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Abstract

The most often used operator to aggregate criteria in deci-
sion making problems is the classical weighted arithmetic
mean. In many problems however, the criteria considered
interact, and a substitute to the weighted arithmetic mean
has to be adopted. We show that, under rather natural
conditions, the discrete Choquet integral is an adequate
aggregation operator that extends the weighted arithmetic
mean by the taking into consideration of the interaction
among criteria. The axiomatic that supports the Choquet
integral is presented and an intuitive approach is proposed
as well.

Keywords: multicriteria decision making, interacting cri-
teria, Choquet integral.

1 Introduction

Let us consider a finite set of alternatives A = {a, b, c, . . .}
and a finite set of criteria N = {1, . . . , n} in a multicri-
teria decision making problem. Each alternative a ∈ A is
associated with a profile xa = (xa

1 , . . . , x
a
n) ∈ IRn, where,

for any i ∈ N , xa
i represents the partial score of a related

to criterion i. We assume that all the partial scores are
defined according to the same interval scale, that is, they
are defined up to the same positive linear transformation.

From the profile of any alternative a, one can compute
a global score M(xa) by means of an aggregation opera-
tor M : IRn → IR which takes into account the weights
of importance of the criteria. Once the global scores are
computed, they can be used to rank the alternatives or
select an alternative that best satisfies the given criteria.

Until recently, the most often used aggregation operators
were the weighted arithmetic means, that is, operators of
the form

Mω(x) =
n∑

i=1

ωi xi, (1)

with
∑

i ωi = 1 and ωi ≥ 0 for all i ∈ N . However, since
these operators are not able to model in any understand-
able way an interaction among criteria, they can be used
only in the presence of independent criteria.
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In order to have a flexible representation of complex in-
teraction phenomena between criteria, it is useful to sub-
stitute to the weight vector ω a non-additive set function
on N allowing to define a weight not only on each crite-
rion, but also on each subset of criteria. For this purpose
the concept of fuzzy measure [31] has been introduced.

A fuzzy measure (or Choquet capacity) on N is a mono-
tonic set function v : 2N → [0, 1], with v(∅) = 0 and
v(N) = 1. Monotonicity means that v(S) ≤ v(T ) when-
ever S ⊆ T . One thinks of v(S) as the weight related to
the subset S of criteria. Throughout this paper, we will
denote by FN the set of all fuzzy measures on N .

Now, a suitable aggregation operator, which generalizes
the weighted arithmetic mean, is the discrete Choquet in-
tegral, whose use was proposed by many authors (see e.g.
[7] and the references there). Given v ∈ FN , the Choquet
integral of x ∈ IRn with respect to v is defined by

Cv(x) :=
n∑

i=1

x(i) [v(A(i))− v(A(i+1))], (2)

where (·) indicates a permutation of N such that x(1) ≤
. . . ≤ x(n). Also A(i) = {(i), . . . , (n)}, and A(n+1) = ∅.

We see that the Choquet integral (2) is a linear ex-
pression, up to a reordering of the elements. Moreover,
it identifies with the weighted arithmetic mean (discrete
Lebesgue integral) as soon as the fuzzy measure v is addi-
tive, that is such that v(S ∪ T ) = v(S) + v(T ) whenever
S ∩ T = ∅.

The main aim of this paper is to present the Choquet
integral as an appropriate extension to the weighted arith-
metic mean for the aggregation of criteria. This operator
offers indeed a large flexibility while keeping in some sense
a linear form. Although its definition is not very intuitive,
we will show that the Choquet integral can be character-
ized axiomatically by means of rather natural properties.

The outline of this paper is as follows. In Section 2
we examine three types of dependence between criteria:
correlation, substitutiveness/complementarity, and prefer-
ential dependence. In Section 3 we set the framework of
our study by introducing some properties often required
for aggregation. In Section 4 we present the Choquet inte-
gral in a rather intuitive way and we propose an axiomatic
characterization. Finally, in Section 5 we introduce the im-
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portance and interaction indices which enable to interpret
the behavior of aggregation.

In order to avoid a heavy notation we will often omit
braces for singletons, e.g. writing a(i), N \ i instead of
a({i}), N \ {i}. Also, for pairs, we will often write ij
instead of {i, j}, as for example a(ij).

For any subset S ⊆ N , eS will denote the characteristic
vector of S in {0, 1}n, i.e. the vector of {0, 1}n whose i-th
component is 1 if and only if i ∈ S. We also introduce the
notation

xSy :=
∑

i∈S

xi ei +
∑

i∈N\S
yi ei, x, y ∈ IRn.

Finally, ∧ and ∨ will denote the minimum and maximum
operations, respectively.

2 What does “interacting criteria”
mean ?

In many practical applications the decision criteria present
some interaction. However, the problem of modeling such
an interaction remains a difficult question, often over-
looked. Although everybody agrees that interaction phe-
nomena do exist in real situations, the lack of a suitable
tool to model them frequently causes the practitioner to
assume that his criteria are independent and exhaustive.
This comes primarily from the absence of a precise defini-
tion of interaction.

The interaction phenomena among criteria can be very
complex and difficult to identify. In this section we present
three types of dependence, quite different from each other:
correlation, substitutiveness/complementarity, and prefer-
ential dependence.

2.1 Correlation

Correlation is probably the best known and most intuitive
type of dependence, see e.g. [7] and [27, Sect. 10.3]. Two
criteria i, j ∈ N are positively correlated if one can observe
a positive correlation between the partial scores related to
i and those related to j.

For example, consider the problem of evaluating stu-
dents with respect to three mathematical subjects (crite-
ria) : statistics, probability, and algebra. Clearly, the first
two criteria are correlated since, usually, students good
at statistics are also good at probability, and vice versa.
Thus, these two criteria present some degree of redun-
dancy.

Suppose that a weighted arithmetic mean is used to eval-
uate the students and assume that the third criterion is
more important than the first two, so that the weights
could be 0.3, 0.3, 0.4, respectively. Since the first two cri-
teria somewhat overlap, the global evaluation will be over-
estimated (resp. underestimated) for students good (resp.
bad) at statistics and/or probability.

This undesirable phenomenon can be easily overcome by
using a suitable fuzzy measure v and the Choquet integral
Cv. A positive correlation between criteria i and j must
then be modeled by the following inequality:

v(ij) < v(i) + v(j),

which expresses a negative interaction or a negative synergy
between i and j. More exactly, if i and j are positively
correlated then the marginal contribution of j to every
combination of criteria that contains i is strictly less than
the marginal contribution of j to the same combination
when i is excluded, i.e.,

v(T ∪ ij)− v(T ∪ i) < v(T ∪ j)− v(T ), T ⊆ N \ ij.

In case of equality, criteria i and j are not correlated.

Now, suppose that i and j are negatively correlated,
that is, high partial scores along i usually imply low par-
tial scores along j, and vice versa. In that case the simul-
taneous satisfaction of both criteria is rather uncommon,
and the alternatives that present such a satisfaction profile
should be favored (for example, students good at both law
and algebra). Thus, a negative correlation between criteria
i and j must be modeled by the following inequality:

v(ij) > v(i) + v(j),

which expresses a positive interaction or a positive synergy
between i and j. These two criteria then present some
degree of opposition or complementarity.

Here again, a proper modeling of the correlation between
i and j requires the taking into consideration of the other
combinations. We then write

v(T ∪ ij)− v(T ∪ i) > v(T ∪ j)− v(T ), T ⊆ N \ ij.

2.2 Substitutiveness/complementarity

Another type of dependence is that of substitutiveness be-
tween criteria, see e.g. [19]. Consider again two criteria
i, j ∈ N , and suppose that the decision maker demands
that the satisfaction of only one criterion produces almost
the same effect than the satisfaction of both. For exam-
ple, it is important that students be good at scientific or
literary subjects. Of course it is better that they be good
at both directions, but it is less important.

Clearly, such a behavior cannot be expressed by a
weighted arithmetic mean. Here, the importance of the
pair {i, j} is close to the importance of the single criteria i
and j, even in the presence of the other criteria. This con-
dition can be easily expressed by a fuzzy measure v such
that

v(T ) <

{
v(T ∪ i)
v(T ∪ j)

}
≈ v(T ∪ ij), T ⊆ N \ ij,

where “≈” means approximately equal. In that case, we
observe that criteria i and j are almost substitutive or in-
terchangeable. In the extreme case of equality, they can be
merged.
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Alternatively, the decision maker can demand that the
satisfaction of only one criterion produces a very weak ef-
fect compared with the satisfaction of both. We then speak
of complementarity, which is modeled by a fuzzy measure
v such that

v(T ) ≈
{

v(T ∪ i)
v(T ∪ j)

}
< v(T ∪ ij), T ⊆ N \ ij.

Notice that, contrary to the correlation phenomena,
the substitutiveness and complementarity between crite-
ria cannot be detected by observing the score table. They
just represent the opinion of the decision maker on the rel-
ative importance of criteria, independently of the partial
scores obtained by the alternatives along these criteria.

2.3 Preferential dependence

The last type of dependence we present is the prefer-
ential dependence, and its opposite, the preferential in-
dependence, well-known in multiattribute utility theory
(MAUT), see e.g. [6, 13, 32].

Suppose that the preferences over A of the decision
maker are known and expressed by a weak order º
(i.e., a strongly complete and transitive binary relation).
Through the natural identification of alternatives with
their profiles in IRn, this preference relation can be con-
sidered as a preference relation on IRn.

Definition 2.1 The subset S of criteria is said to be pref-
erentially independent of N \ S if, for all x, x′, y, z ∈ IRn,
we have

xSy º x′Sy ⇔ xSz º x′Sz.

The whole set of criteria N is said to be mutually prefer-
entially independent if S is preferentially independent of
N \ S for every S ⊆ N .

Roughly speaking, the preference of xSy over x′Sy is not
influenced by the common part y. The following example
shows that it can be natural for a subset of criteria to be
preferentially independent of its complementary.

Example 2.1 Consider again the problem of evaluating
students with respect to statistics (St), probability (Pr),
and algebra (Al). Assume this time that the first two
subjects are more important than the third. Four stu-
dents a, b, c, d have been evaluated as follows (marks are
expressed on a scale from 0 to 20):

student St Pr Al
a 19 15 18
b 19 18 15
c 11 15 18
d 11 18 15

The examiner is asked to express its advice by giving a
ranking over A = {a, b, c, d}. Evidently, the preferences
a Â c and b Â d are immediately suggested. Next, the
examiner realizes that the other comparisons are not so

obvious since the associated profiles interlace. Since statis-
tics and probability are somewhat substitutive, the follow-
ing reasoning is proposed: when a student is good at statis-
tics, it is preferable that he/she is better at algebra than
probability, so a Â b. However, when a student is not good
at statistics, it is more important that he/she is better at
probability than algebra, and so d Â c. Thus, the last two
criteria are not preferentially independent of the first.

Now, let us assume the existence of an aggregation op-
erator M : IRn → IR which represents º, that is such that

a Â b ⇔ M(xa) > M(xb),

for any a, b ∈ A. Such an operator is called a utility func-
tion in MAUT.

It is known [6, 29] that the mutual preferential indepen-
dence among the criteria is a necessary condition (but not
sufficient) for the aggregation operator M to be additive,
that is of the form:

M(x) =
n∑

i=1

ui(xi),

where the functions ui : IR → IR are defined up to a posi-
tive linear transformation.

In other terms, if some criteria are preferentially depen-
dent of the others, then no additive aggregation operator
can model the preferences of the decision maker. In par-
ticular, this excludes the use of the weighted arithmetic
mean.

A study of the preferential independence when using the
Choquet integral can be found in [10, Sect. 10.1.4] and [22,
24]. Note that in Example 2.1 the Choquet integral is able
to represent the preferences expressed by the examiner, see
[17] for more details.

3 Some preliminary assumptions

To motivate the use of the Choquet integral as an ag-
gregation operator, we will adopt an axiomatic approach
based on some selected properties: increasing monotonic-
ity, idempotence, and stability with respect to the same in-
terval scales. These properties can be desirable and even
required in many practical situations.

3.1 Increasing monotonicity

Definition 3.1 (In) M : IRn → IR is increasing (in each
argument) if, for all x, x′ ∈ IRn, we have

xi ≤ x′i ∀i ∈ N ⇒ M(x) ≤ M(x′).

An increasing aggregation operator presents a non-
negative response to any increase of the arguments. In
other terms, increasing a partial score cannot decrease the
result. This seems to be a quite acceptable property.
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3.2 Idempotence

Basically, the Choquet integral is the integral of a real
function with respect to a fuzzy measure, by analogy with
the Lebesgue integral which is defined with respect to an
ordinary (i.e. additive) measure. As the integral of a func-
tion in a sense represents its average value, the discrete
Choquet integral can be viewed as a mean or an averaging
aggregation operator.

Cauchy [3] considered in 1821 the mean of n independent
variables x1, . . . , xn as a function M(x1, . . . , xn) which
should be internal to the set of xi values:

min xi ≤ M(x1, . . . , xn) ≤ max xi. (3)

Such means satisfy trivially the property of idempotence,
i.e., if all xi are identical, M(x1, . . . , xn) restitutes the com-
mon value.

Definition 3.2 (Id) M : IRn → IR is idempotent if

M(x, . . . , x) = x, x ∈ E.

This property seems natural enough. Besides, one can
readily see that, for increasing operators, it is equivalent
to Cauchy’s internality (3), and both are accepted by all
statisticians as requisites for means and typical values.

3.3 Stability with respect to the same in-
terval scales

Assume that each criterion i ∈ N is an interval scale (see
e.g. [14]), that is, an homomorphism xi : A → IR defined
up to a positive linear transformation φi(xi) = ri xi + si

with ri > 0. For example, marks obtained by students in
a given course often define an interval scale in the sense
that it is possible to express the marks on a [0, 20] scale or
on a [−1, 1] scale while representing the same information.

It is clear that the aggregation of the partial scores of
a given alternative over all the criteria does not make any
sense if criteria do not represent the same scale. For exam-
ple, suppose that a student has taken two exams: statistics
and algebra (marks obtained are supposed to be given on
a scale from 0 to 20). The corresponding examiners have
observed that the student is excellent so that the first one
gives 20 in statistics, and the second, which is known as
less tolerant, gives 18 in algebra. Clearly, both examiners
have used different interval scales, bounded from above by
20 and 18, respectively.

From a theoretical viewpoint, it is known that aggregat-
ing values defined on independent interval scales leads to
a dictatorial aggregation. Indeed, assuming that the set of
aggregated values also define an interval scale, a meaning-
ful aggregation operator M : IRn → IR should satisfy the
following functional equation (see [1, 2])

M(r1 x1 + s1, . . . , rn xn + sn) = R(r, s) M(x) + S(r, s)

for all x, s ∈ IRn, r ∈ ]0, +∞[n, R(r, s) > 0, and S(r, s) ∈
IR. Now the solutions of this equation are of the form (see

[2, case #11])

M(x) = a xj + b (x ∈ IRn),

where j ∈ N and a, b ∈ IR. When Id is assumed, these
solutions simply become M(x) = xj with j ∈ N .

Therefore, we shall assume that all the partial scores
are given according to the same interval scale, so that any
partial score on a criterion can be compared with any other
score on another criterion. The criteria are then said to
be commensurable, and the operator M must fulfil a less
restrictive equation, that is

M(r x1 + s, . . . , r xn + s) = R(r, s)M(x) + S(r, s)

for all x ∈ IRn, r > 0, s ∈ IR, R(r, s) > 0, and S(r, s) ∈ IR.
Moreover, assuming Id leads to R(r, s) = r and S(r, s) = s
for all r > 0 and s ∈ IR. Indeed, for any x ∈ IR, we have

r x + s = M(r x + s, . . . , r x + s)
= R(r, s)M(x, . . . , x) + S(r, s)
= R(r, s)x + S(r, s).

Definition 3.3 (SPL) M : IRn → IR is stable for the
same positive linear transformations if

M(r x1 + s, . . . , r xn + s) = r M(x) + s

for all x ∈ IRn, r > 0, s ∈ IR.

We readily see that any operator M : IRn → IR fulfilling
SPL also fulfils Id. Moreover, the following proposition
shows that such an operator can be considered only on
[0, 1]n without loss of generality (see also [16])

Proposition 3.1 Any aggregation operator M : IRn → IR
fulfilling SPL is completely defined by its restriction to
[0, 1]n.

Proof. Let M ′ : [0, 1]n → IR denote the restriction to
[0, 1]n of M , and let x ∈ IRn. By SPL, we have

M(x) = x(1) + (x(n) − x(1))M ′( x1−x(1)

x(n)−x(1)
, . . . ,

xn−x(1)

x(n)−x(1)
)

if x(1) < x(n), and M(x) = x(1) if x(1) = x(n). We then
can conclude.

Thus, if the profile x is expressed in [α, β]n for some
α < β, then its representative x′ in [0, 1]n, defined by

x′i =
xi − α

β − α
, i ∈ N,

has the global score M(x′) and, by SPL, we have

M(x) = (β − α)M(x′) + α.
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4 The Choquet integral

In this section, we intend to present the Choquet integral
in an intuitive way. Moreover, we propose an axiomatic
characterization to motivate the use of this operator in
applications.

It is worth mentioning that the Choquet integral was
first introduced in capacity theory [5]. Its use as a (fuzzy)
integral with respect to a fuzzy measure was then pro-
posed by Höhle [12] and rediscovered later by Murofushi
and Sugeno [20, 21].

4.1 Intuitive approach

Given any v ∈ FN , we are searching for a suitable ag-
gregation operator Mv : IRn → IR which generalizes the
weighted arithmetic mean in the sense that it identifies
with this latter one as soon as v is additive.

First, we can easily observe that any fuzzy measure v ∈
FN can be expressed in a unique way as:

v(S) =
∑

T⊆S

a(T ), S ⊆ N,

where a(T ) ∈ IR for every T ⊆ N . In combinatorics, a
viewed as a set function on N is called the Möbius trans-
form of v (see e.g. Rota [26]), which is given by

a(S) =
∑

T⊆S

(−1)|S|−|T | v(T ), S ⊆ N.

For example, we have a(∅) = 0 and a(i) = v(i) for all
i ∈ N . For a pair of criteria i, j ∈ N , a(ij) represents
the difference between the weight of the pair {i, j} and the
sum of the weights of i and j:

a(ij) = v(ij)− [v(i) + v(j)].

This difference is positive (resp. negative) in case of posi-
tive (resp. negative) interaction. It is zero if i and j add
up without interfering. Thus, a(ij) somewhat reflects the
degree of interaction between i and j. Notice however that
an appropriate definition of interaction has been proposed,
see Section 5.2.

We can also observe that if v is additive then a(S) = 0
for all subsets S ⊆ N such that |S| ≥ 2. In that case, the
aggregation operator should be the weighted arithmetic
mean:

Mv(x) =
∑

i∈N

v(i)xi =
∑

i∈N

a(i)xi.

When v is not additive, we must take into account the in-
teraction among criteria. For this purpose, we can start
from the weighted arithmetic mean, which is a linear ex-
pression, and then add terms of the “second order” that
involve the corrective coefficients a(ij), then terms of the
“third order”, etc., so that we have

Mv(x) =
∑

i∈N

a(i) xi +
∑

{i,j}⊆N

a(ij) [xi ∧ xj ] + . . .

that is,
Mv(x) =

∑

T⊆N

a(T )
∧

i∈T

xi. (4)

This expression is nothing else than the Choquet integral
(2) expressed in terms of the Möbius representation, see
[4, 9]. Note that in the non-linear terms we have used the
minimum operation instead of the product as we want the
operator to satisfy the stability property SPL.

4.2 Axiomatic characterization

Although the Choquet integrals have become popular in
the field of fuzzy sets and multicriteria decision making,
there exist few axiomatic characterizations of this family
in the literature. The most representative one is given by
Schmeidler [28], using the concept of comonotonic additiv-
ity. However, such a characterization is not very attractive
in the context of multicriteria decision making.

We present here a characterization of the class of Cho-
quet integrals with n arguments on the basis of four prop-
erties. This characterization can be found in the Ph.D.
dissertation of the author [15, Sect. 6.1].

Definition 4.1 (LM) The operators Mv : IRn → IR (v ∈
FN ) are linear with respect to the fuzzy measure if there
exist 2n functions fT : IRn → IR (T ⊆ N) such that

Mv =
∑

T⊆N

v(T ) fT , v ∈ FN .

This definition is motivated by the following observation.
We know that the operator Mv(x) we want to characterize
is not linear with respect to its argument x ∈ IRn. How-
ever, we can ask it to be linear at least with respect to the
fuzzy measure v, in order to keep the aggregation model
as simple as possible. This is a rather natural assumption.

Since the conversion formulas between v and a are linear,
Mv fulfils LM if and only if there exist 2n functions gT :
IRn → IR (T ⊆ N) such that

Mv =
∑

T⊆N

a(T ) gT , v ∈ FN . (5)

Define vT ∈ FN by vT (S) = 1 if and only if S ⊇ T , and
0 otherwise. In game theory, vT is called the unanimity
game for T . The Möbius representation of vT is given by
aT (S) = 1 if and only if S = T , and 0 otherwise. From (5)
it follows immediately that

gT = MvT
, T ⊆ N.

To identify Mv with the Choquet integral Cv, we have yet
to impose that (see (4))

MvT
(x) =

∧

i∈T

xi, x ∈ IRn.

This can be done by using In and SPL, but also by giv-
ing an appropriate definition of the weights of subsets of
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criteria. Such a definition has not been given so far. In
fact, the interpretation of v(S) as the weight or the de-
gree of importance of subset S should appear clearly in
the definition of the Choquet integral.

By Proposition 3.1, we can assume that all the partial
scores are given in [0, 1]. Regarding the weighted arith-
metic mean (1), we clearly have

Mω(ei) = ωi, i ∈ N,

showing that the weight ωi of criterion i is actually the
global evaluation of the alternative that fully satisfies cri-
terion i and does not satisfy the others at all. More gen-
erally, we have

Mω(eS) =
∑

i∈S

ωi, S ⊆ N,

indicating that the weight of a group S of independent cri-
teria is defined as the global evaluation of the alternative
that completely satisfies criteria S and totally fails to sat-
isfy the remaining ones. Adapting this observation to the
case of dependent criteria leads to the following definition.

Definition 4.2 (PW) Let v ∈ FN . Mv : IRn → IR is
properly weighted by v if Mv(eS) = v(S) for all S ⊆ N .

Back to the example of Section 2.1, we define the weight
of statistics and probability together by the global evalua-
tion of a student who presents the profile (1, 1, 0) in [0, 1]3:

Mv(1, 1, 0) = v(St, Pr).

If the criteria were not correlated, we would have

Mv(1, 1, 0) = v(St) + v(Pr),

which shows that the inequality

v(St,Pr) < v(St) + v(Pr)

must hold in case of positive correlation.

We are now able to present the characterization of the
class of all Choquet integrals with n arguments. The state-
ment is the following.

Theorem 4.1 The operators Mv : IRn → IR (v ∈ FN )
satisfy LM, In, SPL, PW if and only if Mv = Cv for all
v ∈ FN .

To prove this result, we need two technical lemmas,
which give a characterization and a description of the Cho-
quet integrals defined from 0-1 fuzzy measures, i.e. fuzzy
measures v ∈ FN such that v(S) ∈ {0, 1} for all S ⊆ N .

Lemma 4.1 If v is a 0-1 fuzzy measure on N then

Cv(x) =
∨

T⊆N
v(T )=1

∧

i∈T

xi, x ∈ IRn.

Proof. See Murofushi and Sugeno [23, Sect. 2].

Lemma 4.2 If M : IRn → IR fulfils In, SPL, and is such
that M(eS) ∈ {0, 1} for all S ⊆ N , then there exists a 0-1
fuzzy measure v on N such that M = Cv.

Proof. One can easily see that the set function v : 2N →
{0, 1} defined by v(S) = M(eS) for all S ⊆ N is a 0-1
fuzzy measure on N .

Let x ∈ [0, 1]n. On the one hand, for all T ⊆ N , we have

M(x)
In≥ M

[
(
∧

i∈T

xi) eT

] SPL= v(T )
∧

i∈T

xi

and thus
M(x) ≥

∨

T⊆N

[
v(T )

∧

i∈T

xi

]
.

On the other hand, let T ∗ ⊆ N such that

v(T ∗)
∧

i∈T∗
xi =

∨

T⊆N

[
v(T )

∧

i∈T

xi

]

and set
J :=

{
j ∈ N

∣∣ xj ≤ v(T ∗)
∧

i∈T∗
xi

}
.

We should have J 6= ∅. Indeed, if xj > v(T ∗)
∧

i∈T∗ xi for
all j ∈ N , then we have, since v(N) = 1,

v(N)
∧

i∈N

xi > v(T ∗)
∧

i∈T∗
xi

which contradicts the definition of T ∗. Moreover, we
should have v(N \ J) = 0, for otherwise we would have,
assuming N \ J 6= ∅,

v(N \ J)
∧

i∈N\J
xi =

∧

i∈N\J
xi > v(T ∗)

∧

i∈T∗
xi,

a contradiction. Finally, we have,

M(x)
In≤ M

[(
v(T ∗)

∧

i∈T∗
xi

)
eJ + eN\J

]

SPL= v(T ∗)
∧

i∈T∗
xi +

(
1− v(T ∗)

∧

i∈T∗
xi

)
v(N \ J)

= v(T ∗)
∧

i∈T∗
xi

=
∨

T⊆N

[
v(T )

∧

i∈T

xi

]
.

Finally, by Lemma 4.1, we then have M = Cv on [0, 1]n,
and even on IRn by Proposition 3.1.

Proof of Theorem 4.1. (Sufficiency) Trivial.
(Necessity) Let v ∈ FN , with a its Möbius representation.
By LM we have

Mv =
∑

T⊆N

a(T )MvT .
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Let us fix T ⊆ N . By PW we have MvT
(eS) = vT (S) ∈

{0, 1} for all S ⊆ N . By Lemmas 4.1 and 4.2, we have

MvT
(x) = CvT

(x) =
∨

K⊆N
vT (K)=1

∧

i∈K

xi

=
∨

K⊇T

∧

i∈K

xi =
∧

i∈T

xi,

for all x ∈ IRn, which completes the proof.

If N = {1, 2} then LM is a consequence of In, SPL,
PW, see [16, Prop. 4.1]. Let us show that this is not true in
general. Assume that N = {1, 2, 3} and define v∗ ∈ FN by
v∗(12) = v∗(3) = 0 and v∗(13) = v∗(23) = 1/2. Consider
the class of operators Mv : IR3 → IR defined by Mv = Cv

for all v ∈ FN \ {v∗} and

Mv∗(x) =
(x1 + x2

2

)
∧ x3, x ∈ IR3.

Of course, these operators satisfy In, SPL, and PW, but
not LM.

We also see that the operators Mv : IRn → IR (v ∈ Fn)
defined by

Mv(x) =
∑

T⊆N

a(T )
∏

i∈T

xi, x ∈ IRn,

fulfil LM, In, PW, but not SPL.
Finally, we will show in the next section that PW does

not follow from LM, In, SPL.

5 Behavioral analysis of aggrega-
tion

Now that we have a tool for a suitable aggregation, an
important question arises: how can we interpret the be-
havior of the Choquet integral or that of its associated
fuzzy measure ? Of course the meaning of the values v(T )
is not always clear for the decision maker. These values do
not give immediately the global importance of the criteria,
nor the degree of interaction among them.

In fact, from a given fuzzy measure, it is possible to
derive some indices or parameters that will enable to in-
terprete the behavior of the fuzzy measure. In this final
section, we present two types of indices: importance and
interaction. Other indices, such as tolerance and disper-
sion, were proposed and studied by the author in [15].

5.1 Importance indices

The overall importance of a criterion i ∈ N into a decision
problem is not solely determined by the number v(i), but
also by all v(T ) such that i ∈ T . Indeed, we may have
v(i) = 0, suggesting that element i is unimportant, but
it may happen that for many subsets T ⊆ N , v(T ∪ i) is
much greater than v(T ), suggesting that i is actually an
important element in the decision.

Shapley [30] proposed in 1953 a definition of a coeffi-
cient of importance, based on a set of reasonable axioms.
The importance index or Shapley value of criterion i with
respect to v is defined by:

φ(v, i) :=
∑

T⊆N\i

(n− |T | − 1)! |T |!
n!

[v(T ∪ i)− v(T )]. (6)

The Shapley value is a fundamental concept in game the-
ory expressing a power index. It can be interpreted as
a weighted average value of the marginal contribution
v(T ∪ i) − v(T ) of element i alone in all combinations.
To make this clearer, it is informative to rewrite the index
as follows:

φ(v, i) =
1
n

n−1∑
t=0

1(
n−1

t

)
∑

T⊆N\i
|T |=t

[v(T ∪ i)− v(T )].

Thus, the average value of v(T ∪ i) − v(T ) is computed
first over the subsets of same size t and then over all the
possible sizes.

The use of the Shapley value in multicriteria decision
making was proposed in 1992 by Murofushi [18]. It is
worth noting that a basic property of the Shapley value is

n∑

i=1

φ(v, i) = 1.

Note also that, when v is additive, we clearly have

φ(v, i) = v(i), i ∈ N. (7)

If v is non-additive then some criteria are dependent and
(7) generally does not hold anymore. This shows that it
is sensible to search for a coefficient of overall importance
for each criterion.

In terms of the Möbius representation, the Shapley value
takes a very simple form [30]:

φ(v, i) =
∑

T3i

1
|T | a(T ). (8)

Now, since the Shapley indices are non-negative and sum
up to one, it would be interesting to consider the weighted
arithmetic mean having these indices as weights. We call
this operator the Shapley integral.

Definition 5.1 Let v ∈ FN . The Shapley integral of x ∈
IRn with respect to v is defined by

Shv(x) =
∑

i∈N

φ(v, i)xi.

In terms of the Möbius representation, the Shapley in-
tegral has an interesting form.

Proposition 5.1 Any Shapley integral Shv : IRn → IR
can be written

Shv(x) =
∑
T⊆N
T 6=∅

a(T )
( 1
|T |

∑

i∈T

xi

)
, x ∈ IRn,

where a is the Möbius representation of v.
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Proof. By (8), we simply have

Shv(x) =
∑

i∈N

( ∑

T3i

1
|T | a(T )

)
xi.

Permuting the sums leads immediately to the result.

Although the Shapley integral takes into account the de-
pendence among criteria expressed in the underlying fuzzy
measure, it remains an unattractive aggregation operator.
Indeed, since the Shapley integral is nothing less than a
weighted arithmetic mean, it is not suitable to aggregate
criteria when mutual preferential independence is violated.

We also note that the class of Shapley integrals satisfies
LM, In, SPL, but not PW.

5.2 Interaction indices

Another interesting concept is that of interaction among
criteria. We have seen that when the fuzzy measure is not
additive then some criteria interact. Of course, it would
be interesting to appraise the degree of interaction among
any subset of criteria.

Consider first a pair {i, j} ⊆ N of criteria. It may hap-
pen that v(i) and v(j) are small and at the same time v(ij)
is large. Clearly, the number φ(v, i) merely measures the
average contribution that criterion i brings to all possible
combinations, but it does not explain why criterion i may
have a large importance. In other words, it gives no in-
formation on the interaction phenomena existing among
criteria.

We have seen in Section 2.1 that depending on whether
the correlation between i and j is ≤ 0 or ≥ 0, the expres-
sion

v(T ∪ ij)− v(T ∪ i)− v(T ∪ j) + v(T )

is ≥ 0 or ≤ 0 for all T ⊆ N \ ij, respectively. We call
this expression the marginal interaction between i and j,
conditioned to the presence of elements of the combination
T ⊆ N \ ij. Now, an interaction index for {i, j} is given by
an average value of this marginal interaction. Murofushi
and Soneda [19] proposed in 1993 to calculate this average
value as for the Shapley value. Setting

(∆ij v)(T ) := v(T ∪ ij)− v(T ∪ i)− v(T ∪ j) + v(T ),

the interaction index of criteria i and j related to v is then
defined by

I(v, ij) =
∑

T⊆N\ij

(n− |T | − 2)! |T |!
(n− 1)!

(∆ij v)(T ). (9)

We immediately see that this index is negative as soon as
i and j are positively correlated or substitutive. Likewise,
it is positive when i and j are negatively correlated or
complementary. Moreover, it has been shown in [8] that
I(v, ij) ∈ [−1, 1] for all i, j ∈ N .

It should be mentioned that, historically, the interac-
tion index (9) was first introduced in 1972 by Owen (see

Eq. (28) in [25]) in game theory to express a degree of com-
plementarity or competitiveness between elements i and j.

The interaction index among a combination S of criteria
was introduced by Grabisch [8] as a natural extension of
the case |S| = 2. The interaction index of S (|S| ≥ 2)
related to v, is defined by

I(v, S) :=
∑

T⊆N\S

(n− |T | − |S|)! |T |!
(n− |S|+ 1)!

(∆S v)(T ),

where we have set

(∆S v)(T ) :=
∑

L⊆S

(−1)|S|−|L|v(L ∪ T ).

In terms of the Möbius representation, this index is written
(see [8, 11])

I(v, S) =
∑

T⊇S

1
|T | − |S|+ 1

a(T ), S ⊆ N.

Viewed as a set function, it coincides on singletons with
the Shapley value (6).

6 Concluding remarks

We have shown that the Choquet integral is an appropri-
ate substitute to the weighted arithmetic mean to aggre-
gate dependent decision criteria. The motivation is based
mainly on an axiomatic characterization of the class of
Choquet integrals, but also on an intuitive interpretation
of its expression.

We hope that this will encourage people of the multi-
criteria decision making community to use this innovative
technique of aggregation, which seems very promising.
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