detect if it is being analysed by a debugger. This
detection is performed by studying the side effects provoked by the debugging techniques. It is usually
integrated within the software to protect and has different ways of handling the analyser. It can exit,
crash, or respond in a more subtle manner like executing a dedicated part of the program which does
not correspond to a normal execution, e.g., an infinite loop performing actions that look legitimate.

Anti-debugging methods can detect the use of ptrace (used by debuggers in UNIX environment)
like in [143], or like in [72]. They detect differences in execution time as the debugging process adds
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delays that can be detected by recording the time of execution of a program. The Python program in
Listing 5.1 demonstrates the detection of a debugger. It presents two possible kinds of detection, the
first detects if the trace function has been set and the second uses the fact that the debugger provokes
a delay in the computation that might be detected.

n

Listing 5.1: Anti-debugger concept in Python.

import time
import sys
MAGIC NUMBER = 5
def d e b u g g e r d e t e c t o r s y s ( ) :

i f sys . g e t t r a c e ( ) :
print ” debbuger”

def debugge r de tec to r t ime ( ) :
t1 = time . time ( )
for i in range ( 1 0 ) :

j = i ∗∗2 / 3 .14
t2 = time . time ( )
for i in range ( 1 0 0 ) :

j = i ∗∗2 / 3 .14
t3 = time . time ( )
i f ( t3 − t1 ) / ( t2 − t1 ) > MAGIC NUMBER:

print ” debugger detec ted ”
d e b u g g e r d e t e c t o r s y s ( )
debugge r de tec to r t ime ( )

5.2.2 Anti-disassembly

In low level machine code, the size of the instructions are not always the same allowing methods to
protect the code against automatic disassemblers. The Figure 5.1 is showing how the anti-disassembly
is working [110],[143]. Indeed machine code can be interpreted differently depending on the starting
address of the code, and combined with jump instructions to set up the entry point of procedures, a
static disassembler might be unable to retrieve the initial assembly instructions.

To fool disassembler using the information given by the jump address, the anti-disassembly can
either store the jump address in a variable, or insert false jump with dummy addresses within the code.

These techniques are efficient against static disassembler, however they are not working with
resilient dynamic disassemblers like gdb [5].

5.2.3 Anti-modification Techniques

Anti-modification techniques are using checksums function to verify that the code has not been modified.
This verification is performed at run time and leads in case of the detection to an exit. This is as well
effective against debuggers as they often insert code to debug the program.

For instance in [32] the binary code is designed to ensure that the Control Flow of executed
programs is correct. This goal is achieved by adding stack protection mechanisms or encrypting the
returned function pointers. Yet it was also proved that this technique does not scale and is not resilient
against attackers having privileged (i.e., root) access to the system.

5.2.4 Self-modification for Code Obfuscation

At the assembly level, obfuscation techniques are used to protect the code from being reverse engineered.
Obfuscation (see Chapter 8) modifies a program to produce a “virtual black box”, i.e. looking at the
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Figure 5.1: Illustration of the protection.

source of the program should not give more information than its execution.
There are multiple techniques to obfuscate code at the assembly level [114] such as:

• Kanzaki’s method [101]: replacing some parts of the code with dummy instructions, before
execution restoring them to the original code, and replacing it with dummy code again at the
end.

• Madou’s method [113]: consisting of using a PRNG and the code to feed the function XOR. The
obfuscated code is xored again at run time using the same PRNG with the same seed.

• Burneye’s method [152]: is quite similar to Madou’s method but instead of using a PRNG it uses
an encryption cipher such as RC4, with the possibility of specifying a secret that will be asked at
runtime to decrypt the binary.

• Shiva [119]: is a GNU/Linux executable encryptor which encrypts the binary using AES algorithm.
Shiva is dividing the program into blocks and encrypts all the blocks independently, the binary is
then never completely decrypted. The keys are different for every binary and the key reconstruction
functions obfuscated using different obfuscate methods.

• Encryption of using MIPS emulator [160]: are using encryption techniques on blocks of code to
avoid the reverse engineers to understand the algorithms.

All of these programs and techniques are used to protect software and OS from intrusion and
reverse engineering. Software protection techniques are used as well by malware programmers to hide
the behaviour of the program and to prevent detection by antiviruses.

5.3 Open Issues in Software Protection

Software Protection at the OS level is well developed and quite effective, indeed without firewalls
and anti-viruses there would be more attacks on the different computer systems. However as long as
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the computer systems become complex, the number of breaches in software will increase, therefore
leading to a greater need for such tools to protect the OS from intrusions. And the main problems
with these protections are their lack of reactivity compared to the fast contamination of network in
case of the attack of a worm as well as the false-positive and false-negative errors coming from the
detection system.

Software Protection at the application level allows to protect applications from reverse engineering
but no perfect method exists to defeat attackers with knowledge and funds and to prevent them from
extracting the secrets within the code. However, it can be considered safe for a short period of time,
the time for attackers to find keys embedded in the code used for self-encryption.

The two levels of software protection often compete against each other as obfuscation techniques
are often applied to malware creation in order to avoid detection from OS protection software. For
example, the Flame malware [41] was detected approximately two years after its release. These malware
however require huge development and cannot be programmed by single individual but rather by secret
services.
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This chapter describes briefly the methods used by automatic verification tools to prove the security of
a protocol for a given model of communication. It presents as well the two tools used to verify the
protocol designed during the thesis that will be described in the next Chapter 7.

6.1 Automatic Analysis of Security Protocol

Despite the relatively small number of communication messages used in network protocols, e.g. Kerberos
is using 6 messages for the authentication of a user, it is very difficult to design them correctly, and
their analysis is complex. Moreover, assessing the security of protocols requires more than showing
their robustness against a few use cases. The canonical example in this context is the famous Needham-
Schroeder protocol [125], that was proven secure by using a formalism called BAN logic. Yet, seventeen
years later, a flaw was found [111] using an automatic verification tool (Casper/ FDR [112]). It was
not detected by the original proof because of different assumptions regarding the intruder model. This
example illustrates the fact that automatic analysis is now considered mandatory for the security
validation of cryptographic protocols.

6.2 Verification of Models

Model verification is based on logic which is a wide subject. A small set of existing logics, summarized
in Figure 6.1, are:

• Propositional logic is based only on propositions. A proposition can be either true or false and
can be combined to build more complicated propositions. The operators used to combine the
propositions are the following: implication →, or ∨, and ∧, negation ¬. Propositional logic is not
expressive enough therefore other logics based on propositional logic has been developed.

• The predicate logic (as well called first order logic) adds to the propositional logic the variables
and the two following concepts: for all ∀ and there exists ∃. These new operators are applied on
the variables which are feeding the propositions e.g. ∀x∃yP (x)→ Q(x).

• Temporal Logic includes the notion of time in the formulas to be more expressive in the model
one would like to verify. In this context, two subclasses of temporal logic have been defined:
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Figure 6.1: Hierarchy of Logics.

– The Linear Temporal Logic: it models time as a sequence of states which can then be
represented as a graph. This sequence of states is called a computation path.

– The Computation tree logic is a branching-time logic and can be represented as a tree
structure in which the future is not determined, i.e. any path in the tree is a possible future.

6.2.1 Proof-based vs Model-based

Verification of logical propositions can be either proof based or model based. In the case of proof based
verification, the system is described as a set of formulas Γ and the proposition to be proved is another
formula Φ, and the verification process consists of finding a proof that shows Γ ` Φ. An example of a
proof in propositional logic is presented in Figure 6.2.

p

p p → (q ∨ n)

q ∨ n

¬p

⊥

q

q ¬q
⊥

n

n ¬n
⊥

¬e ¬e

¬i

∨e

→ e

p → (q ∨ n)

¬q
¬n

premises:

Figure 6.2: Proof that the weather is bad, assuming that I do not swim in the sea and that I do not
walk outside

This is the proof that p → (q ∨ n),¬q,¬n ` ¬p if p stands for the weather is nice, q stands for
I walk outside and n I swim in the sea, then p → (q ∨ n). If the three premises following are true:
p→ (q∨n) which means a nice weather implies that I am swimming in the sea or I am walking outside,
¬q,¬n,i.e. I do not swim in the sea and I do not walk outside, the proof in Figure 6.2 demonstrates
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that the weather is bad, i.e. ¬p. The proof has to be read from top to bottom and is constructed using
rules of natural deduction which can be found in Appendix E.1.

Verification by model checking consists of verifying that a model M satisfies the formula Φ i.e.
M |= Φ. The difference between proving and satisfying is that proving requires a proof like in
Figure 6.2 and satisfying tries all the possible values respecting the premises to see if Φ is valid in any
case. Model checking tools are usually based on temporal logic introducing the idea that a proposition
is not statically true or false in a model, instead there might be multiple states where the formula is
true and other states in which the formula is false.

6.2.2 Model checker for Protocol Verification

In the context of protocol verification, the theorem proving is time consuming and requires considerable
expertise. Moreover proof based verification provides less support for error detection in the case of
flawed protocol. This is why model checkers are often preferred over theorem prover for protocol
verification.

In the model checking family there exist three classes of tools:

• The tools trying to prove the correctness of a protocol (NRL [118] and ProVerif [13]) and do not
have termination guarantee.

• The tools trying to find attacks against the protocol but with a bounded number or runs of the
protocol.

• Hybrids trying to find both proofs and counterexamples, which are sometimes able to establish
the correctness of a protocol even for an unbounded number of runs, gives a counterexample and
cannot guarantee the termination (Scyther [66]).

The tools used in this work will be presented in the next sections, they both used the Dolev-Yao [74]
model for the communication channels. In this model the communication channels are supposed
insecure, which means that the attacker has access to all the messages, and can modify them or extract
parts of them to get information. He is as well allowed to start new instances of the protocol to acquire
more information by having new messages generated from legitimate entities.

6.3 Scyther

The Scyther [66] model checker implements an unbounded model to perform protocol verification. Its
syntax is simple and easy to use. Many roles can be defined and the message sent and received has to
be specified for each player. Variables (which can be fresh, i.e. chosen by one of the player) such as
nonces and timestamps can be used within the protocol description and, of course, symmetric and
asymmetric encryption.

Scyther has a customizable bound, but can detect whether or not a lower bound is reached. The
specification of a bound allows to guarantee termination of the browsing of the search space. There are
three possible outcomes for this search: either the pattern of an attack is found and presented to the
user, or no attack has been found and the bound has not been reached or finally no attack has been
found but the bound has been reached, an attack might therefore exist and it might be detected with
an higher bound.

6.4 AVISPA

AVISPA [1] is a model checker using different backends to perform model checking. The model to
verify has to be written in High Level Protocols Specification Language (HLPSL) which is the language
used by AVISPA to specify the protocols and properties. The HLPSL specifications are based on
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Lamport’s Temporal Logic of actions [108]. AVISPA then converts the HLPSL specifications into an
Intermediate Format (IF) using hlpsl2if which can be read by the different model checkers that have
been developed within the AVISPA project. The available model checkers are:

• Constraint-Logic-based Attack Searcher (CL-Atse): translates the transition relation contained
in the IF file into a set of constraints used to find attacks and produces nice human-readable
attack descriptions.

• On-the-fly Model-Checker (OFMC): builds on the fly an infinite tree defined by the protocol
analysis problem. OFMC can be used for efficient detection of attacks in a protocol but as well
for verification for a bounded number of sessions.

• SAT-based Model-Checker (SAT-MC): constructs a propositional formula using a bounded
unrolling of the transition relation specified by the IF. The propositional formula is then given to
a SAT solver to verify the satisfiability.

• Tree Automata based Automatic Approximations for the Analysis of Security Protocols (TA4SP):
constructs a tree to perform the computation of the intruder knowledge (using some approxima-
tions).

The validation with AVISPA of the protocols developed was performed using all the different
backends presented.

The syntax of the HPSPL file consists of different roles regrouping the actions of the users, the
sessions and the environment. And finally the goals are described at the end with option such as
secrecy of or authentication on to verify if a secret cannot be leaked or if the authentication of a
user cannot result in the authentication of the attacker.

6.5 Conclusion

The Dolev-Yao attack model [74] used by the model checkers is the worst scenario i.e., that the attacker
has full control over the network and can start many different communications to gather parts of
messages. This model however respects the “black box” property of the cryptosystems used. Trying all
possibilities according to the model (often within bounds) is a pledge to the security of the protocols,
specially when multiple protocols are involved. Indeed, verifying that all the communication coming
from a server to find a flaw is nearly impossible. It would require to verify all possible messages sent
by different parties increasing the number of possible states, specially if keys are reused multiple times.
However, when dealing with security protocols it is mandatory to verify their validity using automatic
tools. They try to break the protocol using all kinds of possible forged messages using old message
parts.

In this dissertation the proposed protocols have been validated against AVISPA and Scyther in
order to cover not only the common attacks analysed by these frameworks but also the specific ones
determined by their underlying analysing models.
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The CertiCloud framework focuses on the security aspects of the third category of cloud services,
i.e., IaaS platforms (Section 2.2.3) and more precisely on confidentiality and integrity issues. In
Section 5.1, two levels of software security are presented, CertiCloud can be categorised as an OS
level protection software, it is designed to perform verification of OS of both the resources of the CC
provider as well as the VMs’ of a user.

7.1 Introduction

Whereas security problems are considered in a vast majority of the literature relative to CC, only few
articles propose to tackle these questions from a user’s point of view, assuming I am using an IaaS
Cloud platform to deploy my system:
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• Can I be sure that my environment and its associated data remain confidential on such a shared
platform?

• Is there a way to ensure that the cloud resources are not corrupted?

• Once deployed, is there a way to assert on demand and trustfully the integrity of my environment
to detect undesired system tampering (typically by means of rootkit or malware)?

One typical scenario where CertiCloud can be used is to detect if a resource has been modified
by an attacker to spy on other VMs like in Figure 7.1. Indeed the attacker might use vulnerabilities in
the virtualisation software to gain privileges.

Figure 7.1: Attacker having the control of a Cloud resource

Whereas perfectly legitimate, these questions are not answered by the current cloud providers.
On the contrary, the contributions of this thesis permit to tackle these questions via the proposal
of CertiCloud framework, a novel approach to protect IaaS platforms that rely on the concepts
developed in the Trusted Computing Group (TCG) together with hardware elements, i.e. Trusted
Platform Module (TPM) to offer a secure and reassuring environment (see Section 4.2).

The heart of CertiCloud consists in two security protocols relying on TPMs– TCRR (Section 7.5)
and VerifyMyVM (Section 7.7):

• TPM-based Certification of a Remote Resource (TCRR) asserts the integrity of a remote resource
and permits to exchange a user-defined symmetric key which can be used for various cryptographic
purposes, from the protection of network communications to data encryption. In the IaaS context,
it ensures that only the remote resource with which the user is communicating using the TCRR
protocol can interact with the ciphered data.

• The second protocol, VerifyMyVM, authorizes the user to detect trustfully and on demand any
tampering considered as abnormal on its running VM.

On top of these protocols, CertiCloud relies on the installation of a virtualization framework on
the Cloud resources that will be discussed in Section 7.8.

7.2 Related Work

Until the recent generalization of TPMs, checking the integrity of a system was limited to software
approaches. In practice, one generally verifies that the running system has not been modified or
altered (by malicious acts or not). At this level, malware detection techniques (Section 5.1.1) or
checksum-based approaches can be used.



7.3. CONTEXT AND ASSUMPTIONS 55

Terra SecMilia TCCP Bastion CertiCloud

VM X - X X X
TPM × X X X X X

Automatic n.a. X × n.a. X
Verification

CC × × X × X

Table 7.1: Summary of some existing techniques to secure resources.

We will see that CertiCloud reuses the concept of Tripwire [104]) (see Section 5.1.1), yet adapted
to the functionality offered by the presence of TPMs. More generally, pure software-based approaches
do not allow to fully trust a remote platform. It is therefore mandatory to rely on hardware components
with computing and cryptographic capacities, such as the TPMs. This low-cost, tamper proof hardware
is now available on most modern motherboards. Its usage spreads worldwide. For example, Microsoft
Bitlocker [120] uses it to perform a full disk encryption. It is also emulated in the Xen Hypervisor OS
[22] to enable VMs to use it. In all cases, TPMs offer novel perspectives for checking the security of a
system, whether local or remote. It follows that the idea to use TPM to secure cloud services is not
new. It has been evoked by the TCG in [19], yet without concrete details. Moreover, in [69], the TPM
and its emulator counterparts are used by the Xen Hypervisor to secure the different running VMs.
Different environments are then provided to the user, which are protected from each other. Yet no
concrete validation or implementation was proposed. Recently, an infrastructure called Trusted Cloud
Computing Platform (TCCP) have been proposed in [140]. Similarly to what is done in Terra [83],
TCCP enables IaaS providers such as Amazon EC2 to provide a closed box execution environment
that guarantees confidential execution of a users’ VMs. Whereas this paper does not consider the same
perspective addressed in CertiCloud, it perfectly illustrates the recent attempts to propose protocols
that exploit the remote attestation capabilities of the TPMs. Yet like most of the proposals in this
domain, the described protocols are not validated nor analysed using protocol checker therefore the
infrastructures built on top of them might be insecure.

On the contrary, the approach developed in this dissertation relies on automatic protocol verification
to ensure security from a communication point of view and focuses on providing security for a user of
the cloud services.

Our design methodology is close to the one used by Munoz al. in [123] where the SecMilia framework,
which relies on a TPM-based protocol to achieve the migration of an agent (Java code) A from an
agency “AgA” (using a TPM to ensure the security of the agency) to an agency “AgB”. More precisely,
the agencies verify the states of each other using their TPMs. However SecMilia does not provide to a
cloud user a way to answer the questions mentioned previously (Section 7.1).

Other systems develop security directly at the processor level, like in [60] where the full processor is
designed to be secure. It is of course more reliable in terms of security but requires higher investment
than a passive chip such as the TPM.

The Table 7.1 presents the different attributes of the existing techniques to secure resources
presented before.

7.3 Context and Assumptions

In this work, we assume an IaaS model with following entities:

• The Cloud provider, which is the organization that offers the IaaS service. It owns and manages
the IaaS platform composed of a set of computing resources running a virtualisation framework
able to deploy Virtual Machines (VMs), i.e. a hypervisor. The platform is interfaced by an access
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front-end, eventually distributed.

• A trusted party which provides the user with the correct PCRs values and regulates the
physical access to the Cloud provider resources. This role can be played directly by the Cloud
provider. It has as well the role of a Certificate Authority (CA) trusted by both the user
and the cloud provider and attests the validity of certificates and keys used on the platform. In
particular, each AIK and EK signed by the CA attests that they are tied to valid Endorsement,
Platform and Conformance credentials, i.e., the corresponding TPM and system. In parallel,
each user has a certificate signed by the CA that attests its identity.

• The User owns one or more VMs to be run on the resources ”shared” by the cloud provider.

In the sequel, the following hypotheses are assumed:

(H1) Each computing resource hosts a TPM owned (as described in Section 4.2) by the cloud provider.

(H2) Physical manipulations of the TPM might not be detected by the CertiCloud framework. It is
therefore assumed that the entity which has physical access to the TPM and to the machine is
trusted.

Finally, it should be noted that no specific measures have to be taken to ensure the security of the
front-end as the protocols designed in CertiCloud assume that the communication medium is not
secured and potentially subjected to man-in-the-middle attacks, indeed the front-end does not play
any role in the protocol itself. It is however preferable for the user that the front-end is available, as
an attacker controlling this entity would be able to prevent the user from reserving computing nodes
on the CC platform.

7.4 Preparation of the VMI and the VM request

Prior to the deployment of the VM, different steps are required to prepare and transmit the VMI.
First the user has to create its VMI using the desired environment and configuration, then he has to
compute the hash values of the important files. He will be able to verify their integrity after the VM
will be deployed. And finally he has to encrypt the VMI using a symmetric key.

These steps are presented in Figure 7.2.
The two next steps (in Figure 7.3) which are the VMI transfer and the VM request do not change

from a user point of view.
This preparation allows the user to create a personalised system. Therefore, he is aware of all the

software that will be running on his VM. It is common for Cloud provider to allow users to build their
own environment, for example Amazon provides tools to bundle and upload the VMI created by the
user (ec2-bundle-image and ec2-upload-image). However if a user prefers not to generate a VMI
by himself, the trusted party might provide VMIs as well as hash values corresponding to the files
within the VMI for integrity verification using VerifyMyVM (see Section 7.7).

7.5 TCRR

One of the first issues we propose to tackle in the CertiCloud framework is the definition of a network
protocol that permits to certify that a remote resource will consistently behave in expected way, i.e.,
running the non-compromised OS.

As in the Trusted Computing (TC) context, the challenge is here to allow the user to verify that only
authorized code (BIOS, MBR, kernel, OS etc) runs on a remote system. The protocol described in this
section, entitled TCRR (TPM-based Certification of a Remote Resource), provides this functionality.
TCRR also exchanges a symmetric key between the user and the proven secure node.
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Figure 7.2: Overview of the CertiCloud framework (preparation of the VM).

The protocol involves three actors: the user U, the remote resource or node N, and its associated
TPM. The position of the TCRR protocol in the CertiCloud framework is presented in Figure 7.4
and the successive messages exchanged in TCRR are described in Figure 7.5. Note that we assume (1)
that each actor owns the digital certificates of other involved entities, signed by the trusted CA and (2)
that prior to the protocol initialization the user has the PCR values he considers to reflect a secure
system.

There are two phases in the TCRR protocol that are described in the following sections.

7.5.1 Node Integrity Check (msg 1-4)

U is sending to N a nonce n1 and the identity of N signed using his key. The signature attests the
identity of the user to N, which can then send to the TPM the received nonce n1, a newly generated
one n2 and its identity.

This will serve as a challenge for the further TPM Quote function as the TPM replies by reporting to
N the actual PCR values signed with its AIK (i.e., the result of the ’quote’ function – see Section 4.2).
Then N forwards to U a signed version (with its key) of the received message together with n2. At the
end of this phase the following properties apply:

1. U checks the correctness of the successive signatures using the certificates provides by the CA.
U checks if the values of the nonces have not been modified. This authenticates N and the
associated TPM. It also guarantees the integrity of the transmitted messages.

2. The equality between the expected and the received PCRs values proves to U that the remote
resource at the time of the verification is the non compromised one.

Due to (H2), after the successful verification of the fourth message, the user U can trust the remote
node to run the configuration he considers as secure. Furthermore, from this point, the node N and
the TPM are considered as a single entity.
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Figure 7.3: Overview of the CertiCloud framework (transfer of the VMI and request of a VM).
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Figure 7.4: Overview of the CertiCloud framework (TCRR).

7.5.2 User Session-key Exchange (msg 5-8)

U uses the TPM encryption key subEK to cipher a message containing the two previous nonces n1 and
n2 (generated during the first phase of the protocol), a freshly generated one n3 and a private session
key Ksession. U sends a signed version of the encrypted message to N. N then checks the signature,
asks the TPM to decrypt the message and returns to U the nonce n3 encrypted with the session key.

7.5.3 TCRR Protocol Validation

The TCRR has been analysed and verified using both the AVISPA [1] and Scyther [66] (see Chapter 6).
The Listing 7.1 and the Listing 7.2 present the results of these verifications which prove its correctness
according to the model.

In these verifications the following constraints have been verified:

• The protocol ends at the same time for all the actors. This corresponds to the authentication on

valid property for AVISPA and the Niagree and Nisynch for Scyther.

• The session key Ksession is only known by the legitimate users.

The certificates of the different parties and other informations used during the protocol can be
requested to the CA. Therefore every actor needs to possess the certificate of the CA prior to any
communication. The Listing F.5 presents such communication between the user and the CA to request
the certificate of a node, its TPM as well as the expected PCRs values – if the user trusts the CA for
correct register values.

7.5.4 The PCRs comparison problem

In order for the user to verify the integrity of the remote machine, he has to know the correct values of
the PCRs. Indeed, the comparison of the two sets of values (the expected ones and the values send by
the TPM) determines the integrity of the remote resource.
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Figure 7.5: Overview of the TPM-based Certification of a Remote Resource (TCRR) protocol.

The user therefore needs to know the correct values:

• The trusted party supplies him with the correct value for the BIOS, kernel, OS, hypervisor,
middleware etc.

• If open-source software is used by the Cloud provider and the version numbers are available, the
user can compute them on his side.

TCRR allows the user to share a secret key used for the VMI encryption but as well to verify the
integrity of the distant machine. This verification checks the BIOS, the bootloader, the OS kernel
but as well files within the remote machine typically the hypervisor used to execute the VMs or other
important files of the host OS (executables and configuration files).

7.6 CertiCloud Framework

The TCRR protocol has been analysed using two of the reference tools AVISPA [1] and Scyther [66]
(see Chapter 6). It is important to notice that the Dolev-Yao intruder model [74] has been considered.
In this model, the attacker has full control over all the messages that are sent over the network such that
he can analyse, intercept, modify or forge any message which is sent to any player. These tool-suites
provide a special language for describing security protocols and specifying their intended security
properties. The TCRR specifications and its successful validation by both tools is provided in appendix.
In particular, the verification proves that the following constraints are met:

1. The protocol ends in finite time without any successful known attack (replay, man-in-the-middle
etc.);

2. Only the legitimate actors know the private key Ksession, which remains confidential.

As two reference tools confirm this analysis (using different underlying approaches), it authorizes
us to claim that TCRR is secure considering attacks in the Dolev-Yao model.
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$> ./avispa verification avispa . hlpsl −−ofmc
% OFMC
% Version of 2006/02/13
SUMMARY SAFE
DETAILS BOUNDED NUMBER OF SESSIONS
PROTOCOL

/home/benoit/git/tcrr/avispa/results verif . if
GOAL as specified
BACKEND OFMC
COMMENTS
STATISTICS

parseTime: 0.00s
searchTime: 7.93s
visitedNodes: 6696 nodes
depth: 17 plies

(a)

$> ./avispa verification vm avispa . hlpsl −−ofmc
% OFMC
% Version of 2006/02/13
SUMMARY SAFE
DETAILS BOUNDED NUMBER OF SESSIONS
PROTOCOL

/home/benoit/git/verifymyVM/avispa/results verif.if
GOAL as specified
BACKEND OFMC
COMMENTS
STATISTICS

parseTime: 0.00s
searchTime: 0.07s
visitedNodes: 158 nodes
depth: 6 plies

(b)

Listing 7.1: Protocol Validation of TCRR (a) and VerifyMyVM (b) using AVISPA.

$> time ./scyther.py −−max−runs=20 −−all−attacks
verification scyther .spdl
Verification results :
claim id [tpmp,u1], Niagree : No attacks.
claim id [tpmp,u2], Secret ksession : No attacks.
claim id [tpmp,u3], Nisynch : No attacks.
claim id [tpmp,n3], Nisynch : No attacks.
claim id [tpmp,n1], Niagree : No attacks.
claim id [tpmp,n2], Secret ksession : No attacks.
real 0m6.029s
user 0m5.950s
sys 0m0.060s

(a)

$ time ./scyther.py verification vm .spdl
Verification results :
claim id [verifvm,u1], Niagree : No attacks.
claim id [verifvm,u3], Nisynch : No attacks.
claim id [verifvm,n3], Nisynch : No attacks.
claim id [verifvm,n1], Niagree : No attacks.
real 0m0.055s
user 0m0.034s
sys 0m0.019s

(b)

Listing 7.2: Protocol Validation of TCRR (a) and VerifyMyVM (b) using Scyther.

Based on the TCRR protocol described in Section 7.5, this section presents CertiCloud, a novel
approach for the protection of IaaS platforms. As in most (if not all) IaaS cloud services, we assume
that the clients would like to deploy their VM on the cloud provider’s resources. In CertiCloud,
this task is operated by the Cloud VM Manager that runs a lightweight Xen hypervisor on a machine
equipped (and associated) with a TPM. The same Cloud VM Manager plays the part of the Remote
Resource in the TCRR protocol. The general overview of the CertiCloud framework is depicted in
Figure 7.2, Figure 7.3, Figure 7.4, Figure 7.6 and Figure 7.7. In the sequel, we assume that a user U
owns a VM image VMIU he wishes to deploy securely on the resources offered by the Cloud provider.
It is also supposed that U computes locally (at step 0) the reference checksum values {href0 , . . . , hrefk }
associated with VMIU that reflect what he considers as a secure VM configuration. The elements
considered for hashing are summarized in Table 7.2; they represent what CertiCloud calls VMIU
certificate.

To deploy securely his systems, the following steps are proposed in the CertiCloud framework:

1. U generates a private key KU he uses to encrypt VMIU .

2. The encrypted image is sent onto the cloud storage area using any secure transmission protocol
(scp, sftp etc.) supported by the IaaS platform.

3. Now U wants to deploy (or run) his image. He first checks the integrity of the Cloud VM Manager
and exchanges with it the session key KU . This is conducted using the TCRR protocol described
in Section 7.5.
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Figure 7.6: Overview of the CertiCloud framework (deployment of the VM).

4. Using KU , the Cloud VM Manager is able to retrieve the encrypted VMIU and decrypt it in a
secured (local) memory area.

5. The Cloud VM Manager now runs an emulated TPM that will be associated upon deployment
to VMIU . Consequently, there will be as many emulated TPMs as VMs to be run.

6. The emulated TPM behaves as a TPM and its PCRs needs to be initialized with the values that
reflect the original state (considered as secure) of VMIU .

7. Now VMIU can be run.

8. On demand, the user can check the integrity of his running VM using the VerifyMyVM protocol
(see Section 7.7 below).

In CertiCloud, the IaaS provider controls a lightweight Xen or QEMU hypervisor to run users’
VMs and each of these VMs is associated to, on deployment, a unique emulated Trusted Platform
Module (TPM), referred to as TPMemulator(VMU ) in the sequel. We use a software-based approach
instead of a hardware TPM for the following reasons:

1. The number of PCRs of a TPM is limited and they are mostly used for the certification of the
Virtual Machine Manager (VMM), i.e., the Remote Resource.

2. Many VMs should be able to run on the node simultaneously (and their state requires the usage
of at least one PCR), using as many dedicated soft TPMs as VMs in order to ensure a scalable
and rigorous approach.

In practice, CertiCloud makes use of the TPM emulator software [146] (see Section 4.2.3).
Whereas we could have implemented our own software, designing a new cryptographic library without
any flaws takes a lot of time in terms of developments and reviews. Reusing an existing framework is
quicker and safer. In case of multiple physical TPMs present on the machine (which is not common
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Figure 7.7: Overview of the CertiCloud framework (VerifyMyVM).

nowadays) and the possibility of resetting the PCR values of the extra TPMs, the usage of the physical
ones instead of the simulated ones is straight forward.

It is also important to notice that the TPM emulator, just as the other elements running on the
Cloud resource, is checked by the TCRR protocol. Being software-based, this approach has no physical
security (for instance, a shield memory to protect the keys) like a hardware TPM. Yet at this level, not
all the functionalities of the TPM are required. The crucial point is that the emulated TPM (or any
software library that provides the functions used in CertiCloud to verify a running VM) operates
outside the scope of the checked VM such that a corrupted VM cannot falsify the result of the integrity
measures.

7.7 VerifyMyVM

Once the integrity of the Cloud VM Manager is established via the TCRR protocol and the VM
deployed, we propose an novel mechanism – namely the VerifyMyVM protocol – that permits the user
to check on-demand the integrity status of its running VM in order to detect any tampering attempt
on the configuration of the running system. The verification mechanism VerifyMyVM used to ensure
the integrity of the VMs is based on the same ideas developed in Tripwire [104], concretely saving and
checking the hash values of most of the binaries and configuration files of the operating system to
detect any modification, deletion, replacement or addition performed in the system. Of course, these
checksums are not computed by the VM itself (otherwise they could be manipulated by an attacker
having control of the VM) but rather by the Cloud VM Manager node that runs the virtualization
OS and TPMemulator (VMU ). In practice, the hashing operations are performed by mounting the VM
image disk in read-only mode (to avoid any unwanted writing inside the VM). This can be done during
the execution of the VM because there is no need to stop or pause the VM to compute the checksums.
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Figure 7.8: Overview of the VerifyMyVM protocol.

7.7.1 The VerifyMyVM Hypothesis

The VerifyMyVM protocol is detailed in Figure 7.8. In the CertiCloud proposal presented in Figure 7.7,
it is assumed that this protocol is launched on demand after step seven that permits to assume the
following hypothesis:

• the Cloud VM Manager is secure and the private session key KU has been safely exchanged in step
(3). In particular, the communication channel between the machine N running the virtualization
OS and TPMemulator (VMU ) is assumed to be secure;

• VMIU has been securely decrypted and deployed by the cloud VM manager (steps 4 to 7);

• the reference checksums {href0 , . . . , hrefk } associated with VMIU have been computed (by the user
at step 0 and by the cloud provider at step 6). For the moment, CertiCloud considers only the
checksum of the elements listed in table 7.2 (in particular, k = 8). They are used to initialize the
PCRs of the TPMemulator (VMU ) prior to the deployment via the built-in TPM Extend function

such that at the end of step 6, PCRi = H(0‖hrefi ) = H(hrefi ). On his side, U computes locally
these values for further comparisons.

7.7.2 The VerifyMyVM Protocol

The VerifyMyVM protocol then operates as follows:

1. U requests the Cloud VM Manager to check his running VMU : he sends a nonce n1 encrypted
with the session key Ksession. Upon reception, N mounts VMIU in read-only mode and the actual
VM checksums {h0, . . . , hk} are computed.

2. The checksums are used by TPMemulator (VMU ) to extend its PCRs values by running TPM Extend(hi,i).
In parallel, U updates his local table storing the expected PCR values using the VMU certificate
as follows:

PCRi = H(PCRi‖hrefi )
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3. N submits to TPMemulator (VMU ) the nonce n1.

4. TPMemulator (VMU ) issues the TPM quote command in order to report to N over the challenge n1
the values of PCR0, . . . ,PCRk, signed with its AIK.

5. N returns to U the cryptographic report of the PCRs values stored in TPMemulator (VMU ), yet
encrypted with the session key Ksession .

Name Description Hashed elements

href0 VM kernel vmlinuz-2.6.26-2-xen-686

href1 Init. ramdisk initrd.img-2.6.26- 2-xen-686

href2 ... VM main /bin /etc /sbin /lib

href8 system folders /usr/bin /usr/lib /usr/sbin

Table 7.2: VM Checksums considered in CertiCloud.

Using Ksession , U can decrypt the last message, check AIK signature and the validity of the ’quote’ com-
mand over the challenge n1. U can then compare the actual PCRs values reported by TPMemulator (VMU )
with the expected values he previously computed.

In case of the evolution of the VM image (for example, update of the system), the user can either

ask the VMM for the new hrefi , or compute them himself.

7.7.3 VerifyMyVM Protocol Validation

As TCRR, the VerifyMyVM protocol has been extensively analysed by the two reference tools AVISPA
and Scyther (see §6.1), to prove that the protocol ends in finite time without any successful known attack
(mainly replay or man-in-the-middle). The listings used for the successful validation of VerifyMyVM on
each of these tool-suites are provided in Appendix F and the Listing 7.1 and Listing 7.2 are showing
the output of the validation tools. Again, the fact that neither attack nor flaws are revealed by this
analysis does not mean that none exists against the VerifyMyVM protocol. This step authorizes to
claim that the protocols are secure according to the model.

7.8 Implementation

The implementation of the CertiCloud framework has been designed with the interoperability in
mind. Indeed, the dependence on the Nimbus [126] Cloud platform (see Section 2.3.4) is very small,
and appears only in one single point through a hook which is platform dependent.

This approach gives a flexibility in the integration of CertiCloud into different CC platforms. In
this sense a standard API called “CertiCloud API” has been defined for the communication within
CertiCloud. This flexible integration lets unchanged the basic blocks composing the framework that
will be presented in the following section.

7.8.1 Cloud-Middleware Independent Modules

• server tcrr: a server for the TCRR protocol relying on the unique workspace number obtained
from the Nimbus workspace used to link the VM to the user. This server only acts as a proxy
allowing the user to communicate with the machine hosting the TPM that will be the host for
his VM in case of successful communication, i.e. once the machine has been verified. This server
is not critical for the security of the TCRR protocol as it is only acting as a proxy forwarding
messages from one party to another. Indeed in the Dolev-Yao model the wire is already considered
as insecure. A jeopardized proxy server would however be an issue for the availability of the
service as a compromised wire.
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• server verifymyvm: a server for the protocol VerifyMyVM, working on the same principle than
the TCRR server, the same machine can even be used for the two servers.

• server ca: a server taking care of the certificates of the different entities playing a role in the
CertiCloud framework. As this server generates and stores the certificates of the different
entities it must not be compromised otherwise a malicious attacker could generate certificates
for untrusted resources e.g. TPMs outside the control of the CC providers or even fake TPMs,
allowing the attacker to decrypt the VMI of the user.

• user tcrr: the command-line user interface of the TCRR protocol allowing the user to verify
the node integrity remotely and in case of a successful verification to send the symmetric key
used to encrypt the VM.

• user verifymyvm: the command-line user interface of the VerifyMyVM protocol allowing the user
to launch verification of the files contained within the VMI during the execution of his VM.

• user compute hashes: the command-line tool allowing the user to compute the reference values
of his VMI.

• node tcrr: the interface for the nodes of the Cloud to use the TCRR protocol.

• node verifymyvm: the interface for the nodes of the Cloud to use the VerifyMyVM protocol and
to manage the virtual TPMs of the node.

• nimbus decrypt: script launched by Nimbus’ hook, allowing the Nimbus framework to use
CertiCloud. It launches the node tcrr script to perform the TCRR protocol, to retrieve the
symmetric key of the encrypted VMI and to decrypt it.

7.8.2 Existing/Extended Nimbus Component

• cloud-client.sh given by Nimbus, allows to send requests for VM and to manage users VMI
e.g. to transfer VMI from user to server, to launch, save or terminate VMs.

• Nimbus hook which integrates the CertiCloud’s API to Nimbus. This part is linked to Nimbus
and should be adapted specifically to any other Cloud Platform.

7.8.3 Details of the CertiCloud Implementation in Nimbus

The different steps composing CertiCloud showed in Section 7.6 and the different modules developed
for the Nimbus implementation are explained in the following sections.

Preparation of the VMI

As explained in Figure 7.9, the user must have generated his VMI containing the software and libraries
that he needs. Then he has to perform the step(0) which is the computation of the reference checksums
for his VM. He uses the user compute hashes program to compute the hash values of the files and
folders given in the argument. These hash values will be used as reference values to verify on the fly
that its VMI has not been modified. The user can afterwards compress its VMI for faster transfer
and then proceed to the step(1) which is the encryption of his VMI using respectively gzip and
openssl [159].
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Figure 7.9: Overview of the implementation of CertiCloud in Nimbus.

Transfer of the VMI and deployment order

For the step(2), the transfer of the VMI on the CC platform, the Nimbus script cloud-client.sh is
used. The same script is used as well for the deployment command to request the launch of a VM on
an available physical machine.

Execution of the TCRR protocol

The changes applied to Nimbus to integrate CertiCloud are negligible, they consist of the modification
of a Python script ImageEditing.py on every Nimbus node. This file is responsible for the edition of
the VMI on the node, for instance it detects if the images are compressed depending on their names,
i.e. if the file name ends with .gz, it performs the decompression of the images. This Python script
has been modified to take into account the .enc extension, assumed to correspond to an encrypted
VMI. In this case, the nimbus decrypt script is invoked to initialized the TCRR protocol on nodes’
side using node tcrr.
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The user launches at the same time user tcrr. These two modules communicate through the
server tcrr allowing the step(3) verifying the integrity of the node and sending the symmetric key
used to encrypt the VMI. The step(4) consists of the actual decryption of the VMI by the Nimbus
node using nimbus decrypt.

Execution on-demand of the VerifyMyVM protocol

At the conclusion of the successful previous decryption and decompression operations, the modified
ImageEditing.py script sends a “start” signal to the node verifymyvm, which triggers the step(5)
assigning an available virtual TPM to the VM. The step(6) is the initialisation of the PCRs values
using the first round of the VerifyMyVM protocol. The source code of the virtual TPMs has been
modified to allow a parallel execution of multiple virtual TPMs on the same node by changing their
ids, therefore it is possible to have many /dev/tmpX.

Then the step(7) can be started and the VM can be deployed. In parallel to the machine start,
the node verifymyvm client running on the node connects to the server verifymyvm to be ready for
any requests from the user to verify his VM using the VerifyMyVM protocol.

The user can afterwards launch step(8) which is the on-demand verification of the integrity of
his VM as many times as he wants using the user verifymyvm script which asks to the virtual TPM
assigned to his VM to verify the integrity of the files contained in the VMI. This can be done while
the VM is running.

7.8.4 Impact of the Implementation of CertiCloud in Nimbus

The Figure 7.9 allows to have a clear view of the modifications and the additions done in Nimbus to
implement CertiCloud. The Cloud Computing (CC) service provider has only to install on his nodes
the scripts nimbus decrypt, node tcrr, node verifymyvm, their dependences, the configuration files
as well as the certificates of the CA and the patch Nimbus to integrate the hook.

The CC service provider has to configure as well three new servers server ca, server tcrr and the
server verifymyvm allowing distribution of the certificates as well as communication for the TCRR
and VerifyMyVM protocols between the user and the node.

The user has to crypt his VMI and compute the reference hash values using user compute hashes,
and he must download the scripts user tcrr, user verifymyvm. He must as well own a valid certificate
signed by the CA of the CC service provider. Having CertiCloud on the Nimbus platform does not
force the user to use it, i.e. the modifications of Nimbus do not require an encrypted VMI and in case
of a normal VMI the modified Nimbus just will not start the CertiCloud services.

7.9 Experiments & Validation in a Typical IaaS Scenario

To validate our approach, a prototype of CertiCloud has been developed using the Xen virtualization
hypervisor [22] and the QEMU/KVM hypervior on the following machines:

• Processor: Intel core i7 870 (2.93GHz), 16 GB DDR RAM;

• OS: Ubuntu 12.04, kernel 2.6.35-30-server;

• Virtualisation: qemu-kvm-0.12.5;

• ETHZ TPM emulator (version 1.2.0.7 of the specifications);

• STMicroelectronics TPM (version 1.2.8.8 of the specifications);

• TPM/J Java application, API 0.3.0 (alpha) [141].
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As for the user VMs, the classical Linux environments deployed on IaaS platforms are of two
kinds: either a dedicated server running a minimal set of services or a desktop environment closer to
Laptop configuration. With this in mind, we based our experiments on two kinds of VMs: a small
one (336 MB) labeled Debian that runs a Debian Lenny distribution featuring a classical LAMP
(Linux/Apache/MySQL/PHP) server. The second environment is of bigger size (2.3 Go) and referred
to as Ubuntu as it runs an Ubuntu hardy distribution. As CertiCloud has been designed in the
stepwise approach, we evaluated independently each involved step, focusing on the most important
ones.

The common criteria chosen for performance evaluation is the execution time on the above platform.
To reach a statistical significance of the presented results, at least 100 runs of each tests have been
conducted, knowing that a single VM (the one analyzed) is run on the VMM to limit external system
perturbations. We have conducted similar experiments on a more realistic test case for IaaS platforms
where each physical resource runs at least 10 VMs. The results did not significantly differ from the ones
presented in this section. The Figure 7.10 is showing the time for the different steps of CertiCloud
measure on the Debian VM.
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Figure 7.10: Execution time for the different steps of CertiCloud defined in Section 7.6 (measured
on the Debian VM).

First of all, the performances of the TCRR protocol (step 3 in the CertiCloud process) have
been evaluated as illustrated in figure 7.11.

On overage, less than 10s are required to complete the protocol, i.e., to certify the Cloud resource
and exchange the private key. We also detail the contributions of the two main operations conducted
by the TPM in TCRR (namely TPM Quote and TPM Unbind – see Section 7.5). Then, at step 4 of the
CertiCloud process, a decryption operation takes place on the VM Manager. The performance of
this step (assuming an encryption scheme based on AES-256) are summarized in table 7.3: it is of
course a very costly yet unavoidable operation to preserve the confidentiality of user’s environment.
Note that it happens only before the deployment and does not impact the performance of the VM of
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Figure 7.11: Performance evaluation of the TCRR and the VerifyMyVM protocols in CertiCloud.
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Figure 7.12: Detection times after unauthorized modifications of the system in CertiCloud.

We then focus on the evaluation of the VerifyMyVM protocol. As for the measure of the TCRR
performances, the total execution time of the protocol together with the contributions of the two main
operations conducted by the emulated TPM TPMemulator(VMU ) in this protocol (TPM Extend and
TPM Quote – see Section 4.2). The experimental results are depicted in figure 7.11. Less than 19s are
required to certify the integrity of a running VM which highlights a relatively low overhead induced by
this protocol.

Finally, it appeared important for us to evaluate the reactivity of CertiCloud against active
corruptions (rootkit installation etc.). In order to measure this reaction time a modification of a binary
in the running VM was performed at the time t0 = 0s. In practice, a rootkit installation has been
simulated by pushing on the system altered ls and top binaries using a simple scp command as root.
Then the VerifyMyVM protocol was initiated and we computed the time to reach a final state.

First of all, VerifyMyVM always finished in the KO state. Then, table 7.3 and figure 7.12 present
the detection time for the two kinds of VM: between 14 and 58s are required to conclude. Something
quite interesting and counter-intuitive appears here as the Ubuntu VM, which is bigger, seems to be
faster than the Debian VM. This can be explained by the two different disk synchronization policies;
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VM type: Debian Ubuntu
Size (zipped/total) 528MB/2.1GB 1.4GB/21GB

decryption time 23.324s 1m5.296s
min detection time 14.36989s 16.60140s

average detection time 33.1792s 18.63032s
max detection time 58.21868s 38.52942s

Table 7.3: Average decryption time of the VM images and detection time after unauthorized modification
in CertiCloud.

when a modification is done in the Ubuntu VM, it writes with almost no delay the files on the disk,
whereas in the Debian system, the modifications are not written directly on the disk because of a
caching mechanism which permits to avoid the continuous usage of the disks, therefore they cannot be
detected and need the expiration of a certain delay in order to be written.

To conclude, the experiments conducted in this section highlight the relatively low overhead induced
by the CertiCloud protocols (∼ 10s for TCRR, less than 20s for VerifyMyVM). Reactivity measures
show a 100% detection rate in less than 60s (less than 20s with the appropriate I/O buffer configuration)
which is quite reasonable for a dynamic checking in the CC context.

7.10 Conclusion

Many open security issues should be solved to transform the current euphoria on Cloud Computing
into a wide acceptance. The CertiCloud framework developped in this section tackles integrity and (to
a minor measure) confidentiality aspects of the Infrastructure-as-a-Service (IaaS) cloud paradigm.

Until recently, only pure software approaches were proposed to check the integrity of a remote
system leading to the fact that it was not possible to fully trust a remote platform. For this reason, it
is impossible nowadays for a user having strong security expectations to really trust Cloud providers.
Yet with the advent of the Trusted Platform Module (TPM) specifications by the Trusted Computing
Group (TCG), together with their integration at low cost in nearly all recent motherboards, it is
now possible to imagine novel ways to treat this problem. Indeed, TPM offers the access to a
strong cryptographic processor, embedded with a shielded memory and ways to execute cryptographic
primitives to authenticate itself and report the state of its associated system status (BIOS, MBR,
kernel, OS etc).

Exploiting the TPM capabilities (therefore relying on hardware elements), the TPM-based Certifi-
cation of a Remote Resource (TCRR) protocol has been presented. It permits to assert the integrity
of a remote resource and exchange a user-defined private symmetric key. The extensive analysis of
TCRR by AVISPA and Scyther, two industrial-reference tools for the automatic verification of security
protocols has been carried out. Both toolsuites assert the security of TCRR which proves the validity
of the design.

Then CertiCloud, a novel approach for the protection of IaaS platforms that implements the
TCRR protocol has been introduced. CertiCloud proposes a stepwise approach to secure a user’s
VM, from the setup on user’s side to the secure storage on the Cloud and to the deployment on cloud
resources. These resources are assumed to host a (physical) TPM and a virtualization framework based
on the Xen or QEMU hypervisor. This permits to run users’ VMs, each of them being associated
upon deployment to an emulated TPM. All these elements (the physical resource, the virtualization
framework and the emulated TPMs) are certified using the TCRR protocol.

Then, a novel verification mechanism called VerifyMyVM has been designed to allow a user of the
platform to check his running VM and to detect any system corruption.

As TCRR, the validation of the VerifyMyVM protocol by AVISPA and Scyther justifies the design
choices and guarantees the security of the framework from the communication point of view. The
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performed experiments prove the feasibility of the approach on commodity hardware and demonstrate
the low overhead induced by the CertiCloud protocols.

As the TPM measurements are vulnerable to the TOCTOU attacks and as the CertiCloud
framework is based on this measurement, the framework is as well vulnerable to these attacks. Indeed
if an attacker managed to hide himself during the measurement by restoring initial files, he won’t be
detected. Using passive hardware, it is impossible to counter TOCTOU attacks. Indeed a corrupted
system can always provide the valid measurement to the passive hardware. More generally, solutions
which are checking the integrity of a system periodically, such as tripwire [104], are vulnerable to these
attacks.

The perspectives of this work are numerous: deeper analysis of CertiCloud scalability, development
of a migration protocol and integration into other existing cloud middleware such as Eucalyptus [77],
OpenNebula [10] or OpenStack [11].
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The Obfuscation Paradigm: an Overview
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As seen in Section 5.1 software protection can intervene at different levels: at the OS level, at
the middleware level or the application one. The first part of this dissertation elaborated a way to
increase the security at an OS and middleware level, by checking the physical node as well as the
VMI. In this part, we propose a novel source-to-source obfuscation process able to increase the level of
protection at an application level. The objective is to obfuscate the source code of a program to
conceal its purpose, its logic and maybe some secrets without altering its functionality, thus preventing
the tampering or the reverse engineering of the program.

This chapter reviews the key concepts and notions associated with code obfuscation.

8.1 Code Obfuscation: Definitions

We now provide the preliminary definitions associated to an obfuscating process, most of them being
defined in the work of Collberg [62].

Definition 11 (Obfuscating Transformation)
Let P

τ−→ P ′ be a transformation of a source program P into a target P ′. P τ−→ P ′ is an obfuscation
transformation if P and P ′ have the same observable behaviour. More precisely, if P fails to terminate
or terminates with an error condition, then P ′ may or may not terminate, otherwise P ′ must terminate
and produce the same output as P .

75
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Observable behaviour can be defined as being the behaviour experienced by the user. For example,
if the obfuscated program P ′ has side effects such as file creation or network communications that are
not initially present in P and which are not noticed by the user, it can still be considered as having
the same observable behaviour from a user point of view.

The quality of obfuscated transformations is the composition of three properties:

• Potency which is a measure of transformation usefulness in its task of hiding the intent of the
programmer. Potency can be seen as a measure of an obfuscation transformation efficiency
towards human readers.

• Resilience which measures the efficiency an obfuscation transformation against automatic deob-
fuscators (as an opposition to potency).

• Cost which measures the penalty introduced by the transformation: a transformation can make
the program use more memory or more time.

The next subsections detail each of these key concepts.

8.1.1 Transformation Potency

Definition 12 (Transformation Potency) Let τ be a behaviour-conserving transformation, such
that P

τ−→ P ′ transforms a source program P into a target program P ′. Let E(P ) be the complexity of
P . τpot(P ), the potency of τ with respect to a program P is a measure of the extent to which τ changes
the complexity of P . It is defined as:

τpot(P ) =
E(P ′)
E(P )

− 1

Therefore, τ is a potent obfuscating transformation if τpot(P ) > 0.

Many metrics exist in computer science and some are presented in Section 8.2 and they can be
used or combined to measure the complexity E used in this definition.

Software complexity metrics are linked to the programmer’s ability to understand a source code,
they are therefore subjective. The potency can be pictured as a measure of a transformation usefulness
toward human readers. Some transformations will increase a program complexity according to the
selected metrics and will indeed increase the difficulty for a human reader to understand the code but
it does not take into account that it might be easy for a machine to deobfuscate these transformations.

8.1.2 Transformation Resilience

To measure a transformation usefulness against automatic deobfuscators, resilience has to be introduced.
Resilience takes two parameters into consideration :

• Programmer Effort (the amount of time taken to build an automatic deobfuscator that will
efficiently reduce the potency of τ).

• Deobfuscator Effort (the execution time and the memory space required by the obfuscator to
reduce efficiently the potency of τ).

Definition 13 (Transformation Resilience) Let τ be a behaviour-conserving transformation, such
that P

τ−→ P ′ transforms a source program P into a target program P ′. τres(P ) is the resilience of τ
with respect to a program P .

τres(P ) = one-way if information is removed from P such that P cannot be reconstructed from P ′.
Otherwise:

τres = Resilience(τDeobfuscatoreffort , τProgrammereffort)

Where Resilience is the function defined by the matrix defined in the matrix in Figure 8.1.
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Figure 8.1: Resilience of an obfuscating transformation: Scale of values (left) and resilience matrix
(right).

8.1.3 Transformation Cost

Transformations often introduce some loss of efficiency in the program. For example, the program
might need more memory space or more time to perform the computations after a transformation.
Transformation cost introduces this notion.

Definition 14 (Transformation Cost) Let τ be a behaviour-conserving transformation, such that
P

τ−→ P ′ transforms a source program P into a target program P ′. τcost(P ) is the extra execution
time/space of P ′ compared to P . τcost(P ) is said to be:

dear if executing P ′ requires exponentially more resources than P

costly if executing P ′ requires O(np), p > 1, more resources than P

cheap if executing P ′ requires O(n) more resources than P

free if executing P ′ requires O(1) more resources than P

8.1.4 Transformation quality

The three evaluations of transformations defined previously (potency, resilience and cost) can be used
to compose the quality metric of obfuscating transformations.

Definition 15 (Transformation quality) τqual(P ), the quality of a transformation τ , is defined as
the combination of the potency, resilience, and cost of τ :

τqual(P ) = (τpot(P ), τres(P ), τcost(P ))

These transformation evaluations require the definition of metrics to be computed. The next section
will present some existing metrics coming from the software engineering area.

8.2 Obfuscation Metrics

Computing the complexity of a program is not an easy task as the complexity is a subjective measurement
depending on what is considered as complex by a reverse engineer or by a programmer. It is therefore
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linked to the programmer’s knowledge and competence. It is as well dependent on the programming
language used as certain structures of program might be language dependent, for example, a metric,
such as [61], which counts the number of methods within an object or the length from the class to the
root class it inherits from, can only be applied to Object Oriented (OO) programming languages.

The following metrics are well-known and have been referenced by Collberg et al. in [63] and in
[62] and used in the JShadObf obfuscation software (see Section 9):

µ1 Program Length [87]. The more operators and operands P has, the more complex it gets.

µ2 Cyclomatic Complexity [115]. The complexity of a function is measured by the number of predicates
it contains.

µ3 Nesting Complexity [88]. The more conditionals of a function are nested, the more complex that
function is.

µ4 Data Flow Complexity [130]. The complexity of a function increases with the number of variables
references in inter-basic blocks.

µ5 Fan-in/out Complexity [90]. A function is more complex if it has more formal parameters, its
complexity also increases with number of global data structures it reads or writes.

µe or µ6 represent the efficiency of the code measured as the average execution time of the code on a
reference machine, using one or more test cases representing normal execution of the program.

These metrics can be used to evaluate the pertinence of transformations on the complexity of a
program. The transformations are described in the next section.

8.3 Transformations

The following obfuscation transformations have been classified by quality by Collberg in his paper [62].
Obfuscating transformations affect different aspects of a program structure and can be classified into
three main categories:

1. Data obfuscation: composed of all the transformations that modify and obscure the data structures
used in a program.

2. Layout obfuscation: the transformations changing the information included in the code formatting,
e.g., scramble identifier names or remove code indentation.

3. Control obfuscation which affects the aggregation, ordering or computations performed within
the program control-flow.

These three categories are detailed in the next sections.

8.3.1 Data Obfuscation

Transformations performing a data obfuscation are making the data structures used more obscure.
For example, splitting a vector in two vectors is a data obfuscation technique. Data obfuscation
transformations can be divided into three subcategories: transformations affecting the storage and
encoding, the ordering and the aggregation of the data.

Data structures are often depending on the data the programmer wants to store, for example, storing
all the values of the program using the little endian instead of big endian on a machine reading
data using the big endian convention is a data obfuscation as the deobfuscator or the programmer
would not expect data to be encoded in little endian.
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Encoding exchange

An example of a transformation modifying the encoding would be the use of an affine function to
“encode” and “decode” without provoking an integer overflow. For instance, if we want to transform the
variable k in P , we can use constants and use c1 ∗ k + c2 instead of k in P ′ (as in 8.1). This however
can be easily analysed by a deobfuscator or even an optimiser and be removed automatically but that
would increase the time of execution of the program.

P

int k ;
for ( k=1;k<100;k++)
{

. . . vect [ k ] . . .
}

P ′(c1 = 5c2 = 2)

int k ;
for ( k=7;k<502;k++)
{

. . . vect [ ( k−2)/5] . . .
k+=4;

}

Listing 8.1: Example of an encoding transformation.

Promoting variables

Promoting a variable consists of storing a variable in an object, for example, an integer typed variable
can be replaced by an Integer class. The variable promotion could also be a lifetime increasing, by for
example changing the scope of a variable from local to global like in Listing 8.2. Such a transformation
increases the number of global variables used by the program functions.

P

void f oo ( ) {
int i ;
. . . i . . .

}

void bar ( ) {
int k ;
. . . k . . .

}

P ′

int c ;
void f oo ( ) {

. . . c . . .
}

void bar ( ) {
. . . c . . .

}

Listing 8.2: Example of a variable promotion transformation.

Splitting variables

Splitting a variable i consist of storing the information contained into i within a set of variables (i1, ...ik)
like in Listing 8.3. Three pieces of information have to be given : a function f(i1, ..., ik) that maps
the i1, ..., ik to i, a function g(i) that maps i to the corresponding i1, ..., ik and operations on i1, ..., ik
corresponding to the operations available on i.

The potency and cost of such transformations increases with k.
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P

int t = 12 ;
. . . t . . . ;

P ′

int f oo ( v1 , v2 )
{

return v1 ˆ v2 ;
}
int u = 456 , v = 452 ;
. . . f oo (u , v ) . . . ;

Listing 8.3: Example of a spliting variable transformation.

Converting static data to procedural data

This transformation replaces some static data by function calls returning the same data like in Listing 8.4.
It is preferable not to store all the static data into one function but into many of them. It is as well
possible to apply them recursively, i.e. the data stored into the function used to store the static data
can be relocated into another function.

P

. . .

. . . ”abc” . . .

. . .

. . . ” d fe ” . . .

P ′

s t r i n g foo ( int a )
{

i f ( a == 0)
return ”abc”

e l i f ( a == 1)
return ” dfe ”

}
. . .
. . . f oo (0 ) . . .
. . .
. . . f oo (1 ) . . .

Listing 8.4: From static data to function call.

Aggregation Transformations

This transformation can be seen as the opposite of the splitting variables transformation. It aggregates
data from multiple variables into one using, for instance, a vector or a class. The idea is to decorrelate
the variable from its semantic meaning.

The restructuring of arrays is an example of aggregation and splitting transformation: merging
several arrays in one, splitting an array into several arrays, folding an array (increasing its dimension)
or flattening an array (decreasing its dimension) allow to disconnect the data from the meaning of the
variables.

These transformations often have low potency because complexity metrics cannot measure the fact
that some of these transformations introduce new structures. For example, a programmer manipulating
an image would declare a 2 dimension array. Manipulating a one dimension array or a 3 or more
dimension array would significantly increase the obscurity of the program.
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Ordering transformations

Modifying the order of method calls and operations in the code allows to create big code blocks with
less semantic meaning for the block itself. It can design as well the reordering of data within an array
like in Listing 8.5.

P

int A = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ] ;
for ( i =1, i <8, i++)
{

. . . A[ i ] . . .
}

P ′

int A = [ 6 , 1 , 8 , 3 , 2 , 7 , 4 , 5 ]
for ( i =1, i <8, i++)
{

. . . A[ f ( i ) ] . . .
}

Listing 8.5: Data ordering transformation.

8.3.2 Layout Obfuscation

Layout obfuscation transformations are all the transformations that change the information included
in the code formatting. For example, scrambling identifier names or the code indentation are layout
obfuscation techniques.

Layout transformations are often one-way and cost free while their potency may vary depending
on the transformation.

8.3.3 Control Obfuscation

Control obfuscation modifies the program control-flow to conceal information about the initial order of
operations in the program.

Applying control obfuscation technique often implies an increase in the duration of the program
execution. The programmer will have to choose between the highly efficient program P he intends to
distribute and its highly obfuscated, but slower alternative P ′.

Opaque predicates

Opaque predicates or variables are values known a priori to the obfucator but which are hard for the
deobfuscator to compute.

Definition 16 (Opaque constructs)

• Opaque variable: a variable V is opaque at a point p in a program if V has a property q at p
that is known at obfuscation time, it is expressed as V q

p .

• Opaque predicate: a predicate P is opaque at a point p in a program if its value (True or False)
is known at obfuscation time. We write P Tp if P is True at p, PFp if P is False at p and P ?

p if P
is sometimes True and sometimes False at p.

This definition is exposed in Figure 8.2. An opaque construct is said to be trivial if a deobfuscator
can deduce its value by static local analysis and it is said to be weak if a static global analysis is
required to deduce its value.
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Figure 8.2: Opaque predicates.

Inserting dead code

Using opaque predicates enables the insertion of irrelevant code, for example it is possible to include
harmful instructions inside the statement block of an if block with an opaque predicate PF as the
code within will never be executed. It is as well possible to take a block of existing code and move
it in an if statement block using a opaque predicate P T or putting two versions of the same code
into an if/else statement using a P ? opaque predicate, the deobfuscator will spend time trying to
reverse-engineer the opaque predicate even though it does not matter which branch of the if statement
will be executed.

Extending loop conditions

We can use opaque predicate to make loop termination conditions more complex without changing the
number of iteration. For example, we could replace a condition C by C&&P T .

Converting a reducible flow graph to a non-reducible one

Using the goto instruction combined with opaque predicates it is possible to make unused skips in the
program resulting in an irreducible flow graph, i.e. a strongly connected graph.

Adding redundant operands

In the expressions, it is possible to add arithmetically redundant operands that will annihilate themselves
as in Listing 8.6.

P

x=x+y ;
z=w+1;

P ′withR=1, P=2Q, Q=P/2

x=x+y∗R;
z=w+(P/Q) / 2 ;

Listing 8.6: Redundant Operands.
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Parallelizing code

Parallel programs might be harder to understand than sequential ones. Since nowadays there are
plenty of tools for parallelism, we can use them to obscure the program control flow. The creation
of dead threads that would appear as legitimate working threads and that could have some effect on
the dead code inserted into the actual legitimate threads, would make this dead code necessary to the
dead threads, therefore harder to detect. Of course, if the computer that runs the program cannot run
more than one process at a time, these transformations will slow down the program, however in the
obfuscation of a mono-threaded program, the cost would be smaller (assuming no deadlock).

Inlining or outlining functions

Inlining a function implies replacing calls to a function by the function code. Inlining is a one-way
resilient transformation, it removes every abstraction set by the presence of the function.

Outlining instructions in a function means making a functions from a block of instructions. One use
of outlining for obfuscation is to outline parts of semantically different procedures in a same function.
(see 9.3).

P

s 1 ;
s 2 ;
. . .
s n ;

P ′

<typeA> f oo (<args >){
s i +1;
. . .
s j ;
}

s 1
. . .
s i ;
f oo (<args>)
s j +1;
. . .
s n ;

Listing 8.7: Outlining of a block of statements.

Interleaving functions

Interleaving functions means merging two (or more) functions in one, merging body, arguments and
returned results. The resulted function would take another argument for selecting which initial function
to run.

Detecting function interleaving is really difficult for reverse engineers since it scrambles the semantics
of the functions that were interleaved.

Cloning functions

For a given function, one writes several functions that have the exact same role and obfuscate each one
in a different way. Then, each time the function is to be called, the programmer would call one of its
clones instead.



84 CHAPTER 8. THE OBFUSCATION PARADIGM: AN OVERVIEW

Since the context of function call is used to understand the purpose of the function and since the
body of the function is obfuscated, this transformation makes the understanding of the function role
more difficult.

Loop transformations

Three loop transformations can be enumerated:

• Loop blocking means partitioning the loop iteration space in smaller loops. This is often used in
optimisation as it usually reduces the CPU cache misses by making large vectors fit in the cache
memory.

• Loop unrolling means replicating a loop body several times in order to reduce the number of
iterations of the loop. This transformation is often used as a preliminary to the parallelization of
the loop.

• Loop fission is a transformation that expands a loop with a compounded body into several loops
with the same iteration space.

For each of these transformations, an example is given in Figure 8.8. Independently, these
transformations have a fairly good potency but have a very low resilience since in most cases static
analysis can counter these transformations. But when these transformations are used together, the
program resilience increases dramatically.

P

for ( i =1, i<=n , i ++);
for ( j =1, j<=n , j++)

a [ i , j ]=b [ j , i ] ;

P ′ (loop blocking)

for ( I =1, I<=n , I+=64)
for ( J=1,J<=n , J+=64)

for ( i=I , i<=min ( I +63,n ) , i++)
for ( j=J , j<=min ( J+63,n ) , j++)

a [ i , j ]=b [ j , i ] ;

P

for ( i =2, i<(n−1) , i++)
a [ i ] += a [ i −1]∗a [ i +1] ;

P ′ (loop unrolling)

for ( i =2, i<(n−2) , i +=2){
a [ i ] += a [ i −1]∗a [ i +1] ;
a [ i +1] += a [ i ]∗ a [ i +2] ;

}
i f ( ( ( n−2) % 2) == 1)

a [ n−1]+= a [ n−2]∗a [ n ] ;

P

for ( i =1, i<n , i ++){
a [ i ] += c ;
x [ i+i ]=d+x [ i +1]∗a [ i ] ;

}

P ′ (loop fission)

for ( i =1, i<n , i++)
a [ i ] += c ;

for ( i =1, i<n , i++)
x [ i+i ]=d+x [ i +1]∗a [ i ] ;

Listing 8.8: Loop transformations (from top to bottom): Loop blocking, loop unrolling and loop fission.

Programmer’s preference is to increase their code locality, making them more understandable.
When obfuscating a program, we will want to mix pieces of the code (e.g. declarations of functions
and variables) to remove the semantic meaning of this locality. Such transformations have low potency
since they don’t obscure the code that much, however, their resilience is one-way in most cases since
once the transformation is applied, there is no information about the original order of the mixed pieces.
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Building high resilience opaque structures

Predicate composed of simple arithmetical expression have trivial or weak resilience. Since the resilience
of an opaque structure influences the quality of the transformation, one would like to have high resilience
opaque structures. There are several methods for building resilient and cheap opaque structures ([64]).

One method to use is aliasing which uses the fact that two different pointers can point at the same
data, one statement can therefore initiate this value to True while the second statement sets the value
to False using the second pointer, the data referenced by the first pointer will be False even if it has
been set to True previously. Trying to deduce properties from pointers is difficult since they refer to
different memory spaces during the program execution.

Another method would be to take advantage of parallel processing of variable. A variable (or a
pointer) modified by many threads would make a highly resilient opaque variable as it would be very
difficult and time consuming to analyse statically as there are n! ways to execute n parallel instructions
on one processor.

8.3.4 Homomorphic Encryption as an Obfuscation Method

Homomorphic encryption is an encryption scheme which allows computation on encrypted data and
returns an encrypted result. This means that the agent performing the computation never has access
to plain text data.

For example, El Gamal [76] encryption algorithm is an homomorphic encryption scheme for the
multiplication. Indeed, due its construction based on the discrete logarithm problem, the multiplication
of e1 and e2 is the equivalent of the encrypted multiplication of plain text t1 and t2:

e1 ∗ e2 = E(t1 ∗ t2)

A agent which does not know the plain text can perform this multiplication and send the result to
the owner of the key. The latter can then decrypt the data to retrieve the result of the multiplication.
However the addition of encrypted data e1 and e2 does not lead to the encrypted addition of the plain
text t1 and t2.

A fully homomorphic encryption scheme (for both addition and multiplication) based on lattices
have been developed by Craig Gentry in [84]. However the time overhead is still too important to
be used in practice. Another problem of such scheme is their lack of branching possibilities which is
essential for a program to take decisions. Therefore a complete program transform in an encrypted
one is not possible. Moreover the user of the obfuscated program needs to have access to the result of
the computation, he therefore needs the key to decrypt the data. However, homomorphic encryption
schemes could be used within the obfuscated program, one part would encrypt the data, another would
perform the computation and the last could decrypt it.

8.3.5 Summary of the Obfuscation Metrics

The Table G.1 in appendix, extracted from [62] references the transformations previously mentioned.
Transformations are classified by target and operation. The quality of each transformation is exposed
and the metric(s) used to measure the transformations’ potency is(are) enumerated according to the
definitions in Section 8.1. On several cases, the transformation quality depends on the quality of
opaque constructs or complexity of a data structure or function.

8.4 Deobfuscation

A deobfusactor takes an obfuscate program P ′ and tries to extract a program P ′′ which is as close as
possible to the initial program P , or at least a more intelligible version of P ′.
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Some of the following deobfuscation’s problems reduce to the halting problem making obfuscation
undecidable:

• Eliminate dead code by determining whether a block of code will be reached or not.

• Evaluate at a point in the program if a variable is necessary to the computation of the result.

• Detect aliasing.

Appel ([39]) tackled the matter of a white box obfuscation of a program P . The obfuscator F is
perfectly known to the public, but it uses a secret key K to obfuscate P , thus we have : P ′ = F (P,K).
The proof is based on an algorithm which tries to guess the source program S and the key K, verifying
that the resulting program is the same as the obfuscated program. The different step takes at most
polynomial time:

• Guess a source program S

• Guess a key K

• Compute P ′ = F (S,K)

• Check P = P ′

Therefore white box deobfuscation is NP-easy, but this approach does not give any usable deobfuscation
technique.

In practice deobfuscators try to eliminate bogus code that was inserted using opaque predicates.
The detection of opaque predicates is therefore of first importance for deobfuscator. As they usually
use pattern matching to identify opaque predicate, a way to avoid detection of the opaque constructs
is to construct opaque structures as close as possible to real code.

Another technique used by deobfuscators is program slicing [164] used to reduce the deobfuscation
problem into several smaller problems. But the aliasing or adding useless variable dependencies makes
harder the identification of sliceable blocks.

When using static analysis, a deobfuscator can assume a construct to be opaque but it can be as
well a legitimate construct. To prove that a predicate is indeed an opaque one, a reverse engineer can
make a mutant version P1 of the program P where the assumed opaque construct is set to its assumed
value. If P and P1 produce the same outputs for all possible inputs then the assumption was right.

The use of complex mathematical problems to build opaque structures can be investigated to avoid
easy resolution of such structures, making opaque structures easy to compute for a specific case but
hard for a more general one.

In practice, exploiting flaws of automatic deobfuscators and using one-way transformations can
produce an obfuscated program which makes the reverse engineer unable to understand the program’s
code specially within a restricted time.

8.4.1 Deobfuscation is always possible?

From a more theoretical point of view a lot of work has been done in obfuscation and on its impossibility.
Arbitrary programs have been proven impossible in 2001 [45] by Barak et al. and with auxiliary
input in [85]. In [45] they proved that perfect obfuscation is impossible. In their demonstration, they
considered an obfuscated program as a virtual black box. The virtual black box property stipulates that
”Anything that can be efficiently computed form O(P ) can be efficiently computed given oracle access
to P , i.e. the fastest way of reverse engineering the virtual black box is by analysing the input and the
resulted output.

To prove that obfuscation is in the general cases impossible, they built a class of simple functions
and proved by contradiction that it is impossible to obfuscate them.
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However they did not prove this result for any function. There even exist simple functions such as
point functions that can be obfuscated [57], [58] or in [163].

These results lead to two possible direction in obfuscation theory, either settle with a lower but still
meaningful notion of obfuscation (for example virtual gray box [54])or build obfuscators for a restricted
set of functions.

8.5 Conclusion

Software obfuscation has many applications, not only allowing the protection of a program’s secrets
(data or algorithms) but also, birthmarking, watermarking or even tamperproofing.

Like software compilation, program obfuscation is a matter of transformations that have to be
applied in a correct order to provide an optimal result, a set transformations having different potency
and resilience depending on their order. Since software complexity metrics can be ambivalent, the
evaluation of the quality of an obfuscation transformation is not simple as some transformations can be
more or less efficient depending on the program, on the programming languages used and on metrics
selected. Moreover, some transformations may not be available in some languages. Optimisation
techniques such as Evolutionary Algorithms (EAs) can be used to find good solutions to this problem.

Although it has been proved that, in theory, program obfuscation is impossible as virtual black box,
today’s deobfuscators have many flaws that can be exploited to slow down reverse engineers and to
protect the secrets within the program at least for a limited period of time.
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different transformations implemented will be presented using examples on a small JavaScript code.
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9.1 Context: Obfuscation of JavaScript Programs

The obfuscation of a JavaScript program has been addressed by the Internet community as well as by
hackers to embed malicious code in websites, for instance, to redirect requests to another website so
as to increase the number of visitors. In reaction, the research community has done many studies to
detect malicious websites and thus obfuscated code through the analysis of JavaScript source code.

For instance, the authors in [56] analyse the string variables contained in the JavaScript source code
to classify the websites as malicious or not. The metrics used in JShadObf are string related metrics
(this includes string length, frequency of particular function or entropy of the function or variable
names). Following the same trend, the authors of [78] have patched the SpiderMonkey [15] JavaScript
interpreter (which is used in the well known web browser firefox) to make some statistics about the
code, like counting the number of newly generated strings or counting the number of eval calls during
the execution of the program to help detecting obfuscated code. As regards the obfuscation process in
itself, there exist relatively few studies or tools in the literature.

Indeed the current JavaScript obfuscation techniques mostly use data obfuscation on string variables
and the eval function provided by the JavaScript language allowing the dynamic execution of strings.
These techniques are used for instance by the on-line JavaScript obfuscator [7] or in packer [12].
Another tool worth to mention is UgligyJS, a JavaScript obfuscator, compressor (minifier) or beautifier.
Depending on the user’s request, it performs many small optimisations and obfuscations to alter the
initial JavaScript source code. The possible transformations are listed on the UgligyJS website [20].
ObfuscateJS has been as well included in the tools tested against JShadObf even if the last version
of the software dates from 2006 [9]. The non-free JavaScript obfuscator, Jasob [6] has been used for
the tests with the trial version. The other ones worth to mention in this section are minifiers, an
operation that can be seen as a partial obfuscation as it complexifies the JavaScript code. The minifier
of Yahoo, called YUI Compressor [23], works on a few simple examples but fails to parse complex
codes such as the ones of the JQuery library. A more powerful alternative is the minifier of Google
called closurecompiler [3].

To sum up, obfuscation of JavaScript programs is still at an early stage and there is place for huge
improvements. That’s where comes the main contribution (and interest) of JShadObf, an obfuscation
framework based on evolutionary heuristics designed to optimize for a given input JavaScript program,
the sequence of transformations that should be applied to the source code to improve its obfuscation
capacity.

9.2 The JShadObf framework

The general obfuscating process operated by JShadObf is illustrated in Figure 9.1. From the initial
program P to be obfuscated (myfile.js), a reference individual (in the Evolutionary Algorithm (EA)
sense) Iref is generated that represents P. Then, a complete population of n individuals is generated
by randomly applying a mutation (i.e. a transformation) on the reference individual Iref.

The Multi-Objective Evolutionary Algorithm (MOEA) process (NSGA-II [71] or MOEAD [109],
see Section 9.3) then intervenes to explore the search space induced by the six objectives reviewed in
the preceding section, to evaluate the population and to apply the genetic operators (mutation and
cross-over). This permits to exhibit at each generation non-dominated Pareto solutions, each of them
representing a set of derived (and hopefully sufficiently obfuscated) versions of the program P that
propose a good trade-off between each objectives, i.e. metrics.

The implementation of the solution had to answer the four following issues:

1. How to parse a JavaScript program? (Chapter B and Chapter A).

↪→ The JavaScript code is parsed using the grammar AntLR [132] developed with the help of
the ECMAScript Standardization document [96] to build an Abstract Syntax Tree (AST)
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of the considered program;

2. What transformations can be applied ? (Section 8.3 and Section 9.4).

↪→ Twelve different transformations are applied to JShadObf individuals by the evolutionary
operators;

3. How do you measure their efficiency? (Section 8.2).

↪→ The six metrics permits to evaluate the obfuscation capacity (µ1, . . . , µ5) or the performance
(µe) of a given individual. They will be used in the corresponding fitness functions to
compute the fitness values of the considered individual i.e. its quality. As we decided to
explore the search space to minimize all these values, the fitness functions are defined as
follows: ∀x ∈ [1..5],fitnessx(I) = 1/µx. only the time of execution µe is directly the fitness
value: fitnesse(I) = µe;

4. How to use Evolutionary Algorithms (EAs) to increase the obfuscation level of an individual?
(Section 9.3).

↪→ MOEAD [109] and NSGA-II [71] MOEA are used in the selection step.

9.3 Evolutionary Algorithms (EAs)

Evolutionary Algorithms (EAs) use mechanisms inspired from the Darwinian theory of evolution [70]
to solve optimisation problems by the means of reproduction, mutation, recombination and selection.
EAs involve generations of individuals, each individual being a potential solution of the problem to
solve. Each generation is built from the previous one through mutation, recombination, etc. Then, the
individuals are evaluated according to a fitness function which eventually involves multiple criteria.
The algorithm halts when a stopping condition is met (typically, the fitness value has reached a given
threshold or an optimal solution has been found). Note that the convergence of EAs towards ”good”
solutions has been formally proven in [139]. Since the convergence of an EA can be very long one can
choose to stop an EA when a fixed number of generations have been computed or when the fitness of
the individuals does not change much between two consecutive generations.

Execution of simple EAs requires high computational resources in case of non-trivial problems, in
particular the evaluation of the population is often the costliest operation in EAs. There exist many
useful models of EAs, yet a pseudo-code of a general execution scheme is provided in the Algorithm 9.3.

Algorithm 1 General scheme of an EA in pseudo-code.
t← 0;
Generation(Xt); // generate the initial population
Evaluation(Xt); // evaluate population
while Stopping criteria not satisfied do

X̂t ← ParentsSelection(Xt); // select parents
X ′

t ← Modification(X̂t); // cross-over + mutation
Evaluation(X ′

t); // evaluate offspring
Xt+1 ← Selection(Xt,X

′
t); // select survivors of the next generation

t← t + 1;
end while

EAs are popular approaches to solve various hard optimisation problems: on average, they generally
converge to ”good” solutions more quickly than the naive exhaustive search algorithm.
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Figure 9.1: Overview of JShadObf, describing the full process of the generation of new representations
of the code.

EA components in JShadObf

We now review the key components of the EA at the heart of JShadObf when dealing with a
population of N individuals.

Individual : An individual is an AST representing the source code.

Original individual : The first individual (from which all the individuals were mutated) representing
the AST of the code to obfuscate.

Degenerate individual : A degenerate individual an invalid individual, which means that the output
of the corresponding program is different from the original individual. Due to the complexity
created by the multiple applications of the transformations, such individual might appear. This
should not happen with well tested transformations.

Population : A set of individuals
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Mutation:

Individual mutation corresponds to the application of a randomly selected transformation, on a
randomly selected portion of the AST assuming it makes sense for the considered transformation.
This transformation is applied at most n times, with n selected by the user at the beginning of the
process, allowing the limitation of the number of transformations at each step. An history of the
applied transformations and their application context is kept with each individual as it will be used
in the cross-over step. Note that JShadObf always applies a mutation to each individual (i.e. the
mutation probability is 1) thus leading to N new offspring.

Reproduction/Crossover:

Standard crossover operators such as one point crossover, two point crossover, cut and splice or any
combination would have a very high probability of generating a degenerate individual. Indeed in the
case of individual being source code, merging two individuals require cutting in the code at a random
place which will lead in most cases to a degenerated individual. In the case of individual being AST
this would be more feasible, replacing for example an obfuscated function o1(f) by the same initial
function but obfuscated in the second individual o2(f). This however have good chances of leading to
degenerated individual as well due to the different transformations which are changing the scope of the
variables.

Therefore we introduced a safer cross-over operator as follows: two individuals I1 and I2 are
randomly selected, they will act as parents. Then, a new offspring is generated by:

1. selecting randomly a transformation T from the history of mutations applied on I1;

2. applying this transformation on I2 and returning the newly created individual.

The cross-over step is applied for each individual of the population with a probability selected by the
user thus leading to k new offspring (0 ≤ k ≤ N). In total, 2N + k individuals are available after the
evolutionary operators (mutation and cross-over). Among them, N will survive to the next generation
during the selection step.

The selection of already applied transformations in other individuals in the population to perform
the cross-over relies on the fact that if these individuals have been selected in the past it is because they
are better than the non selected one, and this is partly due to type of transformations which have been
applied on them. In Figure 9.7, one individual has been selected in the approximated Pareto and its
transformations have been applied to a 1000 individuals. And this newly created population performs
better that the population of individuals based on a totally random sequence of transformations.

Evaluation:

This stage is performed by computing the fitness functions defined previously. First, the five static
metrics are computed by browsing through the AST representation, then a sub-process is launched to
run the individual with standard input, leading preferably to a deterministic output, and the time
taken by the sub-process to complete its task is the sixth metric. To counter the non-regularity of
the execution time of process, this dynamic metric is computed n times, and the average is taken as
the result of the computation. This dynamic evaluation of the individuals guarantees as well that the
population stays valid according to the definition of obfuscation.

Selection:

The two evolutionary algorithms (NSGA-II and MOEAD) compared in this thesis differ in this stage
and will be explained in the next sections (Section 9.3.1 and Section 9.3.2). The selection uses the
values of the fitness function computed during the evaluation part of the EA.
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As the different metrics used are nearly independent from each other, they have to be taken into
account in the EA, thus JShadObf relies on Multi-Objective Evolutionary Algorithm (MOEA) to
search for solutions of the obfuscating process. MOEA is a subclass of EA which is considering the
optimisation of more than one parameter at the same time. It therefore requires adapted selection
mechanisms, as for a single objective optimisation it is more obvious to designate the best individual,
for multi-objective it is less evident. The set of good individuals in a multi-objective problem is
represented by a Pareto front. This notion comes from the economist Vilfredo Pareto [131] and is the
set of solutions that are not dominated by other solutions. An individual is said to be non-dominated
if it is not dominated by any other individual in the population.

The concept of dominance is the following (in the case of minimization):

Definition 17 (Domination) An individual I with the objectives values fobj(I) is said to be domi-
nated by J if

∀obj ∈ objectives, fobj(J) < fobj(I)

The Algorithm 2 extracts the Pareto front from a population.

Algorithm 2 Pareto front creation.
Pf = ∅;
for i in P do

dominated = False ;
for j in P do

if i ≺ j then // if j is dominating i i.e. has better values for all objectives
dominated = True ;
break ;

end if
end for
if not dominate then

Pf = Pf + i ;
end if

end for

9.3.1 Selection in NSGA-II.

Throughout NSGA-II [71] (one of the reference selection algorithm for MOEAs considered in our initial
design), individuals are selected by taking into account the non-domination criteria and the distance
from one to the others to guarantee a good diversity as well as the leading individuals of the population.

NSGA-II is selecting all the non-dominated solutions of the population, and if the size of the new
population is lower than the maximum size, NSGA-II is selecting again all the non-dominated solutions
of the old population but this time excluding the already selected individuals (see Algorithm 3).

In this Algorithm 3 the extractPf function is similar to the Algorithm 2 except that it removes the
individuals from the Population. The Crowding distance function is computing the distance between
the individuals using the objective functions, and to select the individuals with the longer distance
from the closest one.

9.3.2 Selection in MOEAD.

The MOEAD [109] selection is based on weight vectors depending on the number of objectives used
to weight the objective values of each individual. There are as many vectors as the size of the
population and one individual can be the best solution for more than one vector. This solution is
then associated with the weight vector. The weight vector in 2 dimensions is the following [r, 1− r]
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Algorithm 3 NSGA-II selection algorithm (pseudo-code).

NewPopulation = ∅
while sizeof(NewPopulation) <PopulationMax do

Pf = extractPf(Population); // extract and remove the Pareto front from the population
leftSize = PopulationMax−sizeof(NewPopulation) ;
if sizeof(Pf)< leftSize then // If there is enough space left

NewPopulation = NewPopulation ∩ Pf ; // add the whole next Pareto front to the new population
else

// add only a subset of the Pareto front Pf chosen considering the distance between the individual in Pf
NewPopulation = NewPopulation∩Crowding distance(Pf ,leftSize) ;

end if
end while

with r ∈ [0, 1
pop size−1 ,

2
pop size−1 , ..., 1]. The sum of each vector should be equal to 1. Each vector has

a neighbourhood of size N , which are the N closest other weight vectors (using classical distance
function). To perform the selection, MOEAD picks one weight vector vI and its associated individual
I, then picks another individual J and its associated weight vector vJ either in the neighbourhood of
vI , or in the whole population, and compares them using the following function:

gte(I, v) = max
obj∈objectives

(vobj ∗ |fobj(I)− zobj |)

with zobj corresponding the best objective value within the population:

zobj = min
I∈Population

(fobj(I))

If gte(I, vJ) < gte(J, vJ), then I become the individual associated to vJ . The procedure is reiterated
until the algorithm reaches a certain number of replacements or if the neighbourhood has been browsed
completely. This allows to keep individuals in the population even if dominated by other individuals.
Such selections generate a higher diversity of the population and is performing better with many
objectives.

The cycle of the EA continues until a certain number of generations has been reached, or until the
different fitness values obtained are small enough and fit the user’s requirements. However, for the
individuals to evolve, transformations have to be developed and applied on the population.

9.4 Considered Transformations

The different transformations developed within the framework of JShadObf are applied directly on
the AST, and are not modifying the output of the program. They are simple in order to be easier to
check, but applied many times on different parts of the program, they make the program harder to
read.

To illustrate the different transformations, the JavaScript code in Listing 9.1 will be used.

Listing 9.1: Reference program for presenting the transformations.

1 function fibo(n)
2 {
3 if ( n <= 1 )
4 {
5 return n;
6 }
7 var res = fibo(n−1) + fibo(n−2);
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8 return res;
9 }

10 var res = fibo(10)
11 print(res)

9.4.1 Renaming

This transformation is modifying and changing the name of some identifier randomly (except the
identifiers which are used globally). It is as well possible to avoid the renaming of some names by
specifying them beforehand, indeed some names are used by convention, e.g. the variable arguments

in nodejs reefers to the arguments given to the script through the command line,

Listing 9.2: An instance of the renaming transformation on the sample example.

1 function a93 (a30) {
2 if ((a30 <= 1)){
3 return a30;
4 }
5 var a40 = (a93((a30 − 1)) + a93((a30 − 2))) ;
6 return a40;
7 }
8 var a40 = a93(10);
9 print(a40);

9.4.2 Outlining

The outlining transformation takes a set of statements and outlines them. This creates a new function
either in the same scope or in an higher scope depending on the side effects of the selected set (see
Section 8.3.3).

Listing 9.3: Outlining.

1 function fibo (n) {
2 if ((n <= 1)){
3 return n;
4 }
5 var res = (fibo((n − 1)) + fibo((n − 2))) ;
6 return res;
7 }
8 var res = fibo(10);
9 function dummyvar398 () {

10 print(res) ;
11 return [];
12 }
13 var dummyvar491 = dummyvar398();

9.4.3 Dummy If Insertion

This transformation adds dummy if statements with randomly generated predicate as in Listing 9.4.
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Listing 9.4: Dummy-if insertion.

1 function fibo (n) {
2 if ((n <= 1)){
3 if((860 < ([200,474,598,884,572,581,860,91,230,655,808,150] [6]) )){
4

5 }
6 else{
7

8 }
9 return n;

10 }
11 if ((([421,914,568,577,811,92,353,7,90,963,861,95,332,479,555,645,848,141,828] [0]) == 844)){
12 var res = (fibo((n − 1)) + fibo((n − 2))) ;
13 return res;
14 }
15 else{
16 var res = (fibo((n − 1)) + fibo((n − 2))) ;
17 return res;
18 }
19 }
20 if ((([768,200,244,113,155,337,481,871,291,273,105,37,866,916,686,792,942,38] [16]) != 46)){
21 var res = fibo(10);
22 }
23 else{
24 var res = fibo(10);
25 }
26 print(res) ;

9.4.4 Dummy Variable Insertion

This transformation adds unused variables in the code as in Listing 9.5.

Listing 9.5: Dummy-variables insertion.

1 function fibo (n) {
2 if ((n <= 1)){
3 var dummyvar122;
4 return n;
5 }
6 var res = (fibo((n − 1)) + fibo((n − 2))) ;
7 return res;
8 var dummyvar423;
9 }

10 var res = fibo(10);
11 var dummyvar459;
12 print(res) ;
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9.4.5 Dummy Expression Insertion

The generation of random expressions and their insertion at random position in the code as in
Listing 9.6.

Listing 9.6: Dummy-expressions insertion.

1 function fibo (n) {
2 ’kbnzuwcn icbyqlip xlvfgkmk wvinbmzr’;
3 if ((n <= 1)){
4 ’’ ˆ true;
5 return n;
6 }
7 var res = (fibo((n − 1)) + fibo((n − 2))) ;
8 return res;
9 }

10 [’’,true,true,’tybcfmcx aujvvzpf mqttmldw’,false,true,true,true];
11 var res = fibo(10);
12 print(res) ;

9.4.6 Replace Static Data by Variables

When applicable, the transformation presented in Listing 9.7, replaces static data by variables (see
Section 8.3.1).

Listing 9.7: Replace static data.

1 function fibo (n) {
2 var dummyvar384 = 1;
3 var dummyvar459 = 2;
4 var dummyvar156 = 1;
5 if ((n <= dummyvar384)){
6 return n;
7 }
8 var dummyvar132 = dummyvar156;
9 var res = (fibo((n − dummyvar132)) + fibo((n − dummyvar459)));

10 return res;
11 }
12 var res = fibo(10);
13 print(res) ;

9.4.7 Aggregate Data

This transformation aggregates constant values into a vector as in Listing 9.8 (see Section 8.3.1).

Listing 9.8: Aggregate data.

1 var dummyvar179 = [10];
2 function fibo (n) {
3 var dummyvar184 = [2,1,1];
4 if ((n <= (dummyvar184 [1]))){
5 return n;
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6 }
7 var res = (fibo((n − (dummyvar184 [2]))) + fibo((n − (dummyvar184 [0]))));
8 return res;
9 }

10 var res = fibo((dummyvar179 [0]));
11 print(res) ;

9.4.8 Modifying Control Flow

This transformation replaces a sequential code by a switch structure inside a while loop, with the initial
code cut and randomly distributed into the different cases of the switch structure like in Listing 9.9.

Listing 9.9: Modifying control flow.

1 function fibo (n) {
2 if ((n <= 1)){
3 var dummyvar4;
4 (dummyvar4 = 77074);
5 while ((52563 != dummyvar4)) {
6 switch (dummyvar4) {case 77074 : return n;
7 (dummyvar4 = 52563);
8 break ;}
9 }

10 }
11 var res = (fibo((n − 1)) + fibo((n − 2))) ;
12 return res;
13 }
14 var res = fibo(10);
15 print(res) ;

9.4.9 Changing the List Declarations

In this case, a static list definition is divided into definitions and concatenations of subsets of the initial
list. This Transformation could not have been applied to the reference program as there is no list in it.
Therefore Listing 9.10 presents the transformation applied to Listing 9.8.

Listing 9.10: Changing the list declarations.

1 var dummyvar288 = [2];
2 var dummyvar240 = [1,1];
3 var dummyvar179 = [10];
4 function fibo (n) {
5 var dummyvar184 = dummyvar288.concat(dummyvar240);
6 if ((n <= dummyvar184[1])){
7 return n;
8 }
9 var res = (fibo((n − dummyvar184[2])) + fibo((n − dummyvar184[0])));

10 return res;
11 }
12 var res = fibo(dummyvar179[0]);
13 print(res) ;
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9.4.10 Duplicating Functions

This transformation copies a part of the code of a function and changes the name to an unused one.
This is like dead code insertion, but the inserted code is similar to the existing code as in Listing 9.11.

Listing 9.11: Function duplication.

1 function fibo (n) {
2 if ((n <= 1)){
3 return n;
4 }
5 var res = (fibo((n − 1)) + fibo((n − 2))) ;
6 return res;
7 }
8 function fibo12 (n) {
9 return res;

10 }
11 var res = fibo(10);
12 function fibo11 (n) {
13 return res;
14 }
15 function fibo1 (n) {
16 if ((n <= 1)){
17 return n;
18 }
19 return res;
20 }
21 print(res) ;

9.4.11 Use eval Obfuscation Power

In JavaScript, the eval function is parsing and executing the string given in argument as JavaScript
code. It executess this code within the context of the eval function call. Used with string transforma-
tions, this function makes the code less readable for a human programmer.

This transformation selects a block of code and gives it as a string argument to the evil function
eval as in Listing 9.12.

Listing 9.12: Eval function usage.

1 eval(’function fibo (n) {if((n <= 1)){return n;}var res = (fibo((n - 1)) + fibo((n

- 2)));return res;}’);
2 eval(’var res = fibo(10)’);
3 eval(’print(res)’);

9.4.12 Re-formatting String Constants

For this operation, the string constants are replaced by concatenation of sub strings contained in
variables which have been declared in the same scope of the program (see Section 8.3.1). This
Transformation could not have been applied to the reference program as there is no string in it.
Therefore Listing 9.13 presents the transformation applied to Listing 9.12.
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Listing 9.13: Outlining.

1 var dummyvar673 = "{return’";
2 var dummyvar47 = ’fibo((n - 1)) + fibo((n’;
3 var dummyvar498 = "’tion fib";
4 var dummyvar662 = ’))’;
5 var dummyvar34 = ’n;}var res = (’;
6 var dummyvar166 = ’o (n) {if((n <= 1’;
7 var dummyvar184 = eval((dummyvar498 + dummyvar166 + dummyvar662 + dummyvar673));
8 var dummyvar154 = ’"’;
9 var dummyvar351 = ’ - 2)));return res;}\’"’;

10 var dummyvar135 = eval((dummyvar154 + dummyvar34 + dummyvar47 + dummyvar351));
11 var dummyvar119 = ’ ’;
12 var dummyvar67 = "’func";
13 eval(eval((dummyvar67 + dummyvar184 + dummyvar119 + dummyvar135)));
14 eval(’var res = fibo(10)’);
15 eval(’print(res)’);

These transformations have been tested on a test-suite of JavaScript programs, to ensure that
the first requirement of the definition of a obfuscation holds, i.e. keeping the functionality of the
program intact. Because transformations applied on the source code can interfere between themselves,
JShadObf uses very simple transformations tested on multiple JavaScript programs as well as many
different combinations to ensure their validity. The composition of the simple transformations developed
in this work is commutative because they operate independently on the individuals. However, as
individuals in JShadObf records any applied transformations, it allows to take into account the
case of non-commutative transformations, i.e., the application on an individual I of Obfa forbids a
future application of Obfb or on the contrary Obfb requires beforehand the application of Obfa on I.
This can indeed appear when dealing with more complex transformations where the set of applicable
transformations depends on the previous sequence of modifications [89].

9.5 Experiments

We have validated our approach over two concrete examples: one pedagogical (a classical matrix
multiplication program matmul.js which is outputting the result of the multiplication of two matrix)
and one more serious on the most popular and widely used JavaScript library, named JQuery [30]. For
the Matrix multiplication program the MOEA used a population of a size 1000 individuals, performing
over 50 generations. The size of the population for the JQuery framework is 100 individuals which is
smaller due to the size of the initial program which is approximately 8000 lines of code (160ko without
comments), and the number of generations as well 50. JShadObf can as well be run with as target
not the number of generation but rather some values for the objective functions. This however could
lead to infinite computation if the objectives are not reachable.

9.5.1 Experiments on a Matrix Multiplication Program

The graphs in Figure 9.2, Figure 9.5.1 and Figure 9.5.1 illustrate the relation between two of the obfus-
cation metrics (µ1 and µ2, µ1 and µ6, µ4 and µ6) every tenth generation for the Matrix multiplication
program in a 2D front view. The graphs in Figure 9.8 are showing the approximated Pareto front for
the 70th generation of the two different algorithms, i.e. NSGA-II and MOEAD.

The Pareto fronts are easily distinguishable on the different graphs in Figure 9.5.1, Figure 9.5.1
and Figure 9.2, they have different shapes as they are projections of the results of a MOEA algorithm
with six objectives. On the different graphs some alignment of the individuals may appear (like when
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Figure 9.2: 2D Pareto front (µ1 and µ2) obtained for the obfuscation of a Matrix Multiplication
program by JShadObf. With µx actually being µxinit/µx.
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Figure 9.3: 2D Pareto front (µ1 and µ6) obtained for the obfuscation of a Matrix Multiplication
program by JShadObf. With µ1 actually being µ1init/µ1 and µ6 actually being µe/µeinit .

comparing µ2 and µ6, or when evaluating µ1 and µ2), this is explained by the way the fitness function
is computed, indeed it is often the inverse of an integer value.

The Figure 9.5 represents the mean values meanx(nth) of the fitness function fitnessx of a
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Figure 9.5: Evolution of the mean values of the different metrics (the lower the better) used in the
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generation nth of size m which is computed as follows:

meanx(nth) =

∑m
i=1 fitnessx(In

th

i )

m

These mean values are then normalised with the mean values of the first generation to be able to
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represent them on the same graphic:

fx(nth) =
meanx(nth)

fitnessx(I1st)

The function fx is computed with an argument, i.e. the generation’s number nth, for all the six metrics
µx selected. One can then see the evolution of mean of the population regarding the selected metrics.
On one of the individuals of the last generation, which has been chosen a priori, the metrics presented
in the table 9.2 has been computed to show the evolution from the initial program and to compare
with other obfuscator / minifier.

9.5.2 Experiments on JQuery

For the second experiment, the decision to apply JShadObf on a more serious application was made.
For this reason, one of the most popular and widely used JavaScript library, i.e. JQuery [30], has been
selected, in the hope that it can illustrate the robustness and the usability of the technique presented
here. JQuery is a fast and concise JavaScript Library that simplifies HTML document traversing,
event handling, animating, and Asynchronous JavaScript and XML (AJAX) interactions for rapid
web development. JQuery in its development version is distributed with a test-suite verifying, in the
version used, 3884 assertions.

We use this test suite as a way to demonstrate the correct behaviour or the library, knowing that
the original non-obfuscated version of jquery.js fails on 7 assertions over the 3884. The figure 9.6
depicts the evaluation of the different obfuscators/minifiers for the JQuery framework against this test
suite. It is worth to notice that when the considered framework is able to parse completely the library
and thus to generate an obfuscated version, we observe the same behaviour i.e. 7 assertions failed.
Obviously, it would have been very unlikely to decrease this value as all frameworks derive the original
code. At least it proves that the obfuscated/minified versions do have the same observable behaviour.

9.5.3 Comparison of MOEA with random selections of transformations

In order to compare JShadObf with a random selection of transformations applied on the matrix
multiplication program, one individual has been selected from the approximated Pareto front of the
population created with the MOEAD algorithm. This individual had 48 different transformations
applied by JShadObf. Two different new populations have been created from some of this individual
information, first a population containing 1000 individuals on which have been applied 48 randomly
chosen transformations and a second population composed of 1000 individuals on which have been
applied the same 48 transformations, in the same order. But as there is a part of randomness in each
transformation, the results of this last population will be different from the selected individual, e.g.
when applying the outlining transformation on two same individuals JShadObf might chose to outline
one part of the program in the first case and another part of the program in the second case. Therefore
the same sequence of transformations will give different individuals.

The results are presented in Figure 9.7 and show that the population composed of individuals
on which 48 randomly chosen transformations have been applied are the farthest away from the
approximated Pareto front. The second population created from the same transformations used in
the selected individual came after, and finally the populations created with NSGA-II algorithm and
the closest to the approximated Pareto front i.e. the population created with the MOEAD algorithm.
This shows that the MOEAs perform better than the random selection of transformations and better
as well than a preselected sequence of transformations that worked well on one individual, i.e. in the
approximated Pareto front.

One can note as well that this preselected sequence perform better than the totally random sequence,
therefore preforming the crossover using one transformation from one individual combined with the
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Figure 9.6: Experimental results obtained during the obfuscation of the jquery.js program by
JShadObf. (a), (b): Set of 2D Pareto fronts approximation for the JQuery program using NSGA-II.

AST of another individual to generate a new offspring is a possibility that allows the population to
evolve faster to the Pareto front.
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9.5.4 Comparison MOEAD / NSGA-II

As shown by the Figure 9.8 the MOEAD has better results than NSGA-II, which means that the
approximated Pareto front of MOEAD is closer to 0. MOEAD has as well a better repartition of its
individuals contained in the Pareto front, when NSGA-II’s Pareto front is less distributed. This means
that the variety in the population is higher with MOEAD. MOEAD is indeed known to perform better
in case of many objectives (more than 2) due to the more distributed repartition of its population
provoked by the ponderation of the objectives using the weight vectors.

The table 9.2 shows the values of the metrics computed on individuals after application of different
obfuscators/minifiers. This highlights the good result of JShadObf. We used two techniques to select
individuals in the case of JShadObf, both of them are picking an individual in the approximated
Pareto front. The first one (1 med) tries to find the individual which is the closest to the median
values of every individual which is in the Pareto front, allowing to have a good trade off between all
the objectives. The second one (2 eucl dist) is taking the distance of the first 5 objectives to the
vector null, then takes the n smallest one, and from this set, selects the fastest individual.

9.5.5 Summary of the Results

The table 9.2 summarised the results obtained with JShadObf and other obfuscators available in the
literature.

The table 9.1 shows the coefficients of correlation of the different metrics computed for the 200
individuals of the 40 first generations on the JQuery program. The white cells (with numbers superior
to 0.75) are reflecting highly correlated values. This shows that for the selected transformations the
µ1, µ2 and µ3 are correlated between themselves and the µ4 and µ5 are as well correlated between
themselves. This however depends on the selected transformations and might not occur when selecting
a different set of modifications. As an illustration of the obfuscation power of JShadobf, we proposed a
set of selected output individuals for the JQuery library and matmul on the website of JShadObf1.

µ1 µ2 µ3 µ4 µ5 µe

µ1 1.0000000 0.9585020 0.8961660 0.5712278 0.3797580 -0.5521950
µ2 1.0000000 0.8407987 0.4467864 0.2861682 -0.4422623
µ3 1.0000000 0.5999287 0.3358829 -0.5806230
µ4 1.0000000 0.7937583 -0.5900691
µ5 1.0000000 -0.4642683
µe 1.0000000

Table 9.1: Correlation of the metrics for the 20 first generations of the JQuery program.

9.5.6 Comparison of JShadObf with other Obfuscators/Minifiers

We compared the results obtained with the JShadObf program with other existing obfuscators/mini-
fiers. The comparison uses the metrics already shown in the Section 8.2. The results shown in table 9.2
reveal that JShadObf program performs better than the others on the selected metric. Indeed,
JShadObf focuses on these metrics and uses EA to increase these values, whereas the others do not
target these specific metrics. The transformations used by UglifyJS are not inserting dead code, but
rather modifying the different expressions and even sometimes removing unreachable code. Closure
Compiler is as well reducing the source code and not only the length but the number of expressions,
indeed this is shown by the values in the two tables.

1http://jshadobf.gforge.uni.lu/
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Figure 9.8: Set of 2D Pareto fronts approximation obtained for the obfuscation of a Matrix Multiplication
program by JShadObf using NSGA-II (green) and MOEAD (red) at the 70th generation.
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matmul.js µ1 µ2 µ3 µ4 µ5 µe/µe(ref)

Original sources 254 10 4 84 51 1

UglifyJS [20] 252 8 4 84 51 1.0024
YUI compressor [23] 254 10 4 84 51 1.0086

javascriptobfuscator [7] 318 10 4 97 35 1.6055
Closure Compiler [3] 243 8 4 81 51 0.992706

Jasob [6] 254 10 4 84 51 1.0052
ObfuscateJS [9] 254 10 4 84 51 1.0058

Packer [12] 127 4 3 40 91 1.7918
JShadObf NSGA-II (med) 3364 117 11 379 237 5.51

JShadObf NSGA-II (eucl dist) 10865 334 16 1107 589 6.23
JShadObf MOEAD (med) 35017 1394 16 4049 2234 16.02

JShadObf MOEAD (eucl dist) 13754 596 42 895 330 11.91

jquery.js µ1 µ2 µ3 µ4 µ5 µe/µe(ref)

Original sources 18169 673 9 5519 16511 1

YUI compressor [23] – – – – – not parsed
ObfuscateJS [9] – – – – – not parsed

javascriptobfuscator [7] – – – – – not parsed
UglifyJS [20] 17990 359 9 5318 18673 1.009

Jasob [6] 18005 669 10 5463 16405 1.0074
Packer [12] 127 4 3 40 91 1.008

Closure Compiler [3] 17677 374 8 5486 28051 1.000
JShadObf 88843 7030 15 7410 20735 1.013

Table 9.2: Summary of the obtained results. Green cells indicate the best results so far.

9.6 Conclusion

In this chapter, we have presented JShadObf, a source to source JavaScript obfuscator based on
Multi-Objective Evolutionary Algorithms (MOEAs). Our proposed framework optimizes simultaneously
six metrics – five evaluating the obfuscation capacity of the population being evolved and one quantifying
the performance of each individual solution by measuring the execution time on a reference computing
machine. Experimental results on two concrete JavaScript applications have been provided. JShadObf
has been first tested on a simple pedagogical example, namely a matrix multiplication function where
it outperformed the few existing other tools. We then decided to validate our approach on one of the
most popular and widely used JavaScript library: JQuery. When some of the existing tools were not
even able to parse successfully the library (Table 9.2), JShadObf managed to parse it completely
and to generate the different obfuscated versions to effectively explore and measure the trade-off that
might be selected among the six objectives analysed.

Of course, this work opens many perspectives. We are currently investigating the implementation
of additional transformations (such as the loop unrolling, the inlining of functions, etc) but also other
metrics. In particular, we are investigating ways to adapt the data structure complexity to the case of
the JavaScript programming language, and also ways to take into account the string length and the
number of calls to the eval function which most of the time decreases the readability of a program,
like in [78] because the complexity added by packer [12] cannot be measured by the selected metrics.

9.6.1 Application to Other Languages

Similar method to obfuscate other languages such as C code has been studied [52] and resulted into a
prototype named ShadObf using the Automatic Parallelizer and Code Transformation Framework
(Paralllisation Interprocdurale de Programme Scientifiques) (PIPS) parallelizer [98] as a front-end to
parse C code and to apply transformations. Being a source to source optimizer, PIPS already have
many transformations that one can apply on the C code.

The main issue of the applications of JShadObf’s method to other languages is the dependence
of the transformations on the language. All the implemented transformations have to be modified
and tested to fit the new language. A parser generating a usable parser tree of the program is as well
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needed to apply the transformations and to compute the different metrics.
However the MOEA implementations can be reused and are independent from the language selected.
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This Chapter recalls the context of the dissertation, summarizes the different contributions developed
during the thesis and details the challenges and perspectives opened by this work.

10.1 Summary

The CC paradigms, based on existing techniques and technologies, express the user’s need to have
available and flexible services while allowing companies to develop a pay-for-use model. As presented
in Chapter 2, there are three main types of Clouds: Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS) and Software-as-a-Service (SaaS), all three targeting a different type of user. While the
first one (IaaS) let a total control over the VM, the second one (PaaS) provides a more restricted access
to the resource and the last one (SaaS) only allows the user to perform some limited operations. These
three types of services have a different degree of resource pooling. Indeed in IaaS the CC provider often
guarantees at least the access to a full CPU all the time, therefore the number of VMs running on a
machine is bounded. In SaaS the provider has to guarantee a service rather than resources, letting the
provider more freedom to pool the different resources and to optimise his infrastructure, procedures
and programs. However, the externalisation of ICT services to CC providers requires a high level of
security to convince users and organisations fearing, understandably, data losses and disclosure of
information [59] to migrate their data and applications.

In this context, this PhD dissertation focuses on increasing security on CC platforms from the
user’s point of view by investigating and designing novel mechanisms to cover the following domains:

• Integrity and confidentiality of Infrastructure-as-a-Service (IaaS) infrastructures
through the proposed CertiCloud framework, which is relying on a security based on hardware
component, namely TPMs, and verified security protocols (see Part II) to provide guarantees
on programs and data running in a virtualized environment, either before, during or after a
deployment on the CC platform.

• Software protection on Software-as-a-Service (SaaS) and Platform-as-a-Service (PaaS)
architectures, using the proposed JShadObf framework (see Part III).

This thesis weaves together multiple domains of computer science, starting from hardware compo-
nent to parsing techniques, obfuscation techniques, cryptography, protocol verification, evolutionary
algorithm, JavaScript and CC middlewares.

113
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The main contribution of this thesis is the development of two novel frameworks: CertiCloud and
JShadObf as well as their implementations.

10.1.1 Contribution to IaaS Platform Security (CertiCloud)

The passive hardware cryptographic co-processor, namely TPM, which is present on the motherboard
of many computers and servers can be used not only to increase the security of the user’s machines but
also to certify distant servers to ensure their security.

CertiCloud was developed to increase the integrity of users’ VMs in IaaS Cloud Computing
platform and to provide a verification method of the cloud resource (see Chapter 7). Based on TPM
hardware security developed in the Trusted Computing Group (TCG), the verifications are done using
two specially developed protocols: TCRR and VerifyMyVM. While the first one asserts the integrity
of a remote resource and permits to exchange a private symmetric key, the second authorizes the
user to detect trustfully and on demand any tampering attempt on its running VM. These protocols
being key components in the proposed framework, we take very seriously their analysis against known
cryptanalytic attacks. This is testified by their successful validation by AVISPA and Scyther, two
reference tools for the automatic verification of security protocols. CertiCloud relying on the above
protocols, provides secure storage of users’ environments and their safe deployment onto a virtualisation
framework. To work, this protection needs the presence of a TPM on each resource of the CC provider.

An implementation based on Nimbus [126] has been created to validate the approach and to perform
experiments on the detection of modifications within the VM. This implementation is described in
Section 7.8 and proposes to modify lightly one of Nimbus’ scripts to integrate a hook allowing
CertiCloud to be launched on the nodes during the deployment of a VM. The implementation also
includes servers to communicate between the user and the machine which has been selected by the
middleware, i.e. Nimbus, to run the VM of the user. All these additions are almost independent of
Nimbus to ease the integration of CertiCloud to other middlewares.

The TPM handling was done using the Java library TPM/J [141] allowing direct communication
with the component and providing with all the available standard functions from the specifications [150].

Conclusion

In conclusion, an IaaS protection has been developed increasing the security of the virtual environment
of the user and ensuring the safety of the host resource. The experiments using the CertiCloud
implementation in the Nimbus framework proved experimentally the feasibility of the concepts behind
CertiCloud and allowed a verification of the anomaly detection.

This work can be used by CC provider that wish to propose a higher degree of security to their
clients. The user of these platforms augmented with CertiCloud will be granted with a verification
capability of both their VM and the resource’s provider machine. This work lead to publication in the
following conferences [48], and journal [49].

10.1.2 Contribution to PaaS and SaaS Platforms Security (JShadObf)

With the democratisation of server-side JavaScript using nodejs [68], the obfuscation of the JavaScript
code running on a PaaS or even on a SaaS Cloud Computing platforms allows to defend the code of
the user from a reverse engineer, for a least some time.

JShadObf is a JavaScript Obfuscator measuring different aspects of a code such as execution
time, size of the code and number of predicates to apply transformations, making the source code
unintelligible (see Chapter 9). The first contribution, that has been developed for JShadObf, is a
complete JavaScript ANTLR [132] grammar (see Section D.1) which is able to generate an AST
for any JavaScript code. For instance, the widely used JQuery library which is used by numerous
websites, can be parsed using this grammar.
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The second contribution is the JShadObf framework itself, providing all the tools needed to
execute the Evolutionary Algorithm implemented (MOEAD [109] and NSGA-II [71]) for the framework.
The transformations presented in Chapter 9 have been implemented and tested multiple times using
vast number of possible combinations of transformations applied on different JavaScript programs
together with unittests. This procedure ensures that the transformations respect the main objective of
obfuscation being that the observable behaviour of the running obfuscated program should be the same
as the original program. The obfuscation criteria is based on five well-known metrics, coming from
Software Engineering, to evaluate the opacity of the source code. Together with the time of execution,
these metrics are optimized simultaneously thanks to the different Multi-Objective Evolutionary
Algorithms (MOEAs) developed within JShadObf.

Finally JShadObf is able to produce many obfuscated versions of the same initial program with
different values for the obfuscation metrics and the time of execution. The user only has to choose one
or more versions depending on his requirements.

Many experiments have been done to validate the process and to compare the efficiency of the
developed EA algorithms, showing that MOEAD performs better than NSGA-II in a many-objectives
problem. They allow to verify that the composition of the developed transformations lead, most of the
time, to valid obfuscated code.

Conclusion

In conclusion, a software protection has been developed to increase the security in SaaS and PaaS
platforms. Prior to the transmission of their programs to the Cloud, the users will be able, using
JShadObf, to obfuscate their program preventing the disclosure of information contained within the
source code. JShadObf can also be used to obfuscate any JavaScript code distributed by a classical
client/server web application, increasing the scope of this framework.

This work lead to publication in [50]. A C version of the obfuscator based on the same principles,
developed using PIPS [98] source to source optimiser, modified to include the computation of the
metrics and the EAs, has been studied and published in [51].

10.1.3 General Conclusion

This dissertation tries to tackle the problem of security in CC platforms from a user’s point of view in
order to increase user’s confidence in the security of the Cloud. Users should not only believe that
the resources they use are safe, they should also be able to verify it themselves. They should as well
protect the information they are storing on these platforms.

In order to achieve these goals, two solutions have been studied to provide users of different types
of Cloud with higher security. CertiCloud focuses on IaaS platform while JShadObf protect users’
code to allow an execution on PaaS or SaaS platforms.

In case of an IaaS usage, both solutions can be used in parallel, indeed JavaScript language can
be used to develop obfuscated server side applications with JShadObf, running on the user’s VM
deployed in a IaaS CC platform compatible with CertiCloud to ensure the user that neither the
physical node nor his VM has been compromised.

10.2 Perspectives and future work

In this thesis two methodologies to increase the security have been explored and different tools to prove
the feasibility of the developed concept have been implemented.

Concerning CertiCloud, a more advanced prototype considering the very promising middleware
platform OpenStack [11] would allow to verify the scalability of the approach. OpenStack is as well one
of the most promising open-source solutions for Cloud middleware, it gathers a huge number of well
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known companies for its development. It allows to drive not only open-source virtualisation software
but also proprietary ones such as VMware [21] Virtual Machine Manager (VMM).

In this context new migration protocols need to be developed in order to tackle the migration
of VMs in secure way while allowing the user to take part in the verification procedure. A more
user-friendly interface to manage the CertiCloud framework is mandatory as the focus is on the
user’s point of view. This interface would allow the user to perform all the verification actions by
himself (see Chapter 7), as well as other actions such as generation of VMIs, secure migrations of VMs,
backup of VMs, etc.

The perspectives for JShadObf are as well numerous. The environment has been already developed
for testing transformations and for applying them using MOEAs. It is now possible to imagine and
implement new transformations including harder opaque predicates or encryption on the full source
code or only part of it. New metrics to measure the opacity of these new transformations would as
well be necessary. This would allow a better diversity in both the obfuscated code and measurement,
leading to better obfuscated solutions.

Another possibility would be to develop a transformation encrypting parts or full programs using a
key that would be transmitted during the execution of the program for on-the-fly decryption. This key
would be sent only on the condition that the machine on which the VMs are running has been certified
using CertiCloud. The exchange of the key would be protected using the session key exchanged
during the CertiCloud’s TCRR protocol.

Cloud Computing (CC) is a big step in the ICT domain, comparable to the advent of Internet. It
is an easy, flexible and scalable way of providing services to users ranging from email inbox to VM
dedicated to HPC. CC is still a recent concept and the increase in the number of research projects both
from the industry and the academia suggests a big interest in making CC more flexible, reliable and
secure. However, not all ICT problems can find a solution in the Cloud, especially if the requirements of
the user do not fit the services offered by the Cloud, such as very high level of security. As the CDW [59]
tracking poll shows, the main reason why organizations are reluctant to use Cloud Computing (CC)
services is security concerns.

Therefore the main challenge for Cloud Computing (CC) providers is not only to increase the
security of their infrastructures but also to grant the user mechanisms allowing him to verify the
security of the platform. This is a crucial point, indeed the user should be able to check the state of
the machines of the CC provider, for him to verify himself that the environment, where his programs
are running, is indeed safe. If the CC services were more secure, part of the organizations reluctant
to use them due to security concerns or legal issues would certainly step out and plunge into the CC
paradigm.
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[50] Benôıt Bertholon, Sébastien Varrette, and Pascal Bouvry. Jshadobf: A javascript obfuscator based on
multi-objective optimization algorithms. In Network and System Security, pages 336–349. Springer, 2013.
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[53] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak sponge function family
main document. Submission to NIST (Round 2), 3, 2009.

[54] Nir Bitansky and Ran Canetti. On strong simulation and composable point obfuscation. In Advances in
Cryptology–CRYPTO 2010, pages 520–537. Springer, 2010.

[55] Norris Boyd et al. Rhino: Javascript for java. Mozilla Foundation, 2007.

[56] Hyun-Chul Jung Byung-Ik Kim, Chae-Tae Im. Suspicious malicious web site detection with strength
analysis of a javascript obfuscation. Intl. J. of Advanced Science and Technology, 26, January 2011.

[57] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In
Advances in CryptologyCRYPTO’97, pages 455–469. Springer, 1997.

[58] Ran Canetti, Guy N Rothblum, and Mayank Varia. Obfuscation of hyperplane membership. In Theory of
Cryptography, pages 72–89. Springer, 2010.

[59] CDW. Cdw 2011 cloud computing tracking poll, 2011.

[60] David Champagne and Ruby B Lee. Scalable architectural support for trusted software. In High
Performance Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on, pages 1–12.
IEEE, 2010.

[61] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design. 1994.

[62] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfuscation, Watermarking, and Tamper-
proofing for Software Protection. Addison-Wesley Professional, 1st edition, 2009.

[63] Christian Collberg, Clark Thomborson, and Douglas Low. A taxon-
omy of obfuscating transformations. Technical Report 148, July 1997.
http://www.cs.auckland.ac.nz/∼collberg/Research/Publications/CollbergThomborsonLow97a/index.html.

[64] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 184–196. ACM, 1998.

[65] Don Coppersmith. The data encryption standard (des) and its strength against attacks. IBM journal of
research and development, 38(3):243–250, 1994.

[66] C.J.F. Cremers. Scyther - Semantics and Verification of Security Protocols. Ph.D., Eindhoven Univ. of
Technology, 2006.

[67] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced encryption standard.
Springer, 2002.

[68] Ryan Lienhart Dahl. nodejs: a platform built on chrome’s javascript runtime for easily building fast,
scalable network applications. http://www.nodejs.org/, 2009–2013.

http://www.nodejs.org/


120 REFERENCES

[69] Chris I. Dalton, David Plaquin, Wolfgang Weidner, Dirk Kuhlmann, Boris Balacheff, and Richard Brown.
Trusted virtual platforms: a key enabler for converged client devices. SIGOPS Oper. Syst. Rev., 43(1):36–43,
2009.

[70] C. Darwin. The Origin of Species. John Murray, 1859.

[71] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast elitist multiobjective genetic
algorithm : Nsga-ii. IEEE Transactions on Evolutionary Computation, Vol 6, No 2, 2002.

[72] Mathieu Desnoyers and M Dagenais. Os tracing for hardware, driver and binary reverse engineering in
linux. CodeBreakers Journal, 1(2), 2006.

[73] Whitfield Diffie and Martin E Hellman. Special feature exhaustive cryptanalysis of the nbs data encryption
standard. Computer, 10(6):74–84, 1977.

[74] Danny Dolev and Andrew C. Yao. On the security of public key protocols. In 22nd Annual Symposium
on Foundations of Computer Science, pages 350–357, 1981.

[75] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). Request for Comments (RFC) 3174,
Network Working Group, November 2001.

[76] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
Information Theory, IEEE Transactions on, 31(4):469–472, 1985.

[77] D Nurmi et al. and R Wolski, C Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia Youseff, and
Dmitrii Zagorodnov. A technical report on an elastic utility computing architecture linking your programs
to useful systems. Technical report, 08/2008 2008.

[78] Ben Feinstein and Daniel Peck. Caffeine monkey: Automated collection, detection and analysis of malicious
javascript. In DEFCON 15, 2007.

[79] David Flanagan. JavaScript: The Definitive Guide Activate Your Web Pages. O’Reilly Media, Inc., 6th
edition, 2011.

[80] Forbes. Cloud computing forecasts, Sept 2013. http://www.forbes.com/sites/louiscolumbus/2013/
11/16/roundup-of-cloud-computing-forecasts-update-2013/.

[81] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International J. of
Supercomputer Applications and High Performance Computing, 11(2):115–128, Summer 1997.

[82] Simson Garfinkel. PGP: pretty good privacy. O’reilly, 1995.

[83] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A virtual machine-based
platform for trusted computing. SIGOPS Oper. Syst. Rev., 37(5):193–206, October 2003.

[84] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09: Proceedings of the 41st
annual ACM symposium on Theory of computing, pages 169–178, New York, NY, USA, 2009. ACM.

[85] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary input. In
Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on, pages 553–562.
IEEE, 2005.

[86] Michal Peeters Guido Bertoni, Joan Daemen and Gilles Van Assche. The keccak sponge function family,
2013. http://keccak.noekeon.org/.

[87] M. H. Halstead. Elements of software science. 1977.

[88] Warren A. Harrison and Kenneth I. Magel. A complexity measure based on nesting level. SIGPLAN
Notices, 16(3):63-74, 1981.

[89] Kelly Heffner and Christian Collberg. The obfuscation executive. In Information Security, pages 428–440.
Springer, 2004.

http://www.forbes.com/sites/louiscolumbus/2013/11/16/roundup-of-cloud-computing-forecasts-update-2013/
http://www.forbes.com/sites/louiscolumbus/2013/11/16/roundup-of-cloud-computing-forecasts-update-2013/
http://keccak.noekeon.org/


REFERENCES 121

[90] Sallie Henry and Dennis Kafura. Software structure metrics based on information flow. IEEE Transactions
on Software Engineering, Vol SE-7 , No 5, 1981.

[91] Grace Hopper. Cobol: Common business-oriented language.

[92] Google Inc. Gmail. https://www.gmail.com/.

[93] Google Inc. Google apps. https://www.google.com/apps.

[94] Google Inc. Google documents. http://docs.google.com/.

[95] Intel. Intel anti-theft technology. http://www.intel.com/content/dam/doc/product-brief/

mobile-computing-protect-laptops-and-data-with-intel-anti-theft-technology-brief.pdf.

[96] E. C. M. A. International. ECMA-262: ECMAScript Language Specification. ECMA (European Association
for Standardizing Information and Communication Systems), Geneva, Switzerland, third edition, December
1999.

[97] United Internet. 1 and 1, 1998–.
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Acronyms

AES Advance Encryption Standard

AIK Attestation identity key

AJAX Asynchronous JavaScript and XML

ALU Arithmetic logic unit

AMI Amazon Machine Image

ANTLR ANother Tool for Language Recognition

API Application Programming Interface

AST Abstract Syntax Tree

BNF Backus-Naur Form

CA Certificate Authority

CBC Cipher Block Chaining

CC Cloud Computing

CFB Cipher FeedBack

CFG Context Free Grammar

CFL Context Free Language

CL-Atse Constraint-Logic-based Attack Searcher

CPU Central Process Unit

CRC Cyclic Redundancy Check

CRTM Core Root of Trust for Measurement

CSC Computer Science and Communications

CTR CounTeR

DDoS Distributed Denial of Service

DES Data Encryption Standard

DFA Deterministic finite automata

DFT Discrete Fourier Transform

DoS Denial of Service

EA Evolutionary Algorithm

EBNF Extended BNF

EBS Elastic Block Store

ECB Electronic CodeBook

ECMA European Computer Manufacturer’s Association

EC Elliptic Curve

EK Endorsement Key

ET Expression Tree

FS File System

GA Genetic Algorithm

GEP Gene Expression Programming

GP Genetic Programming

GRUB GRand Unified Bootloader

HLPSL High Level Protocols Specification Language

HMAC Hash Message Authentication Code
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HPC High Performance Computing

HaaS Hardware as a Service

ICT Information and Communications Technology

IDS Intrusion Detection System

IF Intermediate Format

IRP Integrity Reporting Protocol

IaaS Infrastructure-as-a-Service

JVM Java Virtual Machine

KVM Kernel-based Virtual Machine

LFSR Linear Feedback Shift Register

MBF Mean Best Fitness

MBR Master Boot Record

MD5 Message-Digest Algorithm 5

MITM Man In The Middle

MOEA Multi-Objective Evolutionary Algorithm

MPP Massively Parallel Processor

NFA Non-deterministic finite automata

NFS Network File System

NIST National Institute of Standards and Technology

NSA National Security Agency

OCCI Open Cloud Computing Interface

OFB Output FeedBack

OFMC On-the-fly Model-Checker

OO Object Oriented

OS Operating System

PCC Proof Carrying Code

PCR Platform Configuration Register

PGP Pretty Good Privacy

PIPS Automatic Parallelizer and Code Transformation Framework (Paralllisation Interprocdurale de
Programme Scientifiques)

PKI Public-Key Infrastructure

PRNG [Pseudo]-Random Number Generator

PaaS Platform-as-a-Service

QoS Quality of Service

RAM Random Access Memory

RSA Rivest Shamir Adleman

RTM Root of Trust for Measurement

RTR Root of Trust for Reporting

RTS Root of Trust for Storage

SAT-MC SAT-based Model-Checker

SHA Secure Hash Algorithm

SLA Service Level Agreement

SRK Storage Root Key

SaaS Software-as-a-Service

TA4SP Tree Automata based Automatic Approximations for the Analysis of Security Protocols

TBB Trusted Building Blocks

TCCP Trusted Cloud Computing Platform
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TCG Trusted Computing Group

TCRR TPM-based Certification of a Remote Resource

TC Trusted Computing

TOCTOU Time Of Check Time Of Use

TPM Trusted Platform Module

UL University of Luxembourg

VLAN Virtual Local Area Network

VMI Virtual Machine Image

VMM Virtual Machine Manager

VM Virtual Machine
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The different manipulations of code performed by JShadObf in Chapter 9 require a tree based
representation of the source code. Indeed working on a tree is easier to keep the coherency of the code
and transformations only need to modify its structure to change the code, this relieve the obfuscation
transformations of syntactical check.

A tree representation of the code is often generated by compilers and interpretors representing a
fraction of their work called parsing techniques. This chapter will briefly presents these techniques
which have been used for the generation of tree representation of JavaScript code used in JShadObf.

A.1 Compilers

In this section we will see first what is a language processor and more specifically how compilers –
which are one type of language processor – work and can be used for software protection in addition to
the hardware protections seen previously.

A.1.1 Languages Processors

A language processor is a program which is reading a source code and data to perform certain actions.
In the case of a compiler the source code is read and translated into a program (Figure A.1). The
created program can then be run with the data as input and generate the expected output.
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source program

Compiler

target program

input Target Program output

Figure A.1: Compilation and execution of the target program.

The other alternative is to interpret the source code. This is the job of an interpreter which takes
as input the source code and the input data and produces the output by interpreting the source code
as in Figure A.2.

source program

interpreter

input

output

Figure A.2: Interpret the source code with the input data.

The combination of the two methods is as well possible, e.g. Java source code is compiled into
bytecode which is a language close to the machine code, then the Java Virtual Machine (JVM) is
interpreting the bytecode previously generated. This allows portable programs as the bytecode is not
dependent on architecture.

A.1.2 Compiler Phases

The compilation of the source code of a program is a complex process, such that it has been divided
into sub-problems to decrease the difficulty of such a task. The Figure A.3 extracted from [34] exposes
the different phases of a program’s compilation, which are now reviewed:

1. The lexical analyser takes a character stream, i.e. the source code and extract the different token
(or lexemes) from it using regular expression (see Section A.3).

2. The syntax analyser generates a tree from the token stream (see Section A.4).

3. The semantic analyser is using the tree structure of the syntax tree to check the semantic
consistency. In typed languages the type checking is part of the semantic analysis.

4. The intermediate code generator generates an intermediate language from the syntax tree. This
language should have two important following properties: it should be easy to produce and to
translate to machine code e.g. translating expressions such as:
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character stream

Lexical Analyzer

token stream

Syntax Analyzer

syntax tree

Semantic Analyzer

syntax tree

Intermediate Code Generator

Machine-Independent Code Optimizer

intermediate representation

Code Generator

target-machine code

Machine-Dependent Code Optimizer

target-machine code

intermediate representation

Figure A.3: Phases of a compiler.

t1 = float(10)

id = a + b * float(10); into t2 = b * t1

t3 = a + t2

id = t3

5. The machine-independent code optimiser will optimise the intermediate language code by, for
example, removing unused or unreachable parts of the code, removing intermediaries variables,
calling functions which do not have side effects. The precedent code would be converted from:

t1 = float(10)

t2 = b * t1 into t2 = b * 10.0

t3 = a + t2 id = a + t2

id = t3

6. The code generator which will translate the intermediate language into machine code.
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7. The machine dependent code optimiser will then perform all the optimisation related to the
machine architecture.

A.2 Parsing Techniques

Programming language is one of the most important basic block for computer scientist. It is used to
describe the computation and data operation the computer has to perform. Usually a program source
code is not written by the programmer directly into machine code, therefore not directly readable by
a computer. Indeed machine code is not a human friendly language, it is assembly instructions and
data given to the processor under the form of binary code, i.e. ones and zeros. In the early 1950’s
programmers used mnemonic representations of machine instructions instead of their equivalent in
hexadecimal. This was followed by the use of macro instructions so that frequently used code would
not need to be rewritten.

In the late 1950’s, higher-level languages came with the development of Fortran [42], Cobol [91]
and Lisp [116], but together with these languages, more advanced parsing and compiling techniques
were needed to translate a source code from a human readable language to a machine readable format.

To parse languages both lexer (see Section A.3) and parser (see Section A.4) are used, as in
Figure A.4, allowing to divide the work. The lexer is responsible for token recognition using simple
techniques such as regular expressions, and the parser implements more advanced techniques based on
grammar to generate a parse tree.

Lexical
analyser

source
program

Parser

token
stream Rest of 

front-end

parse
tree

Figure A.4: Lexer and parser in compiler model.

A.3 Lexical Analysis

A source code can be seen as a character stream, for example considering the following instructions:

var a = 13;

print(a);

They are read by the lexical analyser as a character stream of the following characters:
’v’ ’a’ ’r’ ’ ’ ’a’ ’ ’ ’ ’ ’=’ ’ ’ ’1’ ’3’ ’;’ ’

n’ ’p’ ’r’ ’i’ ’n’ ’t’ ’(’ ’a’ ’)’ ’;’

The role of the lexical analyser is to extract the lexemes and to produce as output a sequence of
tokens. The following definitions (Definitions 18, 19 and 20) explain the basic vocabulary for lexical
analysis.

Definition 18 (Token) A token is the combination of a token name and an optional attribute. The
token name is an abstract symbol representing a kind of lexical unit e.g. an Identifier, the optional
attribute is often the lexeme itself.
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Definition 19 (Pattern) A pattern is the description of the form that the lexemes of a token may
take, e.g. in the case of a reserved word the pattern is the word itself.

Definition 20 (Lexemes) A lexeme is a sequence of characters that match a pattern for a token.

An example of a lexeme would be the reserved word var matching the sequence of characters ’v’

’a’ ’r’ corresponding to the pattern var. This would create a token <VAR, ’var’>. The pattern
used to detect the lexemes is described by regular expressions (cf Section A.3.1) which is concise and
expressive enough to represent the lexemes. The implementation of regular expressions in the lexer is
using finite automata (cf Section A.3.2).

A.3.1 Regular expressions

A regular expression (regexp for short) is a sequence of characters describing a pattern that a text
can match or not. Matching occurs when the text given in input is part of the set (finite or infinite)
described by the regular expression.

For example the regular expression letter a described by a is the set composed by { a }, i.e.
only the text a can match this regular expression. The expression (a|b)(c|d) is matched by the four
following texts: ac, ad, bc, bd.

The following table A.1 is showing the possible syntax for regular expressions.

Expression Matches Examples

c the character c (if not an operator) a

\c the character c (if an operator) \*
“s” the string s “*ab”

. any character except new lines .*

ˆ beginning of the line

$ end of the line

[s] any character present in s [acijpsrtv]

[ˆs] any character but the ones in s [ˆaeiouy]

r* match the regexp r any number of time (0 to ∞) a*

r+ match the regexp r at least once (1 to ∞) a+

r? match the regexp r never or once (0 to 1) a?

r{n,m} match the regexp r between n and m times a1,4

r1r2 the r1 regexp followed by the r2 regexp ab

r1—r2 either the regexp r1 or the regexp r2 a—b

(r) used to increase precedence level (a—b)*c

Table A.1: Regular Expression Syntax.

The minus sign inside square brackets is used to avoid writing all the characters comprised between
the two bound, e.g. [a-j] is matched by all the small case letters from a to j.

Using these rules, it is now possible to describe any lexeme definition encountered in the grammar
file. For example the token Identifier is associated with the following regular expression:

[a-zA-Z \$][a-zA-Z \$0-9]*

A.3.2 Finite Automatas

Finite automatas can be divided into two categories: Non-deterministic finite automata (NFA) and
Deterministic finite automata (DFA), both of which are capable of recognizing the regular language,
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i.e. the language used to define regular expressions. They can be represented as ordered graphs with
conditional transitions on the edges, a start state (or initial state) and a set of accepting states (or final
states). NFA are non-deterministic which means that from one state, multiple edges with the same
conditional transition are possible. The Figure A.5 is representing the regular expression a(a|b)+b

using the NFA representation.

0
start

1
a

2
a

b

a
b

3
b

Figure A.5: NFA representation of a(a|b)+b.

To construct automatically the NFA from the regular expression, one can use the McNaughton-
Yamada-Thompson algorithm described in [34] based on the work of [117] and [153].

The non-determinism is however a problem for the implementation, indeed you need to implement
rollback in case the wrong choice has been made. For example, for the following text abbb an algorithm
without rollback would first go in state 1 then in state 2, but with b as input it has two choices, either
to go in state 3 or to stay in state 2. If it chooses to go in state 3 then as there is still a character b

left and no more possible transitions in the NFA, it will result in a non-matching text which is false.
Hopefully every regular expression and every NFA can be converted into a DFA accepting the same

regexp. And as the DFA simulation is simpler it does not need a rollback mechanism. The NFA in
Figure A.5 is therefore translated into its DFA version in Figure A.6.

0
start

1
a 2a

3

b

a

4

b
a

b
a

b

Figure A.6: DFA representation of a(a|b)+b.

In Figure A.6 the transitions are deterministic, therefore at every state and for any input there is
only one possible path in the graph.

A.3.3 Lexical Analysis on a Concrete Example

To show what a lexer produces, the following source code has been given to the AntLR lexer [132]
using the grammar Appendix D.1 developed in the context of this thesis.

var a = 13;

print(a);
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It resulted in the token stream in Listing A.1 which will be given in input to the syntax analyser
to produce a tree representation of the code (see Section A.4). The token names in Listing A.1 are
sometimes not intuitive, for example, the string var is represent by T 129. This is due to the automatic
generation of the lexer from the grammar. In the grammar these keywords are not given any token
name, so the lexer generator chooses an unused name for the token, and as they are terminals, this
name starts with the letter T.

<T 129 , ’var’>
<WhiteSpace , ’ ’>
<I d e n t i f i e r , ’a’>

4 <WhiteSpace , ’ ’>
<WhiteSpace , ’ ’>
<T 131 , ’=’>
<WhiteSpace , ’ ’>
<NumericLitera l , ’13’>

9 <T 128 , ’;’>
<LT, ’\n’>
<I d e n t i f i e r , ’print’>
<T 125 , ’(’>
<I d e n t i f i e r , ’a’>

14 <RPAREN, ’)’>
<T 128 , ’;’>
<LT, ’\n’>
<EOF, ’None’>

Listing A.1: Token stream generated.

A.4 Parser

This section is devoted to parsing methods used in compilers. The programming languages have by
design strict rules describing well formed source codes. These rules are defined in grammars which in
certain cases can be used by automatic tools to produce lexer and parser programs. The grammar is
often described using a specific form called the Backus-Naur Form (BNF) (defined by [43] and modified
by [124]) or context-free grammar. This form gives an easy-to-understand specification of a language.

A.4.1 Notion of Context Free Grammars

Let’s use the following grammar in Listing A.2 to understand a grammar syntax (this grammar can be
found as well in Appendix C.1 written for AntLR [132]).

exp r e s s i on : := addit ionterm ’+’ exp r e s s i on
expr e s s i on : := addit ionterm

3 addit ionterm : := sous t rac t i ont e rm ’-’ addit ionterm
addit ionterm : := sous t rac t i ont e rm
sous t rac t i on t e rm : := mu l t i p l i c a t i on t e rm ’*’ sous t rac t i ont e rm
sous t rac t i ont e rm : := mu l t i p l i c a t i on t e rm
mu l t i p l i c a t i on t e rm : := d iv i s i on t e rm ’/’ mu l t i p l i c a t i on t e rm

8 mul t i p l i c a t i on t e rm : := d iv i s i on t e rm
d iv i s i on t e rm : := ’(’ exp r e s s i on ’)’

d iv i s i on t e rm : := Decimalnumber // Decimalnumber is a terminal

Listing A.2: Simple grammar to parse numerical expressions.

Context free grammars are used to represent a language. It consists of terminals, non-terminals, a
start symbol and productions.

• The terminals are the basic symbols, they are the name of the token given by the lexer, e.g. in
Listing A.2, the Decimalnumber, and the symbols +, -, *, /, ( and ).
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• The non-terminals are syntactic variables that denote sets of strings, e.g. in Listing A.2,
the expression, additionterm, soustractionterm, multiplicationterm and divisionterm are non-
terminals.

• One of the non-terminals (conventionally the first non-terminal in the grammar) is distinguished
as the start symbol, e.g. in Listing A.2 the expression non-terminal.

• The productions of a grammar specify how the terminals and the non-terminals are arranged to
form non-terminals. On the left side of the definition the name of the non-terminal is specified,
e.g. divisionterm , then the symbol ::= separate the left and the right side, then the right side
contains the rule to produce the non-terminal. This rule is composed by terminals, e.g. ( and )

and non-terminals, e.g. expression.divisionterm.

Most of the programming languages cannot be represented by context free grammar, indeed often
source code cannot be taken out of its context, e.g. in C++ the following code depends on the previously
defined variables:

my function < my type > (arguments);

It can be seen either as a function call using a type as template with arguments or if my function,
my type and arguments are three integers then it is two consecutive comparisons, i.e. the production
rule depends of the types of my function, my type and arguments. As it is dependent on the context,
it cannot be parsed by a context free grammar.

The C language is not context free either, indeed the x * y; sentence can be either a multiplication
or the definition of the pointer y of type x. This cannot be parsed by a context free grammar and
needs additional rules to be implemented in the parser.

JavaScript [96] do not has such context problems and can be parsed using a context free grammar
even if it is not a Context Free Language (CFL). Indeed JavaScript has automatic semicolon insertion
which performs the insertion of semicolon when it is not present at the end of a statement. This
behaviour cannot be represented using a context free grammar. Such language specifications with
standards using rules defined in English, make almost no computer languages CFL.

Order of precedence

One important notion to have in mind when designing a parser is the order of precedence. This is
the order in which the operators are applied, e.g. in the expression 1+2*3 it is conventional to first
compute the multiplication and then perform the addition, the multiplication has therefore an higher
degree of precedence. The order of precedence is an intrinsic rule in a context free grammar, the closer
the non-terminal is from the terminal, the higher the order of precedence it has. For example, in
Listing A.2 the multiplication non-terminal is closer to the Decimalnumber terminal than the addition.
This order can be bypassed using, for example, parenthesis as in Listing A.2, allowing an addition
between parenthesis to be computed first.

Context free grammars vs regular expressions

Context free grammars are more powerful than regular expressions because they can describe more
complex language. Actually the set of languages that can be described using regular expressions is a
subset of the languages that can be described by context free grammars. Indeed any regular expression
can be translated into a context free grammar, conversely all the context free grammars cannot be
represented by regular expressions.
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A.4.2 LL Parser vs LR Parser

There are two methods to parse a text using a grammar:

• LL(k) parsers: Left-to-right, Leftmost derivation. They are performing a Top-Down parsing
which means they are trying to build the syntax tree from the start symbol to the terminal.
Using this kind of parser implies that no left recursive or ambiguous grammar can be used. They
are simpler because no backtracking is needed. They need however to recognise the productions
strings using only the firsts k symbols. The leftmost derivation means that the parser tries to go
down to the terminals, as the token stream is read from left to right, it derives first the leftmost
non-terminal e.g. additionterm:

expression ::= additionterm ’+’ expression //leftmost derivation (additionterm is
derived first)

• LR(k) parsers: Left-to-right, Rightmost derivation. They are based on Bottom-Up parsing,
which means that they start to build the parse tree from the leafs. They are more powerful than
LL parser because the class of grammars that can be parsed using LR parser is a superset of the
class of grammar that the LL parser can parse. The rightmost derivation is the consequence of
the bottom up parsing, indeed the rules need to be reversed as the parser is trying to reconstruct
the tree from the bottom and it reads the token stream from left to right:

expression ::= expression ’+’ additionterm//rightmost derivation

Both parser types can be used to generate an AST or syntax tree.

A.4.3 Abstract Syntax Tree (AST)

The AST is the result of the parsing phase of a compiler. It represents the tokens given by the lexer
using a tree model respecting all the rules described in the grammar.

For example, the parser created using the previously presented grammar Listing A.2 implemented
in ANTLR in Appendix C.1 parses successfully the following expression:

(1+2)*3/(4+5*(6-7));

It produces, as a result, the tree presented in Figure A.7. In this picture one can clearly see the
terminals which are on the leafs and the non-terminals which are above. However some terminals do
not appear on the AST, because they have been consumed during the process and do not have any
useful information left e.g. parenthesis are used to change the order of precedence, after the generation
of the AST they are not used anymore.

A.5 ANTLR Parsing

ANother Tool for Language Recognition (ANTLR) [132] is a predicated LL(k) parser (Section A.4)
written in Java, it is capable of generating parser in multiple languages such as Java, C, C++ or Python.
It combines the lexical and the syntactical definitions in a single file. Its development started in 1992
and is still widely used.

A.5.1 ANTLR Grammar

The ANTLR language grammar is based on Extended BNF (EBNF) for the production rules and have
the following basic structure:
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Expression

Multiplication

Expression Division

Addition

Number Number

1 2

Number Expression

3 Addition

Number Multiplication

4 Number Expression

5 Soustraction

Number Number

6 7

Figure A.7: AST for the expression: (1+2)*3/(4+5*(6-7));.

/* Comments */

grammar grammar name ;

options s p e c i f i c a t i o n s
5 tokens s p e c i f i c a t i o n s

a t t r i b u t e scopes
a c t i o n s

ru l e 1 : product ion s t r i n g 1
10 | product ion s t r i n g 2

| . . .
;

// lexical rules

15 Terminal1 : r e g u l a r exp r e s s i on
| fragment1 ( r e g u l a r exp r e s s i on )?
;

fragment fragment1 : r e g u l a r exp r e s s i on ;

Listing A.3: Basic structure of ANTLR grammar file.
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Specifications

The specifications part of the grammar can give some options to the ANTLR parser generator such
as the language of the future parser, the expected output of the parser, e.g. AST, etc. The token
specifications are used to create Terminals that will be used to construct the tree as in Listing C.1
where the type of operation is stored using tokens.

Actions and Scopes

The actions are source codes written in the language in which the parser will be generated and that will
be directly included in the parser or in the lexer at different position depending on the scope contained
in the action name e.g. @header will include the code following the action name in the beginning of
the parser that will be generated. The action name starts with the symbol ’@’.

Production Rules

The production rules contain the “valid sentences” of the language. They are composed of a rule
name (that can be defined only once) and the possible alternative for a valid sentence. For example,
divisionterm rule in Listing A.4 is either another expression within parenthesis or a Decimalnumber
(which is a terminal).

1 d iv i s i on t e rm : ’(’ exp r e s s i on ’)’

| Decimalnumber
;

Listing A.4: divisionterm rule in ANTLR.

Lexical Rules

The lexical rules which are starting with a capital letter are used to specify terminals, they can use
both regular expressions and fragment rules. The fragment rules allow to clarify the grammar. A
fragment is only used to define more complex terminal rule, it does not produce any token.

A.5.2 ANTLR Tree Generator

One of the ANTLR output form is the AST output. This is possible by modifying the grammar and
by specifying to ANTLR how to build the tree. At the end of each production string is specified how
to build the tree, for example, the following production string would generate the operator at the
root and the expr1 and expr2 at the leaves as in Listing A.5.

expr1 operator expr2 −> ˆ( operator expr1 expr2 . . )

Listing A.5: Tree generation in ANTLR.

A.5.3 ANTLR against other parsing software

Bison & Flex

The well known Bison [2] & Flex [4] (previously YACC & lex) software are very powerful LR parser
and lexer. Bison is a Generalized LR parser i.e. a LR parser which is able to solve some conflicts by
trying all the possible combinations until reaching inconstant state.

The format of the grammar is a machine readable BNF, plus some extra C definition and code.
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GOLD

The GOLD parser generator [121] is a LALR(k) parser, which means k -Look Ahead LR parser. A
LALR(k) parser is able to look k token ahead to take a decision about which production rule to choose
in case of conflicts. This parser has the particularity of having a grammar written in pure BNF syntax.
Having a pure BNF syntax is however a problem for the ambiguities of languages specifications such
as in C the typedef problem mentioned in Section A.4.1 cannot be resolved. GOLD parser builder is
available only for the Windows OS, but it is capable of generating parser in many different languages.

Why ANTLR?

ANTLR has been chosen for the following reasons:

• It is a widely used parser. For example, it is used by twitter to parse the search query, by
NetBeans IDE to parses C++.

• It is multi-platforms because written in Java.

• It can generate AST easily using the AST output option.

• It supports a large variety of languages such as ActionScript, Ada95, C, C++, C#, Java,
JavaScript, Objective-C, Perl, Python, Ruby.

A.6 JavaScript Parsing

This chapter describes briefly the required knowledge needed to understand parsing techniques. Parsing
is divided into two sequential steps, the first one is the extraction of the tokens using the lexer. The
second step is the generation of the AST which is performed by the parser.

The parser and the lexer are both produced by ANTLR using a grammar file to specify the syntactic
rules of the language. A simple ANTLR example to parser simple arithmetic expression and to generate
an AST has been explained.

Implementing a framework for the obfuscating a Javascript code assumed the correct and complete
parsing of input codes such that one of the hidden contribution of this thesis was the definition of an
accurate parser for the Javascript language in Appendix D.1.

It happened to be a non-trivial task such that it was necessary to develop our own ANTLR-based
parser to be able to control every aspect of the generated tree.

The JavaScript code is parsed using the ANTLR grammar in Appendix D.1 developed with the
help of existing JavaScript grammars available on the ANTLR website 1 and the ECMAScript
Standardisation document [96] to generate AST. Thanks to this grammar, the ANTLR Parser is able
to parse a file containing complex JavaScript source code and some JavaScript 1.8 “dialect” syntax.
This grammar has been validated on the well known JQuery framework [30] using the tests suite
developed by the developers of JQuery.

ANTLR generates the AST representation of a JavaScript source code. Source code of programs
translated into an AST representation are easier to work with when dealing with any kind of mod-
ifications. Indeed, this representation allows the programming of a generic tree walker used to
compute the metrics but as well to perform the different transformations. This tree walker is given
in parameter to the function used depending on the desired action, either the computation of a metric
or some modifications on the AST. The modifications performed on the AST do not have to deal with
syntax formatting, e.g. the parenthesis are automatically added, the end-line character ;, etc. Using
AST, the addition, the modifications or the deletion of part of the tree are easier than the application

1http://antlr.org/
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of transformation directly on the source code. This transformations are presented in Chapter 8 and
their implementation in JShadObf in Chapter 9.
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The presentation of the JavaScript language’s basis is presented in this chapter. The knowledge of the
syntactical and lexical rules are necessary to understand the codes exposed in Chapter 9. This Chapter
first depict the JavaScript language usages, then presents the rules that construct the language.

B.1 The JavaScript Programming Language

The following section presents the JavaScript language and a brief overview of its syntax and usage
required to understand the different sources codes presented in Chapter 9 and, most importantly, the
obfuscation framework we develop specifically for this language.

Quoting [79], JavaScript is the programming language of the Web. The overwhelming majority of
modern websites use the JavaScript programming language and all modern web browsers – either on
desktops, game consoles, tablets or smart phones – include JavaScript interpreters making it the most
ubiquitous programming language in history. However JavaScript is not limited to client side only,
it is as well possible to run JavaScript on the server side using a stand alone interpreter like rhino

[55] or nodejs [68]. More concretely, JavaScript is a high-level, dynamic, untyped and interpreted
programming language which is well-suited to object oriented and functional programming styles.
JavaScript derives its syntax from Java, its first-class functions from Scheme, and its prototype-based
inheritance from Self. Initially, many professional programmers denigrated the language for various
reasons, ranging from design errors to buggy implementation in the first versions of the language. The
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standardization of the language within the European Computer Manufacturer’s Association (ECMA)
with the two version standards, ECMAScript 3 (1999) and 5 (2009), and, more importantly, the
advent of Asynchronous JavaScript and XML (AJAX) returned JavaScript to the spotlight and
brought more professional programming attention. It resulted in the proliferation of comprehensive
frameworks and libraries, improved JavaScript programming practices, together with an increased
usage of JavaScript outside of web browsers within server-side JavaScript platforms.

Generally speaking, JavaScript has long since outgrown its scripting-language roots to become a
robust and efficient general-purpose language. The latest version of the language defines new features
for serious large-scale software developments, which also explains the interest of all major vendors
such as Microsoft or Google. In parallel, the recent explosion of novel web services that goes along
with the early advent of the Cloud Computing (CC) paradigm increase the widespread adoption of
JavaScript at the core of the development of these services. To cite a few well-known examples, one
can mention Google Office Apps (featuring GMail or Google Docs), Dropbox (a popular web-based
storage service – see https://www.dropbox.com/) or Doodle (a web-based scheduling service – see
http://www.doodle.com/). Google is so deeply dependent on this language that they released their
home-made development framework for JavaScript under the banner of the Closure Tools project [3].
Of interest for the work presented in this thesis, we can cite the Closure Compiler which compiles
JavaScript into compact, high-performance code. This compiler removes dead code, then rewrites
and minimizes what’s left so that it downloads and runs quickly on the client’s browser. It also checks
syntax, variable references, and types, and warns about common JavaScript pitfalls. These checks
and optimisation are meant to help writing applications that are less buggy and easier to maintain.

Let’s see now what JavaScript looks like.

B.2 JavaScript Lexical Structure

The lexical structure of a language is the set of elementary rules used to write a program in this language.
At this level, JavaScript is similar to the C programming language especially for the identifiers’
definition, the comments and the statements delimiter. It is as well case sensitive which means that
there is a distinction between small and capital letters. The style of comments is either /*comments*/
or // another comment until the newline. The semi colon ; is a delimiter between instructions,
however it is not mandatory and can be replaced by a new line in unambiguous cases,however it is
recommended for clarity and to avoid any misbehavior.

B.2.1 Identifiers

Identifiers are starting with a letter (small or big case), an underscore or a dollar sign $ followed by
letters, numbers, underscores or dollar signs. Some examples of identifiers are listed in B.1.

Listing B.1: Identifiers.

1 identifier ;
2 $second one;
3 La$t 1;

However as in every programming language a list of reserved words listed in Appendix D.3 make
some identifiers impossible to use as variables or functions.

B.2.2 Literals

The literals, i.e. data values appearing directly in the code, are either number literals, string literals,
array literals, object literals, regular expression literals, true, false, and null like in listing B.2.

https://www.dropbox.com/
http://www.doodle.com/
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Listing B.2: Literals.

1 42 // number

2 4.2 // decimal number

3 "Hello World!!" // string

4 true
5 false
6 null // absence of object

7 {x : 0 , y : 0} // object literal

8 [1,2,3] // array literal

9 /foo/g // regular expression

B.3 Types, Values and Variables

JavaScript has two categories of types: primitive types and object types. The primitive types are
numbers, strings, and boolean values, and are always copied, e.g. in a = b = 2, a and b contain a
number which is 2, and they are independent. Any other type is considered to be object, and they are
referenced, e.g. in c = d = [1,2,3], c and d are references to the same array and any modification of
the array referenced by c will affected the array referenced by d as they are pointing to the same array.

B.3.1 Numbers

In JavaScript the numbers are encoded using the 64-bit floating point format defined by the IEEE
754 standard which is the same as the double type in Java, C and C++. JavaScript is then sensitive
to rounding errors due to the representation of float numbers as binary fractions, e.g. .3-.2 == .2-.1

return false. But unlike other languages there is no distinction between integer and floating-point
values. Numbers can be represented in hexadecimal values using the prefix 0x or octal value using 0.

The typical operations, i.e. addition, subtraction, division, multiplication and modulo, are available
using the standard operators +, -, /, *, %, and more advanced mathematical operations such as
trigonometric or logarithm operations are available using the Math object.

B.3.2 Text and String Literals

In JavaScript strings are enclosed between two double or single quotes (" or ’), they are a succession
of UTF-16 characters. The symbol \ allows to escape the text and express special characters such as
the new line character \n.

ECMAScript 5 is as well considering strings as read-only array, and allow access to it using square
brackets i.e., [index].

B.3.3 Variables

JavaScript is an untyped language, i.e. no type declarations, a variable should be declared using the
keyword var. Multiple declarations are possible and must be separated using coma as in listing B.3.

Listing B.3: Variable declarations in JavaScript.

1 var variable 1 = 3;
2 var number 1 = 3, string 2 = "hello", variable 3;

If a variable is assigned without being declared the interpretor will automatically declare it as a
global variable which means that the code in listing B.4 will print "Hello!".
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Listing B.4: Implicit declarations in JavaScript.

1 function f(){
2 hi = "Hello!"

3 }
4 f ()
5 console. log(hi)

This however is not considered as good practice and leads to errors in ECMAScript 5 strict mode.

B.3.4 Scopes

The scope of a variable is the region of the code in which the variable is available. The main scope is
the global scope, the variables declared in this scope are accessible anywhere in the code. Otherwise
in JavaScript the scope of variables is at the function level unlike in C or Java where it is at the
block level. A variable declared in a function will be in the local scope of the function. Functions can
contain function definition with their own scope leading to multiple layers of scopes. The local version
of a variable have always the priority, which means that if a variable is declared in the global and in
the local scope, the local scope version will have the priority.

The result of the following code is then counter-intuitive for C or Java programmer where the scope
of variable is at the block level, i.e. the curly brackets.

Listing B.5: Scopes in JavaScript.

1 var a = 3
2 function b(){
3 console. log(a);
4 var a = 4;
5 }
6 b()

This code is printing in the log console the ”undefined” text. Indeed, functions are examined by
the interpretor before execution for the discovery of the variable declarations anywhere in the function
code (even in lower segment blocks). The function b contains the declaration of the variable a, at the
beginning of the execution of the function b, the local variable a is then created and set to undefined.
This is why the text undefined is returned. In C the equivalent code would print 3.

B.4 Statements and Expressions

Expressions and Statements are the basic block of a programming language. An expression is a piece of
JavaScript code that can be evaluated to generate a value and a statement is a command that can be
executed. This section is presenting the main expressions and statements present in the JavaScript

language.

B.4.1 Expressions

Primary expressions

Primary Expressions are the ”simplest” expressions, they are are constants, literal values, some reserved
keywords or a variable references. The listing B.6 is presenting some examples of primary expressions.
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Listing B.6: Primary Expressions in JavaScript.

1 3
2 "String"

3 true
4 null
5 this

Initializer expressions

Initializer expressions allow to generate objects or arrays with initial values. Array initializer is a coma
separated list of expressions within square brackets and object initializer is a coma separated list of
properties which are a collection of a key and a value within curly brackets. They can be called object
and array literal as in listing B.2.

Assignment expressions

As in other programming languages assignement expressions are key expressions in the usage of
JavaScript, they allow to store result of the evaluation of expressions into variables. The assignement
expression my var = expr is using the equal symbol = to assign the value of an expression expr to a
variable my var. This expression returns the value contained in the variable my var.

Property access expressions

We have already seen how to create object and array literals, property access expressions are used to
access values within these object and array. They are composed of the object (or most of the time its
reference) followed by square brackets containing the index of the array or the name of the property as
in listing B.16 and B.17. For object it is as well possible to use the dot operator “.” followed by the
name of the property if the name of the property is an identifier.

Function definition expressions

Function definition expression is an expression composed of the keyword function followed by a list of
arguments in parenthesis and a block of statements. In the listing B.7 the function expression is stored
in the variable my function.

Listing B.7: Funciton definition expression.

1 var my function = function (arg 1,arg 2) {
2 //code

3 } ;

Call expressions

Call expressions or invocation expressions are expressions representing the calling (executing) of a
function. This is done using the name of the function or the expression pointing to the function
followed by the coma separated list of arguments contained between parenthesis.

Listing B.8: Funciton call expression.

1 main()
2 Math.max(1,2,3)
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Object creation expressions

The object creation expressions allow the creation of objects using the reserved keyword new followed by
function responsible for the initialisation of the new object. For example, the expression new Object()

will call the function Object responsible for creating a new object and will return the newly created
object that can be stored using and assignment expression.

Arithmetic and comparison expressions

This expressions are the expressions using arithmetic and / or comparison operators such as +, -, *,

/, ==, !=, ===, <, <=, >, >=. These operations have an order of precedence, e.g. 2 * 2 + 3, 3
+ 2 * 2 and 3 + (2 * 2) all give 7 as the multiplication has a higher level of precedence than the
addition. The order can be found in Appendix D.2. The parenthesis can be use to force the precedence
order as the expression within the parenthesis has the highest order of precedence.

B.4.2 Statements

Expression Statements

An expression statement is simply a statement containing an expression. Any expression seen previously
can be directly included in a statement.

Declaration Statements

The declaration statements are declaring variable using the keyword var as in listing B.3 or function
with the keyword function followed by the function name, the coma separated list of arguments and
the statement block as in listing B.9.

Listing B.9: Function declaration.

1 function function name(arg1, arg2) {
2 //function code.

3 return true;
4 }

The return statement which is composed of the keyword return followed by an expression to return
is often present in the code of function declarations. When a function is call within an expression the
expression return by the return statement will be the value that the function call will be replaced by in
the expression. This is one of the ways for a function to export the result of its computations, another
way is to modify global variable or to modify the values of arguments given to the function in parameters
as variables containing non-primitive object are only a reference to the object, a modification of the
values contained in the object can allow the storage of computations performed by the function.

Conditional Statements

Conditional statements are mandatory to any programming language, they allow programs to perform
actions depending on some conditions. As in many other languages, JavaScript has an if/else

statement which syntax is exposed in the listing B.10.
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Listing B.10: Conditional if/else branching.

1 // if/else statement

2 if (condition){
3 // code

4 }
5 else{
6 // code

7 }

The block statement following the if condition is executed if the condition evaluates to true,
otherwise the block statement following the else keyword is executed. The “else” part of the branching,
i.e. the else keyword and the corresponding statement block is not mandatory if no actions are needed
in case of the evaluation of the condition to false.

Another common branching structure present in JavaScript is the swich/case structure shown
in listing B.11. This structure is composed of the switch keyword followed by the expression to test,
then a block statement containing the different possible values to compare with the initial expression
using the keyword case. A default behaviour might be added using the keyword default in case the
initial expression does not have an equivalent in the different cases.

Listing B.11: Conditional branching.

1 // switch statement

2 switch ( expression ) {
3 case expression 1 :
4 // code

5 break;
6 case expression 2 :
7 // code

8 break;
9 default :

10 // code

11 break;
12 }

Loop Statements

The loop statements are statements containing loops. Loops are a way to execute the same block
statement multiple times depending on a condition or on the size of an object or an array. The first
kind of loop is the for loops. The classical for loop is the keyword for followed by , within parenthesis,
an initializer, a condition and a expression executing after the block statement. Then a block statement
containing the block of code to be executed within the loop (listing B.12). Another kind of for loop is
the for/in loop which is browsing all the properties of an object and setting a variable at each round
with the name of a property of the object (in listing B.12, the object my object).
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Listing B.12: For loops in JavaScript.

1 for(var a = 0 ; a < 10 ; a ++){
2 // code

3 }
4 var my object = { ’h’:’e’,’l’:’l’ , ’o’:’ ’ , ’w’:’o’ , ’r’:’l’ , ’d’:’!’}
5 for(a in my object){
6 console. log(a)
7 console. log(o[a])
8 }

The while is executing a statement block while the condition given to the while loop is evaluated
to true (listing B.13). A variant of the while loop is the do/while loop which is first executing one
statement block and then re-executing it until the condition is false.

Listing B.13: While loops in JavaScript.

1 do{
2 // code

3 } while (condition)
4 while(condition){
5 // code

6 }

Special statements like break and continue statements allow to modify the behaviour of a loop.
break statement allows for example to leave the loop without finishing the execution of the block
statement and stop the execution of the loop. continue statement jumps directly at the end of the
block statement, the loop might continue to execute if possible.

try/catch/finally Statements

When errors occur in JavaScript it is possible to avoid errors which lead to program termination
using try/catch/finally statements (listing B.14). The statement is composed of the keyword try

followed by the block of statements that might lead to an error, then the keyword catch followed by a
variable which, in case of error, will contain error information and a block statement to be executed in
case of error. Finally, using the keyword finally after the previous try/catch structure, it is possible
to execute a block of statements after the try catch structure. This last statement block is always
executed, even if the try statement block has a return statement, before returning to the caller the
finally statement block will be executed. The catch and the finally parts of the try statement
are optional.

Listing B.14: Try statements in JavaScript.

1 try{
2 // code

3 }
4 catch (error){
5 // catching error

6 }
7 finally{
8 // in all cases

9 }
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B.5 Objects

JavaScript is a object oriented language which means everything is an object from numbers to string
including function and of course objects defined by the programmer. The basic types are the different
possible return values of the command typeof, which is either ’number’, ’string’, ’boolean’, ’function’,
’undefined’ or ’object’.

The object creation is using object literals which are defined using curly brackets, and containing
properties which are a collection of an identifier or number and a value which can be any expression.

Listing B.15: Object declaration.

1 var my object = { name : value , other name : other value};

There are two ways to retrieve the value value corresponding to a name name contained in an
object. The first one is to use the dot operator followed by the name name and the second one is to
specify the name "name" as a string in square brackets.

Listing B.16: Object access.

1 console. log(my object.name);
2 console. log(my object["other_name"]);

An object in JavaScript is similar to dictionary or hashtable found in other languages, but with an
additional prototype attribute which is inherited from another object and used to inherit properties.

Objects are dynamic which means that properties, i.e. methods and attributes can be added or
removed dynamically to an instantiated object. In JavaScript Objects are passed around only by
reference, which means that var foo = bar; will only create a new reference to the bar object and
won’t copy the data.

B.5.1 Arrays

An array is a collection of objects ordered using an index number which is a 32-bit integer value. It is
an object which is inherited from the Array class. This class is providing the instantiated object with
a set of methods and properties such as length, push, pop, sort, etc They are defined either using an
array literal or creating an Array object as shown in listing B.17.

Listing B.17: List declaration and access.

1 var my list = [ 1, 2, 3 ];
2 console. log(my list [0]) ;
3 var second list = new Array();
4 second list .push(0)

One feature of JavaScript arrays is that sparse arrays are available, i.e. arrays which are not
complete and have some empty value between the bounds of the array.

B.6 Classes

There is not any reserved keyword to define classes in JavaScript, therefore a class can be created
using different ways. The most similar way to Java is to use a function as a constructor and to add the
methods of the class to the prototype propriety of the function. Indeed every object in JavaScript

has a propriety named prototype which is used by the new operator to inherit the methods and objects
from the constructor object. By calling the new keyword followed by the constructor function, the
interpreter will create a new object and launch the function to construct the object. The newly created
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object will have all the methods defined in the prototype propriety of the constructor function. In
listing B.18, my object will inherit the method1 from the constructor function My class.

Listing B.18: Class definition.

1 function My Class( init arg ) {
2 this.property1 = init arg;
3 }
4 My Class.prototype.method1 = function (arg) {
5 return arg + this.property1
6 }
7 var my object = new My Class(10)
8 console. log(my object.method1(10))

The delete function is unreferencing an object or a property which is afterwards removed by the
garbage collector if not referenced by any other variable.

B.7 JavaScript & the Web

JavaScript language has the advantage of being easy to parse due to its simplicity. Indeed it is a
scripting language with dynamic typing which means that the types are verified at run-time and not at
parse-time therefore relieving the parser from checking types.

JavaScript is one of the most widely used languages animating web-sites with dynamic content
and minimizing network communications between users and servers. It is an event-based language
which means that it has been designed to answer to events such as the reception of a message from a
server, an action of the user or the end of the page loading.

As it is a scripting language, the source code is directly distributed to the user, unlike in compiled
languages where only the binary is shared. This aspect makes JavaScript source codes easy to
reverse-engineer.

With the development of JavaScript on the client-side and the implementation of very fast
interpretors within the browsers such as V8 from Google, JavaScript became more and more used on
the server side as well. It is now possible to run JavaScript applications for the server using rhino

[55] or nodejs [68]. Therefore it morphed from a web browser language to a full-fledged language.
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Simple Expression Parser’s Grammar

// grammar name

grammar s imp le expr ;

// options given to AntLR

options
{

language=Python ;
output=AST;
k=2;
backtrack=true ;
memoize=true ;

}

// token used for builing AST

tokens {
Express ion ;
Addit ion ;
Sous t rac t i on ;
M u l t i p l i c a t i o n ;
Number ;
D iv i s i on ;

}

// nonterminals

//start symbol

statement :
exp r e s s i on ’;’ −> ˆ( Express ion exp r e s s i on )
;

exp r e s s i on :
addit ionterm ’+’ expres s ion−> ˆ( Addit ion addit ionterm expr e s s i on )
| addit ionterm
;

addit ionterm :
sous t rac t i ont e rm ’-’ addit ionterm −> ˆ( Sous t rac t i on sous t rac t i on te rm addit ionterm )
| sous t rac t i ont e rm
;

sous t rac t i ont e rm :
mu l t i p l i c a t i on t e rm ’*’ sous t rac t i ont e rm
−> ˆ( M u l t i p l i c a t i o n mu l t i p l i c a t i on t e r m sous t rac t i on t e rm )

| mul t i p l i c a t i on t e rm
;

mu l t i p l i c a t i on t e rm :
d iv i s i on t e rm ’/’ mul t i p l i c a t i on t e rm −> ˆ( D iv i s i on d iv i s i on t e rm mu l t i p l i c a t i on t e rm )

| d iv i s i on t e rm
;

d iv i s i on t e rm :
’(’ exp r e s s i on ’)’ −> ˆ( Express ion exp r e s s i on )
| Decimalnumber −> ˆ(Number Decimalnumber )
;

// Terminals

Decimalnumber :
DecimalDigit ∗ ’.’ DecimalDigit ∗

155
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| DecimalDigit
;

fragment DecimalDig it :
( ’0’ . . ’9’ )
;

WhiteSpace :
( ’\n’ | ’\t’ | ’\v’ | ’\f’ | ’ ’ | ’\u00A0’ ) { $channel=HIDDEN;}
;

Listing C.1: Simple AntLR grammar example file.
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JavaScript

D.1 JavaScript Grammar

/*

/[ Author :]/ Benoit Bertholon

*/

grammar JavaScr ipt ;

options
{

language=Python ;
output=AST;
k=2;
backtrack=true ;
memoize=true ;

}

tokens {
Func t i onca l l ; This ; RegEx ;
I f ; Regexchar ; Regexpid ;
Listarguments ; Var ; Each ;
Ident ; Function ; While ;
Program ; VarDec larat ion ; Expr ;
L i s tVarDec la ra t i on ; Statements ; S t r ing ;
I n t e g e r ; L i s t ; Assignment ;
Return ; Number ; CaseClause ;
DoWhile ; Break ; For ;
Continue ; Switch ; Throw ;
DefaultBlock ; CaseBlock ; With ;
Label ; PropertyName ; Or ;
And ; Property ; New ;
Ternary ; Index ; Try ;
BOr ; BAnd ; BXor ;
MemberExpr ; S u f f i x ; Nul l ;
Ltrue ; L f a l s e ; NaN ;
EmptyStatement ; Express ionStatement ; V a r i a b l e D e c l a r a t i o n L i s t ;
Var iableStatement ; UnaryExpr ; FunctionExpr ;
De lete ; CatchClause ; F ina l l yC lause ;
Void ; Typeof ; O b j e c t L i t e r a l ;
Yie ld ; Let ; ForIn ;
L i s tCrea t i on ; PropertyGet ; PropertySet ;
DebuggerStatement ;

}

@lexer : : members
{

l a s t = None
de f areRegularExpress ionsEnabled ( s e l f ) :

r e t = True
i f s e l f . l a s t == None :

r e t = True
e l i f s e l f . l a s t . getType ( ) == I d e n t i f i e r :

r e t = False

157
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e l i f s e l f . l a s t . getType ( ) == Numer icLi tera l :
r e t = False

e l i f s e l f . l a s t . getType ( ) == TNULL:
r e t = False

e l i f s e l f . l a s t . getType ( ) == TTRUE:
r e t = False

e l i f s e l f . l a s t . getType ( ) == TFALSE:
r e t = False

e l i f s e l f . l a s t . getType ( ) == TTHIS :
r e t = False

e l i f s e l f . l a s t . getType ( ) == Dec ima lL i t e ra l :
r e t = False

e l i f s e l f . l a s t . getType ( ) == He x In t eg e rL i t e r a l :
r e t = False

e l i f s e l f . l a s t . getType ( ) == S t r i n g L i t e r a l :
r e t = False

e l i f s e l f . l a s t . getType ( ) == RBRACK:
r e t = False

e l i f s e l f . l a s t . getType ( ) == RPAREN:
r e t = False

e l i f s e l f . l a s t . getType ( ) == RSBRACK:
r e t = False

e l s e :
r e t = True ;

r e turn r e t

de f nextToken ( s e l f ) :
s e l f . r e s u l t = Lexer . nextToken ( s e l f ) ;
i f s e l f . r e s u l t . getChannel ( ) != HIDDEN:

s e l f . l a s t = s e l f . r e s u l t ;
r e turn s e l f . r e s u l t ;

}

RBRACK: ’}’ ;
RPAREN: ’)’ ;
RSBRACK: ’]’ ;

program :
LT∗ sourcee l ements LT∗ EOF −> ˆ( Program sourcee l ements ∗)

;

sourcee l ements :
sourcee lement (LT!∗ sourcee lement )∗
;

sourcee lement :
f u n c t i o n d e c l a r a t i o n

| statement −> statement
;

// functions

f u n c t i o n d e c l a r a t i o n :
’function ’ LT∗ I d e n t i f i e r LT∗ f o r m a l p a r a m e t e r l i s t LT∗ ’{’ LT∗ funct ionbody ? ’}’

−> ˆ( Function f o r m a l p a r a m e t e r l i s t ˆ( Statements funct ionbody ?) ˆ( Ident I d e n t i f i e r ) )
;

f u n c t i o n e x p r e s s i o n :
’function ’ LT∗ I d e n t i f i e r ? LT∗ f o r m a l p a r a m e t e r l i s t LT∗ ’{’ LT∗ funct ionbody ? ’}’

−> ˆ( FunctionExpr f o r m a l p a r a m e t e r l i s t ˆ( Statements funct ionbody ?) ˆ( Ident I d e n t i f i e r ) ? )
;

f o r m a l p a r a m e t e r l i s t :
’(’ ’)’ −> ˆ( Listarguments )

| ’(’ (LT∗ I d e n t i f i e r (LT∗ ’,’ LT∗ I d e n t i f i e r )∗)+ LT∗ ’)’

−> ˆ( Listarguments ˆ( Ident I d e n t i f i e r )+)
;
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funct ionbody :
sourcee l ements LT!∗ ;

// statements

statement :
statementBlock
| var iab leStatement
| f u n c t i o n d e c l a r a t i o n /* not compliant with ecma202 but in practice done by interpretors */

| emptyStatement
| express ionStatement
| i fS tatement
| i t e r a t i onSta t ement
| cont inueStatement
| breakStatement
| returnStatement
| withStatement
| l abe l l edSta t ement
| switchStatement
| throwStatement
| tryStatement
| l e tStatement
| y ie ldStatement
| debbugerStatement
;

debbugerStatement :
’debugger ’ (LT | ’;’ )? −> ˆ( DebuggerStatement )
;

statementBlock :
’{’ LT∗ s ta tementL i s t ? LT∗ ’}’ −> ˆ( Statements s ta tementL i s t ?)
;

s ta tementL i s t :
statement (LT∗ statement )∗
;

var iab leStatement :
’var’ LT∗ v a r i a b l e D e c l a r a t i o n L i s t (LT | ’;’ )∗ −> ˆ( Var v a r i a b l e D e c l a r a t i o n L i s t )
| ’let’ LT∗ v a r i a b l e D e c l a r a t i o n L i s t (LT | ’;’ )∗ −> ˆ( Let v a r i a b l e D e c l a r a t i o n L i s t )
;

v a r i a b l e D e c l a r a t i o n L i s t :
v1=v a r i a b l e D e c l a r a t i o n (LT∗ ’,’ LT∗ v a r i a b l e D e c l a r a t i o n )∗ −> v a r i a b l e D e c l a r a t i o n+
;

va r i ab l eDec l a ra t i onL i s tNo In :
v1=var i ab l eDec la ra t i onNoIn (LT∗ ’,’ LT∗ var i ab l eDec la ra t i onNoIn )∗

−> var i ab l eDec la ra t i onNoIn+
;

v a r i a b l e D e c l a r a t i o n :
I d e n t i f i e r LT∗ i n i t i a l i s e r ? −> ˆ( VarDec larat ion ˆ( Ident I d e n t i f i e r ) i n i t i a l i s e r ? )
;

va r i ab l eDec la ra t i onNoIn :
I d e n t i f i e r LT∗ i n i t i a l i s e r N o I n ? −> ˆ( VarDec larat ion ˆ( Ident I d e n t i f i e r ) i n i t i a l i s e r N o I n ? )

;

i n i t i a l i s e r :
’=’ LT∗ ass ignmentExpress ion −> ˆ( Expr ass ignmentExpress ion )

;

i n i t i a l i s e r N o I n :
’=’ LT∗ ass ignmentExpress ionNoIn −> ˆ( Expr ass ignmentExpress ionNoIn )

;

emptyStatement : ’;’ −> ˆ( EmptyStatement ) ;

express ionStatement :
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exp r e s s i on (LT | ’;’ )? −> exp r e s s i on
;

l e tStatement :
’let’ LT∗ ’(’ v a r i a b l e D e c l a r a t i o n L i s t ’)’ LT∗ statement ? (LT | ’;’ )?

−> ˆ( Let v a r i a b l e D e c l a r a t i o n L i s t statement ?)
;

i fS tatement :
’if’ LT∗ ’(’ LT∗ exp r e s s i on LT∗ ’)’ LT∗ s1=statement (LT∗ ’else’ LT∗ s2=statement )?

−> ˆ( I f exp r e s s i on $s1 ? $s2 ?)
;

i t e r a t i onSta t ement :
doWhileStatement
| whileStatement
| forStatement
| for InStatement
;

doWhileStatement :
’do’ LT∗ statement LT∗ ’while’ LT∗ ’(’ exp r e s s i on ’)’ (LT | ’;’ )?

−> ˆ( DoWhile statement exp r e s s i on )
;

whi leStatement :
’while’ LT∗ ’(’ LT∗ exp r e s s i on LT∗ ’)’ LT∗ statement −> ˆ( While exp r e s s i on statement )

;

forStatement :
’for’ LT∗ ’(’ ( LT∗ f o r S t a t e m e n t I n i t i a l i s e r P a r t )? LT∗ ’;’ ( LT∗ e1=expr e s s i on )? LT∗ ’;’

( LT∗ e2=expr e s s i on )? LT∗ ’)’ LT∗ statement −> ˆ( For ˆ( Expr f o r S t a t e m e n t I n i t i a l i s e r P a r t ?)
ˆ( Expr $e1 ?) ˆ( Expr $e2 ?) statement )

;

f o r S t a t e m e n t I n i t i a l i s e r P a r t :
express ionNoIn
| ’var’ LT∗ va r i ab l eDec l a ra t i onL i s tNo In −> ˆ( Var va r i ab l eDec l a r a t i onL i s tNo In )
;

//EACH: ’each’ ;

for InStatement :
’for’ LT∗ I d e n t i f i e r ? LT∗ ’(’ LT∗ f o r I n S t a t e m e n t I n i t i a l i s e r P a r t LT∗ ’in’ LT∗ exp r e s s i on

LT∗ ’)’ LT∗ statement −> ˆ( ForIn ˆ( Expr f o r I n S t a t e m e n t I n i t i a l i s e r P a r t ?)
ˆ( Expr exp r e s s i on ) ˆ( Each I d e n t i f i e r ?) statement )

;

f o r I n S t a t e m e n t I n i t i a l i s e r P a r t :
l e f tHandSideExpres s ion
| ’var’ LT∗ var i ab l eDec la ra t i onNoIn −> ˆ( Var var i ab l eDec la ra t i onNoIn )
| ’let’ LT∗ var i ab l eDec la ra t i onNoIn −> ˆ( Let var i ab l eDec la ra t i onNoIn )
;

y ie ldStatement :
’yield’ exp r e s s i on (LT | ’;’ )? −> ˆ( Yie ld exp r e s s i on )

;

cont inueStatement :
’continue ’ I d e n t i f i e r ? (LT | ’;’ )? −> ˆ( Continue ˆ( Ident I d e n t i f i e r ) ? )

;

breakStatement :
’break’ I d e n t i f i e r ? (LT | ’;’ )? −> ˆ( Break ˆ( Ident I d e n t i f i e r ) ? )

;

returnStatement :
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’return ’ exp r e s s i on ? (LT | ’;’ )? −> ˆ( Return exp r e s s i on ?)
;

withStatement :
’with’ LT∗ ’(’ LT∗ exp r e s s i on LT∗ ’)’ LT∗ statement −> ˆ(With expr e s s i on statement )

;

l abe l l edSta tement :
I d e n t i f i e r LT∗ ’:’ LT∗ statement −> ˆ( Label ˆ( Ident I d e n t i f i e r ) statement )

;

switchStatement :
’switch ’ LT∗ ’(’ LT∗ exp r e s s i on LT∗ ’)’ LT∗ caseBlock −> ˆ( Switch expr e s s i on caseBlock )

;

caseBlock :
’{’ ! (LT!∗ caseClause )∗ LT!∗ (LT!∗ de fau l tC lause (LT!∗ caseClause )∗ ) ? LT!∗ ’}’ !

;

caseClause :
’case’ LT∗ exp r e s s i on LT∗ ’:’ LT∗ s ta tementL i s t ? −> ˆ( CaseClause exp r e s s i on s ta tementL i s t ?)

;

d e f au l tC lause :
’default ’ LT∗ ’:’ LT∗ s ta tementL i s t ? −> ˆ( DefaultBlock s ta tementL i s t ?)

;

throwStatement :
’throw’ exp r e s s i on (LT | ’;’ )? −> ˆ(Throw expr e s s i on )

;

tryStatement :
’try’ LT∗ statementBlock LT∗ ( f i n a l l y C l a u s e
| ( catchClause LT∗ catchClause ∗ (LT∗ f i n a l l y C l a u s e ) ? ) )

−> ˆ( Try statementBlock catchClause ∗ f i n a l l y C l a u s e ?)
;

catchClause :
’catch’ LT∗ ’(’ LT∗ I d e n t i f i e r LT∗ ( ’if’ exp r e s s i on ) ? LT∗ ’)’ LT∗ statementBlock

−> ˆ( CatchClause ˆ( Ident I d e n t i f i e r ) statementBlock exp r e s s i on ?)
;

f i n a l l y C l a u s e :
’finally ’ LT∗ statementBlock −> ˆ( F ina l l yC lause statementBlock )

;

// expressions

exp r e s s i on :
( a=ass ignmentExpress ion−>$a )

(
LT∗ ’,’ LT∗ b=ass ignmentExpress ion
−> ˆ( Express ionStatement $expre s s i on $b )

)∗
;

express ionNoIn :
( a=assignmentExpressionNoIn−>$a )

(
LT∗ ’,’ LT∗ b=assignmentExpress ionNoIn
−> ˆ( Express ionStatement $express ionNoIn $b )

)∗
;

ass ignmentExpress ion :
c ond i t i ona lExpr e s s i on
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| l e f tHandSideExpres s ion LT∗ ass ignmentOperator LT∗ ass ignmentExpress ion
−> ˆ( Assignment l e f tHandS ideExpres s ion ass ignmentOperator ass ignmentExpress ion )

;

ass ignmentExpress ionNoIn :
cond i t i ona lExpres s i onNoIn
| l e f tHandSideExpres s ion LT∗ ass ignmentOperator LT∗ ass ignmentExpress ionNoIn

−> ˆ( Assignment l e f tHandS ideExpres s ion ass ignmentOperator ass ignmentExpress ionNoIn )
;

l e f tHandSideExpres s ion :
c a l l E x p r e s s i o n
| newExpression
;

NEW: ’new’ ;

newExpression :
memberExpression
| NEW LT∗ newExpression −> ˆ(New newExpression )
;

pexp :
pr imaryExpress ion −> ˆ( Expr pr imaryExpress ion )
| f u n c t i o n e x p r e s s i o n −> ˆ( Expr f u n c t i o n e x p r e s s i o n )
| ’new’ LT∗ memberExpression LT∗ arguments −> ˆ(New memberExpression arguments )

;

memberExpression :
(p=pexp −>$p )
(

(LT∗ memberExpress ionSuff ix )
−>

ˆ( MemberExpr $memberExpression memberExpress ionSuff ix )
)∗

;

memberExpress ionSuff ix :
i n d e x S u f f i x
| prope r tyRe f e r enc eSu f f i x
;

c a l l E x p r e s s i o n :
memberExpression LT∗ arguments (LT∗ c a l l E x p r e s s i o n S u f f i x )∗

−> ˆ( Func t i onca l l memberExpression arguments c a l l E x p r e s s i o n S u f f i x ∗)
;

c a l l E x p r e s s i o n S u f f i x :
arguments
| i n d e x S u f f i x
| prope r tyRe f e r enc eSu f f i x
;

arguments :
’(’ (LT∗ ass ignmentExpress ion (LT∗ ’,’ LT∗ ass ignmentExpress ion )∗ )∗ LT∗ ’)’

−> ˆ( Listarguments ass ignmentExpress ion ∗ )
;

i n d e x S u f f i x :
’[’ LT∗ exp r e s s i on LT∗ ’]’ −> ˆ( Index exp r e s s i on )
;

p rope r tyRe f e r enc eSu f f i x :
’.’ LT∗ I d e n t i f i e r −> ˆ( Property ˆ( Ident I d e n t i f i e r ) )
;

ass ignmentOperator :
’=’ | ’*=’ | ’/=’ | ’%=’ | ’+=’ | ’-=’ | ’<<=’ | ’>>=’ | ’>>>=’ | ’&=’ | ’^=’ | ’|=’
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;

c ond i t i ona lExpr e s s i on :
( a=logica lORExpress ion−>ˆ(Expr $a ) )

(
LT∗ ’?’ LT∗ a1=ass ignmentExpress ion LT∗ ’:’ LT∗ a2=ass ignmentExpress ion
−> ˆ( Ternary $cond i t i ona lExpr e s s i on $a1 $a2 )

)?
;

cond i t i ona lExpres s i onNoIn :
( a=logicalORExpress ionNoIn−> ˆ( Expr $a ) )

(
LT∗ ’?’ LT∗ a1=assignmentExpress ionNoIn LT∗ ’:’ LT∗ a2=assignmentExpress ionNoIn
−> ˆ( Ternary $cond i t iona lExpres s ionNoIn $a1 $a2 )

)?
;

log ica lORExpress ion :
( a=logicalANDExpression−>$a )

(
LT∗ ’||’ LT∗ b=logicalANDExpress ion
−> ˆ( Expr $ log ica lORExpress ion Or $b )

)∗
;

log icalORExpress ionNoIn :
( a=logicalANDExpressionNoIn−>$a )

(
LT∗ ’||’ LT∗ b=logicalANDExpressionNoIn
−> ˆ( Expr $logicalORExpress ionNoIn Or $b )

)∗
;

logicalANDExpress ion :
( a=bitwiseORExpression−>$a )

(
LT∗ ’&&’ LT∗ b=bitwiseORExpress ion
−> ˆ( Expr $logicalANDExpress ion And $b )

)∗
;

logicalANDExpressionNoIn :
( a=bitwiseORExpressionNoIn−>$a )

(
LT∗ ’&&’ LT∗ b=bitwiseORExpressionNoIn
−> ˆ( Expr $logicalANDExpressionNoIn And $b )

)∗
;

b itwiseORExpress ion :
( a=bitwiseXORExpression−>$a )

(
LT∗ ’|’ LT∗ b=bitwiseXORExpression
−> ˆ( Expr $bitwiseORExpress ion BOr $b )

)∗
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;

bitwiseORExpressionNoIn :
( a=bitwiseXORExpressionNoIn−>$a )

(
LT∗ ’|’ LT∗ b=bitwiseXORExpressionNoIn
−> ˆ( Expr $bitwiseORExpressionNoIn BOr $b )

)∗
;

bitwiseXORExpression :
( a=bitwiseANDExpression−>$a )

(
LT∗ ’^’ LT∗ b=bitwiseANDExpression
−> ˆ( Expr $bitwiseXORExpression BXor $b )

)∗
;

bitwiseXORExpressionNoIn :
( a=bitwiseANDExpressionNoIn−>$a )

(
LT∗ ’^’ LT∗ b=bitwiseANDExpressionNoIn
−> ˆ( Expr $bitwiseXORExpressionNoIn BXor $b )

)∗
;

bitwiseANDExpression :
( a=equa l i tyExpre s s i on−>$a )

(
LT∗ ’&’ LT∗ b=equa l i t yExpre s s i on
−> ˆ( Expr $bitwiseANDExpression BAnd $b )

)∗
;

bitwiseANDExpressionNoIn :
( a=equal i tyExpress ionNoIn−>$a )

(
LT∗ ’&’ LT∗ b=equa l i tyExpress ionNoIn
−> ˆ( Expr $bitwiseANDExpressionNoIn BAnd $b )

)∗
;

EQUSING: ( ’==’ | ’!=’ | ’===’ | ’!==’ ) ;

equa l i t yExpre s s i on :
( a=r e l a t i o n a l E x p r e s s i o n−>$a )

(
LT∗ EQUSING LT∗ b=r e l a t i o n a l E x p r e s s i o n
−> ˆ( Expr $equa l i t yExpre s s i on EQUSING $b )

)∗
;

equa l i tyExpress ionNoIn :
( a=re la t i ona lExpre s s i onNoIn−>$a )

(
LT∗ EQUSING LT∗ b=re l a t i ona lExpre s s i onNoIn
−> ˆ( Expr $equa l i tyExpress ionNoIn EQUSING $b )

)∗
;

COMPSIGNOIN: ( ’<’ | ’>’ | ’<=’ | ’>=’ | ’instanceof ’ ) ;
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TIN : ’in’ ;

compsig : COMPSIGNOIN | TIN ;

r e l a t i o n a l E x p r e s s i o n :
( a=sh i f t Ex pr e s s i on−>$a )

(
LT∗ compsig LT∗ b=s h i f t E x p r e s s i o n
−> ˆ( Expr $ r e l a t i o n a l E x p r e s s i o n compsig $b )

)∗
;

r e l a t i ona lExpre s s i onNoIn :
( a=sh i f t Ex pr e s s i on−>$a )

(
LT∗ COMPSIGNOIN LT∗ b=s h i f t E x p r e s s i o n
−> ˆ( Expr $ r e l a t i ona lExpre s s i onNoIn COMPSIGNOIN $b )

)∗
;

SHIFTSIG : ( ’<<’ | ’>>’ | ’>>>’ ) ;
s h i f t E x p r e s s i o n :

( a=add i t iveExpre s s i on−>$a )
(

LT∗ SHIFTSIG LT∗ b=add i t i v eExpre s s i on
−> ˆ( Expr $ s h i f t E x p r e s s i o n SHIFTSIG $b )

)∗
;

add i t i v eExpre s s i on :
( a=m u l t i p l i c a t i v e E x p r e s s i o n−>$a )
( LT∗ PLUSMINUS LT∗ b=m u l t i p l i c a t i v e E x p r e s s i o n

−> ˆ( Expr $add i t i v eExpre s s i on PLUSMINUS $b ) // use previous rule result

)∗
;

MULSIG: ( ’*’ | ’/’ | ’%’ ) ;

m u l t i p l i c a t i v e E x p r e s s i o n :
( a=unaryExpress ion−>$a )
( LT∗ MULSIG LT∗ b=unaryExpress ion

−> ˆ( Expr $ m u l t i p l i c a t i v e E x p r e s s i o n MULSIG $b ) // use previous rule result

)∗
;

PLUSMINUS: ( ’+’ | ’-’ ) ;

INCDEC: ( ’++’ | ’--’ ) ;

DELETE: ’delete ’ ;
VOID: ’void’ ;
TYPEOF: ’typeof ’ ;

fragment preunary :
DELETE
| VOID
| TYPEOF
| INCDEC
| PLUSMINUS
| ’~’

| ’!’ ;

unaryExpress ion :
p o s t f i x E x p r e s s i o n
| preunary LT∗ unaryExpress ion −> ˆ( UnaryExpr preunary unaryExpress ion )
;

p o s t f i x E x p r e s s i o n :
( l=le f tHandS ideExpres s ion −> $ l )



166 APPENDIX D. JAVASCRIPT

( INCDEC −> ˆ( Expr $po s t f i xExpr e s s i on INCDEC))?
;

THIS : ’this’ ;

pr imaryExpress ion :
THIS −> This
| ’(’ LT∗ exp r e s s i on LT∗ ’)’ −> exp r e s s i on
| I d e n t i f i e r −> ˆ( Ident I d e n t i f i e r )
| l i t e r a l
| a r r a y L i t e r a l
| o b j e c t L i t e r a l
| a r r a y L i t e r a l C r e a t i o n
;

// arrayLiteral definition.

a r r a y L i t e r a l :
’[’ LT∗ ass ignmentExpress ion ? (LT∗ ’,’ (LT∗ ass ignmentExpress ion )? )∗ LT∗ ’]’

−> ˆ( L i s t ass ignmentExpress ion ∗)
;

a r r a y L i t e r a l C r e a t i o n :
’[’ LT∗ ass ignmentExpress ion LT∗ f o r I n L i s t LT∗ ’]’

−> ˆ( L i s tCrea t i on ass ignmentExpress ion f o r I n L i s t )
;

f o r I n L i s t :
’for’ LT∗ I d e n t i f i e r ? LT∗ ’(’ LT∗ f o r I n S t a t e m e n t I n i t i a l i s e r P a r t LT∗ ’in’

LT∗ exp r e s s i on LT∗ ’)’

−> ˆ( ForIn ˆ( Expr f o r I n S t a t e m e n t I n i t i a l i s e r P a r t ?)
ˆ( Expr exp r e s s i on ) ˆ( Each I d e n t i f i e r ?) )

;

// objectLiteral definition.

o b j e c t L i t e r a l :
’{’ LT∗ propertyNameAndValue? (LT∗ ’,’ LT∗ propertyNameAndValue )∗ LT∗ ’}’

−> ˆ( O b j e c t L i t e r a l propertyNameAndValue ∗)

;
propertyNameAndValue :

I d e n t i f i e r LT∗ propertyName LT∗ ’(’ LT∗ ’)’ LT∗ ’{’ LT∗ funct ionbody ’}’

−> ˆ( PropertyGet I d e n t i f i e r propertyName funct ionbody )
| a=I d e n t i f i e r LT∗ propertyName LT∗ ’(’ LT∗ b=I d e n t i f i e r LT∗ ’)’

LT∗ ’{’ LT∗ funct ionbody ’}’

−> ˆ( PropertySet $a propertyName ˆ( Ident $b ) funct ionbody )
| propertyName LT∗ ’:’ LT∗ ass ignmentExpress ion

−> ˆ( PropertyName propertyName ass ignmentExpress ion )

;

propertyName :
I d e n t i f i e r −> ˆ( Ident I d e n t i f i e r )
| S t r i n g L i t e r a l −> ˆ( St r ing S t r i n g L i t e r a l )
| Numer icL i tera l −> ˆ(Number Numer icL i tera l )
;

// primitive literal definition.

NULL: ’null’ ;
TRUE: ’true’ ;
FALSE: ’false’ ;

l i t e r a l :
NULL −> ˆ( Nul l )
| TRUE −> ˆ( Ltrue )
| FALSE −> ˆ( L f a l s e )
| S t r i n g L i t e r a l −> ˆ( St r ing S t r i n g L i t e r a l )
| Numer icL i tera l −> ˆ(Number Numer icL i tera l )
| Regu la rExpre s s i onL i t e ra l −> ˆ(RegEx Regu la rExpre s s i onL i t e ra l )

;

// regular expression
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Regu la rExpre s s i onL i t e ra l :
{ s e l f . areRegularExpress ionsEnabled ( ) }?=> ’/’ RegularExpressionBody ’/’ ’.’? I d e n t i f i e r P a r t ∗

;
fragment RegularExpressionBody :

RegularExpress ionFirs tChar RegularExpress ionChar ∗ ;

fragment RegularExpress ionFirs tChar :
˜ ( LT | ’*’ | ’\\’ | ’/’ )
| ’\\’ ˜( LT )
;

fragment RegularExpress ionChar :
˜ ( LT | ’\\’ | ’/’ )
| ’\\’ ˜( LT )
;

// lexer rules.

S t r i n g L i t e r a l :
’"’ DoubleStr ingCharacter ∗ ’"’

| ’\’’ S ing l eS t r i ngCharac t e r ∗ ’\’’

;

fragment DoubleStr ingCharacter :
˜( ’"’ | ’\\’ | LT)
| ’\\’ EscapeSequence
;

fragment S ing l eS t r i ngCharac t e r :
˜( ’\’’ | ’\\’ | LT)
| ’\\’ EscapeSequence
;

fragment EscapeSequence :
CharacterEscapeSequence
| ’0’

| HexEscapeSequence
| UnicodeEscapeSequence
;

fragment CharacterEscapeSequence :
S ing leEscapeCharacter
| NonEscapeCharacter
;

fragment NonEscapeCharacter :
˜( EscapeCharacter | LT)

;

fragment S ing leEscapeCharacter :
’\’’ | ’"’ | ’\\’ | ’b’ | ’f’ | ’n’ | ’r’ | ’t’ | ’v’

;

fragment EscapeCharacter :
S ing leEscapeCharacter
| DecimalDigit
| ’x’

| ’u’

;

fragment HexEscapeSequence :
’x’ HexDigit HexDigit

;

fragment UnicodeEscapeSequence :
’u’ HexDigit HexDigit HexDigit HexDigit

;

Numer icL i tera l :
Dec ima lL i t e ra l
| HexI n t eg e rL i t e r a l
| ’NaN’
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;

fragment Hex In t eg e rL i t e r a l :
’0’ ( ’x’ | ’X’ ) HexDigit+

;

fragment HexDigit :
DecimalDigit | ( ’a’ . . ’f’ ) | ( ’A’ . . ’F’ )

;

fragment Dec ima lL i t e ra l :
Dec imalDigit+ ’.’ DecimalDigit ∗ ExponentPart ?
| ’.’? DecimalDigit+ ExponentPart ?
;

fragment DecimalDig it :
( ’0’ . . ’9’ )

;

fragment ExponentPart :
( ’e’ | ’E’ ) ( ’+’ | ’-’ ) ? DecimalDig it+

;

I d e n t i f i e r :
I d e n t i f i e r S t a r t I d e n t i f i e r P a r t ∗

;

fragment I d e n t i f i e r S t a r t :
UnicodeLetter
| ’$’

| ’_’

| ’\\’ UnicodeEscapeSequence
;

fragment I d e n t i f i e r P a r t :
( I d e n t i f i e r S t a r t ) => I d e n t i f i e r S t a r t
| UnicodeDig it
| UnicodeConnectorPunctuation
;

fragment UnicodeLetter :
’\u0041 ’ . . ’\u005A’ | ’\u0061’ . . ’\u007A ’ | ’\u00AA’ | ’\u00B5’ | ’\u00BA ’

| ’\u00C0’ . . ’\u00D6 ’ | ’\u00D8’ . . ’\u00F6’ | ’\u00F8 ’ . . ’\u021F’ | ’\u0222’ . . ’\u0233 ’
| ’\u0250’ . . ’\u02AD ’ | ’\u02B0’ . . ’\u02B8’ | ’\u02BB’ . . ’\u02C1 ’
| ’\u02D0 ’ . . ’\u02D1 ’ | ’\u02E0’ . . ’\u02E4 ’ | ’\u02EE ’ | ’\u037A’ | ’\u0386’

| ’\u0388’ . . ’\u038A ’ | ’\u038C’ | ’\u038E’ . . ’\u03A1 ’
| ’\u03A3’ . . ’\u03CE ’ | ’\u03D0’ . . ’\u03D7’ | ’\u03DA ’ . . ’\u03F3’ | ’\u0400’ . . ’\u0481 ’
| ’\u048C ’ . . ’\u04C4 ’ | ’\u04C7’ . . ’\u04C8 ’ | ’\u04CB ’ . . ’\u04CC’ | ’\u04D0’ . . ’\u04F5 ’
| ’\u04F8’ . . ’\u04F9 ’ | ’\u0531’ . . ’\u0556 ’ | ’\u0559 ’ | ’\u0561’ . . ’\u0587 ’
| ’\u05D0’ . . ’\u05EA ’ | ’\u05F0’ . . ’\u05F2’ | ’\u0621 ’ . . ’\u063A’ | ’\u0640’ . . ’\u064A ’
| ’\u0671’ . . ’\u06D3 ’ | ’\u06D5’ | ’\u06E5’ . . ’\u06E6 ’ | ’\u06FA’ . . ’\u06FC ’ | ’\u0710 ’

| ’\u0712’ . . ’\u072C ’ | ’\u0780 ’ . . ’\u07A5’ | ’\u0905 ’ . . ’\u0939 ’ | ’\u093D’

| ’\u0950’ | ’\u0958 ’ . . ’\u0961’ | ’\u0985’ . . ’\u098C ’ | ’\u098F ’ . . ’\u0990’
| ’\u0993’ . . ’\u09A8 ’ | ’\u09AA’ . . ’\u09B0’ | ’\u09B2 ’ | ’\u09B6’ . . ’\u09B9’
| ’\u09DC’ . . ’\u09DD ’ | ’\u09DF ’ . . ’\u09E1’ | ’\u09F0 ’ . . ’\u09F1 ’ | ’\u0A05’ . . ’\u0A0A ’
| ’\u0A0F’ . . ’\u0A10 ’ | ’\u0A13 ’ . . ’\u0A28’ | ’\u0A2A ’ . . ’\u0A30 ’ | ’\u0A32’ . . ’\u0A33 ’
| ’\u0A35’ . . ’\u0A36 ’ | ’\u0A38 ’ . . ’\u0A39’ | ’\u0A59 ’ . . ’\u0A5C ’ | ’\u0A5E’

| ’\u0A72’ . . ’\u0A74 ’ | ’\u0A85’ . . ’\u0A8B ’ | ’\u0A8D ’ | ’\u0A8F’ . . ’\u0A91’
| ’\u0A93’ . . ’\u0AA8 ’ | ’\u0AAA ’ . . ’\u0AB0’ | ’\u0AB2 ’ . . ’\u0AB3 ’ | ’\u0AB5’ . . ’\u0AB9’
| ’\u0ABD’ | ’\u0AD0 ’ | ’\u0AE0 ’ | ’\u0B05’ . . ’\u0B0C ’ | ’\u0B0F ’ . . ’\u0B10’
| ’\u0B13’ . . ’\u0B28 ’ | ’\u0B2A ’ . . ’\u0B30’ | ’\u0B32’ . . ’\u0B33 ’
| ’\u0B36’ . . ’\u0B39 ’ | ’\u0B3D ’ | ’\u0B5C’ . . ’\u0B5D ’ | ’\u0B5F ’ . . ’\u0B61’
| ’\u0B85’ . . ’\u0B8A ’ | ’\u0B8E ’ . . ’\u0B90’ | ’\u0B92 ’ . . ’\u0B95 ’ | ’\u0B99’ . . ’\u0B9A ’
| ’\u0B9C’ | ’\u0B9E ’ . . ’\u0B9F’ | ’\u0BA3’ . . ’\u0BA4 ’ | ’\u0BA8 ’ . . ’\u0BAA’
| ’\u0BAE’ . . ’\u0BB5 ’ | ’\u0BB7 ’ . . ’\u0BB9’ | ’\u0C05’ . . ’\u0C0C ’
| ’\u0C0E’ . . ’\u0C10 ’ | ’\u0C12 ’ . . ’\u0C28’ | ’\u0C2A ’ . . ’\u0C33’
| ’\u0C35’ . . ’\u0C39 ’ | ’\u0C60 ’ . . ’\u0C61’ | ’\u0C85’ . . ’\u0C8C ’ | ’\u0C8E’ . . ’\u0C90 ’
| ’\u0C92’ . . ’\u0CA8 ’ | ’\u0CAA ’ . . ’\u0CB3’ | ’\u0CB5’ . . ’\u0CB9 ’ | ’\u0CDE’

| ’\u0CE0’ . . ’\u0CE1 ’ | ’\u0D05’ . . ’\u0D0C ’ | ’\u0D0E ’ . . ’\u0D10’ | ’\u0D12’ . . ’\u0D28 ’
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| ’\u0D2A ’ . . ’\u0D39’ | ’\u0D60 ’ . . ’\u0D61 ’ | ’\u0D85’ . . ’\u0D96 ’ | ’\u0D9A ’ . . ’\u0DB1’
| ’\u0DB3 ’ . . ’\u0DBB’ | ’\u0DBD ’ | ’\u0DC0 ’ . . ’\u0DC6’ | ’\u0E01 ’ . . ’\u0E30’
| ’\u0E32 ’ . . ’\u0E33’ | ’\u0E40 ’ . . ’\u0E46 ’ | ’\u0E81’ . . ’\u0E82 ’ | ’\u0E84 ’

| ’\u0E87 ’ . . ’\u0E88’ | ’\u0E8A ’ | ’\u0E8D ’ | ’\u0E94’ . . ’\u0E97’
| ’\u0E99 ’ . . ’\u0E9F’ | ’\u0EA1’ . . ’\u0EA3 ’ | ’\u0EA5’ | ’\u0EA7’ | ’\u0EAA ’ . . ’\u0EAB’
| ’\u0EAD ’ . . ’\u0EB0’ | ’\u0EB2’ . . ’\u0EB3 ’ | ’\u0EBD ’ . . ’\u0EC4’ | ’\u0EC6 ’

| ’\u0EDC ’ . . ’\u0EDD’ | ’\u0F00’ | ’\u0F40 ’ . . ’\u0F6A’ | ’\u0F88’ . . ’\u0F8B ’
| ’\u1000 ’ . . ’\u1021’ | ’\u1023’ . . ’\u1027 ’ | ’\u1029 ’ . . ’\u102A’ | ’\u1050 ’ . . ’\u1055 ’
| ’\u10A0 ’ . . ’\u10C5’ | ’\u10D0’ . . ’\u10F6 ’ | ’\u1100 ’ . . ’\u1159’ | ’\u115F ’ . . ’\u11A2 ’
| ’\u11A8 ’ . . ’\u11F9’ | ’\u1200’ . . ’\u1206 ’ | ’\u1208 ’ . . ’\u1246’ | ’\u1248 ’

| ’\u124A ’ . . ’\u124D’ | ’\u1250’ . . ’\u1256 ’ | ’\u1258 ’ | ’\u125A’ . . ’\u125D ’
| ’\u1260 ’ . . ’\u1286’ | ’\u1288’ | ’\u128A ’ . . ’\u128D’ | ’\u1290’ . . ’\u12AE ’
| ’\u12B0 ’ | ’\u12B2’ . . ’\u12B5 ’ | ’\u12B8 ’ . . ’\u12BE’ | ’\u12C0’ | ’\u12C2 ’ . . ’\u12C5 ’
| ’\u12C8 ’ . . ’\u12CE’ | ’\u12D0’ . . ’\u12D6 ’ | ’\u12D8 ’ . . ’\u12EE’ | ’\u12F0 ’ . . ’\u130E’
| ’\u1310 ’ | ’\u1312’ . . ’\u1315 ’ | ’\u1318 ’ . . ’\u131E’ | ’\u1320’ . . ’\u1346 ’
| ’\u1348 ’ . . ’\u135A’ | ’\u13A0 ’ . . ’\u13B0’ | ’\u13B1’ . . ’\u13F4 ’ | ’\u1401 ’ . . ’\u1676’
| ’\u1681 ’ . . ’\u169A’ | ’\u16A0’ . . ’\u16EA ’ | ’\u1780’ . . ’\u17B3 ’ | ’\u1820 ’ . . ’\u1877’
| ’\u1880 ’ . . ’\u18A8’ | ’\u1E00’ . . ’\u1E9B ’ | ’\u1EA0 ’ . . ’\u1EE0’ | ’\u1EE1 ’ . . ’\u1EF9’
| ’\u1F00 ’ . . ’\u1F15’ | ’\u1F18’ . . ’\u1F1D ’ | ’\u1F20 ’ . . ’\u1F39’ | ’\u1F3A ’ . . ’\u1F45 ’
| ’\u1F48 ’ . . ’\u1F4D’ | ’\u1F50’ . . ’\u1F57 ’ | ’\u1F59 ’ | ’\u1F5B’ | ’\u1F5D ’

| ’\u1F5F ’ . . ’\u1F7D’ | ’\u1F80 ’ . . ’\u1FB4’ | ’\u1FB6’ . . ’\u1FBC ’ | ’\u1FBE ’

| ’\u1FC2 ’ . . ’\u1FC4’ | ’\u1FC6’ . . ’\u1FCC ’ | ’\u1FD0 ’ . . ’\u1FD3’ | ’\u1FD6 ’ . . ’\u1FDB ’
| ’\u1FE0 ’ . . ’\u1FEC’ | ’\u1FF2’ . . ’\u1FF4 ’ | ’\u1FF6 ’ . . ’\u1FFC’ | ’\u207F ’

| ’\u2102 ’ | ’\u2107’ | ’\u210A’ . . ’\u2113 ’ | ’\u2115 ’ | ’\u2119’ . . ’\u211D ’
| ’\u2124 ’ | ’\u2126’ | ’\u2128’ | ’\u212A ’ . . ’\u212D’ | ’\u212F’ . . ’\u2131 ’
| ’\u2133 ’ . . ’\u2139’ | ’\u2160’ . . ’\u2183 ’ | ’\u3005 ’ . . ’\u3007’
| ’\u3021 ’ . . ’\u3029’ | ’\u3031’ . . ’\u3035 ’
| ’\u3038 ’ . . ’\u303A’ | ’\u3041’ . . ’\u3094 ’ | ’\u309D ’ . . ’\u309E’ | ’\u30A1’ . . ’\u30FA ’
| ’\u30FC ’ . . ’\u30FE’ | ’\u3105’ . . ’\u312C ’ | ’\u3131 ’ . . ’\u318E’ | ’\u31A0’ . . ’\u31B7 ’
| ’\u3400 ’ | ’\u4DB5’ | ’\u4E00’ | ’\u9FA5 ’ | ’\uA000 ’ . . ’\uA48C’ | ’\uAC00’ | ’\uD7A3 ’

| ’\uF900 ’ . . ’\uFA2D’ | ’\uFB00’ . . ’\uFB06 ’ | ’\uFB13 ’ . . ’\uFB17’ | ’\uFB1D’

| ’\uFB1F ’ . . ’\uFB28’ | ’\uFB2A’ . . ’\uFB36 ’ | ’\uFB38 ’ . . ’\uFB3C’ | ’\uFB3E ’

| ’\uFB40 ’ . . ’\uFB41’ | ’\uFB43’ . . ’\uFB44 ’ | ’\uFB46 ’ . . ’\uFBB1’ | ’\uFBD3’ . . ’\uFD3D ’
| ’\uFD50 ’ . . ’\uFD8F’ | ’\uFD92’ . . ’\uFDC7 ’ | ’\uFDF0 ’ . . ’\uFDFB’ | ’\uFE70’ . . ’\uFE72 ’
| ’\uFE74 ’ | ’\uFE76 ’ . . ’\uFEFC’ | ’\uFF21 ’ . . ’\uFF3A ’ | ’\uFF41’ . . ’\uFF5A ’
| ’\uFF66 ’ . . ’\uFFBE’ | ’\uFFC2’ . . ’\uFFC7 ’ | ’\uFFCA ’ . . ’\uFFCF’ | ’\uFFD2’ . . ’\uFFD7 ’
| ’\uFFDA ’ . . ’\uFFDC’ ;

fragment UnicodeCombiningMark :
’\u0300 ’ . . ’\u034E’ | ’\u0360 ’ . . ’\u0362 ’ | ’\u0483’ . . ’\u0486’ | ’\u0591 ’ . . ’\u05A1’
| ’\u05A3 ’ . . ’\u05B9’ | ’\u05BB’ . . ’\u05BD ’ | ’\u05BF ’ | ’\u05C1’ . . ’\u05C2 ’
| ’\u05C4 ’ | ’\u064B ’ . . ’\u0655’ | ’\u0670 ’ | ’\u06D6 ’ . . ’\u06DC’ | ’\u06DF’ . . ’\u06E4 ’
| ’\u06E7 ’ . . ’\u06E8’ | ’\u06EA’ . . ’\u06ED ’ | ’\u0711 ’ | ’\u0730’ . . ’\u074A ’
| ’\u07A6 ’ . . ’\u07B0’ | ’\u0901 ’ . . ’\u0903 ’ | ’\u093C’ | ’\u093E’ . . ’\u094D ’
| ’\u0951 ’ . . ’\u0954’ | ’\u0962’ . . ’\u0963 ’ | ’\u0981’ . . ’\u0983 ’ | ’\u09BC ’ . . ’\u09C4’
| ’\u09C7 ’ . . ’\u09C8’ | ’\u09CB’ . . ’\u09CD ’ | ’\u09D7 ’ | ’\u09E2’ . . ’\u09E3 ’
| ’\u0A02 ’ | ’\u0A3C ’ | ’\u0A3E’ . . ’\u0A42 ’ | ’\u0A47 ’ . . ’\u0A48’ | ’\u0A4B’ . . ’\u0A4D ’
| ’\u0A70 ’ . . ’\u0A71’ | ’\u0A81’ . . ’\u0A83 ’ | ’\u0ABC ’ | ’\u0ABE’ . . ’\u0AC5 ’
| ’\u0AC7 ’ . . ’\u0AC9’ | ’\u0ACB ’ . . ’\u0ACD ’ | ’\u0B01’ . . ’\u0B03 ’ | ’\u0B3C ’

| ’\u0B3E ’ . . ’\u0B43’ | ’\u0B47’ . . ’\u0B48 ’ | ’\u0B4B’ . . ’\u0B4D ’ | ’\u0B56 ’ . . ’\u0B57’
| ’\u0B82 ’ . . ’\u0B83’ | ’\u0BBE’ . . ’\u0BC2 ’ | ’\u0BC6 ’ . . ’\u0BC8’ | ’\u0BCA ’ . . ’\u0BCD’
| ’\u0BD7 ’ | ’\u0C01 ’ . . ’\u0C03’ | ’\u0C3E ’ . . ’\u0C44 ’ | ’\u0C46’ . . ’\u0C48 ’
| ’\u0C4A ’ . . ’\u0C4D’ | ’\u0C55’ . . ’\u0C56 ’ | ’\u0C82 ’ . . ’\u0C83’ | ’\u0CBE’ . . ’\u0CC4 ’
| ’\u0CC6 ’ . . ’\u0CC8’ | ’\u0CCA ’ . . ’\u0CCD ’ | ’\u0CD5’ . . ’\u0CD6 ’ | ’\u0D02 ’ . . ’\u0D03’
| ’\u0D3E ’ . . ’\u0D43’ | ’\u0D46’ . . ’\u0D48 ’ | ’\u0D4A’ . . ’\u0D4D ’ | ’\u0D57 ’

| ’\u0D82 ’ . . ’\u0D83’ | ’\u0DCA’ | ’\u0DCF ’ . . ’\u0DD4 ’ | ’\u0DD6’ | ’\u0DD8’ . . ’\u0DDF ’
| ’\u0DF2 ’ . . ’\u0DF3’ | ’\u0E31’ | ’\u0E34 ’ . . ’\u0E3A ’ | ’\u0E47’ . . ’\u0E4E ’
| ’\u0EB1 ’ | ’\u0EB4 ’ . . ’\u0EB9’ | ’\u0EBB ’ . . ’\u0EBC ’ | ’\u0EC8’ . . ’\u0ECD ’
| ’\u0F18 ’ . . ’\u0F19’ | ’\u0F35’ | ’\u0F37 ’ | ’\u0F39 ’ | ’\u0F3E’ . . ’\u0F3F ’
| ’\u0F71 ’ . . ’\u0F84’ | ’\u0F86 ’ . . ’\u0F87 ’ | ’\u0F90’ . . ’\u0F97’ | ’\u0F99 ’ . . ’\u0FBC’
| ’\u0FC6 ’ | ’\u102C ’ . . ’\u1032’ | ’\u1036 ’ . . ’\u1039 ’ | ’\u1056’ . . ’\u1059 ’
| ’\u17B4 ’ . . ’\u17D3’ | ’\u18A9 ’ | ’\u20D0 ’ . . ’\u20DC’ | ’\u20E1’ | ’\u302A ’ . . ’\u302F’
| ’\u3099 ’ . . ’\u309A’ | ’\uFB1E’ | ’\uFE20 ’ . . ’\uFE23 ’ ;

fragment UnicodeDigit :
’\u0030 ’ . . ’\u0039’ | ’\u0660 ’ . . ’\u0669 ’ | ’\u06F0’ . . ’\u06F9’ | ’\u0966 ’ . . ’\u096F’
| ’\u09E6 ’ . . ’\u09EF’ | ’\u0A66’ . . ’\u0A6F ’ | ’\u0AE6 ’ . . ’\u0AEF’ | ’\u0B66’ . . ’\u0B6F ’
| ’\u0BE7 ’ . . ’\u0BEF’ | ’\u0C66’ . . ’\u0C6F ’ | ’\u0CE6 ’ . . ’\u0CEF’ | ’\u0D66’ . . ’\u0D6F ’
| ’\u0E50 ’ . . ’\u0E59’ | ’\u0ED0’ . . ’\u0ED9 ’ | ’\u0F20 ’ . . ’\u0F29’ | ’\u1040’ . . ’\u1049 ’
| ’\u1369 ’ . . ’\u1371’ | ’\u17E0’ . . ’\u17E9 ’ | ’\u1810 ’ . . ’\u1819’ | ’\uFF10’ . . ’\uFF19 ’ ;

fragment UnicodeConnectorPunctuation :
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’\u005F ’ | ’\u203F ’ . . ’\u2040’ | ’\u30FB’ | ’\uFE33 ’ . . ’\uFE34 ’ | ’\uFE4D’ . . ’\uFE4F ’
| ’\uFF3F’ | ’\uFF65 ’ ;

Comment :
’/*’ ( options { greedy=fa l se ;} : . ) ∗ ’*/’ { $channel=HIDDEN;}
;

LineComment :
’//’ ˜(LT)∗ { $channel=HIDDEN;}
;

LT:
’\n’ // Line feed.

| ’\r’ // Carriage return.

| ’\u2028’ // Line separator.

| ’\u2029’ // Paragraph separator.

;

WhiteSpace :
( ’\t’ | ’\v’ | ’\f’ | ’ ’ | ’\u00A0 ’ ) { $channel=HIDDEN;}
;

Listing D.1: JavaScript AntLR grammar file.
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D.2 Precedence Rules

Operator Operation

++ Pre- or post-increment

– Pre- or post-decrement

- Negate number

+ Convert to number

˜ Invert bits

! Invert boolean value

delete Remove a property

typeof Determine type of operand

void Return undefined value

*, /, % Multiply, divide, remainder

+, - Add, subtract

+ Concatenate strings

<< Shift left

>> Shift right with sign extension

>>>Shift right with zero extension

<, <=, >, >= Compare in numeric order

<, <=, >, >= Compare in alphabetic order

instanceof Test object class

in Test whether property exists

== Test for equality

!= Test for inequality

=== Test for strict equality

!== Test fo strict inequality

& Compute bitwise AND

ˆ Compute bitwise XOR

— Compute bitwise OR

&& Compute logical AND

—— Compute logical OR

?: Ternary operator

= Assign to a variable or property

*=, /=, %=, +=, -=, &=, ˆ=,—=,<<=, >>=, >>>= Operate and assign

, Discard first operand, return the second

Table D.1: JavaScript operators’ order of precedence, from the higher order to the lower order.)

D.3 Reserved Keywords

1 break, case, catch, continue, debugger,default,delete,do,
2 else,false ,finally ,for,function,if,in,instanceof,new,null,
3 ,return,switch,this,throw,true,try,typeof,var,void,while,
4 with
5 //Unused reserved word for furture versions of JavaScript

6 class,const,enum,export,extends,import,super
7 //Reserved in strict mode
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8 implements, interface, let, package, private , protected, public , static , yield
9 //not fully reserved but not allowed as variable, function or parametter names

10 eval,arguments
11 //Reserved in ECMAScript 3 but not in ECMAScript 5

12 abstract, boolean, byte, char, class,const, double, enum, export, extends,
13 final , float , goto, implements, import, int, interface, long, native,
14 package, private , protected, public , short, static , super, synchronizd,
15 throws, transient , volatile
16 //Predinied global variables and functions

17 arguments, Array, Boolean, Date, decodeURI, decodeURIComponent, encodeURI,
18 encodeURIComponent, Error, eval, EvalError, Function, Infinity, isFinite,
19 isNan, JSON, Math, NaN, Number, Object, parseFloat, parseInt, RangeError,
20 ReferenceError, RegExp, String, SyntaxError, TypeError, undefined, URIError.
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Figure E.1: Natural deduction rules for propositional logic.
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Appendix F

Automatic Verification of Protocols

The codes presented in this Chapter are the model of the TCRR protocol and the VerifyMyVM protocol
detailed in Chapter 7. There are two versions for each protocol, one corresponding to the AVISPA
verification software and the other to Scyther. The results of the verification is presented in Chapter 7.

const PCR;

hash funct ion hash ;

protocol t c r r ( User , Node ,TPM){
role User {

f r e s h n1 : Nonce ;
f r e s h n3 : Nonce ;
var n2 : Nonce ;
f r e s h k s e s s i o n : SessionKey ;
send 1 ( User , Node ,{ n1 , Node} sk ( User ) ) ;
r ead 4 (Node , User , n2 ,{{{PCR, n1 , n2 , Node}hash} sk (TPM) , n2} sk (Node ) ) ;
send 10 ( User , Node ,{{n1 , n2 , n3 , k s e s s i on , User}pk (Node )} sk ( User ) ) ;
read 13 (Node , User ,{ n3} k s e s s i o n ) ;
c la im u1 ( User , Niagree ) ;
c la im u2 ( User , Secret , k s e s s i o n ) ;
c la im u3 ( User , Nisynch ) ;
}
role Node {
var n1 : Nonce ;
f r e s h n2 : Nonce ;
var n3 : Nonce ;
var k s e s s i o n : SessionKey ;
read 1 ( User , Node ,{ n1 , Node} sk ( User ) ) ;
send 2 (Node ,TPM, n1 , n2 , Node ) ;
read 3 (TPM, Node ,{{PCR, n1 , n2 , Node}hash} sk (TPM) ) ;
send 4 (Node , User , n2 ,{{{PCR, n1 , n2 , Node}hash} sk (TPM) , n2} sk (Node ) ) ;
read 10 ( User , Node ,{{n1 , n2 , n3 , k s e s s i on , User}pk (Node )} sk ( User ) ) ;
send 13 (Node , User ,{ n3} k s e s s i o n ) ;
c la im n3 (Node , Nisynch ) ;
c la im n1 (Node , Niagree ) ;
c la im n2 (Node , Secret , k s e s s i o n ) ;
}
role TPM{

var n1 : Nonce ;
var n2 : Nonce ;
r ead 2 (Node ,TPM, n1 , n2 , Node ) ;
send 3 (TPM, Node ,{{PCR, n1 , n2 , Node}hash} sk (TPM) ) ;

}
}
/∗const Ursula , Nadia , Eve , Tony : Agent ;∗/
/∗untrusted Eve ;∗/
/∗compromised sk ( Eve ) ;∗/
/∗compromised sAIK( Eve ) ;∗/
/∗compromised sksubEK ( Eve ) ;∗/

Listing F.1: TCRR protocol modelization & validation under Scyther.

$> time ./scyther.py −−max−runs=20 −−all−attacks
verification scyther .spdl
Verification results :
claim id [tpmp,u1], Niagree : No attacks.
claim id [tpmp,u2], Secret ksession : No attacks.
claim id [tpmp,u3], Nisynch : No attacks.
claim id [tpmp,n3], Nisynch : No attacks.
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claim id [tpmp,n1], Niagree : No attacks.
claim id [tpmp,n2], Secret ksession : No attacks.
real 0m6.029s
user 0m5.950s
sys 0m0.060s

Listing F.2: Validation of the TCRR protocol with Scyther.

role r u s e r ( User , Node : agent , Snd , Rcv : channel ( dy )
, Pkuser , PkAIK, PksubEK , Pknode : pub l i c key
, PCR : text , H: hash func )

played by User
de f=

l o c a l State : nat , N1 , N2 , N3 : text ,
Ksess ion : symmetric key

i n i t
State := 0

t r a n s i t i o n
1 . State = 0 /\ Rcv( s t a r t )
=|> State ’ := 1 /\ N1’ :=new ( ) /\
Snd({N1 ’ . Node} i nv ( Pkuser ) )
2 . State = 1 /\ Rcv(
{{H(PCR. N1 . N2 ’ . Node )} i nv (PkAIK ) . N2’} i nv ( Pknode ) )
=|> State ’ := 2 /\ N3’ :=new ( ) /\
Snd({{N1 . N2 ’ . N3 ’ . Ksess ion } PksubEK} i nv ( Pkuser ) )
3 . State = 2 /\ Rcv({N3} Kses s i on ) =|> State ’ :=3
/\ secret ( Ksess ion , sec ,{User , Node})
/\ r eque s t ( User , Node , N3 , v a l i d )

end role
role r node (Node , User ,TPM : agent ,

SndUser , RcvUser ,SndTPM, RcvTPM : channel ( dy ) ,
Pkuser , PkAIK, PksubEK , Pknode : pub l i c key ,
PCR : text , H: hash func )

played by Node
de f=

l o c a l State : nat , N1 , N2 , N3 : text ,
Ksess ion : symmetric key

i n i t
State := 1

t r a n s i t i o n
1 . State = 1
/\ RcvUser ({N1 ’ . Node ’} i nv ( Pkuser ) )
=|> State ’ := 2 /\ N2’ := new ( )
/\ SndTPM(N1 ’ . N2 ’ . Node ’ )
2 . State = 2
/\ RcvTPM({H(PCR. N1 . N2 . Node )} i nv (PkAIK) ) =|>
State ’ := 3
/\ SndUser (
{{H(PCR. N1 . N2 . Node )} i nv (PkAIK ) . N2} i nv ( Pknode ) )
3 . State = 3 /\ RcvUser (
{{N1 . N2 . N3 ’ . Ksess ion ’} PksubEK} i nv ( Pkuser ) )
=|> State ’ := 4
/\ SndUser ({N3’} Ksess ion ’ )
/\ witnes s ( User , Node , N3 , v a l i d )

end role
role r tpm (TPM , User , Node : agent ,

Snd , Rcv : channel ( dy ) ,
Pkuser , PkAIK, PksubEK , Pknode : pub l i c key ,
PCR : text , H: hash func )

played by TPM
def=

l o c a l State : nat , N1 , N2 : t ex t
i n i t

State := 10
t r a n s i t i o n

1 . State = 10
/\ Rcv(N1 ’ . N2 ’ . Node ’ ) =|> State ’ := 11 /\
Snd({H(PCR. N1 ’ . N2 ’ . Node ’ ) } i nv (PkAIK) )

end role
role s e s s i o n ( User , Node ,TPM : agent ,

Pkuser , PkAIK, PksubEK , Pknode : pub l i c key ,
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PCR : text ,H: hash func
)
de f=

l o c a l SndUser , RcvUser : channel ( dy ) ,
SndTPM,RcvTPM : channel ( dy )

compos it ion
r u s e r ( User , Node , SndUser , RcvUser , Pkuser ,

PkAIK, PksubEK , Pknode ,PCR,H)
/\ r node (Node , User ,TPM, SndUser , RcvUser ,SndTPM,

RcvTPM, Pkuser , PkAIK, PksubEK , Pknode ,PCR,H)
/\ r tpm (TPM, User , Node ,SndTPM,RcvTPM, Pkuser ,

PkAIK, PksubEK , Pknode ,PCR,H)
end role
role environment ( ) de f=

const user , tpm , node : agent ,
pcr , quote , unbind , extend , s o f t , z e r o s : t ex t ,
pkuser , pkAIK ,pksubEK , pknode , pki : pub l i c key ,
ash : hash func , sec , v a l i d : p r o t o c o l i d

int ruder knowledge = {user , tpm , node , pkuser , zeros ,
pkAIK , pksubEK , pknode , pcr , has , quote , unbind ,
extend , pki , inv ( pki )}

compos it ion
s e s s i o n ( user , node , tpm , pkuser , pkAIK ,

pksubEK , pknode , pcr , ash )
/\ s e s s i o n ( user , i , tpm , pkuser , pkAIK ,

pksubEK , pknode , pcr , ash )
/\ s e s s i o n ( i , node , tpm , pkuser , pkAIK ,

pksubEK , pknode , pcr , ash )
/\ s e s s i o n ( user , node , i , pkuser , pkAIK ,

pksubEK , pknode , pcr , ash )
end role
goa l

s e c r e c y o f s ec
au then t i ca t i on on v a l i d

end goa l
environment ( )

Listing F.3: TCRR protocol modelization & validation under AVISPA.

$> ./avispa verification avispa . hlpsl −−ofmc
% OFMC
% Version of 2006/02/13
SUMMARY SAFE
DETAILS BOUNDED NUMBER OF SESSIONS
PROTOCOL

/home/benoit/git/tcrr/avispa/results verif . if
GOAL as specified
BACKEND OFMC
COMMENTS
STATISTICS

parseTime: 0.00s
searchTime: 7.93s
visitedNodes: 6696 nodes
depth: 17 plies

Listing F.4: Validation of the TCRR protocol with AVISPA.

protocol t c r r ( User ,CA, Node ,TPM){
4 role CA {

const PCR: Nonce ;
var n1 : Nonce ;

r ead 1 ( User ,CA,{TPM, Node ,CA, n1} sk ( User ) ) ;
send 2 (CA, User ,{ pk (TPM) , pk (Node ) ,TPM, Node ,PCR, User , n1} sk (CA) ) ;

9

c la im u1 (CA, Niagree ) ;
c la im u3 (CA, Nisynch ) ;
}

role User {
14 // User knows pk (CA) p r i o r to the communication
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f r e s h n1 : Nonce ;
var PCR: Nonce ;
send 1 ( User ,CA,{TPM, Node ,CA, n1} sk ( User ) ) ;
r ead 2 (CA, User ,{ pk (TPM) , pk (Node ) ,TPM, Node ,PCR, User , n1} sk (CA) ) ;

19

c la im u1 ( User , Niagree ) ;
c la im u3 ( User , Nisynch ) ;
}

24 }

Listing F.5: Validation communication between the user and the CA prior to the TCRR protocol with
Scyther.

secret k s e s s i o n : Function ;
const pk : Function ;
secret sk : Function ;
const PCR : Nonce ;
inversekeys (pk , sk ) ;
protocol ver i fvm ( User ,NodeTPM){

role User {
const n1 : Nonce ;
send 1 ( User ,NodeTPM,{ n1} k s e s s i o n ( User ,NodeTPM ) ) ;
read 5 (NodeTPM, User ,

{n1 ,{PCR} sk (NodeTPM)} k s e s s i o n ( User ,NodeTPM ) ) ;
c la im u1 ( User , Niagree ) ;
c la im u3 ( User , Nisynch ) ;

}
role NodeTPM{

var n1 : Nonce ;
r ead 1 ( User ,NodeTPM,{ n1} k s e s s i o n ( User ,NodeTPM ) ) ;
send 5 (NodeTPM, User ,

{n1 ,{PCR} sk (NodeTPM)} k s e s s i o n ( User ,NodeTPM ) ) ;
c la im n3 (NodeTPM, Nisynch ) ;
c la im n1 (NodeTPM, Niagree ) ;

}
}
const Ursula , Nadia , Eve : Agent ;
untrusted Eve ;

Listing F.6: VerifyMyVM protocol modelization & validation under Scyther.

$ time ./scyther.py verification vm .spdl
Verification results :
claim id [verifvm,u1], Niagree : No attacks.
claim id [verifvm,u3], Nisynch : No attacks.
claim id [verifvm,n3], Nisynch : No attacks.
claim id [verifvm,n1], Niagree : No attacks.
real 0m0.055s
user 0m0.034s
sys 0m0.019s

Listing F.7: Validation of the VerifyMyVM protocol with Scyther.

role r u s e r ( User , Node : agent , Snd , Rcv : channel ( dy ) ,
PkAIK : publ i c key , Ksess ion : symmetric key ,
PCR : text , H: hash func )

played by User
de f=

l o c a l State : nat , N1 : t ex t
i n i t

State := 0
t r a n s i t i o n

1 . State = 0 /\ Rcv( s t a r t )
=|> State ’ := 1 /\ N1’ :=new ( ) /\
Snd({N1’} Kses s i on )
2 . State = 1
/\ Rcv({{H(PCR. N1)} i nv (PkAIK ) . N1} Kses s i on )
=|> State ’ :=2
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/\ r eque s t ( User , Node , N1 , v a l i d )
end role
role r node (Node , User : agent ,

SndUser , RcvUser : channel ( dy ) , PkAIK : publ i c key ,
Ksess ion : symmetric key , PCR : text , H: hash func )

played by Node
de f=

l o c a l State : nat , N1 : t ex t
i n i t

State := 1
t r a n s i t i o n

1 . State = 1
/\ RcvUser ({N1’} Kses s i on )
=|> State ’ := 2
/\ SndUser ({{H(PCR. N1)} i nv (PkAIK ) . N1} Kses s i on )
/\ witnes s ( User , Node , N1 , v a l i d )

end role
role s e s s i o n ( User , Node : agent ,

PkAIK : pub l i c key , Ksess ion : symmetric key ,
PCR : text ,H: hash func

)
de f=

l o c a l SndUser , RcvUser : channel ( dy )
compos it ion

r u s e r ( User , Node , SndUser , RcvUser ,
PkAIK, Ksess ion ,PCR,H)

/\ r node (Node , User , SndUser , RcvUser ,
PkAIK, Ksess ion ,PCR,H)

end role
role environment ( ) de f=

const user , node : agent ,
pcr : t ex t , k s e s s i o n : symmetric key ,
pkAIK , pki : pub l i c key ,
ash : hash func , v a l i d : p r o t o c o l i d

int ruder knowledge = {user ,
pkAIK , pcr , has , pki , inv ( pki )}

compos it ion
s e s s i o n ( user , node , pkAIK , kse s s i on , pcr , ash )

/\ s e s s i o n ( user , i , pkAIK , kse s s i on , pcr , ash )
/\ s e s s i o n ( i , node , pkAIK , kse s s i on , pcr , ash )
/\ s e s s i o n ( user , node , pkAIK , kse s s i on , pcr , ash )
end role
goa l

au then t i ca t i on on v a l i d
end goa l
environment ( )

Listing F.8: VerifyMyVM protocol modelization & validation under AVISPA.

$> ./avispa verification vm avispa . hlpsl −−ofmc
% OFMC
% Version of 2006/02/13
SUMMARY SAFE
DETAILS BOUNDED NUMBER OF SESSIONS
PROTOCOL

/home/benoit/git/verifymyVM/avispa/results verif.if
GOAL as specified
BACKEND OFMC
COMMENTS
STATISTICS

parseTime: 0.00s
searchTime: 0.07s
visitedNodes: 158 nodes
depth: 6 plies

Listing F.9: Validation of the VerifyMyVM protocol with AVISPA.
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182 APPENDIX G. TABLE OF OBFUSCATION TRANSFORMATIONS

Obfuscation Quality
Metrics

Target Operation Transformation Potency Resilience Cost

Layout
Scramble Identi-
fiers

medium one-way free

Change Format-
ting

low one-way free

Remove Com-
ments

high one-way free

Control

Computations

Insert Dead or Ir-
relevant Code

Depends on the quality of the
opaque construct and on the
nesting depth of its insertion

µ1, µ2, µ3

Extend Loop Con-
dition

µ1, µ2, µ3

Reducible to non-
Reducible

µ1, µ2, µ3

Add Redundant
Operands

µ1, µ2, µ3

Parallelize Code high strong costly µ1, µ2

Aggregation

Inline Method medium one-way free µ1

Outline State-
ments

medium strong free µ1

Interleave Func-
tions

Depends on the quality of the
opaque predicate

µ1, µ2, µ5

Clone Functions µ1

Block loop low weak free µ1, µ2

Unroll loop low weak cheap µ1

Loop fission low weak free µ1, µ2

Ordering
Reorder State-
ments

low one-way free

Reorder Loops low one-way free
Reorder Expres-
sion

low one-way free

Data

Storage &
Encoding

Change Encoding Depends on the complexity of the
encoding function

µ1

Promote Scalar to
Object

low strong free

Change Variable
Lifetime

low strong free µ4

Split Variable Depends on the number of variables
into which the original variable is
split

µ1

Convert Static to
Procedural Data

Depends on the complexity of the
generated function

µ1, µ2

Aggregation

Merge Scalar Vari-
ables

low weak free µ1

Split Array * weak free µ1, µ2, µ6

Merge Arrays * weak free µ1, µ2

Fold Array * weak cheap µ1, µ2, µ6, µ3

Flatten Array * weak free

Ordering
Reorder Functions
& Variables

low one-way free

Reorder Arrays low weak free

Table G.1: Obfuscation transformations and their qualities.
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