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Abstract

The power of players in a collective decision process is a central issue in game
theory. For this reason, the concept of influence of players on a simple game has been
introduced. More generally, the influence of variables on Boolean functions has been
defined and studied.

We extend this concept to pseudo-Boolean functions, thus making it possible to
appraise the degree of influence of any coalition of players in cooperative games. In
the case of monotone games, we also point out the links with the concept of interaction
among players. Although they do not have the same meaning at all, both influence
and interaction functions coincide on singletons with the so-called Banzhaf power
index.

We also define the influence of variables on continuous extensions of pseudo-
Boolean functions. In particular, the Lovász extension, also called discrete Choquet
integral, is used in multicriteria decision making problems as an aggregation opera-
tor. In such problems, the degree of influence of decision criteria on the aggregation
process can then be quite relevant information. We give the explicit form of this
influence for the Choquet integral and its classical particular cases.

Key words: pseudo-Boolean functions, game theory, power and interaction indices, mul-
ticriteria decision making.

1 Introduction

Let f be a Boolean function on n variables, and let S be a given subset of variables. The
influence of S over f , denoted If (S), is defined as follows [3, 11]. Assign values to the
variables not in S at random, that is, variables are set independently of each other and the
probability of a zero assignment is one half. This partial assignment may already suffice to
set the value of f . The probability that f remains undetermined is defined as the influence
of S over f .
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The motivation of this concept stems from the problem of searching for robust voting
schemes in game theory. As an illustration, consider an n-person simple game G which
proceeds according to the outcome of coin flips [2]. Every player flips an unbiased coin and
announces the outcome: 0 or 1. The collective decision of G is then given by a consensus
function f : {0, 1}n → {0, 1}, which characterizes the procedure of the game. We assume
that the probability for G to end with one is equal to one half.

The simplest procedure is the dictatorial voting scheme, in which only one player flips
his coin for all. However, such a procedure could be dangerous if not all players play the
game fairly and that some of them announce outcomes according to their interest in the
game and not by flipping their coin. Given a coalition of players S, the influence of S on
the game G is then defined as the probability that the players of S may control the outcome
of G when the rest of the players play fairly.

The dictatorial voting scheme is the most sensitive to the presence of an unfair player.
Indeed, we clearly have

f(x1, . . . , xn) = xk ⇒ If (k) = 1 and If (i) = 0 ∀i 6= k.

It is natural to search for voting schemes which are more robust, so that the influence of
single players is as small as possible. For the majority voting, the influence of any player is
O(1/

√
n). More precisely, one can easily show that (see Section 5)

f(x1, . . . , x2k−1) = x(k) ⇒ If (i) =
1

22k−2

(
2k − 2

k − 1

)
∀i,

where x(k) is the median of the numbers x1, . . . , x2k−1. Rather surprisingly, there are voting
schemes significantly more robust than majority voting. Ben-Or and Linial [2] constructed
a voting scheme that reduces the influence of each player to O(log n/n), which is asymp-
totically optimal.

In this paper we generalize the concept of influence to pseudo-Boolean functions (PBF),
i.e., real-valued functions on Boolean variables. Back to the collective coin flipping game,
we might assume that the global outcome is a real number, for example the sum of the
individual outcomes, weighted by the importance of each player :

f(x1, . . . , xn) =
n∑

i=1

ωi xi, with
n∑

i=1

ωi = 1 and ωi ≥ 0 ∀i. (1)

The influence over f of any coalition S of players, denoted If (S), is then defined as the
average amplitude of the range of f that S may control when the rest of the players play
fairly. For the weighted mean (1), one can show that this influence is given by the sum of
the individual weights :

If (S) =
∑

i∈S

ωi .

More generally, let G := (N, v) be a cooperative game, where N := {1, . . . , n} is the set
of players and v is the characteristic function of G, that is a set function v : 2N → IR such
that v(∅) = 0. Such a set function assigns to each coalition S of players a real number v(S)
representing the worth of S. Through the usual identification of coalitions S ⊆ N with
elements of {0, 1}n, one can regard the characteristic function v as a PBF, and the above
definition of influence can be adapted to v (see Section 2 for a complete definition).
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When v is monotone and such that v(N) = 1, this influence identifies with the arithmetic
mean of the marginal contribution of S alone in all outer coalitions, that is,

Iv(S) =
1

2n−|S|
∑

T⊆N\S
[v(T ∪ S)− v(T )], S ⊆ N.

Thus, we observe that the influence function coincides on singletons with the Banzhaf power
index [1, 5].

We also apply the concept of influence to multicriteria decision making. In this context,
N represents a set of decision criteria and v is a non-additive measure on N , that is, a
monotone set function v : 2N → IR such that v(∅) = 0 and v(N) = 1. For any combination
S of criteria, v(S) is interpreted as the degree of importance of S, or its power to make
the decision alone (without the remaining criteria). Now, from the satisfaction profile x =
(x1, . . . , xn) ∈ [0, 1]n of a given alternative, one can compute a global evaluation Mv(x) by
means of an aggregation operator Mv : [0, 1]n → IR, which takes into account the importance
of the criteria. A suitable aggregation operator, whose use has been suggested by many
authors [7], is the discrete Choquet integral, which is actually a continuous extension on
the cube [0, 1]n of the PBF that represents v.

Since the global evaluation depends on the importance of criteria, it would be interesting
to appraise the degree of influence of any combination of criteria over the Choquet integral.
In this paper we propose a definition of influence function for any continuous extension of
a PBF. In the case of Choquet integral, this influence function coincides on singletons with
the Shapley power index [18].

The outline of the paper is as follows. In Section 2 we introduce the concept of influence
function on a PBF. We also give the explicit form of this function in terms of the PBF and
its Möbius transform. In Section 3 we propose an analogous definition for continuous ex-
tensions. Two particular cases are investigated: the multilinear extension, whose influence
coincides with that of the associated PBF, and the Lovász extension, which is nothing but
the Choquet integral. In Section 4 we interpret the influence function in cooperative games
and point out its connections with the interaction among players, a concept introduced
axiomatically by Grabisch and Roubens [9]. In Section 5 we discuss the problem of robust-
ness of voting schemes. On this issue, the concept of entropy of a non-additive measure
proves to be helpful in determining robust collective decision rules. In Section 6 we study
the influence function on the discrete Choquet integral, which is particularly relevant in
multicriteria decision making. Finally, in Section 7 we propose an alternative definition of
influence on PBFs from a specific probability distribution.

In order to avoid a heavy notation, cardinality of subsets S, T, . . . will be denoted when-
ever possible by the corresponding lower case letters s, t, . . ., otherwise by the standard
notation |S|, |T |, . . .. Moreover, we will often omit braces for singletons, e.g. writing a(i),
N \ i instead of a({i}), N \ {i}. Also, for pairs, we will often write ij instead of {i, j}, as
for example a(ij).

For any subset S ⊆ N , eS will denote the characteristic vector of S in {0, 1}n, i.e., the
vector of {0, 1}n whose i-th component is one if and only if i ∈ S.

The discrete cube {0, 1}n can be assimilated with {0, 1}N , that is, the set of mappings
x : N → {0, 1}. For any x, y ∈ {0, 1}N we then define xSy−S ∈ {0, 1}N as

xSy−S :=
∑

i∈S

xi ei +
∑

i∈N\S
yi ei
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We proceed analogously with the entire cube [0, 1]n.
Finally, we introduce the notation x̃ := (x, . . . , x) ∈ [0, 1]N for any x ∈ [0, 1].

2 The influence of variables on PBFs

Let f : {0, 1}n → {0, 1} be a Boolean function, and let S ⊆ N . Define the influence of S
over f , denoted by If (S), as the probability that assigning values to the variables not in S
at random, the value of f is undetermined, see [3, 11]. Formally, considering {0, 1}N as a
probability space with uniform distribution, we have

If (S) := Pr (y ∈ {0, 1}N\S | f(xSy−S) is not constant w.r.t. x ∈ {0, 1}S).

The following immediate result, which seems to be previously unknown in the literature,
gives the explicit form of If (S) in terms of f .

Proposition 2.1 For any function f : {0, 1}n → {0, 1}, we have

If (S) =
1

2n−s

∑

T⊆N\S

[
max
K⊆S

f(eT∪K)−min
K⊆S

f(eT∪K)
]
, S ⊆ N.

Proof. We simply have

If (S) = Pr
(
y ∈ {0, 1}N\S

∣∣∣ max
x∈{0,1}S

f(xSy−S)− min
x∈{0,1}S

f(xSy−S) = 1
)

=
1

2n−s

∑

y∈{0,1}N\S

[
max

x∈{0,1}S
f(xSy−S)− min

x∈{0,1}S
f(xSy−S)

]
,

which is sufficient.

One also defines the influence of S towards zero as follows [2, 11]. Let

p := Pr(f = 0) = Pr(x ∈ {0, 1}N | f(x) = 0)

and denote by p′ the probability that assigning values to the variables not in S at random,
it is possible to assign values to the variables in S so as to make f equal to zero. The
difference p′ − p is defined to be I0

f (S), the influence of S towards zero. The influence
towards one I1

f (S) is defined analogously.

Proposition 2.2 For any function f : {0, 1}n → {0, 1}, we have

I0
f (S) =

1

2n

∑

T⊆N

f(eT )− 1

2n−s

∑

T⊆N\S
min
K⊆S

f(eT∪K), S ⊆ N,

I1
f (S) =

1

2n−s

∑

T⊆N\S
max
K⊆S

f(eT∪K)− 1

2n

∑

T⊆N

f(eT ), S ⊆ N,

and hence If = I0
f + I1

f .
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Proof. We have

I0
f (S) = Pr(y ∈ {0, 1}N\S | ∃x ∈ {0, 1}S : f(xSy−S) = 0)− Pr(f = 0)

= Pr
(
y ∈ {0, 1}N\S

∣∣∣ min
x∈{0,1}S

f(xSy−S) = 0
)
− Pr(f = 0)

= Pr(f = 1)− Pr
(
y ∈ {0, 1}N\S

∣∣∣ min
x∈{0,1}S

f(xSy−S) = 1
)

=
1

2n

∑

T⊆N

f(eT )− 1

2n−s

∑

T⊆N\S
min
K⊆S

f(eT∪K) ,

which proves the first equality. The second one can be established similarly.

The definition of If can be extended in a natural way to PBFs as follows. Let f :
{0, 1}n → IR and S ⊆ N . If f is constant everywhere then S has no influence on f .
Otherwise, the influence of S on f is defined as the expected value of the highest relative
variation of f when assigning values to the variables not in S at random. Formally, denoting
by Vf the gap between the extremal values of f , that is,

Vf := max
x∈{0,1}n

f(x)− min
x∈{0,1}n

f(x) ,

we define the influence function If as follows.

Definition 2.1 Consider {0, 1}N as a probability space with uniform distribution. The
influence of S ⊆ N on f : {0, 1}n → IR is defined by

If (S) :=





0 , if f is constant,

1

Vf

E
[

max
x∈{0,1}S

f(xSy−S)− min
x∈{0,1}S

f(xSy−S)
]
, otherwise,

where the expectation is taken over all y ∈ {0, 1}N\S.

One can readily see that Irf = If for all r ∈ IR \ {0}. Hence, replacing f by f/Vf , if
necessary, we may assume that Vf = 1. The function f is then said to be normalized.

Thus, for any normalized function f : {0, 1}n → IR, we have

If (S) =
1

2n−s

∑

y∈{0,1}N\S

[
max

x∈{0,1}S
f(xSy−S)− min

x∈{0,1}S
f(xSy−S)

]
, S ⊆ N,

or equivalently,

If (S) =
1

2n−s

∑

T⊆N\S

[
max
K⊆S

f(eT∪K)−min
K⊆S

f(eT∪K)
]
, S ⊆ N, (2)

which shows that this definition of influence is a generalization of that given for Boolean
functions.

Now, for any normalized function f : {0, 1}n → IR, we also have

If (S) =
1

2n

∑

y∈{0,1}N

[
max

x∈{0,1}S
f(xSy−S)− min

x∈{0,1}S
f(xSy−S)

]
, S ⊆ N,
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showing that the expectation in Definition 2.1 can also be taken over all y ∈ {0, 1}N .
Indeed, this latter expression is written

1

2n

∑

T⊆N

[
max
K⊆S

f(e(T∩(N\S))∪K)−min
K⊆S

f(e(T∩(N\S))∪K)
]
,

that is, partitioning T ⊆ N into T1 ⊆ S and T2 ⊆ N \ S,

1

2n

∑

T1⊆S

∑

T2⊆N\S

[
max
K⊆S

f(eT2∪K)−min
K⊆S

f(eT2∪K)
]
,

and we retrieve (2).
The case where f is monotone (i.e., non-decreasing in each variable) is particularly

interesting. For any monotone normalized function f : {0, 1}n → IR, we have

If (S) = E[f(1̃Sy−S)− f(0̃Sy−S)], S ⊆ N.

In this case the influence is linear with respect to f , as stated in the following result.

Proposition 2.3 For any monotone normalized function f : {0, 1}n → IR, we have

If (S) =
1

2n−s

∑

T⊆N\S
[f(eT∪S)− f(eT )], S ⊆ N.

Hammer and Rudeanu [10] showed that any PBF has a unique expression as a multilinear
polynomial in n variables :

f(x) =
∑

T⊆N

a(T )
∏

i∈T

xi , x ∈ {0, 1}n, (3)

with a(T ) ∈ IR. In combinatorics, a viewed as a set function on N is called the Möbius
transform of f (see e.g. Rota [17]), which is given by

a(S) =
∑

T⊆S

(−1)s−tf(eT ), S ⊆ N.

The transformation is invertible and we have

f(eS) =
∑

T⊆S

a(T ), S ⊆ N. (4)

The influence on any monotone normalized PBF can be expressed in terms of the Möbius
representation of f as follows.

Proposition 2.4 For any monotone normalized function f : {0, 1}n → IR, we have

If (S) =
∑
T⊆N

T∩S 6=∅

a(T )
1

2|T\S|
, S ⊆ N,

where a is the Möbius representation of f .
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Proof. By using (4), we simply have

If (S) =
1

2n−s

∑

T⊆N\S
[f(eT∪S)− f(eT )]

=
1

2n−s

∑

T⊆N\S

∑
K⊆T∪S
K∩S 6=∅

a(K)

=
1

2n−s

∑
K⊆N

K∩S 6=∅

a(K)
∑

T :K\S⊆T⊆N\S
1

=
∑

K⊆N
K∩S 6=∅

a(K)
1

2|K\S|
,

as expected.

Example 2.1 Let f : {0, 1}3 → IR be given by

f(x1, x2, x3) =
1

3
(x1 + x2 + x2 x3).

Then the values of the influence function If are

If (∅) = 0 If (1) = 1/3 If (12) = 5/6 If (123) = 1
If (2) = 1/2 If (13) = 1/2
If (3) = 1/6 If (23) = 2/3

3 Case of continuous extensions

From any PBF f : {0, 1}n → IR, we can define a variety of continuous extensions f̄ :
[0, 1]n → IR which interpolate f at the 2n vertices of [0, 1]n, that is, f̄(eS) = f(eS) for all
S ⊆ N . In this section we propose a definition for the influence on such extensions. First,
define Vf̄ as the gap between the extremal values of f̄ , that is

Vf̄ := sup
x∈[0,1]n

f̄(x)− inf
x∈[0,1]n

f̄(x).

We then propose the following definition.

Definition 3.1 Consider [0, 1]N as a probability space with uniform distribution. The in-
fluence of S ⊆ N on f̄ : [0, 1]n → IR is defined by

If̄ (S) :=





0 , if f̄ is constant,

1

Vf̄

E
[

sup
x∈[0,1]S

f̄(xSy−S)− inf
x∈[0,1]S

f̄(xSy−S)
]
, otherwise,

where the expectation is taken over all y ∈ [0, 1]N\S.
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Here again, we can assume without loss of generality that f̄ is normalized, that is such
that Vf̄ = 1. We then have trivially

If̄ (S) =
∫

[0,1]N\S

[
sup

x∈[0,1]S
f̄(xSy−S)− inf

x∈[0,1]S
f̄(xSy−S)

]
dy, S ⊆ N.

Furthermore the expectation (that is, the integral) can also be taken over all y ∈ [0, 1]N .
If moreover f̄ is monotone then

If̄ (S) =
∫

[0,1]N\S

[
f̄(1̃Sy−S)− f̄(0̃Sy−S)

]
dy, S ⊆ N. (5)

We now investigate two particular cases of continuous extensions of PBFs: the Owen
multilinear extension and the Lovász extension.

3.1 Multilinear extension of PBFs

The polynomial expression (3) was used in game theory in 1972 by Owen [16] as the
multilinear extension of a game.

Definition 3.2 The multilinear extension of f : {0, 1}n → IR is the function f̌ : [0, 1]n →
IR defined by

f̌(x) :=
∑

T⊆N

f(eT )
∏

i∈T

xi

∏

i/∈T

(1− xi) =
∑

T⊆N

a(T )
∏

i∈T

xi , x ∈ [0, 1]n,

where a is the Möbius representation of f .

Proposition 3.1 For any monotone normalized PBF f : {0, 1}n → IR, we have If̌ = If .

Proof. First, we observe that f̌ is monotone and normalized. Next, for any y ∈ [0, 1]N\S,
we have

f̌(1̃Sy−S) =
∑
T⊆N

T∩S 6=∅

a(T )
∏

i∈T\S
yi +

∑

T⊆N\S
a(T )

∏

i∈T

yi ,

f̌(0̃Sy−S) =
∑

T⊆N\S
a(T )

∏

i∈T

yi .

Hence, by Eq. (5), we have

If̌ (S) =
∫

[0,1]N\S

[ ∑
T⊆N

T∩S 6=∅

a(T )
∏

i∈T\S
yi

]
dy

=
∑
T⊆N

T∩S 6=∅

a(T )
1

2|T\S|
.

We then conclude by Proposition 2.4.
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3.2 Lovász extension of PBFs

The Lovász extension of a PBF is defined as follows (see [8] for more details).

Definition 3.3 The Lovász extension of f : {0, 1}n → IR is the function f̂ : [0, 1]n → IR
defined by

f̂(x) :=
∑

T⊆N

a(T ) min
i∈T

xi , x ∈ [0, 1]n,

where a is the Möbius representation of f .

Using the identity ∫

[0,1]n
min
i∈S

xi dx =
1

s + 1
, S ⊆ N,

(see [8]) and a proof analogous to that of Proposition 3.1, we can easily express the in-
fluence function associated to any monotone Lovász extension f̂ in terms of the Möbius
representation of f .

Proposition 3.2 For any monotone normalized function f : {0, 1}n → IR, we have

If̂ (S) =
∑
T⊆N

T∩S 6=∅

a(T )
1

|T \ S|+ 1
, S ⊆ N, (6)

where a is the Möbius representation of f .

From Eq. (6) we can derive the expression of If̂ in terms of f . It is given in the next
proposition.

Proposition 3.3 For any monotone normalized function f : {0, 1}n → IR, we have

If̂ (S) =
∑

T⊆N\S

(n− t− s)! t!

(n− s + 1)!
[f(eT∪S)− f(eT )], S ⊆ N. (7)

Proof. By using (4), we simply have

∑

T⊆N\S

(n− t− s)! t!

(n− s + 1)!
[f(eT∪S)− f(eT )] =

∑

T⊆N\S

(n− t− s)! t!

(n− s + 1)!

∑
K⊆T∪S
K∩S 6=∅

a(K)

=
∑

K⊆N
K∩S 6=∅

a(K)
∑

T :K\S⊆T⊆N\S

(n− t− s)! t!

(n− s + 1)!
︸ ︷︷ ︸

(∗)

Moreover, the expression (∗) is written

n−s∑

t=|K\S|

(
n− s− |K \ S|

t− |K \ S|

)
(n− t− s)! t!

(n− s + 1)!

=
n−s−|K\S|∑

t=0

(
n− s− |K \ S|

t

)
(n− s− |K \ S| − t)! (t + |K \ S|)!

(n− s + 1)!
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=
1

(|K \ S|+ 1)
(

n−s+1
|K\S|+1

)
n−s−|K\S|∑

t=0

(|K \ S|+ t

|K \ S|

)

=

(
n−s+1
|K\S|+1

)

(|K \ S|+ 1)
(

n−s+1
|K\S|+1

)

=
1

|K \ S|+ 1
.

We then conclude by Proposition 3.2.

One can also see that, for any monotone normalized function f : {0, 1}n → IR, we have

If̂ (S) =
∫ 1

0

[
f̌(1̃S ỹ−S)− f̌(0̃S ỹ−S)

]
dy , S ⊆ N. (8)

Indeed, from the expression of f̌ in terms of the Möbius representation of f , we immediately
have

f̌(1̃S ỹ−S)− f̌(0̃S ỹ−S) =
∑
T⊆N

T∩S 6=∅

a(T ) y|T\S|,

which is sufficient.
As shown in the next example, Eq. (8) allows a rather quick computation of If̂ .

Example 3.1 For the PBF given in Example 2.1, one can see that If̂ = If . The compu-
tation can be done as follows. Suppose S = {1, 2}, then we have

f̌(1̃S ỹ−S) = f̌(1, 1, y) =
2 + y

3
and f̌(0̃S ỹ−S) = f̌(0, 0, y) = 0 ,

so that

If̂ (12) =
∫ 1

0

[
f̌(1̃S ỹ−S)− f̌(0̃S ỹ−S)

]
dy =

∫ 1

0

2 + y

3
dy = 5/6 .

4 Influence of coalitions in games

Let G = (N, v) be a cooperative game, where N = {1, . . . , n} is the set of players and v
is the characteristic function of G. When there is no fear of ambiguity, the game will be
simply denoted by v. In this section, we assume that v is monotone and normalized.

By identifying v with its corresponding PBF on {0, 1}N , we see by Proposition 2.3 that
the influence of any coalition S ⊆ N on v is the expectation of the marginal contribution
of S when joining a coalition picked at random from among the 2n−s outer coalitions :

Iv(S) =
1

2n−s

∑

T⊆N\S
[v(T ∪ S)− v(T )], S ⊆ N. (9)

Such an expression is in accordance with the idea of an influence. The influence of any
coalition S on v should not be solely determined by the number v(S), but also by all
v(S ∪ T ) such that T ⊆ N \ S. Indeed, the worth v(S) may be very low, suggesting that
S has a rather weak importance, while v(S ∪ T ) may be much greater than v(S) for many
coalitions T ⊆ N \ S, suggesting that S actually has an important influence.
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We also note that the influence function Iv coincides on singletons with the Banzhaf
power index [1, 5]:

Iv(i) = Bv(i) =
1

2n−1

∑

T⊆N\i
[v(T ∪ i)− v(T )], i ∈ N.

We thus see that the influence function is a generalization of the Banzhaf power index.
Indeed, it enables to express the global importance (or influence) not only of each player,
but also of any coalition of players.

The concept of influence presents some links with that of interaction among players,
which has been introduced axiomatically by Grabisch and Roubens [9] as extensions of the
Banzhaf and Shapley power indices :

• The Banzhaf interaction index related to v is defined by

IB
v (S) :=

1

2n−s

∑

T⊆N\S

∑

L⊆S

(−1)s−l v(L ∪ T ), S ⊆ N.

• The Shapley interaction index related to v is defined by

ISh
v (S) :=

∑

T⊆N\S

(n− t− s)! t!

(n− s + 1)!

∑

L⊆S

(−1)s−l v(L ∪ T ), S ⊆ N.

Grabisch et al. [8] proved that both Banzhaf and Shapley interaction indices, viewed as set
functions on N , are equivalent representations of v. The conversion formulas involving the
Möbius representation are given by :

IB
v (S) =

∑

T⊇S

(
1

2
)t−s a(T ), S ⊆ N, (10)

a(S) =
∑

T⊇S

(−1

2
)t−s IB

v (T ), S ⊆ N, (11)

ISh
v (S) =

∑

T⊇S

1

t− s + 1
a(T ), S ⊆ N, (12)

a(S) =
∑

T⊇S

Bt−s ISh
v (T ), S ⊆ N, (13)

where Bn is the n-th Bernoulli number, that is the n-th element of the numerical sequence
(Bn)n∈IN defined recursively by





B0 = 1,

n∑
k=0

(
n+1

k

)
Bk = 0, n ∈ IN \ {0}.

Since the influence function Iv has clearly a Banzhaf-like form, it would be interesting
to express it in terms of the Banzhaf interaction index. The following proposition gives the
conversion formula. Note that one can easily show that Iv is not an equivalent representation
of v, that is, there is no conversion formula from Iv to v. In particular, no conversion formula
from Iv to IB

v can be found.
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Proposition 4.1 For any monotone normalized game v on N , we have

Iv(S) =
∑
T⊆S
t odd

(
1

2
)t−1 IB

v (T ), S ⊆ N.

Proof. Combining Eq. (11) with Proposition 2.4 provides, for a given S ⊆ N ,

Iv(S) =
∑
T⊆N

T∩S 6=∅

(
1

2
)|T\S|

∑

K⊇T

(−1

2
)k−t IB

v (K)

=
∑

K⊆N
K∩S 6=∅

∑
T⊆K

T∩S 6=∅

(
1

2
)|T\S|(−1

2
)k−t IB

v (K).

Partitioning T ⊆ K into T1 ⊆ S ∩K and T2 ⊆ K \ S, we have

Iv(S) =
∑

K⊆N
K∩S 6=∅

(−1

2
)k IB

v (K)
∑

T1⊆S∩K
T1 6=∅

(−2)t1
∑

T2⊆K\S
(−1)t2

︸ ︷︷ ︸
(1−1)|K\S|

=
∑
K⊆S
K 6=∅

(−1

2
)k IB

v (K)
∑

T1⊆K
T1 6=∅

(−2)t1

︸ ︷︷ ︸
(−1)k−1

=
∑
K⊆S
k odd

(−1

2
)k−1 IB

v (K),

which proves the result.

In Example 2.1, we can observe that Iv is an additive set function. Of course, this is
not the case in general. The question then arises of determining conditions on v that assure
additivity of Iv. It is easy to see that Iv is additive whenever v is of order ≤ 2, that is such
that a(S) = 0 for all S ⊆ N , with s ≥ 3. Rather interestingly, one can readily see by (10)
and (11) that v is of order ≤ 2 if and only if IB

v (S) = 0 for all S ⊆ N , with s ≥ 3. However,
this condition is not necessary for Iv to be additive, as the following result shows.

Proposition 4.2 Let v be a monotone normalized game on N . Then Iv is additive if and
only if IB

v (S) = 0 for all S ⊆ N such that s is odd and ≥ 3.

Proof. The set function Iv is additive if and only if

Iv(S) =
∑

i∈S

Iv(i), S ⊆ N, S 6= ∅.

Since Iv(i) = Bv(i) = IB
v (i) for all i ∈ N , by Proposition 4.1, this condition is equivalent to

∑
T⊆S

t odd,≥3

(
1

2
)t−1 IB

v (T ) = 0, S ⊆ N, S 6= ∅. (14)

Now, for any S ⊆ N , with s = 3, the identity in (14) leads to IB
v (S) = 0. Going on with

s = 5, 7, 9, . . ., we obtain

IB
v (S) = 0 for all S ⊆ N with s odd and ≥ 3.

Conversely, this latter condition implies trivially (14).
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Example 4.1 Let v be the monotone normalized game on N = {1, 2, 3, 4} defined by a(i) =
1/2, a(ij) = 0, a(ijk) = −1/2 for all i, j, k ∈ N , and a(N) = 1. It is easily verified that
Iv(S) = s/4 and hence Iv is additive.

Before closing this section, we point out an interesting link between the influence of
players and the Banzhaf power index. We also present a recursive formula that characterizes
the influence on monotone simple games from the Banzhaf power index.

Let v be any monotone normalized game on N . The reduced game with respect to a
coalition S ⊆ N [15] is a game denoted v[S] defined on the set (N \ S) ∪ [S] of n − s + 1
players, where [S] indicates a single hypothetical player, which is the representative of the
players in S. This game is defined by

v[S](T ) =
{

v(T ), if [S] /∈ T ,
v(T ∪ S), if [S] ∈ T .

Now, it is easily verified that the influence of the coalition S on v is nothing but the
Banzhaf power index of the representative [S] in the reduced game v[S] :

Iv(S) = Iv[S]
([S]) = Bv[S]

([S]), S ⊆ N. (15)

Indeed, by (9), we have

Bv[S]
([S]) =

1

2n−s

∑

T⊆N\S
[v[S](T ∪ [S])− v[S](T )]

=
1

2n−s

∑

T⊆N\S
[v(T ∪ S)− v(T )],

which is sufficient.
Let v be any monotone simple game on N , that is a monotone game such that v(S) ∈

{0, 1} for all S ⊆ N . Given T ⊆ N , we denote by v−T the game on N \ T defined by
v−T (S) = v(S) for all S ⊆ N \ T . This is equivalent to consider only coalitions in N \ T .
We also denote by v∪T the game on N \ T defined by

v∪T (S) = v(S ∪ T )− v(T ), S ⊆ N \ T.

This game consists in considering only coalitions containing T . Subtraction of v(T ) is
introduced simply to satisfy the condition v∪T (∅) = 0.

Proposition 4.3 For any monotone simple game v on N , the influence function Iv obeys
the following recurrence formula :

Iv(S ∪ i) = Iv−i
(S) + Iv∪S

(i) ∀i ∈ N ∀S ⊆ N \ i. (16)

Proof. By (9), we have

Iv−i
(S) =

1

2n−s−1

∑

T⊆N\(S∪i)

[v(T ∪ S)− v(T )],

Iv∪S
(i) =

1

2n−s−1

∑

T⊆N\(S∪i)

[v(T ∪ S ∪ i)− v(T ∪ S)],
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and

Iv(S ∪ i) =
1

2n−s−1

∑

T⊆N\(S∪i)

[v(T ∪ S ∪ i)− v(T )],

which proves the result.

The recursive formula (16) has an interesting interpretation. It says that the influence
of the union S ∪ i on the simple game v is equal to the influence of S in the absence of i
plus the influence of i in the presence of S. A symmetric version of this formula is written

Iv(S ∪ i) = Iv∪i
(S) + Iv−S

(i) ∀i ∈ N ∀S ⊆ N \ i.

Notice that when v is a non-simple game, the games v−i and v∪S are not necessarily nor-
malized and the recursive formula (16) does not hold in general. However, it always holds
when v is simple, even if v−i and v∪S are identically zero.

We also observe that Eq. (16) characterizes uniquely the influence function from its
values on singletons, namely the Banzhaf power index. A similar characterization was
proposed by Grabisch and Roubens [9] for the concept of interaction, namely

IB
v (S ∪ i) = IB

v∪i
(S)− IB

v−i
(S) ∀i ∈ N ∀S ⊆ N \ i.

Both concepts of influence and interaction can be combined in an interesting way. For
any monotone simple game v on N and any pair of players i, j ∈ N , we have

Iv(ij) = Iv−j
(i) + Iv−i

(j) + IB
v (ij).

Thus, the influence of the pair {i, j} is the influence of i in the absence of j, plus the
influence of j in the absence of i, plus the interaction (positive or negative) between i and
j.

The previous formula can be extended to any coalition of players. For any monotone
simple game v on N and any S ⊆ N , we have (combine (15) and Recursive axiom 1 in [9]):

Iv(S) =
∑

T⊆/ S

IB
v−T

(S \ T ).

5 Robust voting schemes

Let us come back to the simple game presented in the introduction. Each player i ∈ N
proposes its vote xi ∈ {0, 1}, and the collective decision is given by a Boolean function
f : {0, 1}n → {0, 1} such that Pr(f = 1) = 1/2, that is,

1

2n

∑

x∈{0,1}n

f(x) =
1

2
.

Assume that n is odd, n = 2k − 1, and consider the majority voting scheme, whose
corresponding simple game v is defined by v(T ) = 1 if and only if t ≥ k and 0 otherwise.
In that case, the influence of any coalition S ⊆ N is given by

Iv(S) =
1

2n−s

∑

T⊆N\S
[v(T ∪ S)− v(T )]

=
1

2n−s

∑
T⊆N\S

k−s≤t≤k−1

1 ,
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that is,

Iv(S) =
1

22k−s−1

k−1+min(k−s,0)∑

t=max(k−s,0)

(
2k − s− 1

t

)

=





1 , if s ≥ k ,

1

22k−s−1

s∑

t=1

(
2k − s− 1

k − t

)
, if s < k .

In particular, the influence of single players in the majority voting is written

Iv(i) =
1

22k−2

(
2k − 2

k − 1

)
, i ∈ N.

that is, Iv(i) = O(1/
√

n) for all i ∈ N .
Ben-Or and Linial [2] proposed another voting scheme that reduces the influence of

single players to O(log n/n), which is much smaller than O(1/
√

n). The corresponding
simple game v is constructed as follows. Partition N into subsets S1, . . . , S` of size log n−
log log n + c (c is an appropriate constant) and define v(T ) = 1 if and only if T contains Sj

for some j.
It has been proved that this voting scheme is asymptotically optimal. More precisely,

Kahn et al. [11] proved the following result.

Theorem 5.1 There exists an absolute constant C so that for every function f : {0, 1}n →
{0, 1} with Pr(f = 1) = p ≤ 1/2, there is at least one j ∈ N such that

If (j) ≥ C p
log n

n
.

Now, as the influence function Iv is not additive in general, it might happen that the
single players have a very small influence while some medium-sized coalitions have a very
large influence. Back to the majority voting procedure, we have Iv(S) = 1 for all S ⊆ N
such that s ≥ k. Indeed, all these coalitions, being in the majority, are decisive. In that
case, half of the coalitions have influence equal to one.

Therefore, a proper definition of the robustness of voting schemes should take into
consideration the influence of all coalitions of players. The following result [3, 11] shows
that we can confine ourselves to monotone games.

Proposition 5.1 Given a function f : {0, 1}n → {0, 1}, there is a monotone function
g : {0, 1}n → {0, 1} such that Pr(f = 1) = Pr(g = 1) and

If (S) ≥ Ig(S), S ⊆ N.

In order to avoid as much as possible coalitions that have a large influence, we could
search for monotone simple games whose influence function increases from 0 to 1 as uni-
formly as possible. However, there are several ways of defining such a “uniformity”. For
example, one might search for games that minimize the objective function

M(v) = max
i∈N

max
T⊆N\i

[Iv(T ∪ i)− Iv(T )].
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We propose here another objective function, based on the concept of entropy of a non-
additive measure. Let w be a non-additive measure on N , that is a monotone set function
w : 2N → IR such that w(∅) = 0 and w(N) = 1. When w is additive (probability measure),
it is defined solely from the values w(i) (i ∈ N) whose evenness can be measured by means
of the so-called Shannon entropy of w, that is,

H(w) = −∑

i∈N

w(i) logn w(i),

with the convention that 0 logn 0 := 0.
For non-additive measures, an entropy-like measure of uniformity has been proposed

recently by the author [12, §6.2.4] in the framework of aggregation. Its expression, derived
from the Shapley power index, is written :

H(w) = −∑

i∈N

∑

T⊆N\i

(n− t− 1)! t!

n!
[w(T ∪ i)− w(T )] logn [w(T ∪ i)− w(T )].

Such an index measures somehow the regularity of the monotonicity of w from 0 to 1. The
more regular the monotonicity of w, the higher its entropy H(w). Some properties of H(w)
are shown in [12, 14]. For example, H(w) is maximum (= 1) only when w(S) = s/n for all
S ⊆ N , and minimum (= 0) only when w(S) ∈ {0, 1} for all S ⊆ N .

Given a monotone simple game v on N , its influence function is clearly a non-additive
measure and the regularity of its monotonicity can be measured by H(Iv). Thus, searching
for robust voting schemes amounts to solving the following convex programming problem
in Boolean variables :

maximize H(Iv)

subject to 



1
2n

∑
T⊆N

v(T ) = 1
2

v(T ∪ i)− v(T ) ≥ 0 ∀i ∈ N ∀T ⊆ N \ i

v(∅) = 0, v(N) = 1

v(T ) ∈ {0, 1} ∀T ⊆ N.

This problem has been solved for n ≤ 5 by an exhaustive enumeration. The solutions
are the following :

• Case n = 2. There are two optimal solutions (uninteresting), which are the two
dictatorial voting schemes. H(Iv) = 0.

• Case n = 3. There is only one optimal solution, which is the majority voting. H(Iv) =
log3 2 ≈ 0.63.

• Case n = 4. There are 12 symmetric optimal solutions, which can be built as follows:

1. If s ≥ 3 then v(S) = 1.

2. If s ≤ 1 then v(S) = 0.

3. Take a, b, c, d ∈ N and set v(S) = 0 whenever s = 2, except v(ab) = v(cd) =
v(ac) = 1 (12 possible choices).
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The optimal value is H(Iv) = 17/24 ≈ 0.71.

• Case n = 5. There are 30 symmetric optimal solutions, which can be built as follows:

1. If s ≥ 4 then v(S) = 1.

2. If s ≤ 1 then v(S) = 0.

3. For s = 2 and s = 3, v is constructed like this: Choose a, b, c, d ∈ N , and
set v(S) = 0 whenever s = 2, except v(ab) = v(cd) = 1 (15 possible choices).
Then, set v(S) = 1 whenever s = 3, except v(ace) = v(bde) = 0, where e is the
remaining element in N (2 possible choices).

The optimal value is H(Iv) = (155 log5 2 − 36 log5 3)/60 ≈ 0.70. Notice that the
majority voting is not optimal (H(Iv) ≈ 0.67).

It is worth mentioning that the optimal solutions for n = 4 and n = 5 do not privilege
any coalition. These are symmetric solutions. One can cover all of them by first permuting
the players at random, and then applying one of the solutions.

Note also that depending upon what is expected from the game v, other constraints can
be added to the optimization problem. For example, I0

v = I1
v .

We now introduce yet another objective function. Let us consider the lattice L(N)
related to the power set of N . We can represent L(N) as a graph called the Hasse Diagram
H(N), whose nodes correspond to the coalitions S ⊆ N and the edges represent adding a
player to the bottom coalition to get the top coalition. A maximal chain of H(N) is an
ordered collection of n + 1 nested and distinct coalitions, that is

M = (∅ = M0 ⊆/ M1 ⊆/ · · · ⊆/ Mn−1 ⊆/ Mn = N).

It is then natural to search for games v on N that minimize

Z(v) = max
M∈C(N)

1

n

n∑

i=0

Iv(Mi),

where C(N) denotes the set of maximal chains of H(N). Since, for each maximal chain M
there exists a unique permutation π on N such that Mi = {π(1), . . . , π(i)} for all i ∈ N ,
this objective function can be written

Z(v) = max
π∈Π(N)

1

n

n∑

i=1

Iv(π(1), . . . , π(i)),

where Π(N) is the set of permutations on N .
For the dictatorial voting, we obtain the maximum value: Z(v) = 1. For the majority

voting, we obtain

Z(v) =
1

2k − 1

[ k−1∑

s=1

1

22k−s−1

s∑

t=1

(
2k − s− 1

k − t

)
+ k

]
, (17)

that is, Z(v) = 0.83, 0.82, 0.83, 0.84, 0.95, 0.96 for k = 2, 3, 4, 5, 100, 200, respectively. An
exhaustive search showed that the value (17) is optimal for k = 2 and k = 3.
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We thus observe that more than one objective function can be considered. However,
we must be very cautious when choosing the objective function. For example, the average
value of Iv over all the coalitions, that is

1

2n

∑

T⊆N

Iv(T ) or
∑

T⊆N

(n− t)! t!

(n + 1)!
Iv(T ),

is not an appropriate function to minimize. It is smaller for the dictatorial voting than for
the majority voting.

We can also observe that, under the condition Pr(f = 1) = 1/2, there will always be
small dominant coalitions. This is actually a result established in [3, 11]:

Theorem 5.2 For every ε > 0, there exists a constant C(ε) so that for every function
f : {0, 1}n → {0, 1} with Pr(f = 1) = 1/2, there is S ⊆ N , with s = C(ε) n/ log n so that

If (S) ≥ 1− ε.

6 Influence of criteria in multicriteria decision making

problems

As mentioned in the introduction, the so-called discrete Choquet integral can be used to
aggregate criteria in many multicriteria decision making problems. In this section, we
investigate the influence function associated to this aggregation operator.

The concept of Choquet integral has been first introduced in capacity theory [4]. Its use
as an aggregation operator in decision making has been proposed by several authors (see
[7] and the references therein). Moreover, an axiomatic characterization was proposed by
the author in [12, 13].

Recall that a non-additive measure on N is a monotone set function v : 2N → [0, 1]
such that v(∅) = 0 and v(N) = 1. For any combination S ⊆ N of criteria, v(S) is then
interpreted as the weight or the degree of importance of S.

Definition 6.1 Let v be a non-additive measure on N . The Choquet integral of x ∈ [0, 1]n

with respect to v is defined by

Cv(x) :=
n∑

i=1

x(i) [v(A(i))− v(A(i+1))],

where (·) indicates a permutation on N such that x(1) ≤ . . . ≤ x(n). Also A(i) = {(i), . . . , (n)},
and A(n+1) = ∅.

For instance, if x3 ≤ x1 ≤ x2, we have

Cv(x1, x2, x3) = x3 [v(3, 1, 2)− v(1, 2)] + x1 [v(1, 2)− v(2)] + x2 v(2).

The Choquet integral is closely related to the Lebesgue integral (weighted arithmetic
mean), since both coincide when the measure v is additive :

Cv(x) =
n∑

i=1

v(i) xi, x ∈ [0, 1]n.
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It was proved [12, 13] that the Choquet integral Cv is nothing but the Lovász extension
of the PBF which represents v. By Propositions 3.2 and 3.3, we then have

ICv(S) =
∑

T⊆N\S

(n− t− s)! t!

(n− s + 1)!
[v(T ∪ S)− v(T )] , (18)

ICv(S) =
∑
T⊆N

T∩S 6=∅

a(T )
1

|T \ S|+ 1
, (19)

for all S ⊆ N . It follows that this influence function ICv coincides on singletons with the
Shapley power index [18]:

ICv(i) = Shv(i) =
∑

T⊆N\i

(n− t− 1)! t!

n!
[v(T ∪ i)− v(T )], i ∈ N.

We now calculate the influence function with respect to two particular Choquet integrals,
namely the weighted arithmetic mean and the ordered weighted averaging.

Any vector ω ∈ [0, 1]n such that
∑

i ωi = 1 will be called a weight vector as we continue.

6.1 The weighted arithmetic mean

Definition 6.2 For any weight vector ω ∈ [0, 1]n, the weighted arithmetic mean operator
WAMω associated to ω is defined by

WAMω(x) =
n∑

i=1

ωi xi .

We have seen that WAMω is a Choquet integral Cv with respect to an additive measure :

v(S) =
∑

i∈S

ωi , S ⊆ N.

Moreover, it is clear that the influence of S ⊆ N over WAMω is given by the sum of the
weights related to S :

IWAMω(S) =
∑

i∈S

ωi , S ⊆ N.

6.2 The ordered weighted averaging

Yager [19] has defined in 1988 the ordered weighted averaging operators (OWA) as follows.

Definition 6.3 For any weight vector ω ∈ [0, 1]n, the ordered weighted averaging operator
OWAω associated to ω is defined by

OWAω(x) =
n∑

i=1

ωi x(i)

with the convention that x(1) ≤ · · · ≤ x(n).

The following result, due to Grabisch [6], shows that any OWA operator is a Choquet
integral with respect to a non-additive measure that depends only on the cardinality of
subsets, also called cardinality-based non-additive measure.
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Proposition 6.1 Let v be a non-additive measure on N . Then the following assertions
are equivalent.

i) For any S, S ′ ⊆ N such that |S| = |S ′|, we have v(S) = v(S ′).
ii) There exists a weight vector ω ∈ [0, 1]n such that Cv = OWAω .
iii) Cv is a symmetric function.

The non-additive measure v associated to OWAω is given by

v(S) =
n∑

i=n−s+1

ωi , S ⊆ N, S 6= ∅. (20)

Finally, the following proposition gives the influence function associated to an OWA oper-
ator.

Proposition 6.2 For any weight vector ω ∈ [0, 1]n, we have

IOWAω(S) =
1

n− s + 1

n∑

i=1

ωi min(i, s, n− i + 1, n− s + 1), S ⊆ N.

Proof. Fix k ∈ N and consider the operator OWAω defined by ωi = 1 iff i = k, and 0
otherwise. This operator is actually the k-th order statistic

OSk(x) = x(k), x ∈ [0, 1]n.

By Proposition 6.1, we can set vt := v(T ) for all T ⊆ N . Fixing S ⊆ N , we have, by (18),

IOSk
(S) =

1

n− s + 1

∑

T⊆N\S

1(
n−s

t

) (vt+s − vt)

=
1

n− s + 1

n−s∑

t=0

(vt+s − vt).

By (20), we have

vt =
{

1, if t ≥ n− k + 1,
0, otherwise,

and hence,

vt+s − vt =
{

1, if n− k − s + 1 ≤ t ≤ n− k,
0, otherwise.

We then have

IOSk
(S) =

1

n− s + 1

min(n−k,n−s)∑

t=max(0,n−k−s+1)

1

and two cases can be considered :

• If k ≤ s then

IOSk
(S) =

(n− s + 1)−max(0, n− k − s + 1)

n− s + 1
=

min(n− s + 1, k)

n− s + 1

• If k ≥ s then

IOSk
(S) =

(n− k + 1)−max(0, n− k − s + 1)

n− s + 1
=

min(n− k + 1, s)

n− s + 1
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Summing up, we obtain

IOSk
(S) =

min(k, s, n− k + 1, n− s + 1)

n− s + 1
.

Finally, for any weight vector ω ∈ [0, 1]n, we have

OWAω =
n∑

i=1

ωi OSi

and the result follows from the linearity of the influence with respect to the non-additive
measure.

In particular, for min = OS1 and max = OSn, we have

Imin(S) = Imax(S) =
1

n− s + 1
, S ⊆ N.

For the median function (median = OSk, with n = 2k − 1), we have, for any S ⊆ N ,

Imedian(S) =
min(k, s, 2k − s)

2k − s

=

{
1 , if s ≥ k ,

s
2k−s

, if s < k .

Notice that the underlying non-additive measure of the median function corresponds to the
majority voting scheme.

7 An alternative definition of influence on PBFs

In this final section, we show that, for any monotone normalized PBF f , the influence
function If̂ can also be viewed as an influence function associated to f and defined from a
specific probability distribution.

We have seen in Section 2 that, for any monotone normalized function f : {0, 1}n → IR,
we have

If (S) = E[f(1̃Sy−S)− f(0̃Sy−S)], S ⊆ N,

where the expectation if defined from the uniform distribution. However, the uniform dis-
tribution does not take into account the fact that there are elements inside each subset, and
that a single element is involved several times in different subsets, especially with subsets of
around n/2 elements, which are the most numerous. This means that a distribution taking
into account this combinatorial aspect should be used to avoid this effect. For instance,
consider {0, 1}N as a probability space with the following distribution :

p(y) :=
1

n + 1

(
n∑
i yi

)−1

, y ∈ {0, 1}N . (21)

This is a well-defined distribution since p(y) ≥ 0 for any y ∈ {0, 1}N , and

∑

y∈{0,1}N

p(y) =
1

n + 1

∑

T⊆N

(
n

t

)−1

=
1

n + 1

n∑

t=0

1(
n
t

)
∑
T⊆N
|T |=t

1 = 1 .
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Moreover, with this distribution, the expectation of any function is calculated first over the
subsets of the same size t ∈ {0, . . . , n} and then over all the possible sizes.

Now, for any monotone normalized function f : {0, 1}n → IR, we have, by Eq. (7),

If̂ (S) =
1

n− s + 1

∑

T⊆N\S

(
n− s

t

)−1

[f(eT∪S)− f(eT )], S ⊆ N,

or equivalently,

If̂ (S) =
1

n− s + 1

∑

y∈{0,1}N\S

(
n− s∑

i yi

)−1

[f(1̃Sy−S)− f(0̃Sy−S)], S ⊆ N.

Therefore, we have

If̂ (S) = E[f(1̃Sy−S)− f(0̃Sy−S)], S ⊆ N,

where the expectation if defined from the distribution (21). Actually, this expectation can
be taken over all y ∈ [0, 1]N , as the following result shows.

Proposition 7.1 For any monotone normalized function f : {0, 1}n → IR, we have

If̂ (S) =
1

n + 1

∑

y∈{0,1}N

(
n∑
i yi

)−1

[f(1̃Sy−S)− f(0̃Sy−S)], S ⊆ N.

Proof. For any S ⊆ N , we have

1

n + 1

∑

y∈{0,1}N

(
n∑
i yi

)−1

[f(1̃Sy−S)− f(0̃Sy−S)]

=
1

n + 1

∑
T⊆N

T∩S 6=∅

a(T )
∑

y∈{0,1}N

(
n∑
i yi

)−1 ∏

i∈T\S
yi

=
1

n + 1

∑
T⊆N

T∩S 6=∅

a(T )
∑

K⊆N

(
n

k

)−1 ∏

i∈T\S
(eK)i

=
1

n + 1

∑
T⊆N

T∩S 6=∅

a(T )
∑

K⊇T\S

(
n

k

)−1

Moreover, for any T ⊆ N , we have

∑

K⊇T\S

(
n

k

)−1

=
n∑

k=|T\S|

(
n− |T \ S|
k − |T \ S|

)(
n

k

)−1

=

(
n

|T \ S|

)−1 n∑

k=|T\S|

(
k

|T \ S|

)
=

n + 1

|T \ S|+ 1
.

We then conclude by Proposition 3.2.

Consequently, when we reason on elements rather than subsets, it seems that the influ-
ence function on f should be given by If̂ instead of If . A similar analysis has been done
for Banzhaf and Shapley interaction indices, see [8, §2].
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ulty of Economics, University of Liège, Belgium, 1999. Submitted for publication.

[15] A.S. Novak, On the axiomatization of the Banzhaf value without the additivity axiom,
Int. J. of Game Theory 26 (1997) 137–141.

23



[16] G. Owen, Multilinear extensions of games, Management Sciences 18 (1972) 64–79.

[17] G.C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions,
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