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Abstract

We develop a T-spline isogeometric boundary element method (IGABEM) [1, 2,

3] to shape sensitivity analysis and gradient-based shape optimization in three

dimensional linear elasticity. Contrary to finite element based isogeometric anal-

ysis (IGA) approaches, no parametrization of the volume is required. Hence,

the iterative optimization algorithm can be implemented directly from CAD

without any mesh generation nor postprocessing step for returning the result-

ing structure to CAD designers. T-splines also guarantee a water-tight geom-

etry without the manual geometrical-repair work as with non-uniform rational

B-splines (NURBS). We demonstrate the worth of the method by analysing

problems with and without analytical solutions, including engineering examples

involving complex shapes. Additionally, we provide all the derivations of the re-

quired sensitivities and the details pertaining to the geometries examined in the

benchmarking, to provide helpful reference problems for 3D shape optimization.
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1. Introduction

Shape optimization is a critical step in engineering design to obtain the opti-

mal shape of a component under given objectives and constraints. In this article,

we refer to shape optimization as a process only involving the variation of the

component boundaries, which distinguishes itself from topology optimization

[4, 5, 6] in that the latter requires nucleation of holes and in which the construc-

tion of the design space is closely related to material parameters. The wide ap-

plication of automatic shape optimization in industry is still elusive. One reason

for this is that traditional numerical methods, such as the finite element method

(FEM) [7] and the boundary element method (BEM) [8, 9, 10, 11, 12], are based

on an approximate geometric representation distinct from the computer-aided

design (CAD) model, so that a mesh generation/regeneration procedure, which

occupies around 80% of the total problem solving time for linear problems at

each iterative step, requires significant human intervention, thereby hindering

the automation of the process. To avoid cumbersome meshing procedures, the

meshfree (meshless) methods [13, 14, 15, 16, 17] use a set of nodes associated

with a domain in the construction of the approximation. The application of the

meshfree methods in shape optimization can be found in [18, 19, 20]. Nonethe-

less, it is not easy to choose appropriate node locations and maintain geomet-

ric accuracy in the meshfree methods. The extended finite element methods

(XFEM) alleviate meshing burden [21, 22, 23, 24, 25, 26] by separating the

FEM mesh and the geometry representation. Its application in shape opti-

mization can be read in [27, 28, 29]. Due to the implicit representation of the

geometry, the capture of the geometry boundary for domain integration is a

challenging task, especially in three dimensional problems.

A promising direction in shape optimization is isogeometric analysis (IGA)

proposed in [30] (see the recent review and computer implementation aspects

in [31]), which was proposed to integrate the geometry and analysis represen-

tations. This is achieved by using the data provided by CAD models directly

rather than converting it through a preprocessing routine into a form suitable
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for analysis (e.g. a mesh). The resulting benefit is that the meshing procedure

is bypassed and the exact geometry can also be preserved. IGA has been ap-

plied into numerous areas successfully, such as the finite deformation [32], plates

and shells [33, 34], structural vibration analysis [35], contact mechanics [36, 37],

fluid-structure interaction [38], electromagnetics [39], etc. The advantage of

IGA in shape optimization [40, 41, 42, 43, 44, 45] is specially manifest because

shape optimization requires a continuous communication between the CAD and

analysis. However, several shortcomings of IGA are still present, in the original

form proposed in [30]: 1) Local h-adaptivity is difficult. 2) Solids generally can-

not be represented by a single non-uniform rational B-spline (NURBS) patch

but continuity between patches is not naturally provided by NURBS functions,

thereby creating spurious jumps along the interfaces. [46, 47] provide an ap-

proach to overcome this difficulty through Nitsche’s coupling. 3) CAD provides

only boundary information but numerical methods require in general the pa-

rameterization of the interior of the domain. The advances in this direction

can be read in the work of [48, 49, 50, 51]. However, there is still a lack of an

efficient method for general geometries.

The first two difficulties can be alleviated by the advance in CAD techniques.

For example, T-splines were proposed by Sederberg et al. [52], and also applied

in IGA by Bazilevs et al. [53]. Adaptive analysis by local h-refinement with

T-splines was given by Dorfel et al. [54], and a large deformation frictionless

contact problem was addressed by [55]. Other alternatives include PHT-splines

[56, 57, 58], hierarchical splines [59, 60] and Locally Refined splines [61]. The

main advantage of T-splines over other alternatives is that it is more flexible to

subdivide the geometry and control the order of the geometry continuity.

The third difficulty associated to the domain parametrization can be natu-

rally overcome by the isogeometric boundary element methods (IGABEM) [62,

1, 63, 64, 2, 3, 65, 66, 67]. The idea of IGABEM is to employ the basis/blending

functions in CAD to discretize the boundary integral equation (BIE). The equa-

tion system is obtained by using a collocation scheme instead of the Galerkin

approach, similar to the isogeometric collocation method [68, 69, 70], for the
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purpose of efficiency. IGABEM can achieve a close integration of CAD and

analysis. Recently, T-splines were incorporated into IGABEM for 3D linear

elastostatic analysis [2] and acoustic analysis [3] on complex geometries. Partic-

ularly, [2, 3] adopted Bézier extraction techniques, which can lead to a familiar

element assembly procedure as in traditional BEM.

The advantage of the tight integration of analysis and CAD renders the IGA-

BEM immediate advantages in shape optimization. In [71], the shape optimiza-

tion in three dimensional linear elasticity was conducted by the IGABEM with

NURBS. [72] incorporated T-splines to IGABEM for shape-hull optimization in

hydrodynamic problems combined with a gradient-less optimization algorithm.

An IGABEM scheme with subdivision surfaces was also proposed in [73] for

the shape optimization in electrostatics. The present paper employs IGABEM

with T-splines to structural shape sensitivity analysis and optimization in linear

elasticity. To the authors’ best knowledge, it is also the first time that T-spline

based IGABEM is used for gradient-based shape optimization, which has more

solid mathematical foundation compared with various heuristic or gradient-less

optimization algorithms.

In the aspect of the IGABEM implementation, a main difficulty is address-

ing strongly singular integral and jump terms, as explained in [1]. To resolve

this difficulty, a regularised form of boundary integral equation [74, 75, 76] was

discretized by CAD basis functions or blending functions [2, 3], without need-

ing to evaluate strongly singular integrals and jump terms. By noticing that

the fundamental solutions are the same order as their shape derivatives, the

regularised form can be still available for sensitivity analysis. Hence, our work

takes the shape differentiation on the regularized boundary integral equation,

simplifying the implementation greatly.

The paper is organized as follows. T-splines and the Bézier extraction are

reviewed in Section 2. Section 3 presents the formulation of a regularized IGA-

BEM with T-splines. Shape sensitivity analysis with IGABEM is introduced

in Section 4. Section 5 illustrates the IGABEM shape optimization, followed

by numerical examples in Section 6. Section 7 contains conclusions and future
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work.

2. T-splines and Bézier extraction

2.1. T-mesh

A T-spline control mesh, or called T-mesh, is distinct from a NURBS control

mesh in that it has T-junctions, which are similar to the concept of “hanging

nodes” and oct/quad-tree meshes in the FEM. See Fig. 1. If a T-mesh is simply

a rectangular grid with no T-junctions, T-splines reduce to B-splines.

T-junctions

Control points

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28 29

30 31 32 33

34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57

Figure 1: T-mesh and T-junctions

Instead of sharing a global knot vector like NURBS, each control point in a

T-mesh is associated with a local knot vector in each dimension

ΞA = [ξ1, ξ2, · · · , ξp+1], (1)

where A is the global index of the control point in the T-mesh, ξ the knot in

local knot vector, and p the order of T-splines. The local knot vector in multiple
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directions can be collected as

ΞA = {Ξd
A}

nd

d=1, (2)

where d denotes the direction index, and nd the dimension of the geometry.

Now we define a knot interval vector as

∆ΞA = [∆ξ1,∆ξ2, · · · ,∆ξp+1], (3)

and its vector form in multiple directions is

∆ΞA = {∆Ξd
A}

nd

d=1. (4)

In practice, the local knot vector is obtained from a local knot interval

vector which can be deducted from a predefined knot interval configuration

on the T-mesh. See [77] for details. The local knot vector leads to a local

parametric space, on which T-spline blending functions on the dth dimension

can be formulated using an iterative formula.

For p = 0,

Nd
A(ξ|ξ1, ξ2) =

 1 if ξ1 ⩽ ξ < ξ2,

0 otherwise,
(5)

and for p > 0,

Nd
A(ξ|ξ1, ξ2, · · · , ξp+2) =

ξ − ξ1
ξp+1 − ξ1

Nd
A(ξ|ξ1, ξ2, · · · , ξp+1)

+
ξp+2 − ξ

ξp+2 − ξ2
Nd

A(ξ|ξ2, ξ3, · · · , ξp+2). (6)

The multivariate T-spline blending function can be obtained using the product

of the blending functions in each dimension

NA(ξ|ΞA) ≡
nd∏
d=1

Nd
A(ξ

d
A|Ξd

A). (7)

To obtain a rational form for T-spline blending functions, a weight can be as-

signed to each control point and a rational normalization should be used, in the

same way as when extending B-splines to NURBS.

T-splines inherit most of the merits of NURBS, but T-spline blending func-

tions cannot always guarantee linear independence, which is an indispensable
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requirement for subsequent numerical analysis [78]. Analysis-suitable T-splines

[79], a large subset of T-splines, satisfy this requirement. For T-meshes without

extraordinary points, an analysis-suitable T-spline is defined to be one whose

T-mesh has no intersecting extension. The interested readers are referred to

[2] for a detailed explanation. In the present work, all the three-dimensional

models utilize analysis-suitable T-splines.

Although T-splines have intrinsic element structures, the set of the blending

functions supported by each element are different. To further integrate IGA

with existing FEM codes, the Bézier extraction technique was introduced, first

for NURBS in [80] and then for T-splines in [77]. The idea of Bézier extraction

is that localized NURBS or T-spline blending functions can be represented by

a linear combination of Bernstein polynomials. Bézier extraction provides an

element data structure suitable for analysis. That is, similar to Lagrangian

polynomial elements in traditional FEM, Bernstein bases do not change from

element to element.

The mechanism underlying Bézier extraction is to replicate the existing knots

using the knot insertion algorithm until their multiplicity is equal to the order

p, thus subdividing the geometry into Bézier elements. The form of Bézier

extraction is

Ne(ξ̃) = CeB(ξ̃), (8)

where N is a vector of T-spline blending functions which are supported by

element e, C is called Bézier extraction operator, and B(ξ̃) is Bernstein basis.

It is noteworthy that the Bézier extraction operator is only determined by the

knot vector, independent of the positions of control points, which is a significant

feature for the application in shape optimization, meaning that the same Bézier

extraction operator can be kept through all iterative procedures.
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3. Isogeometric boundary element methods

3.1. Isogeometric boundary element methods based on regularized boundary in-

tegral equations (BIE)

The displacement boundary integral equation (DBIE) is given by

Cij (s)uj (s) +−
∫
S

Tij (s, x)uj (x) dS (x) =

∫
S

Uij (s, x)tj (x) dS (x) , (9)

where Uij and Tij are fundamental solutions, and in three dimensional elasticity

are given by

Uij (s, x) =
1

16πµ(1− ν)r
[(3− 4ν)δij + r,ir,j ], (10)

Tij (s, x) =
−1

8π(1− ν)r2

{
∂r

∂n
[(1− 2ν)δij + 3r,ir,j ] + (1− 2ν)(nir,j − njr,i)

}
,

(11)

where x is the field point on the boundary, s the source point, and r = r(s,x) =

||x− s|| the distance between the source point and field point (Fig. 2).

Figure 2: The distance between the source point and field point

The above BIE is a singular form where the first integral in the equation is

an improper integral in the sense of Cauchy Principal Value [81]. The singular

form was widely used in traditional BEM with isoparametric elements because

the singular integral can be bypassed using rigid body motion method. However,

rigid body motion technique in the formulation of IGABEM is not available, so
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the explicit evaluation of jump terms and strongly singular integrals are neces-

sary with the singular form. Now we employ a regularized boundary integral

equation proposed by Liu et al. [74, 75, 76], which is written as∫
S

Tij (s, x) [uj (x)− uj (s)] dS (x) =

∫
S

Uij (s, x)tj (x) dS (x) . (12)

The regularized form above cancels the strong singularity because in three di-

mensional problems

Tij(s,x) [uj(x)− uj(s)] ∼ O( 1
r2 )O(r) = O( 1r ). (13)

Consequently, the regularized form only contains weakly singular integrals,

which can be evaluated easily using polar integration.

For the geometries constructed by T-splines, the Cartesian coordinate of a

point on the surface can be expressed using T-spline blending functions

xe(ξ̃) =

na∑
a=1

Re
a(ξ̃)P

e
a in S̃, (14)

where R is the blending function, S̃ denotes the parent element, e the parent

element index, na the number of blending functions supported by the element,

a the local index of the blending function in element e, P the control points,

and ξ̃ the intrinsic coordinates of the field points in the parent element.

The displacement and traction fields around the boundary are also dis-

cretized using T-spline blending functions,

ue
j(ξ̃) =

na∑
a=1

Re
a(ξ̃)ũ

ea
j , (15)

tej(ξ̃) =

na∑
a=1

Re
a(ξ̃)t̃

ea
j , (16)

where ũea
j and t̃eaj are the unknowns related to control points, ξ̃ the intrinsic

coordinates in the parent element.

Using the discretization scheme as Eqs. (14, 15, 16), Eq. (12) is expressed

by

ne∑
e=1

∫
S̃

Tij(ζ̃c, ξ̃)

[
na∑
a=1

Re
a(ξ̃)ũ

ea
j −

na0∑
a0=1

Re0
a0
(ζ̃c)ũ

e0a0
j

]
Je(ξ̃)dS̃(ξ̃)
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=

ne∑
e=1

∫
S̃

Uij(ζ̃c, ξ̃)

na∑
a=1

Re
a(ξ̃)t̃

ea
j Je(ξ̃)dS̃(ξ̃), (17)

where ne is the number of elements, Je is the related Jacobian, c the global

index of the collocation point, e0 the element in which the collocation point

is located, a0 the local index of the basis functions in element e0, and ζ̃c the

intrinsic coordinates of the collocation point in parent elements. Because the

integrals are evaluated numerically using Gauss-Legendre quadrature rule which

is a summation form, we can rewrite Eq. (17) by splitting its left-hand side as

ne∑
e=1

na∑
a=1

{∫
S̃

Tij(ζ̃c, ξ̃)R
e
a(ξ̃)Je(ξ̃)dS̃(ξ̃)

}
ũea
j

−
na0∑
a0=1

{∫
S̃

Tij(ζ̃c, ξ̃)R
e0
a0
(
˜̃
ζc)Je(ξ̃)dS̃(ξ̃)

}
ũe0a0
j

=

ne∑
e=1

na∑
a=1

{∫
S̃

Uij(ζ̃c, ξ̃)R
e
a(ξ̃)Je(ξ̃))dS̃(ξ̃)

}
t̃eaj . (18)

With the following definitions,

H̄cea
ij =

∫
S̃

Tij(ζ̃c, ξ̃)R
e
a(ξ̃)Je(ξ̃)dS̃, (19)

Ĥce0a0
ij =

∫
S̃

Tij(ζ̃c, ξ̃)Re0a0(ζ̃c)Je(ξ̃)dS̃, (20)

Gcea
ij =

∫
S̃

Uij(ζ̃c, ξ̃)R
e
a(ξ̃)Je(ξ̃)dS̃, (21)

Eq. (18) can be written as

na0∑
a0=1

Ĥce0a0
ij ũe0a0

j +

ne∑
e=1

na∑
a=1

H̄cea
ij ũea

j =

ne∑
e=1

na∑
a=1

Gcea
ij t̃eaj . (22)

Using the mapping from the local node index to the global index A

(e, a) 7→ A, (e0, a0) 7→ c, (23)

Eq. (22) can be assembled into the following equation,

HcA
ij ũA

j = GcA
ij t̃Aj , (24)

or in a matrix form,

Hu = Gt. (25)
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Matrix H collects the entries of HcA
ij and G of GcA

ij . u and t contain the nodal

parameters of displacements and tractions. Both u and t include unknowns and

the values given by boundary conditions. By swapping the unknowns of both

sides of u and t, we get

Az = By. (26)

Vector z contains all displacement and traction unknowns, y contains all the

nodal parameters given by the boundary conditions, A is a coefficient matrix

which is a usually non-symmetric and densely populated, and B is a matrix

which contains the coefficients corresponding to the prescribed boundary con-

ditions. The product of B and y yields column vector f on the right-hand side,

so the above equation becomes

Az = f . (27)

3.2. Imposition of boundary conditions

The blending functions in IGABEM lack the Kronecker delta property, so

the nodal parameters do not possess a clear physical interpretation. Hence, the

boundary conditions cannot be substituted directly into nodal parameters. To

impose boundary conditions, two approaches can be used as follows.

3.2.1. Semi-discrete method

An approach is not to discretize the part of the boundary where displace-

ments or tractions are prescribed. We rearrange Eq. (12) by separating the

integrals into two parts

ne∑
e=1

na∑
a=1

{∫
S̃t

Tij(ζ̃c, ξ̃)R
e
a(ξ̃)Je(ξ̃)dS̃(ξ̃)

}
ũea
j

−
na0∑
a0=1

{∫
S̃t

Tij(ζ̃c, ξ̃)R
e0
a0
(ζ̃c)Je(ξ̃)dS̃(ξ̃)

}
ũe0a0
j

+

ne∑
e=1

na∑
a=1

{∫
S̃u

Uij(ζ̃c, ξ̃)R
e
a(ξ̃)Je(ξ̃))dS̃(ξ̃)

}
t̃eaj

= −
ne∑
e=1

na∑
a=1

∫
S̃u

Tij(ζ̃c, ξ̃)ū
ea
j (ξ̃)Je(ξ̃)dS̃(ξ̃)
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+

na0∑
a0=1

{∫
S̃u

Tij(ζ̃c, ξ̃)Je(ξ̃)dS̃(ξ̃)

}
ūe0a0
j (ζ̃c)

−
ne∑
e=1

na∑
a=1

∫
S̃t

Uij(ζ̃c, ξ̃)t̄
ea
j (ξ̃)Je(ξ̃)dS̃(ξ̃). (28)

where S̃u denotes the parent element on the boundary portion prescribed with

displacement boundary conditions, and S̃t with traction boundary conditions.

Now ũj and t̃j on the left-hand side is without boundary conditions and the

right-hand side has no unknowns. The left-hand side goes into a matrix A

which contains the coefficients associated with unknowns, and the right-hand

side forms a column vector f ,

Az = f , (29)

where z includes all the unknown displacements and tractions. An advantage of

this method is that the boundary conditions can be imposed exactly. But the

method has difficulties in dealing with mixed boundary conditions and is not

convenient for postprocessing due to the loss of a discretized representation on

some portions of the boundary.

3.2.2. L2 projection method

A scheme based on the L2 projection method consists in enforcing boundary

conditions in an “average” sense, i.e.∫
Su

RTudS =

∫
Su

RTūdS on Su, (30)∫
St

RTtdS =

∫
St

RTt̄dS on St, (31)

where the basis function matrix R is used as weighting function. Substituting

the approximation for displacement and traction (Eqs. (15, 16)) into the above

equations leads to ∫
Su

RTRũdS =

∫
Su

RTūdS, on Su (32)∫
St

RTRt̃dS =

∫
St

RTt̄dS on St. (33)
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Hence, the solution vector ũ and t̃ can be obtained by solving the following

matrix equation

A1ũ = z1 on Su, (34)

A2t̃ = z2 on St, (35)

where

A1 =

∫
Su

RTRdS on Su, (36)

A2 =

∫
St

RTRdS on St, (37)

and

z1 =

∫
Su

RTūdS on Su, (38)

z2 =

∫
St

RTt̄dS on St. (39)

After obtaining ũ and t̃, we can substitute them into the governing equations

for analysis. Hence, the approach can be viewed as a separate preprocessing

step.

4. Shape sensitivity analysis with IGABEM

Shape sensitivity analysis refers to the evaluation of the derivatives of a

quantity of interest (objective function) with respect to shape design variables.

Shape sensitivity analysis is a critical step for gradient-based shape optimization.

Implicit methods have been widely used in BEM for sensitivity analysis. The

present work also employs implicit differentiation within IGABEM, but has two

ingredients differing from previously published approaches:

• The sensitivities of the displacement and traction fields are discretized by

T-splines.

• The differentiation form of BIE is a regularized form.
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4.1. Implicit differentiation method

Now we take shape derivatives of both sides of the regularized BIE (Eq.

(12)) with respect to the design variables∫
S

{
Ṫij (s,x) [uj (x)− uj (s)] + Tij (s,x) [u̇j (x)− u̇j (s)

}
dS (x)

+

∫
S

Tij (s,x) [uj (x)− uj (s)] ˙[dS(x)]

=

∫
S

[
U̇ij (s,x) tj (x) + Uij (s,x) ṫj (x)

]
dS (x)

+

∫
S

Uij (s,x) tj (x) ˙[dS(x)]. (40)

We remark that Ṫij and U̇ij share the same singularity order with Tij and

Uij respectively. Hence, the equation is still without strong singularity. The

expressions of Ṫij and U̇ij can be seen in Appendix A. The design variables are

normally chosen to be the positions of the control points. This is a natural choice

because in CAD the geometries are determined by control points directly, and

the CAD designers also modify the geometries through changing control point

positions. In addition, a control point in T-splines only influences the local

geometry close to it, so it is convenient to find the subset of control points

influencing the design area. We set the intrinsic coordinates in parent elements

as the material coordinates, which are independent of the design variables. Thus

the shape derivatives of the field points are

ẋe(ξ̃) =

na∑
a=1

Re
a(ξ̃)Ṗ

e
a. (41)

where R denotes T-spline blending functions of CAD in constructing geometric

models and Ṗ the sensitivities of control points.

We discretize the displacement field and traction field around the boundary

using T-spline blending functions,

ue
j(ξ̃) =

na∑
a=1

Re
a(ξ̃)ũ

ea
j , (42)

tej(ξ̃) =

na∑
a=1

Re
a(ξ̃)t̃

ea
j . (43)
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The shape derivatives of the boundary displacement and traction field also need

to be discretized using T-spline blending functions as

u̇e
j(ξ̃) =

na∑
a=1

Re
a(ξ̃) ˙̃u

ea
j , (44)

ṫej(ξ̃) =

na∑
a=1

Re
a(ξ̃)

˙̃teaj . (45)

By noticing

[dSe (x)] = Je(ξ̃)dS̃(ξ̃), (46)

˙[dSe (x)] = J̇e(ξ̃)dS̃(ξ̃), (47)

we substitute Eqs. (42-45) to Eq. (40) and gain

ne∑
e=1

na∑
a=1

∫
S̃

[
Ṫij(ζ̃c, ξ̃)R

e
a(ξ̃)Je(ξ̃) + Tij(ζ̃c, ξ̃)R

e
a(ξ̃)J̇e(ξ̃)

]
dS̃(ξ̃)ũea

j

−
ne∑
e=1

na0∑
a0=1

∫
S̃

[
Ṫij(ζ̃c, ξ̃)Je(ξ̃) + Tij(ζ̃c, ξ̃)J̇e(ξ̃)

]
dS̃(ξ̃)Re0

a0
(ζ̃c)ũ

e0a0
j

+

ne∑
e=1

na∑
a=1

∫
S̃

Tij(ζ̃c, ξ̃)R
e
a(ξ̃)Je(ξ̃)dS̃(ξ̃) ˙̃u

ea
j

−
ne∑
e=1

na0∑
a0=1

∫
S̃

Tij(ζ̃c, ξ̃)Je(ξ̃)dS̃(ξ̃)R
e0
a0
(ζ̃c) ˙̃u

e0a0
j

=

ne∑
e=1

na∑
a=1

{∫
S̃

[
U̇ij(ζ̃c, ξ̃)R

e
a(ξ̃)Je(ξ̃) + Uij(ζ̃c, ξ̃)R

e
a(ξ̃)J̇e(ξ̃)

]
dS̃(ξ̃)

}
t̃eaj

+

ne∑
e=1

na∑
a=1

{∫
S̃

Uij(ζ̃c, ξ)Je(ξ̃)dS̃(ξ̃)

}
Re

a(ζ̃)
˙̃teaj . (48)

The above equation can be assembled to a matrix form in the same way as

structural analysis, yielding the following form

Ḣu+Hu̇ = Ġt+Gṫ, (49)

where u and t are vectors containing the displacement and traction nodal pa-

rameters, and H and G are the corresponding coefficient matrices. These values

can be obtained from the IGABEM structural analysis result. Ḣ and Ġ are the
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coefficient matrices of the unknown field sensitivities u̇ and ṫ. Matrix Ḣ is

assembled from
˙̂
H and ˙̄H, whose entries are given as follows:

˙̂
Hce0a0

ij = −
∫
S̃

[Ṫij(ζ̃c, ξ̃)Je(ξ̃) + Tij(ζ̃c, ξ̃)J̇e(ξ̃)]dS̃(ξ̃)R
e0
a0
(ζ̃c), (50)

˙̄Hcea
ij =

∫
S̃

[Ṫij(ζ̃c, ξ̃)R
e
a(ξ̃)Je(ξ̃) + Tij(ζ̃c, ξ̃)R

e
a(ξ̃)J̇e(ξ̃)]dS̃(ξ̃). (51)

The entries in matrix Ġ are

Ġcea
ij =

∫
S̃

[
U̇ij(ζ̃c, ξ̃)R

e
a(ξ̃)Je(ξ̃) +

∫
S̃

Uij(ζ̃c, ξ̃)R
e
a(ξ̃)J̇e(ξ̃)

]
dS̃(ξ̃). (52)

The boundary conditions for the sensitivity analysis can be found from the

material differentiation of the boundary conditions prescribed for structural

analysis,

u̇j (x) = ˙̄uj (x) on Su, (53)

ṫj (x) = ˙̄tj (x) on St, (54)

where ˙̄uj and ˙̄tj are the displacement and traction sensitivity boundary condi-

tions, respectively.

By swapping the unknowns in Eq. (49), a final matrix form is obtained as[
H, G

] u̇

ṫ

 =

[
Ḣ, Ġ

] u

t

 (55)

, or collected as

Aż = Ȧz, (56)

where the matrix A and column vector z are identical to that in IGABEM

structural analysis. The matrix equation can be solved by imposing sensitivity

boundary conditions.

4.2. Displacement and stress shape sensitivity recovery

After getting the displacement and traction sensitivities of the control points

by solving Eq. (56), we can evaluate the displacement or stress sensitivities in

the domain if necessary (Appendix B.1). The displacement and stress sensi-

tivities of the interior point are obtained through the shape differentiation of
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Somigliana’s identities. To recover the stress sensitivities on the surface, an

efficient approach is to use Hooke’s law and Cauchy’s formula from the dis-

placement, displacement gradient and traction

ue
j(ξ̃) =

na∑
a=1

Re
a(ξ̃)u

ea
j , (57)

∂ue
j(ξ̃)

∂ξ̃
=

na∑
a=1

∂Re
a(ξ̃)

∂ξ̃
uea
j , (58)

tej(ξ̃) =

na∑
a=1

Re
a(ξ̃)t

ea
j . (59)

.

The detailed formulation can be seen in Appendix B.2.

5. Shape optimization using IGABEM

5.1. Shape optimization formulations

Shape optimization can be conducted through a gradient-less or gradient-

based method. The gradient-less shape optimization does not require the eval-

uation of the shape derivatives, but can be prohibitively time-consuming for

realistic problems and is not supported by a mathematical theory. So, gradient-

based methods are normally preferred and thus are also used in the present

work. Gradient-based shape optimization has a well-grounded mathematical

foundation rooted in optimal-control theory. A shape optimization problem can

be formulated as minimizing an objective function

f : Rn → R, (60)

f : t 7→ f(t), (61)

subject to the constraints

gi (t) ⩽ 0 for i = 1, . . . ,m, (62)

tli ⩽ ti ⩽ tui , (63)
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where t is a vector of parameters which controls geometrical configurations, also

called design variables. f is the objective function, gi the constraint functions, i

the constraint function index, m the number of constraints. Eq. (63) gives side

constraints to limit the search region for the optimum, where tli and tui are lower

and upper bounds of the design variables, respectively. The side constraints can

guarantee that the result is not a meaningless geometry, for example, precluding

the splitting or self intersection of the control mesh. If the design variables are

chosen to control the surface, as in our work, the side constraints can preclude

the possibility of the surface splitting. If the design variables also control or

influence the mesh inside the domain, as in the FEM, the side constraints must

also guarantee the connectivity of the domain mesh.

To find the parameters associated with the minimum value of the objective

function, numerical optimization algorithms employ the gradient of the objective

and constraint functions within an iterative algorithm:(
fk,g

k
i ,

d

dt
fk,

d

dt
gk
i

)
→
(
fk+1,g

k+1
i

)
, (64)

where k denotes the kth iterative step, d
dtfk and d

dtgk are called shape deriva-

tives in shape optimization problem. A numerical shape optimization procedure

is shown in Fig. 3.

5.2. Shape derivatives of some quantities

The displacement and stress shape sensitivities can be obtained from the

procedure shown in Section 5. However, a bit more effort is needed to calculate

the sensitivities of some other commonly used quantities. To be consistent with

our CAD and analysis model, all of the domain integrals involved should be

transformed into boundary integral forms.

• The shape derivatives of volume V . The volume and area can be trans-

formed into boundary integral readily by using the divergence theorem

V =

∫
Ω

dΩ =
1

3

∫
Ω

∇ · xdΩ =
1

3

∫
S

x · ndS =

ne∑
e=1

1

3

∫
S̃

x · nJe(ξ̃)dS̃(ξ̃),

(65)
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Figure 3: IGABEM shape optimization flowchart

so that the shape derivatives are

V̇ =

ne∑
e=1

1

3

∫
S̃

[
x · nJe(ξ̃)

]
dS̃(ξ̃)

=

ne∑
e=1

1

3

∫
S̃

[
ẋ · nJe(ξ̃) + x · ṅJe(ξ̃) + x · nJ̇e(ξ̃)

]
dS̃(ξ̃), (66)

• The shape derivatives of the conserved energy E.

E =

∫
Ω

σijϵijdΩ =

∫
S

tkukdS. (67)

Its shape derivative Ė is given by

˙[∫
S

ti (x)ui (x) dS (x)

]
=

ne∑
e=1

∫
S̃

[ṫi(ξ̃)ui(ξ̃) + ti(ξ̃)u̇i(ξ̃)]Je(ξ̃)dS̃(ξ̃)

+

ne∑
e=1

∫
S̃

ti(ξ̃)ui(ξ̃)J̇e(ξ̃)dS̃(ξ̃). (68)

19



5.3. The description of the optimization algorithm

1. Construct a CAD model using the T-splines. In our work, we used the

Autodesk® T-splines plug-in for Rhino®.

2. Choose a subset of the control points as the design points (variables). To

guarantee a reasonable geometry, the move limits and the constraints of

the control points should be prescribed by the users. The shape derivatives

of the geometry points on the geometry are determined by that of the

control points.

ẋe =

na∑
a=1

Re
aṖea, (69)

which are evaluated for the following three types of control points.

• Design control points. For the control points which are set to be

the design variables, the associated shape derivatives are unity with

respect to the movement of itself and zero with respect to other design

points.

• Fixed control points. Some control points are fixed in the optimiza-

tion procedure, such as the ones corresponding to zero displacement

boundary conditions, and their shape sensitivities are always zero.

• Linked control points. To keep the geometry vary “reasonably” or

in a good topology, some control points which are not the design

variables also need to move according to some rules. This concept

is parallel to the domain mesh update in FEM optimization, but

we only concern the control points on the boundary. The shape

derivatives can be derived from the design boundary control mesh

topology. The relationships between design points and linked points

can be exerted by the designer provided it leads to a reasonable

geometry. In our work, the movement of the control points are linked

to that of design control points in the same control grid segments with

prescribed fixed ratio. The use of Laplacian smoothing method is a

more practical approach and will be investigated in the future work.
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3. Read the CAD file using the solver. The optimization solver will auto-

matically update the position of the control points, thereby updating the

geometry. It is worth repeating that the Bézier extraction operator can

be retained through all iterative procedures because it is independent on

the control points.

4. The optimization procedure stopped when the convergence solution is

achieved. The resulting geometry can be read directly by CAD software.

6. Numerical examples

In this section we will investigate the performance of IGABEM for shape

sensitivity analysis through some numerical examples with or without closed-

form solutions. All the geometries are modelled using T-splines exported from

the Rhino® T-spline plugin [82]. The optimization solver uses the method of

moving asymptotes (MMA) [83]. The Gauss-Legendre quadrature is used and

the quadrature order is 12. To study the accuracy of numerical results (·)h
against analytical solutions (·), we define the following errors:

eL2(·)h =
∥(·)h − (·)∥L2

∥(·)∥L2

, (70)

and

eL∞(·)h =
∥(·)h − (·)∥L2

∥(·)∥L∞

, (71)

with

∥(·)∥L2 =

√∫
S

(·) · (·)dS, (72)

and

∥(·)∥L∞ = max
1⩽i⩽n

|(·)i|. (73)

6.1. A shape sensitivity analysis example (spherical cavity)

Fig. 4a shows a problem of a traction free spherical cavity in an infinite

domain subject to a tension S = 105 at infinity. The problem is analyzed by

extracting a finite cube domain around the cavity (Fig. 4b) and by exerting the
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analytical displacement solutions around the cube surface as boundary condi-

tions. The radius of the cavity is a = 0.5, and the length of the cube is 2b = 10.

The Young’s modulus is E = 105, and Poisson’s ratio ν = 0.3. The analytical

solution of the displacement and the shape sensitivities can be seen in Appendix

C. We take the cavity radius a as the design variable.

The boundary conditions for structural and shape sensitivity analysis are

enforced using the L2 projection method. The analysis model has 224 Bézier

elements on the surface, and 560 control points.

The comparison between the analytical and the numerical displacement sen-

sitivities on the surface is shown in Fig. 5, and the displacement sensitivity

errors are shown in Fig. 6. An excellent agreement can be seen. To investigate

the shape sensitivities at the interior points, we take an inner spherical surface

in the domain with the radius R =2.5. The points in the domain are assumed

to be regularly distributed along the radial line, i.e.

Ṙ =



| L
cos θ sin β |−R

| L
cos θ sin β |−a

if |x| ⩾ |y| and L
|L/ cos θ| ⩾

∣∣∣ z
R sin β

∣∣∣ ,
| L
cos β |−R

| L
cos β |−a

if |x| ⩾ |y| and L
|L/ cos θ| <

∣∣∣ z
R sin β

∣∣∣ ,
| L
sin θ sin β |−R

| L
sin θ sin β |−a

if |x| < |y| and L
|L/ sin θ| ⩾

∣∣∣ z
R sin β

∣∣∣ ,
| L
cos β |−R

| L
cos β |−a

if |x| < |y| and L
|L/ sin θ| <

∣∣∣ z
R sin β

∣∣∣ .

(74)

The good agreements with analytical displacement and stress sensitivities are

shown in Figs. 7 and 9, respectively. The related errors are shown in Figs. 8

and 10. The convergence study can be found in Fig. 11. It is noted that the

facets of the figures arise from the visualization algorithm, not from the CAD

model itself.
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(a) (b)

Figure 4: (a) The definition of the spherical cavity problem, and (2) the analysis model of the

spherical cavity problem
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(a) Exact u̇R (b) Numerical u̇R

(c) Exact u̇β (d) Numerical u̇β

Figure 5: Displacement sensitivities on the cavity surface

(a) eL∞(u̇R) (b) eL∞(u̇β)

Figure 6: Displacement sensitivity errors on the cavity surface
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(a) Exact u̇R (b) Numerical u̇R

(c) Exact u̇β (d) Numerical u̇β

Figure 7: Displacement sensitivities at interior points of the cavity (R = 2.5)

(a) eL∞(u̇R) (b) eL∞(u̇β)

Figure 8: Displacement sensitivity errors at interior points of the cavity (R = 2.5)
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(a) Exact σ̇RR (b) Numerical σ̇RR

(c) Exact σ̇ββ (d) Numerical σ̇ββ

(e) Exact σ̇θθ (f) Numerical σ̇θθ

(g) Exact σ̇Rβ (h) Numerical σ̇Rβ

Figure 9: Stress sensitivities at interior points of the cavity (R = 2.5)
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(a) eL∞(σ̇RR) (b) eL∞(σ̇ββ)

(c) eL∞(σ̇θθ) (d) eL∞(σ̇Rβ)

Figure 10: Stress sensitivity errors at interior points of the cavity (R = 2.5)
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Figure 11: eL2 (uh) and eL2 (u̇h) against DOF for the cavity problem
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6.2. Shape optimization examples

6.2.1. Cantilever beam

Consider a three dimensional cantilever beam, fixed at the left side and

subject to a traction on the bottom. The traction is in the z-direction and

linearly distributed along the length as t̄ = −100y. The material parameters are

Young’s modulus E = 105, and Poisson’s ratio ν = 0.3. The length of the beam

is L = 60, and the width and height are h = 20 (Fig. 12). A cubic T-spline

model of the cantilever beam is exported from Rhino® T-spline plugin [82] (Fig.

13a) with 336 Bézier elements and 125 control points (Fig. 13b).

The objective is to minimize the displacement of the beam’s end. The design

variables are the control points on the top fibre/surface except that on the

left side. The vertical positions of the bottom fibre/surface are fixed during

optimization, with that of the remaining control points in the same column

varying linearly along y-direction as linked control points, as Fig. (14). The

volume constraint is V ⩽ 26400. The side constraint is 10 ⩽ z ⩽ 30. After the

iterative process (Fig. 16), an optimized geometry and vertical displacement

distribution is produced (Fig. 15b), against to that of the initial design (Fig.

15a). The final positions of the control points can be seen in Tab. 1. It is noted

that the slight oscillation in the iterative process is due to the violation of the

constraints.

Design variable Lower bound Upper bound Initial value Final value

t1 10 30 20 30

t2 10 30 20 27.3548

t3 10 30 20 19.7754

t4 10 30 20 13.2369

Table 1: Design variables in the 3D beam optimization procedure
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Figure 12: The definition of the 3D beam problem

(a) (b)

Figure 13: (a) The geometry of the 3D beam problem, and (b) the control points of the 3D

beam
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Figure 14: The design and linked control points of the 3D beam

(a) (b)

Figure 15: (a) The initial geometry of the 3D beam, and (b) the optimized geometry of the

3D beam
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Figure 16: The iterative process of the 3D beam optimization

6.2.2. Hammer

The objective is to minimize the conserved energy of a hammer with a volume

constraint. The T-spline model of the hammer and the related control points are

shown in Figs. 17b and 18a. The hammer is fixed at the bottom, and subject

to a uniform traction t̄ = 102 in y-direction on the front (Fig. 17a). The

Young’s modulus is E = 105, Poisson’s ratio ν =0.3. The design control points

are shown in Fig. 18b and the components in y-direction of the control points

A(B), C(D), E(F), G(H), I(J) are set as design variables. The initial values of

the design variables are [2.45, 1.25, 1.33, 1.28, 2.30] and the side constraints are

0 ⩽ y ⩽ 4 for all the control points. The initial volume is V = 1257.63 and

the volume constraint is V ⩽ 1307.94. Fig. 20 illustrates the convergence of

the iterative process, leading to an optimized geometry as shown in Fig. 19b,

compared to the initial geometry in Fig. 19a. The final values of the design

variables can be found in Tab. 2. Through the whole optimization procedure,

the structural and shape sensitivity analysis can communicate with the the CAD

model, and no meshing/remeshing is needed. The final optimized model can be

returned directly to the CAD designer without any postprocessing or smoothing

procedure.

31



(a) (b)

Figure 17: (a) Hammer problem definitions, and (b) hammer T-spline model

(a) (b)

Figure 18: (a) Hammer control points, and (b) hammer design points
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Design variable Lower bound Upper bound Initial value Final value

t1 0 4 2.45 1.8977

t2 0 4 1.25 1.8353

t3 0 4 1.33 1.4129

t4 0 4 1.28 0

t5 0 4 2.30 0

Table 2: Design variables in the hammer optimization procedure

(a) (b)

Figure 19: (a) The initial shape of the hammer, and (b) the optimized shape of the hammer

To further test the robustness of the present methodology, we take two other

hammer geometries with different initial values for the design parameters. One

is with the initial parameters [0.2, 0.2, 0.2, 0.2] and the initial shape is shown in

Fig. 21a. From Fig. 22 we can see that the optimization process initially violates

the volume constraints, thus leading to an increase of strain energy at the first

steps. After locating a feasible region, the strain energy decreases and converges.

The other set of parameters is [3.8, 3.8, 3.8, 3.8] with the initial shape as shown

in Fig. 21b and the iterative process in Fig. 23. Both experiments converge to

the same result as the initial one, reaching the same value of conserved energy

5916 and design parameters [1.9, 1.8, 1.4, 0.0, 0.0].

Next we choose a T-shape component as the initial geometry of the shape

optimization, as shown in Fig. 24. The objective function, boundary conditions
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Figure 20: The iterative procedure of the hammer optimization

and material parameters are the same as above. The volume constraint is V ⩽
1564. As shown in Fig 25, the design control points are divided to seven groups,

and the design variables are listed as follows,

• t1, the y-coordinates of the control points A(1, 2), B(1, 2), and C(1, 2).

• t2, the y-coordinates of the control points D(1, 2) and E(1, 2).

• t3, the y-coordinates of the control points F(1, 2), G(1, 2), and H(1, 2).

• t4, the y-coordinates of the control points I(1, 2) and J(1, 2).

• t5, the z-coordinates of the control points K(1, 2), L(1, 2), and M(1, 2).

• t6, the z-coordinates of the control points N(1, 2), O(1, 2), and P(1, 2).

• t7, the z-coordinates of Q(1, 2).

The initial values of the design variables and the side constraints can be seen in

Tab. 3. Fig. 27 illustrates the convergence of the iterative process and Tab. 3

shows the side constraints and the final values of the design variables. It can be

observed that, starting from a T-shape geometry, (Fig. 26a), the optimization

procedure leads to a hammer-shape geometry (Fig. 26b).
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(a) (b)

Figure 21: (a) The initial shape of the hammer in the second test, and (2) the initial shape

of the hammer in the third test

Design variable Lower bound Upper bound Initial value Final value

t1 -2 3.5 1.65 1.05

t2 -2 3.5 1.4 -1.12

t3 5.5 9 7.5 7.53

t4 5.5 9 7.7 9

t5 10.5 16 13.5 10.5

t6 3 7.5 5.5 7.5

t7 2 8 5.4 8

Table 3: Design variables in the T-shape component optimization procedure

6.2.3. Chair

To test the present method on more realistic geometries, consider a chair

problem with a watertight geometry constructed by T-splines as given by Fig.

28. The original geometry file is sourced from [84] and contains 922 Bézier ele-

ments. The chair is fixed on the bottom and subject to a uniformly distributed

traction with the magnitude of 50 along the opposite z-direction on the face.

The Young’s modulus is E = 105, and Poisson’s ratio is ν = 0.3. The optimiza-

tion objective is to minimize the displacement magnitude of the center on the

chair face.
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Figure 22: The iterative procedure of the hammer optimization (the second test)

In Fig. 29, A, B, and C denote three sets of control points. Each set has five

control points which share the same values of y-coordinates. The y-coordinates

of the control point set are set as design variables and their initial values and the

corresponding side constraints can be found in Tab. 4. The initial value of the

volume V is 1353.45 and the constraint is V ⩽ 1385. The initial geometry and

the displacement fields are shown in Fig. 30. The optimized solution reduces

the objective function and the final geometry is shown in Fig. 31. Fig. 32 shows

the close-up image of the deformed section of the chair in shape optimization

procedure. The change of the design variables can be found in Tab. 4 and

the change of all control points can be seen in the tables of Appendix D. The

iterative procedure is illustrated by Fig. 33. The example shows the ability

of the present method of optimizing problems with complicated geometries.

Throughout the optimization procedure no mesh generation is needed and the

optimized geometry remains a CAD model.
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Figure 23: The iterative procedure of the hammer optimization (the third test)

Design variable Lower bound Upper bound Initial value Final value

t1 8.2 12.5 10.5 9.48

t2 5.4 10.4 7.5 9.84

t3 -4.0 -0.5 -2.0 -2.56

Table 4: Design variables in the chair optimization procedure
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(a) (b)

Figure 24: (a) T-shape component geometry, and (b) T-shape component control points

Figure 25: The design control points of the T-shape component

38



(a) (b)

Figure 26: (a) The initial shape of the T-shape component, and (2) the optimized shape of

the T-shape component
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Figure 27: The iterative procedure of the T-shape component optimization
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(a) (b)

Figure 28: (a) Chair geometry, and (b) chair control points

A
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z

y

Figure 29: The design points of the chair
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Figure 30: The initial shape of the chair

Figure 31: The optimized shape of the chair
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(a) (b)

Figure 32: Close-up image of the deformed section in chair shape optimization: (a) initial

geometry, and (b) optimized geometry
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Figure 33: The iterative procedure of the chair optimization
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7. Conclusions

We formulated and demonstrated a gradient-based shape optimization for

three dimensional elasticity, which requires no mesh generation and produces

an output geometry which is directly readable by CAD software. The geometry

is represented using T-splines, thus guaranteeing a water-tight and locally re-

fined geometry. In addition, the T-splines are also used to discretize the shape

differentiation form of the regularized boundary integral equation. The shape

sensitivity analysis is based on the exact geometry provided by CAD, thereby

removing geometric errors and improving the accuracy. Through numerical

examples, the accuracy of IGABEM in shape sensitivity analysis was clearly

demonstrated. The control points are chosen as design variables to construct

a smoothly varying geometry. In all the optimization numerical examples, the

meshing/remeshing procedure was avoided completely, exhibiting the advan-

tage of IGABEM arising from the integration of CAD and analysis. Moreover,

the optimized geometry can be directly returned to the designer without any

postprocessing as a CAD model. It is also noted that our optimization algo-

rithm is gradient-based, so it has a solid mathematical foundation compared

with gradient-less or heuristic optimization approach.

An adaptive local refinement combined with error estimation is to be devel-

oped in future. This will require the use of independent basis functions for the

geometry and the field variables, within the context of Geometry Independent

Field approximaTions (GIFT) [85].

From a more practical side, future work also includes the involvement of

anisotropic behaviour as well as a coupling of the method with a material op-

timization process, for example to optimize ply orientation in composite struc-

tures in parallel to the shape of the structure itself.
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Appendix A. The fundamental solution sensitivities

The shape derivatives of fundamental solutions play a key role in shape

sensitivity analysis in IGABEM. The analytical form can be obtained by taking

shape derivatives on fundamental solutions (Eqs. (10, 11)) as

U̇ij (s, x) =
1

16πµ(1− ν)

{
˙(1

r

)
[(3− 4ν)δij + r,ir,j ]

}
(75)

+
1

16πµ(1− ν)

{
1

r
[ ˙(r,i)r,j + r,i ˙(r,j)]

}
,

Ṫij (s, x) =
−1

8π(1− ν)

˙(
1

r2

){
∂r

∂n
[(1− 2ν)δij + 3r,ir,j ]

}
+

−1

8π(1− ν)

˙(
1

r2

)
{(1− 2ν)(nir,j − njr,i)}

+
−1

8π(1− 2ν)r2

{
˙(
∂r

∂n

)
[(1− 2ν)δij + 3r,ir,j ]

}

+
−1

8π(1− 2ν)r2

{
3
∂r

∂n
[ ˙(r,i)r,j + r,i ˙(r,j)]

}
+

−1

8π(1− 2ν)r2
{(1− 2ν)[ṅir,j + ni

˙(r,j)− ṅjr,i − nj
˙(r,i)]},(76)

where

˙(1

r

)
= − ṙ

r2
,

˙(
1

r2

)
= −2ṙ

r3
, (77)

˙(r,i) =
˙(

xi − si
r

)
=

(ẋi − ṡi)r − (xi − si)ṙ

r2
, (78)

˙(
∂r

∂n

)
= ˙(r,ini) = ˙(r,i)ni + r,iṅi, (79)

ṙ =
˙[√

(xi − si)(xi − si)
]
=

˙(xi − si)(xi − si)

r
=

(ẋi − ṡi)(xi − si)

r
. (80)

The sensitivity of the unit outward normal ni on the boundary is

ṅi =

˙[
Ji(ξ̃)

J(ξ̃)

]
=

J̇i(ξ̃)J(ξ̃)− Ji(ξ̃)J̇(ξ̃)

J2(ξ̃)
, (81)

where J is the Jacobian determinant. Its expression and shape derivatives are

given by

Ji(ξ̃) = εijk
∂xj

∂ξ̃1

∂xk

∂ξ̃2
, (82)
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J(ξ̃) =

√
Ji(ξ̃)Ji(ξ̃), (83)

J̇i(ξ̃) = εijk

(
˙∂xj

∂ξ̃1

)
∂xk

∂ξ̃2
+ εijk

∂xj

∂ξ̃1

(
˙∂xk

∂ξ̃2

)
, (84)

J̇(ξ̃) =
J̇i(ξ̃)Ji(ξ̃)

J(ξ̃)
, (85)

with εijk the permutation operator

εijk =


1 for cyclic suffix order : 123, 231, 312,

−1 for cyclic suffix order : 132, 213, 321,

0 if any two indices are the same.

(86)

The hypersingular fundamental solutions are

Dkij =
1

8π(1− ν)r2
[(1− 2ν)(δikr,j + δjkr,i − δijr,k) + 3r,ir,jr,k], (87)

Skij =
µ

4π(1− ν)r3

{
3
∂r

∂n
[(1− 2ν)δijr,k + ν(r,jδik + r,iδjk)− 5r,ir,jr,k]

}
+

µ

4π(1− ν)r3
{3ν(nir,jr,k + njr,ir,k)} (88)

+
µ

4π(1− ν)r3
{(1− 2ν)(3nkr,ir,j + njδik + niδjk)− (1− 4ν)nkδij}.

Therefore the sensitivities of the hypersingular fundamental solutions are given

by

Ḋkij =
1

8π(1− ν)

˙(
1

r2

)
[(1− 2ν)(δikr,j + δjkr,i − δijr,k) + 3r,ir,jr,k]

+
1

8π(1− ν)r2
[(1− 2ν)(δik ˙(r,j) + δjk ˙(r,i)− δij ˙(r,k))]

+
1

8π(1− ν)r2
[3( ˙(r,i)r,jr,k + r,i ˙(r,j)r,k + r,ir,j ˙(r,k))], (89)

Ṡkij = Ṡ1
kij(s,x) + Ṡ2

kij (s, x) + Ṡ3
kij(s,x) + Ṡ4

kij(s,x), (90)

with

Ṡ1
kij =

µ

4π(1− ν)
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)
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Ṡ2
kij =

µ

4π(1− ν)r3

{
3

˙(
∂r

∂n

)
[(1− 2ν)δijr,k + ν(r,jδik + r,iδjk)− 5r,ir,jr,k]

}

+
µ

4π(1− ν)r3

{
3
∂r

∂n
[(1− 2ν)δij ˙(r,k) + ν( ˙(r,j)δik + ˙(r,i)δjk)]

}
− µ

4π(1− ν)r3

{
3
∂r

∂n
[5( ˙(r,i)r,jr,k + r,i ˙(r,j)r,k + r,ir,j ˙(r,k))]

}
, (92)

Ṡ3
kij =

µ

4π(1− ν)r3
{3ν(ṅir,jr,k + ni

˙(r,j)r,k + nir,j ˙(r,k))}

+
µ

4π(1− ν)r3
{3ν(ṅjr,ir,k + nj

˙(r,i)r,k + njr,i ˙(r,k))}, (93)

Ṡ4
kij =

µ

4π(1− ν)r3
{(1− 2ν)(3ṅkr,ir,j + 3nk

˙(r,i)r,j + 3nkr,i ˙(r,j))}

+
µ

4π(1− ν)r3
{(1− 2ν)(ṅjδik + ṅiδjk)− (1− 4ν)ṅkδij}. (94)

Tab. 5 shows the singularity order of the fundamental solution sensitivities. We

can see that they have the same order as the fundamental solutions.

Kernel Kernel sensitivity Order Singularity type Dimension

Uij U̇ij O(1/r) weakly singular 3D

Tij Ṫij O(1/r2) strongly singular 3D

Dij Ḋkij O(1/r2) strongly singular 3D

Sij Ṡkij O(1/r3) hypersingular 3D

Table 5: The singularity of kernel function sensitivities

It is noted that the above analytical differentiation can be bypassed by us-

ing automatic differentiation. However, analytical derivation still possesses the

advantage in the computational efficiency and numerical stability [86, 87].
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Appendix B. Shape sensitivities recovery

Appendix B.1. Evaluating shape sensitivities at interior points

By ignoring body forces, for interior points S, the displacement is

ui (S) =

∫
S

Uij (S, x)tj (x) dS(x)−
∫
S

Tij (S, x)uj (x) dS(x), (95)

and the stress writes:

σij (S) =

∫
S

Dkij (S, x)tk (x) dS(x)−
∫
S

Skij (S,x)x)ukdS(x). (96)

By taking shape derivatives with respect to the design variables, the displace-

ment shape sensitivity is

u̇i (S) =

∫
S

U̇ij (S,x) tj (x) dS (x) +

∫
Ω

Uij (S,x) ṫj (x) dS (x)

+

∫
Ω

Uij (S,x) tj (x) ˙[dS (x)]−
∫
S

Ṫij (S,x)uj(x) (x) dS (x)

−
∫
S

Tij (S,x) u̇j (x) dS (x)−
∫
S

Tij (S,x)uj (x) ˙[dS (x)], (97)

and the stress shape sensitivity is

σ̇ij (S) =

∫
S

Ḋkij (S,x) tk (x) dS (x) +

∫
S

Dkij (S,x) ṫk (x) dS (x)

+

∫
S

Dkij (S,x) tk (x) ˙[dS (x)]−
∫
S

Ṡkij (S, x)uk (x) dS (x)

−
∫
S

Skij (S, x)u̇k (x) dS (x)−
∫
S

Skij (S, x)uk (x) ˙[dS (x)]. (98)

Appendix B.2. Evaluating stress shape sensitivities on the boundary

For three dimensional problems, the first step is to construct a tangential

coordinate system as

m1(ξ̃) =
∂x

∂ξ1
(ξ̃), (99)

m2(ξ̃) =
∂x

∂ξ2
(ξ̃), (100)

n(ξ̃) = m1(ξ̃)×m2(ξ̃), (101)

where m1 and m2 are the two tangent vectors, and n the normal vector to

the surface. The tangential coordinate system is neither orthogonal nor normal
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generally, which is a subtle difference from two-dimensional problems. So we

need to establish an unit orthogonal coordinate system based on the tangential

coordinate system (Fig. 34), and its three basis vectors are given by

ê1 =
m1

|m1|
, (102)

ê3 =
n

|n|
, (103)

ê2 = ê1 × ê3. (104)

The rotation tensor Aij for the coordinates system transition can be written in

matrix form

A =


ê1

ê2

ê3

 . (105)

Figure 34: Local coordinate system on surface

We can also get the derivatives of the intrinsic coordinates of parent element

with respect to that of local orthogonal system

∂ξ̃1
∂x̂1

=
1

|m1|
,

∂ξ̃1
∂x̂2

=
− cos θ

|m1| sin θ
, (106)

∂ξ̃2
∂x̂1

= 0,
∂ξ̃2
∂x̂2

=
1

|m2|
sin θ, (107)

where x̂1, x̂2 and x̂3 denote the local orthogonal coordinates.
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The strain components in the ê1-ê2 of the local orthogonal system is

ϵ̂ij =
∂ûi

∂x̂j
=

∂ûi

∂ξ̃k

∂ξ̃k
∂x̂j

i, j, k = 1, 2, (108)

with

∂ûi

∂ξ̃k
= Ail

∂ul

∂ξ̃k
k = 1, 2, and i, l = 1, 2, 3. (109)

From the constitutive equations and the relationships between stress and trac-

tion,

σ̂11 =
E

1− ν2
(ϵ̂11 + νϵ̂22) +

ν

1− ν
t̂3, (110)

σ̂12 =
E

1 + ν
ϵ̂12, (111)

σ̂22 =
E

1− ν2
(ϵ̂22 + νϵ̂11) +

ν

1− ν
t̂3, (112)

σ̂33 = t̂3, (113)

σ̂23 = t̂2, (114)

σ̂13 = t̂1. (115)

Then we transfer the stress from the local orthogonal system to the global

Cartesian system

σij = AkiAnj σ̂kn. (116)

Now we consider the stress sensitivities on the surface. The boundary strain

sensitivity can be evaluated using Eqs. (108,106,107) as

˙̂ϵij =
˙(

∂ûi

∂x̂j

)
=

˙(
∂ûi

∂ξ̃k

∂ξ̃k
∂x̂j

)
=

˙(
Ail

∂ul

∂ξ̃k

∂ξ̃k
∂x̂j

)
= Ȧil

∂ul

∂ξ̃k

∂ξk
∂x̂j

+Ail
˙(

∂ul

∂ξ̃k

)∂ξk
∂x̂j

+Ail
∂ul

∂ξ̃k

˙(
∂ξ̃k
∂x̂j

)
, (117)

where the shape sensitivities of the derivatives of ξ̃j with respect to x̂j are

˙(
∂ξ̃1
∂x̂1

)
=

˙(
1

|m1|

)
, (118)

˙(
∂ξ̃1
∂x̂2

)
=

˙(
− cos θ

|m1| sin θ

)
=

˙(
1

|m1|

)− cos θ

sin θ
+

1

|m1|
˙(− cos θ

sin θ

)
, (119)

˙(
∂ξ̃2
∂x̂1

)
= 0, (120)
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˙(
∂ξ̃2
∂x̂2

)
=

˙(
1

|m2| sin θ
)
=

˙(
1

|m2|

)
sin θ +

1

|m2|
˙(sin θ). (121)

The shape sensitivities related to the angle θ are

˙(cos θ) =
˙(

m1·m2

|m1| |m2|

)
=

˙(m1·m2) (|m1| |m2|)− (m1·m2) ˙(|m1| |m2|)
(|m1| |m2|)2

,

(122)

θ̇ =
˙[

arccos

(
m1·m2

|m1| |m2|

)]
=

−1

1−
(

m1·m2

|m1||m2|

)2 ˙(
m1·m2

|m1| |m2|

)
, (123)

˙(sin θ) = θ̇ cos θ, (124)

˙(
cos θ

sin θ

)
=

˙(cos θ) sin θ − cos θ ˙(sin θ)

sin2 θ
, (125)

with
˙(
1

|m1|

)
= −

˙|m1|
|m1|2

, (126)

˙(
1

|m2|

)
= −

˙|m2|
|m2|2

. (127)

The shape sensitivities of the base vectors of the tangential coordinate system

are

˙|m1| =
˙(√

∂xi

∂ξ̃1

∂xi

∂ξ̃1

)
=

(
˙∂xi

∂ξ̃1

)
∂xi

∂ξ̃1

|m1|
, (128)

˙|m2| =
˙(√

∂xi

∂ξ̃2

∂xi

∂ξ̃2

)
=

(
˙∂xi

∂ξ̃2

)
∂xi

∂ξ̃2

|m2|
. (129)

According to Hooke’s law,

˙̂σ11 =
E

1− ν2
( ˙̂ϵ11 + ν ˙̂ϵ22) +

ν

1− ν
˙̂t3, (130)

˙̂σ12 =
E

1 + ν
˙̂ϵ12, (131)

˙̂σ22 =
E

1− ν2
( ˙̂ϵ22 + ν ˙̂ϵ11) +

ν

1− ν
˙̂t3, (132)

˙̂σ33 = ˙̂t3, (133)

˙̂σ23 = ˙̂t2, (134)

˙̂σ13 = ˙̂t1. (135)
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The shape sensitivity of the boundary stress is finally transferred to the global

Cartesian coordinate system

σij = ȦkiAnj σ̂kn +AkiȦnj σ̂kn +AkiAnj
˙̂σkn. (136)

Appendix C. The analytical solution of the spherical cavity problem

For the spherical cavity problem, the analytical solution of the displacement

is given by

2µuR(R, β, θ) = −A1R+
3

2

A2

R4
− A3

R2

+

(
3A1R− 9

2

A2

R4
+B1(4ν − 2)R+

B2(4ν − 5)

R2

)
cosβ, (137)

2µuβ(R, β, θ) = −
[
−3A1R− 3A2

R4
+

(
B1R+

B2

R2

)
(2− 4ν)

]
sinβ cosβ, (138)

uθ(R, β, θ) = 0, (139)

where

A1 =
Sν

1 + ν
, A2 =

Sa5

7− 5ν
, A3 =

Sa3(6− 5ν)

2(7− 5ν)
,

B1 = − S

2(1 + ν)
, B2 = − 5Sa3

2(7− 5ν)
. (140)

The analytical stress is given by

σRR(R, β, θ) = S cos2 β +
S

7− 5ν

{
a3

R3
[6− 5(5− ν) cos2 β] +

6a5

R5
(3 cos2 β − 1)

}
+

S

7− 5ν

{
6a5

R5
(3 cos2 β − 1)

}
, (141)

σθθ(R, β, θ) =
S

2(7− 5ν)

{
a3

R3
[5ν − 2 + 5(1− 2ν) cos2 β] +

a5

R5
(1− 5 cos2 β)

}
+

S

2(7− 5ν)

{
a5

R5
(1− 5 cos2 β)

}
, (142)

σββ(R, β, θ) = S sin2 β +
S

2(7− 5ν)

{
a3

R3
[4− 5ν + 5(1− 2ν) cos2 β] +

3a5

R5
(3− 7 cos2 β)

}
+

S

2(7− 5ν)

{
3a5

R5
(3− 7 cos2 β)

}
, (143)

σRβ(R, β, θ) = S

{
−1 +

1

7− 5ν

[
−5a3(1 + ν)

R3
+

12a5

R5

]}
sinβ cosβ. (144)
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We take the cavity radius a as the design variable, and the analytical displace-

ment sensitivity can be written as

2µu̇R(R, β, θ) = −(A1Ṙ+ Ȧ1R) +
3

2

˙(
A2

R4

)
−

˙(
A3

R2

)
(145)

+

[
3A1Ṙ− 9

2

˙(
A2

R4

)
+B1(4ν − 2)Ṙ+ (4ν − 5)

˙(
B2

R2

)]
cosβ,

2µu̇β(R, β, θ) = −

{
−3A1Ṙ− 3

˙(
A2

R4

)
+

[
B1Ṙ+ Ḃ1R+

˙(
B2

R2

)]
(2− 4ν)

}
× sinβ cosβ, (146)

u̇θ(R, β, θ) = 0, (147)

with

Ȧ1 = 0, Ȧ2 =
5Sa4

7− 5ν
, Ȧ3 =

3Sa2(6− 5ν)

2(7− 5ν)
,

Ḃ1 = 0, Ḃ2 = − 15Sa2

2(7− 5ν)
, (148)

and

˙(
A2

R4

)
=

Ȧ2R
4 − 4A2R

3Ṙ

R8
, (149)

˙(
A3

R2

)
=

Ȧ3R
2 − 2A3RṘ

R4
, (150)

˙(
B2

R2

)
=

Ḃ2R
2 − 2B2RṘ

R4
. (151)

The analytical stress sensitivity is expressed by

σ̇RR(R, β, θ) =
S

7− 5ν

[
˙(
a3

R3

)
(6− 5(5− ν) cos2 β)

]

+
S

7− 5ν

[
6

˙(
a5

R5

)
(3 cos2 β − 1)

]
, (152)

σ̇θθ(R, β, θ) =
S

2(7− 5ν)

[
˙(
a3

R3

)
(5ν − 2 + 5(1− 2ν) cos2 β)

]

+
S

2(7− 5ν)

[
˙(
a5

R5

)
(1− 5 cos2 β)

]
, (153)
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σ̇ββ(R, β, θ) =
S

2(7− 5ν)

[
˙(
a3

R3

)
(4− 5ν + 5(1− 2ν) cos2 β)

]

+
S

2(7− 5ν)

[
3

˙(
a5

R5

)
(3− 7 cos2 β)

]
, (154)

σ̇Rβ(R, β, θ) = S

{
1

7− 5ν

[
−5(1 + ν)

˙(
a3

R3

)
+ 12

˙(
a5

R5

)]}
sinβ cosβ,(155)

with

˙(
a3

R3

)
=

3a2R3 − 3a3R2Ṙ

R6
, (156)

˙(
a5

R5

)
=

5a4R5 − 5a5R4Ṙ

R10
. (157)

Appendix D. The control point positions of the chair problem

Index x y z Index x y z

0 -11.8248 -5.5254 18.1044 137 0.0000 -5.5254 15.8521

1 0.7906 7.5000 11.0567 138 4.3897 -5.5254 16.0429

2 0.0000 7.5000 10.9089 139 8.1354 -5.5254 16.5386

3 11.8248 -5.5254 18.1044 140 6.9099 8.5726 26.9186

4 9.7096 1.7408 25.1715 141 11.8531 -0.7124 21.7036

5 0.0000 4.3550 10.9496 142 -3.2353 9.8577 20.5650

6 9.0343 5.7337 27.3118 143 -3.1381 10.6282 26.9340

7 11.8248 -1.0635 18.1044 144 0.0000 -1.0635 15.8521

8 0.7230 5.2923 11.1037 145 4.3897 -1.0635 16.0429

9 1.2093 0.8429 4.1005 146 8.1354 -1.0635 16.5386

10 -9.7096 1.7408 25.1715 147 11.5536 -2.0665 24.2342

11 -9.0343 5.7337 27.3118 148 -11.4759 1.6468 24.5411

12 0.0000 1.4393 3.9528 149 3.2353 9.8577 20.5650

13 12.6838 -4.6143 21.6804 150 -1.2129 9.8197 19.9113

14 0.0000 -2.0000 5.1199 151 -1.0959 10.9445 26.9385

15 8.8457 6.8115 23.2897 152 0.0000 2.1691 2.6246

Continued. . .
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Index x y z Index x y z

16 1.1059 2.0000 5.2739 153 0.0000 2.8779 1.7493

17 0.0000 -5.5254 14.0394 154 3.1381 10.6282 26.9340

18 4.4307 -5.5254 14.2320 155 11.4759 1.6468 24.5411

19 8.3585 -5.5254 14.7834 156 -10.8708 -0.1457 23.8054

20 6.7088 7.8334 27.0720 157 1.2129 9.8197 19.9113

21 12.6838 -0.7093 21.6804 158 0.0000 12.5468 30.7859

22 2.6954 3.6164 1.8235 159 -4.3897 -9.6560 16.0429

23 -11.8248 -1.0635 18.1044 160 1.0959 10.9445 26.9385

24 0.0000 -1.0635 14.0394 161 -8.1354 -9.1066 16.5386

25 4.4307 -1.0635 14.2320 162 0.0000 9.9873 19.9147

26 8.3585 -1.0635 14.7834 163 -11.0548 -8.1920 18.3343

27 12.2012 -2.1165 25.4895 164 0.0000 11.1088 26.9390

28 -12.6838 -4.6143 21.6804 165 -7.4417 10.9747 30.3230

29 3.1344 8.3358 20.6542 166 10.8708 -0.1457 23.8054

30 0.0000 2.6904 1.6758 167 0.0000 13.0616 33.6076

31 0.0000 -4.9728 1.7165 168 -3.7288 5.9288 16.0429

32 2.5584 -4.1710 1.8706 169 -6.9106 5.7090 16.5386

33 3.6891 3.1133 1.9998 170 -9.1637 7.7478 22.3643

34 3.0405 9.1183 27.0720 171 0.0000 -9.8751 15.8521

35 12.1862 1.5945 25.7384 172 -11.8536 -6.7256 21.7112

36 -8.8457 6.8115 23.2897 173 -5.5891 12.1772 32.2636

37 1.1423 8.2892 19.9854 174 -9.5096 4.5044 18.3343

38 2.8981 -4.9347 1.9441 175 -3.2015 9.4970 19.7039

39 0.0000 3.1403 1.8521 176 4.3897 -9.6560 16.0429

40 1.0484 9.4248 27.0720 177 -3.1521 14.0000 33.3505

41 0.0000 -5.4990 1.8928 178 -1.1009 10.5000 15.9350

42 0.0000 8.1864 19.9854 179 -1.1307 13.6880 33.5333

43 3.3736 -6.0039 2.0469 180 1.1174 13.0608 33.6074

44 0.0000 9.4248 27.0720 181 8.1354 -9.1066 16.5386

Continued. . .

65



Index x y z Index x y z

45 9.1301 9.6359 0.8981 182 1.1162 12.5449 30.7855

46 10.4367 -0.6280 24.2471 183 -11.6124 -4.6372 23.5141

47 -4.4307 -5.5254 14.2320 184 -11.8527 2.0109 21.6890

48 -8.3585 -5.5254 14.7834 185 -11.2311 4.3120 25.4607

49 0.0000 1.6739 0.7504 186 -0.7906 7.5000 11.0567

50 -6.7088 7.8334 27.0720 187 3.1266 12.7512 33.4266

51 0.0000 -9.8751 14.0394 188 3.1463 12.2312 30.6770

52 -12.6838 -0.7093 21.6804 189 -0.7230 5.2923 11.1037

53 1.9532 -3.3553 3.2886 190 -1.2093 0.8429 4.1005

54 -4.4307 -1.0635 14.2320 191 5.6167 11.8676 32.3628

55 0.0000 -9.6735 0.7911 192 6.1394 10.6753 30.0365

56 4.4307 -9.6560 14.2320 193 -1.1059 2.0000 5.2739

57 -8.3585 -1.0635 14.7834 194 -2.6954 3.6164 1.8235

58 -12.2012 -2.1165 25.4895 195 7.4667 10.5979 30.4504

59 -3.1344 8.3358 20.6542 196 8.2112 9.0518 28.5842

60 -3.0405 9.1183 27.0720 197 -2.5584 -4.1710 1.8706

61 8.3585 -9.1066 14.7834 198 11.0548 -8.1920 18.3343

62 9.4216 -4.7046 0.9452 199 7.4417 10.9747 30.3230

63 9.1301 9.6359 0.1140 200 -3.6891 3.1133 1.9998

64 -12.1862 1.5945 25.7384 201 0.0000 5.9288 15.8521

65 -1.1423 8.2892 19.9854 202 3.7288 5.9288 16.0429

66 -1.0484 9.4248 27.0720 203 11.5387 4.2867 25.7199

67 0.0000 1.6739 0.1257 204 11.3331 3.2015 25.0775

68 0.0000 -4.1572 3.1346 205 -3.3736 -6.0039 2.0469

69 0.0000 -5.1920 1.7900 206 -9.1301 9.6359 0.8981

70 0.0000 -9.6735 0.1225 207 -1.1162 12.5449 30.7855

71 9.4216 -4.7046 0.1102 208 6.9106 5.7090 16.5386

72 -10.4367 -0.6280 24.2471 209 9.1637 7.7478 22.3643

73 9.1301 9.6359 0.1450 210 11.8536 -6.7256 21.7112

Continued. . .
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Index x y z Index x y z

74 3.1094 3.4067 1.8970 211 5.5891 12.1772 32.2636

75 -4.4307 -9.6560 14.2320 212 9.5096 4.5044 18.3343

76 -8.3585 -9.1066 14.7834 213 3.2015 9.4970 19.7039

77 -11.8248 -8.1920 18.1044 214 3.1521 13.3762 33.3505

78 11.8248 -8.1920 18.1044 215 1.1009 10.5000 15.9350

79 7.5017 10.0703 30.6287 216 1.1307 13.6880 33.5333

80 -7.5017 10.0703 30.6287 217 0.0000 10.5000 15.7873

81 0.0000 5.9288 14.0394 218 0.0000 13.6894 33.5337

82 3.7636 5.9288 14.2320 219 -1.1174 13.0608 33.6074

83 0.0000 0.8141 0.1568 220 11.6124 -4.6372 23.5141

84 2.0762 2.4608 2.7723 221 11.8527 2.0109 21.6890

85 0.0000 -8.3391 0.1535 222 -9.4216 -4.7046 0.9452

86 -3.7636 5.9288 14.2320 223 -9.1301 9.6359 0.1140

87 9.4216 -4.7046 0.1413 224 -3.1463 12.2312 30.6770

88 7.1001 5.7090 14.7834 225 11.2311 4.3120 25.4607

89 8.8172 7.0953 22.4229 226 -3.1266 12.7512 33.4266

90 12.6838 -6.7241 21.6804 227 -9.4216 -4.7046 0.1102

91 5.6552 11.4341 32.5015 228 -9.1301 9.6359 0.1450

92 10.6762 4.5044 18.1044 229 -6.1394 10.6753 30.0365

93 3.1059 7.9727 19.7874 230 -5.6167 11.8676 32.3628

94 3.0909 11.8762 33.5332 231 -9.4216 -4.7046 0.1413

95 1.0067 7.9262 15.9821 232 -8.2112 9.0518 28.5842

96 1.0988 12.1827 33.7110 233 -7.4667 10.5979 30.4504

97 0.0000 7.5988 15.8280 234 -11.3331 3.2015 25.0775

98 0.0000 12.1827 33.7110 235 -11.5387 4.2867 25.7199

99 -7.1001 5.7090 14.7834 236 -11.8529 0.8762 21.6951

100 12.2012 -4.7106 24.2648 237 -12.1990 2.0133 21.6854

101 12.6838 2.0165 21.6804 238 -11.0548 2.1845 18.3343

102 -8.8172 7.0953 22.4229 239 -9.7856 4.5044 18.2385
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103 -12.6838 -6.7241 21.6804 240 -8.1354 2.8871 16.5386

104 -5.6552 11.4341 32.5015 241 -6.9895 5.7090 15.8073

105 11.9693 4.2514 26.0829 242 -4.3897 3.0153 16.0429

106 -10.6762 4.5044 18.1044 243 -3.7433 5.9288 15.2884

107 -3.1059 7.9727 19.7874 244 0.0000 3.0153 15.8521

108 -3.0909 11.8762 33.5332 245 0.0000 5.9288 15.0968

109 -1.0067 7.9262 15.9821 246 3.7288 3.0153 16.0429

110 -1.0988 12.1827 33.7110 247 3.7433 5.9288 15.2884

111 -1.9532 -3.3553 3.2886 248 6.9106 2.8871 16.5386

112 -2.8981 -4.9347 1.9441 249 6.9895 5.7090 15.8073

113 -12.2012 -4.7106 24.2648 250 11.0548 2.1845 18.3343

114 -12.6838 2.0165 21.6804 251 9.7856 4.5044 18.2385

115 -11.9693 4.2514 26.0829 252 11.8529 0.8762 21.6951

116 -11.0548 -5.5254 18.3343 253 12.1990 2.0133 21.6854

117 -10.1089 2.2567 24.1159 254 -0.4566 10.9461 26.9388

118 -9.2885 6.3599 26.1498 255 0.4566 10.9461 26.9388

119 -11.0548 -1.0635 18.3343 256 0.5054 9.8233 19.9133

120 -11.8534 -4.6151 21.7077 257 -0.5054 9.8233 19.9133

121 -9.1568 7.4997 23.2265 258 0.4587 10.5000 15.8488

122 -2.0762 2.4608 2.7723 259 -0.4587 10.5000 15.8488

123 11.0548 -5.5254 18.3343 260 0.3294 7.5000 10.9705

124 10.1089 2.2567 24.1159 261 -0.3294 7.5000 10.9705

125 -4.3897 -5.5254 16.0429 262 -0.5039 1.1908 4.0143

126 9.2885 6.3599 26.1498 263 0.5039 1.1908 4.0143

127 11.0548 -1.0635 18.3343 264 -0.4195 7.7952 15.8922

128 -8.1354 -5.5254 16.5386 265 0.4195 7.7952 15.8922

129 -6.9099 8.5726 26.9186 266 0.4759 8.2892 19.9854

130 -11.8531 -0.7124 21.7036 267 -0.4759 8.2892 19.9854

131 -3.1094 3.4067 1.8970 268 -0.3012 4.8056 11.0138
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132 -4.3897 -1.0635 16.0429 269 0.3012 4.8056 11.0138

133 11.8534 -4.6151 21.7077 270 -0.4368 9.4248 27.0720

134 -8.1354 -1.0635 16.5386 271 0.4608 2.0000 5.1840

135 9.1568 7.4997 23.2265 272 0.4368 9.4248 27.0720

136 -11.5536 -2.0665 24.2342 273 -0.4608 -2.0000 5.1840

Table 6: The control points of the initial chair geometry (all of the weights wA = 1)

Index x y z Index x y z

1 -11.8248 -5.5254 18.1044 138 0.0000 -5.5254 15.8521

2 0.7906 9.2200 11.0567 139 4.3897 -5.5254 16.0429

3 0.0000 9.2200 10.9089 140 8.1354 -5.5254 16.5386

4 11.8248 -5.5254 18.1044 141 6.9099 8.5726 26.9186

5 9.7096 1.7408 25.1715 142 11.8531 -0.7124 21.7036

6 0.0000 4.3550 10.9496 143 -3.2353 9.8577 20.5650

7 9.0343 5.7337 27.3118 144 -3.1381 10.6282 26.9340

8 11.8248 -1.0635 18.1044 145 0.0000 -1.0635 15.8521

9 0.7230 5.2923 11.1037 146 4.3897 -1.0635 16.0429

10 1.2093 0.8429 4.1005 147 8.1354 -1.0635 16.5386

11 -9.7096 1.7408 25.1715 148 11.5536 -2.0665 24.2342

12 -9.0343 5.7337 27.3118 149 -11.4759 1.6468 24.5411

13 0.0000 1.4393 3.9528 150 3.2353 9.8577 20.5650

14 12.6838 -4.6143 21.6804 151 -1.2129 9.8197 19.9113

15 0.0000 1.0000 5.1199 152 -1.0959 10.9445 26.9385

16 8.8457 6.8115 23.2897 153 0.0000 2.1691 2.6246

17 1.1059 1.0000 5.2739 154 0.0000 2.8779 1.7493

18 0.0000 -5.5254 14.0394 155 3.1381 10.6282 26.9340

19 4.4307 -5.5254 14.2320 156 11.4759 1.6468 24.5411
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20 8.3585 -5.5254 14.7834 157 -10.8708 -0.1457 23.8054

21 6.7088 7.8334 27.0720 158 1.2129 9.8197 19.9113

22 12.6838 -0.7093 21.6804 159 0.0000 12.5468 30.7859

23 2.6954 3.6164 1.8235 160 -4.3897 -9.6560 16.0429

24 -11.8248 -1.0635 18.1044 161 1.0959 10.9445 26.9385

25 0.0000 -1.0635 14.0394 162 -8.1354 -9.1066 16.5386

26 4.4307 -1.0635 14.2320 163 0.0000 9.9873 19.9147

27 8.3585 -1.0635 14.7834 164 -11.0548 -8.1920 18.3343

28 12.2012 -2.1165 25.4895 165 0.0000 11.1088 26.9390

29 -12.6838 -4.6143 21.6804 166 -7.4417 10.9747 30.3230

30 3.1344 8.3358 20.6542 167 10.8708 -0.1457 23.8054

31 0.0000 2.6904 1.6758 168 0.0000 13.0616 33.6076

32 0.0000 -4.9728 1.7165 169 -3.7288 5.9288 16.0429

33 2.5584 -4.1710 1.8706 170 -6.9106 5.7090 16.5386

34 3.6891 3.1133 1.9998 171 -9.1637 7.7478 22.3643

35 3.0405 9.1183 27.0720 172 0.0000 -9.8751 15.8521

36 12.1862 1.5945 25.7384 173 -11.8536 -6.7256 21.7112

37 -8.8457 6.8115 23.2897 174 -5.5891 12.1772 32.2636

38 1.1423 8.2892 19.9854 175 -9.5096 4.5044 18.3343

39 2.8981 -4.9347 1.9441 176 -3.2015 9.4970 19.7039

40 0.0000 3.1403 1.8521 177 4.3897 -9.6560 16.0429

41 1.0484 9.4248 27.0720 178 -3.1521 13.3762 33.3505

42 0.0000 -5.4990 1.8928 179 -1.1009 12.8900 15.9350

43 0.0000 8.1864 19.9854 180 -1.1307 13.6880 33.5333

44 3.3736 -6.0039 2.0469 181 1.1174 13.0608 33.6074

45 0.0000 9.4248 27.0720 182 8.1354 -9.1066 16.5386

46 9.1301 9.6359 0.8981 183 1.1162 12.5449 30.7855

47 10.4367 -0.6280 24.2471 184 -11.6124 -4.6372 23.5141

48 -4.4307 -5.5254 14.2320 185 -11.8527 2.0109 21.6890
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49 -8.3585 -5.5254 14.7834 186 -11.2311 4.3120 25.4607

50 0.0000 1.6739 0.7504 187 -0.7906 9.2200 11.0567

51 -6.7088 7.8334 27.0720 188 3.1266 12.7512 33.4266

52 0.0000 -9.8751 14.0394 189 3.1463 12.2312 30.6770

53 -12.6838 -0.7093 21.6804 190 -0.7230 5.2923 11.1037

54 1.9532 -3.3553 3.2886 191 -1.2093 0.8429 4.1005

55 -4.4307 -1.0635 14.2320 192 5.6167 11.8676 32.3628

56 0.0000 -9.6735 0.7911 193 6.1394 10.6753 30.0365

57 4.4307 -9.6560 14.2320 194 -1.1059 1.0000 5.2739

58 -8.3585 -1.0635 14.7834 195 -2.6954 3.6164 1.8235

59 -12.2012 -2.1165 25.4895 196 7.4667 10.5979 30.4504

60 -3.1344 8.3358 20.6542 197 8.2112 9.0518 28.5842

61 -3.0405 9.1183 27.0720 198 -2.5584 -4.1710 1.8706

62 8.3585 -9.1066 14.7834 199 11.0548 -8.1920 18.3343

63 9.4216 -4.7046 0.9452 200 7.4417 10.9747 30.3230

64 9.1301 9.6359 0.1140 201 -3.6891 3.1133 1.9998

65 -12.1862 1.5945 25.7384 202 0.0000 5.9288 15.8521

66 -1.1423 8.2892 19.9854 203 3.7288 5.9288 16.0429

67 -1.0484 9.4248 27.0720 204 11.5387 4.2867 25.7199

68 0.0000 1.6739 0.1257 205 11.3331 3.2015 25.0775

69 0.0000 -4.1572 3.1346 206 -3.3736 -6.0039 2.0469

70 0.0000 -5.1920 1.7900 207 -9.1301 9.6359 0.8981

71 0.0000 -9.6735 0.1225 208 -1.1162 12.5449 30.7855

72 9.4216 -4.7046 0.1102 209 6.9106 5.7090 16.5386

73 -10.4367 -0.6280 24.2471 210 9.1637 7.7478 22.3643

74 9.1301 9.6359 0.1450 211 11.8536 -6.7256 21.7112

75 3.1094 3.4067 1.8970 212 5.5891 12.1772 32.2636

76 -4.4307 -9.6560 14.2320 213 9.5096 4.5044 18.3343

77 -8.3585 -9.1066 14.7834 214 3.2015 9.4970 19.7039

Continued. . .

71



Index x y z Index x y z

78 -11.8248 -8.1920 18.1044 215 3.1521 13.3762 33.3505

79 11.8248 -8.1920 18.1044 216 1.1009 12.8900 15.9350

80 7.5017 10.0703 30.6287 217 1.1307 13.6880 33.5333

81 -7.5017 10.0703 30.6287 218 0.0000 12.8900 15.7873

82 0.0000 5.9288 14.0394 219 0.0000 13.6894 33.5337

83 3.7636 5.9288 14.2320 220 -1.1174 13.0608 33.6074

84 0.0000 0.8141 0.1568 221 11.6124 -4.6372 23.5141

85 2.0762 2.4608 2.7723 222 11.8527 2.0109 21.6890

86 0.0000 -8.3391 0.1535 223 -9.4216 -4.7046 0.9452

87 -3.7636 5.9288 14.2320 224 -9.1301 9.6359 0.1140

88 9.4216 -4.7046 0.1413 225 -3.1463 12.2312 30.6770

89 7.1001 5.7090 14.7834 226 11.2311 4.3120 25.4607

90 8.8172 7.0953 22.4229 227 -3.1266 12.7512 33.4266

91 12.6838 -6.7241 21.6804 228 -9.4216 -4.7046 0.1102

92 5.6552 11.4341 32.5015 229 -9.1301 9.6359 0.1450

93 10.6762 4.5044 18.1044 230 -6.1394 10.6753 30.0365

94 3.1059 7.9727 19.7874 231 -5.6167 11.8676 32.3628

95 3.0909 11.8762 33.5332 232 -9.4216 -4.7046 0.1413

96 1.0067 7.9262 15.9821 233 -8.2112 9.0518 28.5842

97 1.0988 12.1827 33.7110 234 -7.4667 10.5979 30.4504

98 0.0000 7.5988 15.8280 235 -11.3331 3.2015 25.0775

99 0.0000 12.1827 33.7110 236 -11.5387 4.2867 25.7199

100 -7.1001 5.7090 14.7834 237 -11.8529 0.8762 21.6951

101 12.2012 -4.7106 24.2648 238 -12.1990 2.0133 21.6854

102 12.6838 2.0165 21.6804 239 -11.0548 2.1845 18.3343

103 -8.8172 7.0953 22.4229 240 -9.7856 4.5044 18.2385

104 -12.6838 -6.7241 21.6804 241 -8.1354 2.8871 16.5386

105 -5.6552 11.4341 32.5015 242 -6.9895 5.7090 15.8073

106 11.9693 4.2514 26.0829 243 -4.3897 3.0153 16.0429
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107 -10.6762 4.5044 18.1044 244 -3.7433 5.9288 15.2884

108 -3.1059 7.9727 19.7874 245 0.0000 3.0153 15.8521

109 -3.0909 11.8762 33.5332 246 0.0000 5.9288 15.0968

110 -1.0067 7.9262 15.9821 247 3.7288 3.0153 16.0429

111 -1.0988 12.1827 33.7110 248 3.7433 5.9288 15.2884

112 -1.9532 -3.3553 3.2886 249 6.9106 2.8871 16.5386

113 -2.8981 -4.9347 1.9441 250 6.9895 5.7090 15.8073

114 -12.2012 -4.7106 24.2648 251 11.0548 2.1845 18.3343

115 -12.6838 2.0165 21.6804 252 9.7856 4.5044 18.2385

116 -11.9693 4.2514 26.0829 253 11.8529 0.8762 21.6951

117 -11.0548 -5.5254 18.3343 254 12.1990 2.0133 21.6854

118 -10.1089 2.2567 24.1159 255 -0.4566 10.9461 26.9388

119 -9.2885 6.3599 26.1498 256 0.4566 10.9461 26.9388

120 -11.0548 -1.0635 18.3343 257 0.5054 9.8233 19.9133

121 -11.8534 -4.6151 21.7077 258 -0.5054 9.8233 19.9133

122 -9.1568 7.4997 23.2265 259 0.4587 12.8900 15.8488

123 -2.0762 2.4608 2.7723 260 -0.4587 12.8900 15.8488

124 11.0548 -5.5254 18.3343 261 0.3294 9.2200 10.9705

125 10.1089 2.2567 24.1159 262 -0.3294 9.2200 10.9705

126 -4.3897 -5.5254 16.0429 263 -0.5039 1.1908 4.0143

127 9.2885 6.3599 26.1498 264 0.5039 1.1908 4.0143

128 11.0548 -1.0635 18.3343 265 -0.4195 7.7952 15.8922

129 -8.1354 -5.5254 16.5386 266 0.4195 7.7952 15.8922

130 -6.9099 8.5726 26.9186 267 0.4759 8.2892 19.9854

131 -11.8531 -0.7124 21.7036 268 -0.4759 8.2892 19.9854

132 -3.1094 3.4067 1.8970 269 -0.3012 4.8056 11.0138

133 -4.3897 -1.0635 16.0429 270 0.3012 4.8056 11.0138

134 11.8534 -4.6151 21.7077 271 -0.4368 9.4248 27.0720

135 -8.1354 -1.0635 16.5386 272 0.4608 1.0000 5.1840
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136 9.1568 7.4997 23.2265 273 0.4368 9.4248 27.0720

137 -11.5536 -2.0665 24.2342 274 -0.4608 1.0000 5.1840

Table 7: The control points of the optimized chair geometry
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