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Abstract

The Sugeno integral, for a given fuzzy measure, is studied under the viewpoint of
aggregation. In particular, we give some equivalent expressions of it. We also give an
axiomatic characterization of the class of all the Sugeno integrals. Some particular
subclasses, such as the weighted maximum and minimum functions are investigated
as well.
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1 Introduction

Aggregation refers to the process of combining numerical values x1, . . . , xm into a single one
M (m)(x1, . . . , xm), so that the final result of aggregation takes into account all the individual
values. In decision making, values to be aggregated are typically preference or satisfaction
degrees and thus belong to the unit interval [0, 1]. For more details, see [9].

This paper aims at investigating the Sugeno integral (see [18, 19]) which can be regarded
as an aggregation function (see Section 2). In particular, we show that any Sugeno integral
is a weighted max-min function, that is, setting X = {1, . . . , m}, a function of the form

M (m)(x1, . . . , xm) =
∨

T⊆X

[aT ∧ (
∧

i∈T

xi)], aT ∈ [0, 1],

where a is a set function satisfying a∅ = 0 and
∨

T⊆X aT = 1. Such functions are investigated
in Section 3. We then show that those functions can also be written as

M (m)(x1, . . . , xm) =
∧

T⊆X

[bT ∨ (
∨

i∈T

xi)], bT ∈ [0, 1],

(weighted min-max functions) where b is a set function satisfying b∅ = 1 and
∧

T⊆X bT = 0.
The correspondance formulae b = b(a) and a = a(b) are given as well. For instance, we
have

(0.1 ∧ x1) ∨ (0.3 ∧ x2) ∨ (x2 ∧ x3) = (0.1 ∨ x2) ∧ (0.3 ∨ x3) ∧ (x1 ∨ x2).
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We also propose an axiomatic characterization of this class of functions based on some
aggregation properties: the increasingness and the stability for minimum and maximum
with the same unit.

Most of these results are applied to the Sugeno integral in Section 4. In particular, we
can derive equivalent expressions and characterize the family of all the Sugeno integrals.

In Section 5, we consider particular weighted max-min functions: Boolean max-min
functions, weighted maximum and minimum functions, ordered weighted maximum and
minimum functions, partial maximum and minimum functions, order statistics and asso-
ciative medians. Of course, all these functions are Sugeno integrals.

2 The Sugeno integral as an aggregation function

We first want to define the concept of aggregation function. Without loss of generality,
we will assume that the information to be aggregated consists of numbers belonging to
the interval [0, 1] as required in most applications. In fact, all the definitions and results
presented in this paper can be defined on any closed interval [a, b] of the real line.

Let m denote any strictly positive integer.

Definition 2.1 An aggregation function defined on [0, 1]m is a function M (m) : [0, 1]m →
IR.

We consider a discrete set of m elements X = {1, . . . , m}, which could be players of a co-
operative game, criteria, attributes or voters in a decision making problem. P(X) indicates
the power set of X, i.e. the set of all subsets in X.

In order to avoid heavy notations, we introduce the following terminology. It will be
used all along this paper.

• We set IB := {0, 1} and II := [0, 1].

• For all T ⊆ X, the characteristic vector of T in IBm is defined by

eT := (x1, . . . , xm) ∈ IBm with xi = 1 ⇔ i ∈ T.

Of course, the eT ’s (T ⊆ X) are the 2m vertices of the hypercube IIm. Then we set
θT := M (m)(eT ). The expressions e{i} and θ{i} will be denoted ei and θi respectively.

• Given a vector (x1, . . . , xm) ∈ IIm, let (·) be the permutation on X which arranges
the elements of this vector by increasing values: that is, x(1) ≤ . . . ≤ x(m).

• The notation K ⊆/ T means K ⊂ T and K 6= T .

In order to define the Sugeno integral, we use the concept of fuzzy measure.

Definition 2.2 A (discrete) fuzzy measure on X is a set function µ : P(X) → II satisfying
the following conditions:

(i) µ(∅) = 0, µ(X) = 1,
(ii) R ⊆ S ⊆ X ⇒ µ(R) ≤ µ(S).

µ(R) can be viewed as the weight of importance of the set of elements R. In the sequel we
will write µR instead of µ(R).
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Definition 2.3 A pseudo-Boolean function is a function f : IBm → IR.

Hammer and Rudeanu [14] showed that any pseudo-Boolean function can be put under a
multilinear polynomial in m variables:

f(x) =
∑

T⊆X

aT

∏

i∈T

xi

with aT ∈ IR and x = (x1, . . . , xm) ∈ IBm. It is easy to see that a fuzzy measure is
a particular case of pseudo-Boolean function: simply remark that for any R ⊆ X, R is
equivalent to the point eR ∈ IBm. We then have,

µR = f(eR) =
∑

T⊆R

aT ∀R ⊆ X.

Now, let us introduce the concept of II-valued pseudo-Boolean function as follows:

Definition 2.4 An II-valued pseudo-Boolean function is a function f : IBm → II. It is said
to be increasing if f is increasing in each argument.

It is easy to see that any increasing II-valued pseudo-Boolean function f fulfilling f(0, . . . , 0) =
0 and f(1, . . . , 1) = 1 can be put under the following forms:

f(x) =
∨

T⊆X

[aT ∧ (
∧

i∈T

xi)] =
∧

T⊆X

[bT ∨ (
∨

i∈T

xi)]

with, for instance, aT = f(eT ) ∈ II and bT = f(eX\T ) ∈ II for all T ⊆ X. Indeed, we then
have, for all R ⊆ X,

f(eR) =
∨

T⊆R

aT =
∨

T⊆R

f(eT )

and
f(eR) =

∧

T⊆X\R
bT =

∧

T⊆X\R
f(eX\R).

Any fuzzy measure can be regarded as an increasing II-valued pseudo-Boolean function for
which f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1. Conversely, any increasing II-valued pseudo-
Boolean function f satisfying these boundary conditions define a fuzzy measure:

µR = f(eR) =
∨

T⊆R

aT =
∧

T⊆X\R
bT ∀R ⊆ X.

We introduce now the concept of discrete Sugeno integral, viewed as an aggregation func-
tion. For this reason, we will adopt a connective-like notation instead of the usual integral
form, and the integrand will be a set of m values x1, . . . , xm of II. For theorical developments,
see [13, 18, 19].

Definition 2.5 Let (x1, . . . , xm) ∈ IIm, and µ a fuzzy measure on X. The (discrete) Sugeno
integral of (x1, . . . , xm) with respect to µ is defined by

S(m)
µ (x1, . . . , xm) :=

m∨

i=1

[x(i) ∧ µ{(i),...,(m)}].

For instance, if x3 ≤ x1 ≤ x2, we have

S(3)
µ (x1, x2, x3) = (x3 ∧ µ{3,1,2}) ∨ (x1 ∧ µ{1,2}) ∨ (x2 ∧ µ{2}).

Of course, given a fuzzy measure µ, the Sugeno integral S(m)
µ can be regarded as an ag-

gregation function defined on IIm. We will show that it can be written in the form of a
weighted max-min function to be introduced next.
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3 Weighted max-min and min-max functions

This section is devoted to weighted max-min and min-max functions. Although the coeffi-
cients involved in these functions are not really weights, but rather thresholds or aspiration
degrees, we will talk in terms of weights. It is shown that any weighted max-min function
is a weighted min-max function and conversely.

The formal analogy between the weighted max-min function and the multilinear poly-
nomial is obvious: minimum corresponds to product, maximum does to sum. Moreover,
it is emphasized that weighted max-min functions can be calculated as medians, i.e., the
qualitative counterparts of multilinear polynomials.

Finally, we give an axiomatic characterization of the family of weighted max-min func-
tions.

3.1 Weighted max-min functions

Definition 3.1 For any set function a : P(X) → II such that a∅ = 0 and
∨

T⊆X aT = 1,
the weighted max-min aggregation function WMAXMIN(m)

a associated to a is defined by

WMAXMIN(m)
a (x1, . . . , xm) =

∨

T⊆X

[aT ∧ (
∧

i∈T

xi)] ∀(x1, . . . , xm) ∈ IIm.

Observe first that for any WMAXMIN(m)
a , we have

θR =
∨

T⊆R

aT ∀R ⊆ X.

Moreover, the set function a which define WMAXMIN(m)
a is not uniquely determined: in-

deed, we have, for instance, x1 ∨ (x1 ∧ x2) = x1. The next proposition precises conditions
under which two weighted max-min functions are identical.

Proposition 3.1 Let a and a′ be set functions defining WMAXMIN(m)
a and WMAXMIN

(m)
a′

respectively. Then the following four assertions are equivalent:

(i) WMAXMIN
(m)
a′ =WMAXMIN(m)

a

(ii) ∀T ⊆ X :
∨

K⊆T

a′K =
∨

K⊆T

aK

(iii) ∀T ⊆ X, T 6= ∅ :

{
a′T = aT if aT >

∨
K⊆/T aK

0 ≤ a′T ≤
∨

K⊆T aK otherwise

(iv) ∀T ⊆ X, T 6= ∅ : inf{z|( ∨

K⊆/T

aK) ∨ z ≥ aT} ≤ a′T ≤
∨

K⊆T

aK .

Proof. (i) ⇒ (ii). We simply have, for all T ⊆ X,

∨

K⊆T

a′K = θT =
∨

K⊆T

aK .

(ii) ⇒ (iii). Let T ⊆ X, T 6= ∅. On the one hand, we have

0 ≤ a′T ≤
∨

K⊆T

a′K =
∨

K⊆T

aK .
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On the other hand, assuming that aT >
∨

K⊆/T aK , we obtain

aT =
∨

K⊆T

aK =
∨

K⊆T

a′K

implying aT = a′T : indeed, otherwise there would exist K∗ ⊆/ T such that

aT = a′K∗ ≤
∨

L⊆K∗
a′L =

∨

L⊆K∗
aL ≤

∨

K⊆/T

aK < aT

which is a contradiction.
(iii) ⇒ (i). Assume aT ≤ ∨

K⊆/T aK and let K∗ ⊆/ T such that aK∗ is maximum. Then
we have aK∗ ≥ aT and

[aK∗ ∧ (
∧

i∈K∗
xi)] ≥ [aT ∧ (

∧

i∈T

xi)]

and so aT can be replaced by any number lying between 0 and aK∗ =
∨

K⊆T aK without
changing WMAXMIN(m)

a .
(iii) ⇔ (iv). Trivial.

Let a be any set function defining WMAXMIN(m)
a . By the third assertion of the previous

proposition, each aT is either uniquely determined or can lie in a closed interval. If a is
such that

∀T ⊆ X, T 6= ∅ : aT = 0 ⇔ aT ≤
∨

K⊆/T

aK

then the aT ’s are the smallest and we say that WMAXMIN(m)
a is put in its canonical form.

On the other hand, if a is such that

∀T ⊆ X : aT =
∨

K⊆T

aK

then the aT ’s are the largest and we say that WMAXMIN(m)
a is put in its complete form.

In this case, a is a fuzzy measure since it is increasing (by inclusion).
It should be noted that we can determine the complete form of any function WMAXMIN(m)

a

by taking aT = θT for all T ⊆ X. We then get its canonical form by considering successively
the T ’s in the decreasing cardinality order and setting aT = 0 whenever T 6= ∅ and

aT ≤
∨

k∈T

aT\{k}.

3.2 Weighted min-max functions

By exchanging the position of the max and min operations in Definition 3.1, we can define
the weighted min-max functions as follows.

Definition 3.2 For any set function b : P(X) → II such that b∅ = 1 and
∧

T⊆X bT = 0, the

weighted min-max aggregation function WMINMAX
(m)
b associated to b is defined by

WMINMAX
(m)
b (x1, . . . , xm) =

∧

T⊆X

[bT ∨ (
∨

i∈T

xi)] ∀(x1, . . . , xm) ∈ IIm.
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Observe first that for any WMINMAX
(m)
b , we have

θR =
∧

T⊆X\R
bT ∀R ⊆ X.

Moreover, the set function b which define WMINMAX
(m)
b is not uniquely determined: in-

deed, we have, for instance, x1∧(x1∨x2) = x1. We then have a result similar to Proposition
3.1.

Proposition 3.2 Let b and b′ be set functions defining WMINMAX
(m)
b and WMINMAX

(m)
b′

respectively. Then the following four assertions are equivalent:

(i) WMINMAX
(m)
b′ =WMINMAX

(m)
b

(ii) ∀T ⊆ X :
∧

K⊆T

b′K =
∧

K⊆T

bK

(iii) ∀T ⊆ X, T 6= ∅ :

{
b′T = bT if bT <

∧
K⊆/T bK∧

K⊆T bK ≤ b′T ≤ 1 otherwise

(iv) ∀T ⊆ X, T 6= ∅ :
∧

K⊆T

bK ≤ b′T ≤ sup{z|( ∧

K⊆/T

bK) ∧ z ≤ bT}.

Let b be any set function defining WMINMAX
(m)
b . By the third assertion of the previous

proposition, each bT is either uniquely determined or can lie in a closed interval. If b is such
that

∀T ⊆ X, T 6= ∅ : bT = 1 ⇔ bT ≥
∧

K⊆/T

bK

then the bT ’s are the largest and we say that WMINMAX
(m)
b is put in its canonical form.

On the other hand, if b is such that

∀T ⊆ X : bT =
∧

K⊆T

bK

then the bT ’s are the smallest and we say that WMINMAX
(m)
b is put in its complete form.

In this case, b is decreasing (by inclusion).

It should be noted that we can determine the complete form of any function WMINMAX
(m)
b

by taking bT = θX\T for all T ⊆ X. We then get its canonical form by considering suc-
cessively the T ’s in the decreasing cardinality order and setting bT = 1 whenever T 6= ∅
and

bT ≥
∧

k∈T

bT\{k}.

3.3 Correspondance formulae and equivalent forms

As announced at the beginning of this section, any weighted max-min function can be put
under the form of a weighted min-max function and conversely. The next proposition gives
the correspondance formulae.

Proposition 3.3 Let a and b be set functions defining WMAXMIN(m)
a and WMINMAX

(m)
b

respectively. Then we have

WMAXMIN(m)
a =WMINMAX

(m)
b ⇔ ∨

K⊆T

aK =
∧

K⊆X\T
bK ∀T ⊆ X.
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Proof. (Necessity) We simply have, for all T ⊆ X,
∨

K⊆T

aK = θT =
∧

K⊆X\T
bK .

(Sufficiency). Let b be any set function defining WMINMAX
(m)
b . Using classical distribu-

tivity, we can find a set function a′ defining WMAXMIN
(m)
a′ such that

WMAXMIN
(m)
a′ =WMINMAX

(m)
b .

We then observe that, for all T ⊆ X,
∨

K⊆T

a′K = θT =
∧

K⊆X\T
bK =

∨

K⊆T

aK .

By Proposition 3.1, we simply have WMAXMIN
(m)
a′ =WMAXMIN(m)

a .

When the WMAXMIN(m)
a and WMINMAX

(m)
b functions are put in their complete forms,

the correspondance formulae become simpler.

Corollary 3.1 For any increasing set function a defining WMAXMIN(m)
a and any decreas-

ing set function b defining WMINMAX
(m)
b , we have

WMINMAX
(m)
b =WMAXMIN(m)

a ⇔ bT = aX\T ∀T ⊆ X.

The following example illustrates the use of the correspondance formulae.

Example 3.1 Let X = {1, 2, 3}. We have

(0.1 ∧ x1) ∨ (0.3 ∧ x2) ∨ (x2 ∧ x3) = (0.1 ∨ x2) ∧ (0.3 ∨ x3) ∧ (x1 ∨ x2).

Indeed, starting from the left-hand side (a canonical form), we can compute its complete
form then its dual complete form and finally its dual canonical form as follows:

(0.1 ∧ x1) ∨ (0.3 ∧ x2) ∨ (x2 ∧ x3)

= 0 ∨ (0.1 ∧ x1) ∨ (0.3 ∧ x2) ∨ (0 ∧ x3) ∨ (0.3 ∧ x1 ∧ x2) ∨ (0.1 ∧ x1 ∧ x3) ∨ (1 ∧ x2 ∧ x3)

∨(1 ∧ x1 ∧ x2 ∧ x3)

= 1 ∧ (1 ∨ x1) ∧ (0.1 ∨ x2) ∧ (0.3 ∨ x3) ∧ (0 ∨ x1 ∨ x2) ∧ (0.3 ∨ x1 ∨ x3) ∧ (0.1 ∨ x2 ∨ x3)

∧(0 ∨ x1 ∨ x2 ∨ x3)

= (0.1 ∨ x2) ∧ (0.3 ∨ x3) ∧ (x1 ∨ x2).

Now, we show that any WMAXMIN(m)
a function can be written under equivalent forms

involving at most m variable coefficients. These coefficients only depend on the order of
the xi’s. In order to present this, we need a technical lemma which was established by
Dubois and Prade [6].

Lemma 3.1 Let (x1, . . . , xm), (x′1, . . . , x
′
m) ∈ IIm with x1 ≤ . . . ≤ xm and x′1 ≥ . . . ≥ x′m.

(i) If x′1 = 1 then

m∨

i=1

(xi ∧ x′i) = median(x1, . . . , xm, x′2, . . . , x
′
m).

(ii) If x′m = 0 then

m∧

i=1

(xi ∨ x′i) = median(x1, . . . , xm, x′1, . . . , x
′
m−1).
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Now, we can state the result as follows.

Theorem 3.1 (i) For any increasing set function a defining WMAXMIN(m)
a , we have, for

all (x1, . . . , xm) ∈ IIm,

WMAXMIN(m)
a (x1, . . . , xm) =

m∨

i=1

[x(i) ∧ a{(i),...,(m)}]

= median(x1, . . . , xm, a{(2),...,(m)}, a{(3),...,(m)}, . . . , a{(m)}).

(ii) For any decreasing set function b defining WMINMAX
(m)
b , we have, for all (x1, . . . , xm) ∈

IIm,

WMINMAX
(m)
b (x1, . . . , xm) =

m∧

i=1

[x(i) ∨ b{(1),...,(i)}]

= median(x1, . . . , xm, b{(1)}, b{(1),(2)}, . . . , b{(1),...,(m−1)}).

Proof. (i) Let (x1, . . . , xm) ∈ IIm. Since a is increasing, we have

m∨

i=1

[x(i) ∧ a{(i),...,(m)}] =
m∨

i=1

∨
T⊆{(i),...,(m)}

T3(i)

[aT ∧ x(i)]

=
m∨

i=1

∨
T⊆{(i),...,(m)}

T3(i)

[aT ∧ (
∧

j∈T

xj)]

=
∨

T⊆X

[aT ∧ (
∧

j∈T

xj)]

which prove the first equality. The second one follows from Lemma 3.1.
(ii) Let a be an increasing set function defined by aT = bX\T for all T ⊆ X. By Corollary

3.1, we have WMINMAX
(m)
b =WMAXMIN(m)

a , and hence, for all (x1, . . . , xm) ∈ IIm,

WMINMAX
(m)
b (x1, . . . , xm) =WMAXMIN(m)

a (x1, . . . , xm)

= median(x1, . . . , xm, a{(2),...,(m)}, a{(3),...,(m)}, . . . , a{(m)}) (by (i))

= median(x1, . . . , xm, b{(1)}, b{(1),(2)}, . . . , b{(1),...,(m−1)})

=
m∧

i=1

[x(i) ∨ b{(1),...,(i)}] (Lemma 3.1).

3.4 Axiomatic characterization of the family of weighted max-
min functions

According to Proposition 3.3, the set of weighted max-min functions and the set of weighted
min-max functions represent the same family of functions. This family can be characterized
with the help of some selected properties. These are presented in the next definition.

Definition 3.3 The aggregation function M (m) defined on IIm is
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• increasing (In) if M (m) is increasing in each argument, i.e. if, for all (x1, . . . , xm),
(x′1, . . . , x

′
m) ∈ IIm, we have

xi ≤ x′i ∀i ∈ X ⇒ M (m)(x1, . . . , xm) ≤ M (m)(x′1, . . . , x
′
m).

• idempotent (I) if, for all x ∈ II,

M (m)(x, . . . , x) = x.

• stable for minimum with the same unit (SMINU) if, for all (x1, . . . , xm) ∈ IIm and all
r ∈ II, we have

M (m)(x1 ∧ r, . . . , xm ∧ r) = M (m)(x1, . . . , xm) ∧ r.

• stable for maximum with the same unit (SMAXU) if, for all (x1, . . . , xm) ∈ IIm and
all r ∈ II, we have

M (m)(x1 ∨ r, . . . , xm ∨ r) = M (m)(x1, . . . , xm) ∨ r.

The first two properties seem natural enough. The (In) property imposes that the functions
present a nonnegative response to any increase of the arguments, and (I) clearly expresses
the unanimity principle.

The other two ones are stability properties written in a functional equation form. They
were introduced by Fodor and Roubens [10] and are visibly related to an algebra which
uses min and max operations instead of classical sum and product operations.

They are respectively to be compared with stability for admissible similarities (SSI)

M (m)(rx1, . . . , rxm) = rM (m)(x1, . . . , xm)

and stability for admissible translations (STR)

M (m)(x1 + r, . . . , xm + r) = M (m)(x1, . . . , xm) + r

which were investigated by Aczél and Roberts [1], Aczél et al. [2], Fodor and Roubens
[9] and Marichal et al. [15], in the framework of the measurement theory for ratio scales,
difference scales and interval scales.

For instance, the (SMAXU) property can be written as

M (m)(fr(x1), . . . , fr(xm)) = fr(M
(m)(x1, . . . , xm))

where fr(x) = x ∨ r (maxitive translation) is such that fr = fs ⇔ r = s (see [4, §2.2]).
We also have the following result.

Proposition 3.4 For any function M (m) defined on IIm, we have (SMINU, SMAXU)⇒(I).

Proof. For all x ∈ II, we have, by (SMINU, SMAXU),

M (m)(x, . . . , x) = M (m)(x, . . . , x) ∧ x ≤ M (m)(x, . . . , x) ∨ x = M (m)(x, . . . , x),

and thus M (m)(x, . . . , x) = x.

We have a comparable result in the case where sum and product operations are consid-
ered (see [15]): (SSI, STR)⇒(I).

Now, we show that the family of WMAXMIN(m)
a functions can be characterized with

the help of only three properties: (In), (SMINU) and (SMAXU).
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Theorem 3.2 Let M (m) be any aggregation function defined on IIm. Then the following
three assertions are equivalent:

(i) M (m) fulfils (In, SMINU, SMAXU)
(ii) There exists a set function a such that M (m)=WMAXMIN(m)

a

(iii) There exists a set function b such that M (m)=WMINMAX
(m)
b

Proof. (ii) ⇒ (i). Easy.
(i) ⇒ (ii). Let (x1, . . . , xm) ∈ IIm. On the one hand, for all T ⊆ X, we have

M (m)(x1, . . . , xm)
(In)

≥ M (m)[(
∧

i∈T

xi)eT ]
(SMINU)

= θT ∧ (
∧

i∈T

xi)

and thus
M (m)(x1, . . . , xm) ≥ ∨

T⊆X

[θT ∧ (
∧

i∈T

xi)].

On the other hand, let T ∗ ⊆ X such that θT ∗ ∧ (
∧

i∈T ∗ xi) is maximum and set

Y := {j ∈ X|xj ≤ θT ∗ ∧ (
∧

i∈T ∗
xi)}.

We should have Y 6= ∅. Indeed, if xj > θT ∗ ∧ (
∧

i∈T ∗ xi) for all j ∈ X, we have, since θX = 1,

θX ∧ (
∧

i∈X

xi) > θT ∗ ∧ (
∧

i∈T ∗
xi)

which contradicts the definition of T ∗. Then, we have,

M (m)(x1, . . . , xm)
(In)

≤ M (m)[(θT ∗ ∧ (
∧

i∈T ∗
xi))eY + eX\Y ]

(SMAXU)
= [θT ∗ ∧ (

∧

i∈T ∗
xi)] ∨ θX\Y

= θT ∗ ∧ (
∧

i∈T ∗
xi) =

∨

T⊆X

[θT ∧ (
∧

i∈T

xi)].

Indeed, we have θX\Y ≤ θT ∗ ∧ (
∧

i∈T ∗ xi), for otherwise we would have, by definition of Y ,

θX\Y ∧ (
∧

i∈X\Y
xi) > [θT ∗ ∧ (

∧

i∈T ∗
xi)] ∧ [θT ∗ ∧ (

∧

i∈T ∗
xi)] = θT ∗ ∧ (

∧

i∈T ∗
xi)

which contradicts the definition of T ∗.
(ii) ⇔ (iii). See Proposition 3.3.

When m = 2, we can propose an other characterization. It involves properties which are
not directly related to an algebra endowed with min and max operations. These properties
are given in the next definition.

Definition 3.4 The aggregation function M (m) defined on IIm is

• continuous (Co) if M (m) is a continuous function on IIm.

10



• associative (A) if m = 2 and

M (2)(M (2)(x1, x2), x3) = M (2)(x1,M
(2)(x2, x3)) (1)

for all x1, x2, x3 ∈ II

These properties are classical enough. If we are searching for functions which do not present
any chaotic reaction to a small change of the arguments, we restrict to smooth functions i.e.
functions fulfilling (Co). Associativity (A) is a well-known algebraic property which allows
to omit “parentheses” in an aggregation of three elements.

The following characterization, restricted to the case of m = 2, shows that, under (In),
the (A) property combined with (Co) and (I) produces exactly the same effect as that of
(SMINU, SMAXU).

Theorem 3.3 Let M (2) be any aggregation function defined on II2. Then the following
three assertions are equivalent:

(i) M (2) fulfils (In, I, Co, A)
(ii) There exists a set function a such that M (2)=WMAXMIN(2)

a

(iii) There exists a set function b such that M (2)=WMINMAX
(2)
b

Proof. (ii) ⇒ (i). Only associativity is not immediate. For all x1, x2 ∈ II, we have

M (2)(x1, x2) = (θ ∧ x1) ∨ (θ ∧ x2) ∨ (1 ∧ x1 ∧ x2)

=

{
x1 ∨ (θ ∧ x2) if x1 ≤ x2

(θ ∧ x1) ∨ x2 if x1 ≥ x2

where θ = M (2)(0, 1) and θ = M (2)(1, 0). Let x1, x2, x3 ∈ II. We will show that (1) holds.

• If x1 ≤ x2 ≤ x3 then (1) holds trivially.

• If x2 ≤ x1 ≤ x3 then

M (2)(M (2)(x1, x2), x3) = (θ ∧ x1) ∨ x2 ∨ (θ ∧ x3).

If x1 ≤ M (2)(x2, x3), that is x1 = x2 or θ ≥ x1, then

M (2)(x1,M
(2)(x2, x3)) = x1 ∨ (θ ∧ x2) ∨ (θ ∧ x3)

and (1) holds. Otherwise, if x1 ≥ M (2)(x2, x3) then (1) holds trivially.

One proceeds in the same manner when x2 ≤ x3 ≤ x1 or x3 ≤ x2 ≤ x1 or x1 ≤ x3 ≤ x2 or
x3 ≤ x1 ≤ x2.

(i) ⇒ (ii). Let x1, x2 ∈ II and assume that x1 ≤ x2. The other case can be treated
similarly. Let us show that

M (2)(x1, x2) = x1 ∨ (θ ∧ x2)

where θ = M (2)(0, 1). On the one hand, we have

M (2)(0, θ) = M (2)(θ, 1) = θ (2)

11



Indeed, we have, for instance,

M (2)(0, θ) = M (2)(0,M (2)(0, 1))
(A)
= M (2)(M (2)(0, 0), 1)

(I)
= M (2)(0, 1) = θ.

By (2) and (In), we also have

M (2)(x1, x2) = θ if x1 ≤ θ ≤ x2. (3)

On the other hand, we have

M (2)(x, 1) = x ∀x ∈ [θ, 1] (4)

M (2)(0, x) = x ∀x ∈ [0, θ] (5)

Indeed, if z increases from θ to 1, M (2)(z, 1) increases continuously from M (2)(θ, 1) = θ to
M (2)(1, 1) = 1. By (Co), this implies that: ∀x ∈ [θ, 1], ∃z ∈ [θ, 1] such that x = M (2)(z, 1).
We then have

M (2)(x, 1) = M (2)(M (2)(z, 1), 1)
(A)
= M (2)(z, M (2)(1, 1))

(I)
= M (2)(z, 1) = x

which proves (4). Likewise, if z increases from 0 to θ, M (2)(0, z) increases continuously
from M (2)(0, 0) = 0 to M (2)(0, θ) = θ. By (Co), this implies that: ∀x ∈ [0, θ], ∃z ∈ [0, θ]
such that x = M (2)(0, z). We then have

M (2)(0, x) = M (2)(0,M (2)(0, z))
(A)
= M (2)(M (2)(0, 0), z)

(I)
= M (2)(0, z) = x

which proves (5). To conclude, we note that

M (2)(x1, x2) = x1 if θ ≤ x1 ≤ x2

M (2)(x1, x2) = x2 if x1 ≤ x2 ≤ θ

Indeed,

x1
(I)
= M (2)(x1, x1)

(In)

≤ M (2)(x1, x2)
(In)

≤ M (2)(x1, 1)
(4)
= x1

and

x2
(5)
= M (2)(0, x2)

(In)

≤ M (2)(x1, x2)
(In)

≤ M (2)(x2, x2)
(I)
= x2.

(ii) ⇔ (iii). See Proposition 3.3.

4 Back to the Sugeno integral

According to some results from the previous section, we can see that the class of the Sugeno
integrals coincides with the family of weighted max-min functions. By using Theorem 3.1,
we are then allow to derive equivalent forms of the Sugeno integral. The next theorem deals
with this issue.

Theorem 4.1 Let (x1, . . . , xm) ∈ IIm and µ a fuzzy measure on X. Then we have

S(m)
µ (x1, . . . , xm) =

m∨

i=1

[x(i) ∧ µ{(i),...,(m)}] =
m∧

i=1

[x(i) ∨ µ{(i+1),...,(m)}]

=
∨

T⊆X

[µT ∧ (
∧

i∈T

xi)] =
∧

T⊆X

[µX\T ∨ (
∨

i∈T

xi)]

= median(x1, . . . , xm, µ{(2),...,(m)}, µ{(3),...,(m)}, . . . , µ{(m)}).
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Proof. Since µ is an increasing set function, we can conclude by Corollary 3.1, Theorem
3.1 and Definition 2.5.

According to Theorem 4.1, we can observe that, as an aggregation function, the Sugeno
integral with respect to a measure µ is an extension on the entire hypercube IIm of any
increasing II-valued pseudo-Boolean function which define µ (see Section 2). The same
conclusion has been obtain for the Choquet integral by Chateauneuf and Jaffray [3].

In addition to the previous result, Theorem 3.2 leads us to an axiomatic characterization
of the class of Sugeno integrals. We state it as follows:

Theorem 4.2 The aggregation function M (m) defined on IIm fulfils (In, SMINU, SMAXU)
if and only if there exists a fuzzy measure µ on X such that M (m) = S(m)

µ .

Proof. By Theorem 3.2, M (m) fulfils (In, SMINU, SMAXU) if and only if there exists a
set function a such that M (m) =WMAXMIN(m)

a . According to Proposition 3.1, a can be
chosen increasing and thus be assimilated to a fuzzy measure. Theorem 4.1 then allows to
conclude.

An important topic in multicriteria decision making is the concept of veto. Suppose
that M (m) is an aggregation function being used for a problem. A criterion k is a veto for
this problem if for any m-uple (x1, . . . , xm) ∈ IIm of scores,

M (m)(x1, . . . , xm) ≤ xk.

This means that if the score on criterion k is high, it has no effect on the evaluation, but if
it is low, the global score will be low too, whatever the values of the other scores. Similarly,
criterion k is said to be a favor if for any m-uple (x1, . . . , xm) ∈ IIm of scores,

M (m)(x1, . . . , xm) ≥ xk.

The next proposition shows that the Sugeno integral can model these veto and favor effects
by using a suitable fuzzy measure.

Proposition 4.1 For the Sugeno integral S(m)
µ , a veto effect on k ∈ X is obtained if and

only if µT = 0 whenever k 6∈ T . Similarly, a favor effect on k ∈ X is obtained if and only
if µT = 1 whenever k ∈ T .

Proof. (Necessity). Trivial since µT = S(m)
µ (eT ) for all T ⊆ X.

(Sufficiency). Let (x1, . . . , xm) ∈ IIm. If µT = 0 whenever k 6∈ T , we have, by Theorem
4.1,

S(m)
µ (x1, . . . , xm) =

∨

T⊆X\{k}
[µT∪{k} ∧ (

∧

i∈T

xi) ∧ xk] ≤ xk.

If µT = 1 whenever k ∈ T , we have, by Theorem 4.1,

S(m)
µ (x1, . . . , xm) =

∧

T⊆X\{k}
[µX\(T∪{k}) ∨ (

∨

i∈T

xi) ∨ xk] ≥ xk.

It is possible to generalize the concept of veto to several criteria: a veto for criteria
K ⊆ X, which means S(m)

µ (x1, . . . , xm) ≤ ∧
k∈K xk, is obtained by any fuzzy measure µ

such that µT = 0 whenever K 6⊆ T . Similarly, a favor for criteria K ⊆ X, which means
S(m)

µ (x1, . . . , xm) ≥ ∨
k∈K xk, is obtained by any fuzzy measure µ such that µT = 1 whenever

K ∩ T 6= ∅.
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5 Subfamilies of weighted max-min functions

This section aims at introducing some subclasses of weighted max-min functions. The
results from Section 3 are then applied to the functions of these subclasses in order to derive
equivalent expressions. All aggregation functions introduced in this section are particular
weighted max-min functions and thus particular Sugeno integrals. In order to check this,
it suffices to use Theorem 3.2.

We also give an axiomatic characterization of each of those subsets of functions. To do
this, we introduce hereafter some properties, in addition to Definitions 3.3 and 3.4.

In the sequel, Φ denotes the set of all strictly increasing functions φ : II → II.

Definition 5.1 The aggregation function M (m) defined on IIm is

• weakly idempotent (WI) if M (m)(0, . . . , 0) = 0 and M (m)(1, . . . , 1) = 1.

• symmetric (Sy) if M (m) is a symmetric function on IIm, i.e. if, for all permutation σ
of X and all (x1, . . . , xm) ∈ IIm, we have

M (m)(x1, . . . , xm) = M (m)(xσ(1) . . . , xσ(m)).

• unanimously increasing (UIn) if M (m) fulfils (In) and if, for all (x1, . . . , xm), (x′1, . . . , x
′
m)

∈ IIm, we have

xi < x′i ∀i ∈ X ⇒ M (m)(x1, . . . , xm) < M (m)(x′1, . . . , x
′
m).

• comparison meaningful (CM) if, for all φ ∈ Φ and all (x1, . . . , xm), (x′1, . . . , x
′
m) ∈ IIm,

we have that
M (m)(x1, . . . , xm) ≤ M (m)(x′1, . . . , x

′
m)

implies
M (m)(φ(x1), . . . , φ(xm)) ≤ M (m)(φ(x′1), . . . , φ(x′m)).

• ordinally stable (OS) if, for all φ ∈ Φ and all (x1, . . . , xm) ∈ IIm, we have

M (m)(φ(x1), . . . , φ(xm)) = φ(M (m)(x1, . . . , xm)).

• minitive (MIN) if for all (x1, . . . , xm), (x′1, . . . , x
′
m) ∈ IIm, we have

M (m)(x1 ∧ x′1, . . . , xm ∧ x′m) = M (m)(x1, . . . , xm) ∧M (m)(x′1, . . . , x
′
m).

• maxitive (MAX) if for all (x1, . . . , xm), (x′1, . . . , x
′
m) ∈ IIm, we have

M (m)(x1 ∨ x′1, . . . , xm ∨ x′m) = M (m)(x1, . . . , xm) ∨M (m)(x′1, . . . , x
′
m).

Let us comment on the properties from Definition 5.1. The (Sy) property leads us to neutral
functions i.e. independent of the labels. The (UIn) property is a requirement stronger than
(In), imposing a positive response whenever all the arguments increase. We introduce it in
this paper for our needs. For instance, observe that the maximum function

M (m)(x1, . . . , xm) =
m∨

i=1

xi

14



fulfils (UIn) whereas the bounded sum

M (m)(x1, . . . , xm) = (
m∑

i=1

xi) ∧ 1

does not.
The (CM) property was introduced by Ovchinnikov [17]. He studied the meaningful-

ness (stability) of means comparison in the framework of ordinal measurement. The (OS)
property is closely linked to (CM) as the next proposition shows.

Proposition 5.1 We have

(i) (OS) ⇒ M (m)(x1, . . . , xm) ∈ {x1, . . . , xm} ∀x1, . . . , xm ∈ II,
(ii) (CM, I) ⇔ (OS).

Proof. (i) Consider (x1, . . . , xm) ∈ IIm reordered as x(1) ≤ . . . ≤ x(m) and set x0 :=
M (m)(x1, . . . , xm). Suppose the result false. We then have three exclusive cases:

• If x(i) < x0 < x(i+1) for one i ∈ {1, . . . , m− 1} then there are elements u, v ∈ II and a
function φ ∈ Φ such that x(i) < u < x0 < v < x(i+1), φ(x) = x on II \ [x(i), x(i+1)] and
φ(u) = v. This implies φ(x0) > x0 which is impossible since

φ(x0) = φ(M (m)(x1, . . . , xm)) = M (m)(φ(x1), . . . , φ(xm))

= M (m)(x1, . . . , xm) = x0.

• If 0 ≤ x0 < x(1) then there are v ∈ II and a function φ ∈ Φ such that x0 < v < x(1),
φ(x) = x on [x(1), 1] and φ(x0) = v. This implies φ(x0) > x0, a contradiction.

• The case x(m) < x0 ≤ 1 can be treated as the previous one.

(ii) (Necessity) Let x1, . . . , xm ∈ II and set x0 = M (m)(x1, . . . , xm). By (I), we have

M (m)(x1, . . . , xm) = M (m)(x0, . . . , x0)

and thus, for all φ ∈ Φ,

M (m)(φ(x1), . . . , φ(xm))
(CM)
= M (m)(φ(x0), . . . , φ(x0))
(I)
= φ(x0) = φ(M (m)(x1, . . . , xm)).

and M (m) fulfils (OS).
(Sufficiency) For all φ ∈ Φ and all (x1, . . . , xm), (x′1, . . . , x

′
m) ∈ IIm, we have, by (OS),

M (m)(x1, . . . , xm) ≤ M (m)(x′1, . . . , x
′
m)

⇒ φ(M (m)(x1, . . . , xm)) ≤ φ(M (m)(x′1, . . . , x
′
m))

⇒ M (m)(φ(x1), . . . , φ(xm)) ≤ M (m)(φ(x′1), . . . , φ(x′m)),

and M (m) fulfils (CM). Moreover, by (i), it fulfils (I).

The (MIN) and (MAX) properties are related to an algebra using min and max opera-
tions. Of course, they are to be compared with classical additivity, that is

M (m)(x1 + x′1, . . . , xm + x′m) = M (m)(x1, . . . , xm) + M (m)(x′1, . . . , x
′
m).

The following lemma gives a description of the aggregation functions fulfilling (MIN) or
(MAX) (see also [7]).
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Lemma 5.1 (i) The aggregation function M (m) defined on IIm fulfils (MIN) if and only if
there exists increasing functions gi : II → IR, i ∈ X, such that

M (m)(x1, . . . , xm) =
m∧

i=1

gi(xi) ∀(x1, . . . , xm) ∈ IIm.

(ii) The aggregation function M (m) defined on IIm fulfils (MAX) if and only if there exists
increasing functions hi : II → IR, i ∈ X, such that

M (m)(x1, . . . , xm) =
m∨

i=1

hi(xi) ∀(x1, . . . , xm) ∈ IIm.

Proof. (i) (Necessity) Let (x1, . . . , xm) ∈ IIm. By (MIN), we have

M (m)(x1, . . . , xm) =
m∧

i=1

M (m)(xiei + eX\{i}) =
m∧

i=1

gi(xi)

where gi(x) = M (m)(xei + eX\{i}), i ∈ X. Moreover, for all i ∈ X, gi is increasing: indeed,
if x, x′ ∈ II, x ≤ x′, we have that

gi(x) = gi(x ∧ x′) = gi(x) ∧ gi(x
′)

implies gi(x) ≤ gi(x
′).

(Sufficiency) We have
gi(x ∧ x′) = gi(x) ∧ gi(x

′)

for all x, x′ ∈ II and all i ∈ X: indeed, if x ≤ x′, we have gi(x) ≤ gi(x
′) and

gi(x ∧ x′) = gi(x) = gi(x) ∧ gi(x
′).

We then can conclude.
(ii). Similar to (i).

A valued binary relation R on a set A of alternatives is transitive (resp. negatively
transitive) if, for all a, b, c ∈ A,

R(a, c) ∧R(c, b) ≤ R(a, b) (resp. R(a, b) ≤ R(a, c) ∨R(c, b)).

The next proposition shows that it is useful to assume the (MIN) and (MAX) properties
when we consider aggregation of transitive (or negatively transitive) valued binary relations
(see also [9, §7.3.1]).

Proposition 5.2 Let M (m) be an aggregation function defined on IIm and fulfilling (In).
Let A be a set of alternatives and R1, . . . , Rm be transitive (resp. negatively transitive)
valued binary relations on A. Then the aggregated valued relation R defined as

R(a, b) = M (m)(R1(a, b), . . . , Rm(a, b)) ∀a, b ∈ A

is a transitive (resp. negatively transitive) valued binary relation if and only if M (m) fulfils
(MIN) (resp. (MAX)).
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Proof. Consider the case of transitivity. The other one can be treated similarly.
(Necessity). Set xab

i = Ri(a, b) for all a, b ∈ A and all i ∈ X. By hypothesis, whenever
xac

i ∧ xcb
i ≤ xab

i for all a, b, c ∈ A and all i ∈ X, we have

M (m)(xac
1 , . . . , xac

m) ∧M (m)(xcb
1 , . . . , xcb

m) ≤ M (m)(xab
1 , . . . , xab

m)

for all a, b, c ∈ A. In the particular case where xac
i ∧ xcb

i = xab
i for all a, b, c ∈ A and all

i ∈ X, since M (m) fulfils (In), we obtain that:

M (m)(xab
1 , . . . , xab

m) = M (m)(xac
1 ∧ xcb

1 , . . . , xac
m ∧ xcb

m)

≤ M (m)(xac
1 , . . . , xac

m) ∧M (m)(xcb
1 , . . . , xcb

m)

for all a, b, c ∈ A. Finally, we have that:

M (m)(xac
1 ∧ xcb

1 , . . . , xac
m ∧ xcb

m) = M (m)(xac
1 , . . . , xac

m) ∧M (m)(xcb
1 , . . . , xcb

m)

for all a, b, c ∈ A. Therefore, M (m) fulfils (MIN).
(Sufficiency). Suppose that Ri(a, c)∧Ri(c, b) ≤ Ri(a, b) for all a, b, c ∈ A and all i ∈ X.

We have, using (MIN) and (In) successively,

M (m)(R1(a, c), . . . , Rm(a, c)) ∧M (m)(R1(c, b), . . . , Rm(c, b))

= M (m)(R1(a, c) ∧R1(c, b), . . . , Rm(a, c) ∧Rm(c, b))

≤ M (m)(R1(a, b), . . . , Rm(a, b))

for all a, b, c ∈ A. Therefore, R is transitive.

Now turn to the announced subfamilies of weighted max-min functions. We start with
Boolean max-min functions.

5.1 Boolean max-min functions

Definition 5.2 For any set function a : P(X) → IB such that a∅ = 0 and
∨

T⊆X aT = 1,
the Boolean max-min function BMAXMIN(m)

a associated to a is defined by

BMAXMIN(m)
a =WMAXMIN(m)

a .

For any set function b : P(X) → IB such that b∅ = 1 and
∧

T⊆X bT = 0, the Boolean

min-max function BMINMAX
(m)
b associated to b is defined by

BMINMAX
(m)
b =WMINMAX

(m)
b .

Thus defined, a Boolean max-min function (resp. Boolean min-max function) is nothing
less than a weighted max-min function (resp. weighted min-max function) whose canonical
and complete forms are defined by set functions taking their values in IB. Moreover, we
can write, for any (x1, . . . , xm) ∈ IIm,

BMAXMIN(m)
a (x1, . . . , xm) =

∨

T⊆X,aT =1

∧

i∈T

xi ∈ {x1, . . . , xm},

BMINMAX
(m)
b (x1, . . . , xm) =

∧

T⊆X,bT =0

∨

i∈T

xi ∈ {x1, . . . , xm}.
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In terms of fuzzy measures, if the set function a is increasing, it represents a 0-1 fuzzy
measure. Murofushi and Sugeno [16] have proved that, if µ is a 0-1 fuzzy measure then we
have S(m)

µ =BMAXMIN(m)
µ . It is a particular case of Theorem 4.1. Therefore, any Sugeno

integral S(m)
µ is a Boolean max-min function if and only if µ is a 0-1 fuzzy measure.

The following result shows that the Boolean max-min functions are exactly those weighted
max-min functions (or Sugeno integrals) which fulfils (UIn). They are also appropriate to
aggregate ordinal values.

Theorem 5.1 Let M (m) be any aggregation function defined on IIm. Then the following
four assertions are equivalent:

(i) M (m) fulfils (UIn, SMINU, SMAXU)
(ii) M (m) fulfils (In, I, Co, CM)

(iii) There exists a set function a such that M (m)=BMAXMIN(m)
a

(iv) There exists a set function b such that M (m)=BMINMAX
(m)
b

Proof. (iii) ⇒ (i). Easy.
(iii) ⇒ (ii). According to Proposition 5.1, it suffices to observe that any Boolean

max-min function fulfils (OS). This is true since, for all φ ∈ Φ and all x, x′ ∈ II, we have
φ(x ∨ x′) = φ(x) ∨ φ(x′) and φ(x ∧ x′) = φ(x) ∧ φ(x′).

(i) ⇒ (iii). By Theorem 3.2, there exists a set function a such that M (m) =WMAXMIN(m)
a

and we can assume a increasing. Suppose that there exists T ⊆ X such that aT ∈ (0, 1). We
can write X = {t1, . . . , tm} and T = {tk, . . . , tm}, with k ∈ {2, . . . , m}. Let (x1, . . . , xm) ∈
IIm such that

xt1 ≤ . . . ≤ xtk−1
< aT < xtk ≤ . . . ≤ xtm .

By Theorem 3.1, we always have

WMAXMIN(m)
a (x1, . . . , xm) = median(x1, . . . , xm, a{t2,...,tm}, . . . , aT , . . . , a{tm}) = aT .

This means that WMAXMIN(m)
a does not fulfils (UIn).

(ii) ⇒ (iii). By Proposition 5.1, M (m) fulfils (OS).
Let r ∈ II and define a sequence φi ∈ Φ, i ∈ IN0 as

φi(x) =

{
x on [0, r]
r + (x− r)/i on [r, 1]

We then have, for all x1, . . . , xm ∈ II,

M (m)(x1 ∧ r, . . . , xm ∧ r) = M (m)( lim
i→+∞

φi(x1), . . . , lim
i→+∞

φi(xm))

(Co)
= lim

i→+∞
M (m)(φi(x1), . . . , φi(xm))

(OS)
= lim

i→+∞
φi(M

(m)(x1, . . . , xm)) = M (m)(x1, . . . , xm) ∧ r

and M (m) fulfils (SMINU). We can show similarly that it fulfils (SMAXU). By Theorem
3.2, there exists a set function a such that M (m) =WMAXMIN(m)

a and we can assume a
increasing. Finally, by Proposition 5.1, we have aT = θT ∈ IB for all T ⊆ X.

(iii) ⇔ (iv). See Proposition 3.3.
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5.2 Weighted minimum and maximum functions

The weighted minimum and maximum functions were introduced and investigated by
Dubois and Prade [6]. They are to be compared with weighted arithmetic mean functions.

Definition 5.3 For any weight vector ω = (ω1, . . . , ωm) ∈ IIm such that
∨m

i=1 ωi = 1, the
weighted maximum function WMAX(m)

ω associated to ω is defined by

WMAX(m)
ω (x1, . . . , xm) =

m∨

i=1

(ωi ∧ xi) ∀(x1, . . . , xm) ∈ IIm.

For any weight vector ω = (ω1, . . . , ωm) ∈ IIm such that
∧m

i=1 ωi = 0, the weighted minimum
function WMIN(m)

ω associated to ω is defined by

WMIN(m)
ω (x1, . . . , xm) =

m∧

i=1

(ωi ∨ xi) ∀(x1, . . . , xm) ∈ IIm.

Any WMAX(m)
ω function is a WMAXMIN(m)

a function whose canonical form is defined by:
{

ai = ωi ∀i ∈ X
aT = 0 ∀T ⊆ X such that |T | 6= 1

and complete form by:
aT =

∨

i∈T

ωi ∀T ⊆ X.

When a is increasing then it represents a possibility measure π which is characterized by
the following property:

π(R ∪ S) = π(R) ∨ π(S) ∀R, S ⊆ X.

Likewise, any WMIN(m)
ω function is a WMINMAX

(m)
b function whose canonical form is

defined by: {
bi = ωi ∀i ∈ X
bT = 1 ∀T ⊆ X such that |T | 6= 1

and complete form by:
bT =

∧

i∈T

ωi ∀T ⊆ X.

When b is decreasing then the set function a′, defined by a′T = bX\T for all T ⊆ X, represents
a necessity measure N which is characterized by the following property:

N (R ∩ S) = N (R) ∧N (S) ∀R, S ⊆ X.

Therefore, any Sugeno integral S(m)
µ is a weighted maximum function (resp. weighted

minimum function) if and only if µ is a possibility measure (resp. necessity measure).
The aggregation functions WMAX(m)

ω and WMIN(m)
ω can be characterized in the follow-

ing way (see also [10]).

Theorem 5.2 (i) The aggregation function M (m) defined on IIm fulfils (WI, MAX, SMINU)
if and only if there exists a weight vector ω such that M (m) =WMAX(m)

ω .
(ii) The aggregation function M (m) defined on IIm fulfils (WI, MIN, SMAXU) if and only
if there exists a weight vector ω such that M (m) =WMIN(m)

ω .
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Proof. (i) (Sufficiency). Trivial.
(Necessity). For all i ∈ X, we have θi ∈ II. Indeed, if θi ≥ 1 then, by (SMINU),

θi = θi ∧ 1 = 1, and if θi ≤ 0 then, by (MAX), θi = θi ∨M (m)(0, . . . , 0) = θi ∨ 0 = 0. On
the other hand, for all (x1, . . . , xm) ∈ IIm, we have, setting ωi = θi ∈ II,

M (m)(x1, . . . , xm)
(MAX)

=
m∨

i=1

M (m)(xiei)
(SMINU)

=
m∨

i=1

(ωi ∧ xi).

Moreover,
∨m

i=1 ωi = M (m)(1, . . . , 1) = 1 as required.
(ii) Similar to (i).

5.3 Ordered weighted maximum and minimum functions

If, in Definition 5.3, weights ωi are associated with a particular rank rather than a particular
element, then we define ordered weighted maximum and minimum functions. Dubois et al.
[8] used them for modelling soft partial matching. They are defined as follows.

Definition 5.4 For any weight vector ω = (ω1, . . . , ωm) ∈ IIm such that 1 = ω1 ≥ . . . ≥ ωm,
the ordered weighted maximum function OWMAX(m)

ω associated to ω is defined by

OWMAX(m)
ω (x1, . . . , xm) =

m∨

i=1

(ωi ∧ x(i)) ∀(x1, . . . , xm) ∈ IIm.

For any weight vector ω′ = (ω′1, . . . , ω
′
m) ∈ IIm such that ω′1 ≥ . . . ≥ ω′m = 0, the ordered

weighted minimum function OWMIN(m)
ω associated to ω′ is defined by

OWMIN
(m)
ω′ (x1, . . . , xm) =

m∧

i=1

(ω′i ∨ x(i)) ∀(x1, . . . , xm) ∈ IIm.

In Definition 5.4, the inequalities ω1 ≥ . . . ≥ ωm and ω′1 ≥ . . . ≥ ω′m are not restrictive.
Indeed, if there exists i ∈ {1, . . . , m− 1} such that ωi ≤ ωi+1 and ω′i ≤ ω′i+1 then we have

(ωi ∧ x(i)) ∨ (ωi+1 ∧ x(i+1)) = ωi+1 ∧ x(i+1),

(ω′i ∨ x(i)) ∧ (ω′i+1 ∨ x(i+1)) = ω′i ∨ x(i).

This means that ωi can be replaced by ωi+1 in OWMAX(m)
ω and ω′i+1 by ω′i in OWMIN

(m)
ω′ .

Any OWMAX(m)
ω function is a WMAXMIN(m)

a function whose canonical form is defined
by:

∀T ⊆ X, T 6= ∅ : aT =

{
0 if ωm−|T |+1 = ωm−|T |+2

ωm−|T |+1 otherwise

and complete form by:
∀T ⊆ X, T 6= ∅ : aT = ωm−|T |+1.

Likewise, any OWMIN
(m)
ω′ function is a WMINMAX

(m)
b function whose canonical form is

defined by:

∀T ⊆ X, T 6= ∅ : bT =

{
1 if ω′|T | = ω′|T |−1

ω′|T | otherwise

and complete form by:
∀T ⊆ X, T 6= ∅ : bT = ω′|T |.

The next proposition shows that any ordered weighted maximum function can be put in
the form of an ordered weighted minimum function and conversely.
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Proposition 5.3 Let ω and ω′ be weight vectors defining OWMAX(m)
ω and OWMIN

(m)
ω′

respectively. Then we have

OWMIN
(m)
ω′ =OWMAX(m)

ω ⇔ ω′i = ωi+1 ∀i ∈ {1, . . . ,m− 1}.

Proof. If the fuzzy measure µ define the complete form of OWMAX(m)
ω then we have

µ{(i+1),...,(m)} = ωi+1 for all i ∈ {1, . . . , m− 1}. Theorem 4.1 then allows to conclude.

It is interesting to note that, according to Lemma 3.1, we have, for all (x1, . . . , xm) ∈ IIm,

OWMAX(m)
ω (x1, . . . , xm) =median(x1, . . . , xm, ω2, . . . , ωm),

OWMIN
(m)
ω′ (x1, . . . , xm) =median(x1, . . . , xm, ω′1, . . . , ω

′
m−1).

We now show that the OWMAX(m)
ω and OWMIN

(m)
ω′ functions are exactly those weighted

max-min functions (or Sugeno integrals) which fulfil (Sy). To do this, we need a lemma
which is due to Grabisch [11].

Lemma 5.2 Let S(m)
µ be a Sugeno integral. Then S(m)

µ fulfils (Sy) if and only if

µR = µS for all R, S ⊆ X such that |R| = |S|.

We then have the following characterization (see also [10]).

Theorem 5.3 Let M (m) be any aggregation function defined on IIm. Then the following
three assertions are equivalent:

(i) M (m) fulfils (Sy, In, SMINU, SMAXU)
(ii) There exists a weight vector ω such that M (m)=OWMAX(m)

ω

(iii) There exists a weight vector ω′ such that M (m)=OWMIN
(m)
ω′

Proof. (ii) ⇒ (i). Easy.
(i) ⇒ (ii). By Theorem 3.2, there exists a set function a such that M (m) =WMAXMIN(m)

a .
If a is increasing, we can write M (m) = S(m)

a . Let (x1, . . . , xm) ∈ IIm. By Lemma 5.2, for
all i ∈ X, a{(i),...,(m)} depends only on |{(i), . . . , (m)}| = m− i + 1 and hence on i. Setting
ωi = a{(i),...,(m)} for all i ∈ X, we have, by Theorem 4.1,

M (m)(x1, . . . , xm) =
m∨

i=1

(x(i) ∧ ωi).

(ii) ⇔ (iii). See Proposition 5.3.

Theorem 5.3 shows that the class of OWMAX(m)
ω functions and the class of OWMIN

(m)
ω′

functions represent the same family of functions and coincide with the class of commutative
Sugeno integrals. Moreover, according to Lemma 5.2, any Sugeno integral S(m)

µ is an ordered
weighted maximum (or minimum) function if and only if µ is a fuzzy measure depending
only on the cardinal of subsets.

21



5.4 Partial maximum and minimum functions

Definition 5.5 For any nonempty subset N ⊆ X, the partial minimum function MIN
(m)
N

and the partial maximum function MAX
(m)
N associated to N , are respectively defined by

MIN
(m)
N (x1, . . . , xm) =

∧

i∈N

xi ∀(x1, . . . , xm) ∈ IIm,

MAX
(m)
N (x1, . . . , xm) =

∨

i∈N

xi ∀(x1, . . . , xm) ∈ IIm.

Any MIN
(m)
N function is a WMAXMIN(m)

a function whose canonical form is defined by:

∀T ⊆ X,T 6= ∅ : aT =

{
1 if T = N
0 otherwise

and complete form by:

∀T ⊆ X, T 6= ∅ : aT =

{
1 if T ⊇ N
0 otherwise.

Any MAX
(m)
N function is a WMINMAX

(m)
b function whose canonical form is defined by:

∀T ⊆ X, T 6= ∅ : bT =

{
0 if T = N
1 otherwise

and complete form by:

∀T ⊆ X,T 6= ∅ : bT =

{
0 if T ⊇ N
1 otherwise.

Moreover, for all N ⊆ X, N 6= ∅, we have

MIN
(m)
N =WMIN(m)

eX\N
and MAX

(m)
N =WMAX(m)

eN
.

It follows that any Sugeno integral S(m)
µ is a partial maximum function (resp. partial

minimum function) if and only if µ is a 0-1 possibility measure (resp. 0-1 necessity measure).
In multiperson game theory, a fuzzy measure defines a game. A unanimity game uN for

subset N ⊆ X is such that uN(T ) = 1 if and only if T ⊇ N , and is zero otherwise. This
fuzzy measure thus defines a partial minimum function.

The following theorem gives a characterization of the class of partial maximum functions
and of the class of partial minimum functions.

Theorem 5.4 (i) The aggregation function M (m) defined on IIm fulfils (WI, UIn, MAX,

SMINU) if and only if there exists a nonempty subset N ⊆ X such that M (m) =MAX
(m)
N .

(ii) The aggregation function M (m) defined on IIm fulfils (WI, UIn, MIN, SMAXU) if and

only if there exists a nonempty subset N ⊆ X such that M (m) =MIN
(m)
N .

Proof. (i) (Sufficiency). Trivial.
(Necessity). By Theorem 5.2, there exists a weight vector ω such that

M (m) =WMAX(m)
ω =WMAXMIN(m)

a

with aT =
∨

i∈T ωi for all T ⊆ X. By Theorem 5.1, ωi = ai ∈ IB for all i ∈ X.

Setting N = {i ∈ X|ωi = 1}, we obtain M (m) =WMAX(m)
eN

=MAX
(m)
N .

(ii) Similar to (i).
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5.5 Order statistics

Definition 5.6 For any k ∈ X, the order statistic function OS
(m)
k associated to the k-th

argument is defined by

OS
(m)
k (x1, . . . , xm) = x(k) ∀(x1, . . . , xm) ∈ IIm.

Any OS
(m)
k function is a WMAXMIN(m)

a function whose canonical form is defined by:

∀T ⊆ X, T 6= ∅ : aT =

{
1 if |T | = m− k + 1
0 otherwise

and complete form by:

∀T ⊆ X, T 6= ∅ : aT =

{
1 if |T | ≥ m− k + 1
0 otherwise.

Of course, it is also a WMINMAX
(m)
b function whose canonical form is defined by:

∀T ⊆ X, T 6= ∅ : bT =

{
0 if |T | = k
1 otherwise

and complete form by:

∀T ⊆ X,T 6= ∅ : bT =

{
0 if |T | ≥ k
1 otherwise.

Therefore, we have, for all k ∈ X,

x(k) =
∨

T⊆X,|T |=m−k+1

(
∧

i∈T

xi) =
∨

1≤i1<...<im−k+1≤m

(xi1 ∧ . . . ∧ xim−k+1
)

=
∧

T⊆X,|T |=k

(
∨

i∈T

xi) =
∧

1≤i1<...<ik≤m

(xi1 ∨ . . . ∨ xik)

and by Theorem 4.1,

x(k) = median(x1, . . . , xm, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
m−k

).

In particular, if x1, . . . , x2k−1 ∈ II, we have

median(x1, . . . , x2k−1) = x(k) =
∨

1≤i1<...<ik≤2k−1

(xi1 ∧ . . . ∧ xik)

=
∧

1≤i1<...<ik≤2k−1

(xi1 ∨ . . . ∨ xik).

For instance, we have

median(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

= (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

The next characterization shows that the order statistics are exactly those OWMAX(m)
ω

which fulfil (UIn) or those BMAXMIN(m)
a which fulfils (Sy).
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Theorem 5.5 Let M (m) be any aggregation function defined on IIm. Then the following
three assertions are equivalent:

(i) M (m) fulfils (Sy, UIn, SMINU, SMAXU)
(ii) M (m) fulfils (Sy, I, Co, CM)

(iii) There exists k ∈ X such that M (m) =OS
(m)
k .

Proof. (iii) ⇒ (i) and (ii). Easy.
(i) ⇒ (iii). By Theorem 5.3, there exists a weight vector ω such that

M (m) =OWMAX(m)
ω =WMAXMIN(m)

a

with aT = ωm−|T |+1 for all T ⊆ X. By Theorem 5.1, aT ∈ IB for all T ⊆ X. This implies
that there exists k ∈ X such that ω = e{1,...,k}. We then have, for all (x1, . . . , xm) ∈ IIm,

M (m)(x1, . . . , xm) =
k∨

i=1

x(i) = x(k).

(ii) ⇒ (iii). Let z1, . . . , zm ∈ II such that z1 < . . . < zm. By Proposition 5.1, there exists
k ∈ X such that M (m)(z1, . . . , zm) = zk. Let x1, . . . , xm ∈ II reordered as x(1) ≤ . . . ≤ x(m)

and let us consider ψ(x), a non decreasing function on II such that ψ(zi) = x(i) for all i ∈ X.
It is always possible to build a sequence φi ∈ Φ, i ∈ IN0, such that limi→+∞ φi(x) = ψ(x)
for all x ∈ II. Moreover, by Proposition 5.1, M (m) fulfils (OS). We then have, using (Sy),
(Co) and (OS),

M (m)(x1, . . . , xm) = M (m)(x(1), . . . , x(m)) = M (m)(ψ(z1), . . . , ψ(zm))

= M (m)( lim
i→+∞

φi(z1), . . . , lim
i→+∞

φi(zm))

= lim
i→+∞

φi(M
(m)(z1, . . . , zm)) = ψ(zk) = x(k).

According to Theorem 5.5, we can readily see that any Sugeno integral S(m)
µ is an order

statistic if and only if µ is a 0-1 fuzzy measure depending only on the cardinal of subsets.

5.6 Associative medians

Definition 5.7 For any θ ∈ II, the associative median function AMED
(m)
θ associated to θ

is defined by

AMED
(m)
θ (x1, . . . , xm) = median(

m∧

i=1

xi,
m∨

i=1

xi, θ) ∀(x1, . . . , xm) ∈ IIm.

Observe that, for all θ ∈ II and all (x1, . . . , xm) ∈ IIm, we have

median(
m∧

i=1

xi,
m∨

i=1

xi, θ) = median(x1, . . . , xm, θ, . . . , θ︸ ︷︷ ︸
m−1

).
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Any AMED
(m)
θ function is a WMAXMIN(m)

a function whose canonical form is defined by:




ai = θ for all i ∈ X
aT = 0 for all T ⊆ X such that |T | > 1 and T 6= X

aX =

{
1 if θ < 1
0 if θ = 1

and complete form by:
{

aT = θ for all T ⊆ X such that T 6= ∅, T 6= X
aX = 1.

Moreover, from Theorem 4.1, we immediately have, for all (x1, . . . , xm) ∈ IIm,

AMED
(m)
θ (x1, . . . , xm) = x(1) ∨ [

m∨

i=2

(x(i) ∧ θ)] = x(1) ∨ (x(m) ∧ θ) = x(m) ∧ (x(1) ∨ θ).

It follows that any Sugeno integral S(m)
µ is an associative median if and only if the fuzzy

measure µ is constant on P(X) \ {∅, X}.
Coming back to associative functions defined on II2, we have the following characteriza-

tion.

Theorem 5.6 Let M (2) be any aggregation function defined on II2. Then the following four
assertions are equivalent:

(i) M (2) fulfils (In, I, Co, Sy, A)

(ii) There exists θ ∈ II such that M (2)=AMED
(2)
θ

(iii) There exists ω ∈ II2 such that M (2)=OWMAX(2)
ω

(iv) There exists ω′ ∈ II2 such that M (2)=OWMIN
(2)
ω′

Proof.(i) ⇔ (iii) ⇔ (iv). See Theorems 3.3 and 5.3.
(ii) ⇔ (iii). We simply have, if (x1, x2) ∈ II2,

AMED
(2)
θ (x1, x2) = x(1) ∨ (θ ∧ x(2)).

In Theorem 5.6, the equivalence (i) ⇔ (ii) was already established by Dubois and Prade
[5]. We also have the following corollary.

Corollary 5.1 Let (M (m))m∈IN\{0,1} be a sequence of aggregation functions defined on IIm.
If the functions of this sequence are linked by the classical associative property and if there
exists θ ∈ II such that M (2) =AMED

(2)
θ , then M (m) =AMED

(m)
θ for all m ∈ IN \ {0, 1}.

6 Conclusion

We have investigated the Sugeno integral under the viewpoint of aggregation. In particular,
it has been shown that this integral can be written under the form of a weighted max-min
function, which has been introduced and studied in Section 3. An axiomatic characteri-
zation of the class of those functions has also been given with the help of some stability
properties related to an algebra endowed with min and max operations.

The results of this paper contribute to the theory of fuzzy MCDM and offer a best
understanding of the nature of the Sugeno integrals as fuzzy connectives.
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