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Abstract

In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More
precisely, let C'//Q be a hyperelliptic genus n curve, let J(C) be the associated Jacobian
variety and let py : Gg — GSp(J(C)[f]) be the Galois representation attached to the
l-torsion of J(C'). Assume that there exists a prime p such that J(C) has semistable
reduction with toric dimension 1 at p. We provide an algorithm to compute a list of
primes £ (if they exist) such that g, is surjective. In particular we realize GSpg(Fy) as a
Galois group over Q for all primes ¢ € [11,500000].

Introduction

In this paper we present the work carried out at the conference Women in numbers - Europe,
(October 2013), by the working group Galois representations and Galois groups over Q. Our
alm was to study the image of Galois representations attached to the Jacobian varieties of
genus n curves, motivated by the applications to the inverse Galois problem over Q. In the
case of genus 2, there are several results in this direction (e.g. [LD98], [Die02a]), and we
wanted to explore the scope of these results.

Our result is a generalization of P. Le Duff’s work to the genus n setting, which allows
us to produce realizations of groups GSpg(Fy) as Galois groups over Q, for infinite families of
primes ¢ (with positive Dirichlet density). These realizations are obtained through the Galois
representations py attached to the ¢-torsion points of the Jacobian of a genus 3 curve.

The first section of this paper contains a historical introduction to the inverse Galois prob-
lem and some results obtained in this direction by means of Galois representations associated
to geometric objects. Section 2 presents some theoretic tools, which we collect to prove a
result, valid for a class of abelian varieties A of dimension n, that yields primes ¢ for which
we can ensure surjectivity of the Galois representation attached to the ¢-torsion of A (see
Theorem 2.9). In Section 3, we focus on hyperelliptic curves and explain the computations
that allow us to realize GSpg(Fy) as a Galois group over Q for all primes ¢ € [11, 500000].
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1 Images of Galois representations and the inverse (Galois
problem

One of the main objectives in algebraic number theory is to understand the absolute Galois
group of the rational field, Gp = Gal(Q/Q). We believe that we would get all arithmetic
information if we knew the structure of Gg. This is a huge group, but it is compact with
respect to the profinite topology. Two questions arise in a natural way: on the one hand, the
identification of the finite quotients of Gg, and on the other hand, the study of Gg via its
Galois representations.

The inverse Galois problem asks whether, for a given finite group G, there exists a Galois
extension L/Q with Galois group isomorphic to G. In other words, whether a finite group
G occurs as a quotient of Gg. As is well known, this is an open problem. The origin of this
question can be traced back to Hilbert. In 1892, he proved that the symmetric group S,, and
the alternating group A, are Galois groups over Q, for all n. We also have an affirmative
answer to the inverse Galois problem for some other families of finite groups. For instance,
all finite solvable groups and all sporadic simple groups, except the Mathieu group Mas, are
known to be Galois groups over Q.

A Galois representation is a continuous homomorphism
p: Gg — GL,(R),

where R is a topological ring. Examples for R are C, Z/nZ or F, with the discrete topology,
and Q; with the f-adic topology. Conjectures by Artin, Serre, Fontaine-Mazur and Langlands,
which have experienced significant progress in recent years, are connected with these Galois
representations.

Since G is compact, the image of p is finite when the topology of R is discrete. As a
consequence, images of Galois representations yield Galois realizations over Q of finite linear
groups

—ker p

Gal(@*""/Q) ~ p(Gg) C GLy(R).

This gives us an interesting connection between these two questions and provides us with
a strategy to address the inverse Galois problem.

Let us assume that p is an f-adic Galois representation associated to some arithmetic-
geometric object. In this case, we have additional information on the ramification behavior,
like the characteristic polynomial of the image of the Frobenius elements at unramified primes
or the description of the image of the inertia group at the prime ¢. This gives us some control
on the image of mod ¢ Galois representations in some cases and we can obtain, along the way,
families of linear groups over finite fields as Galois groups over Q.



More precisely, let X/Q be a smooth projective variety and let
pe: Gg — GL(HE (X5, Qu)),
be the f-adic Galois representation on the k-th étale cohomology. We know that:
e p; is unramified away from ¢ and the primes of bad reduction for X,

e if p is a prime of good reduction and p # ¢, the characteristic polynomial of py(Frob,)
has coefficients in Z, is independent of ¢ and its roots have absolute value p*/2.

Let us consider an attached residual Galois representation
o) GQ — GLn(Fq),

where A is a prime in a suitable number field, dividing ¢, and ¢ is a power of £. To determine
the image of @, we usually need to know the classification of maximal subgroups of GL,(IF,),
as well as a description of the image of the inertia group at ¢ and the computation of the
characteristic polynomial of @(Frob,), for some prime of good reduction p # £.

Let us summarize the known cases of realizations of finite linear groups as Galois groups
over Q, obtained via Galois representations.

In the case of 2-dimensional Galois representations attached to an elliptic curve E defined
over Q without complex multiplication, we know, by a celebrated result of Serre [Ser72], that
the associated residual Galois representation is surjective, for all but finitely many primes.
Moreover, it can be shown that if we take, for example, the elliptic curve E defined by the
Weierstrass equation Y2 +Y = X3 — X then the attached residual Galois representation is
surjective, for all primes ¢. Thus we obtain that the group GLy(Fy) occurs as a Galois group
over QQ, for all primes /. Actually we have additional information in this case: the Galois
extension Q(E[(])/Q is a Galois realization of GLg(F,), and it is unramified away from 37
and £, since ¥ has conductor 37.

The image of 2-dimensional Galois representations, attached to classical modular forms
without complex multiplication, has been studied by Ribet [Rib75]. The image of the residual
Galois representations attached to a normalized cuspidal Hecke eigenform without complex
multiplication is as large as possible, for all but finitely many primes A. This gives us that
the groups PSLa(Fyr) or PGLa(Fyr) can occur as Galois groups over Q. Moreover, we have
effective control of primes with large image for the mod ¢ Galois representation attached to
specific modular forms. This gives us Galois realizations over Q of the groups PSLa(Fyr), r
even, and PGLy(Fyr), r odd; 1 < r < 10, for explicit infinite families of primes ¢, given by
congruence conditions on ¢ (cf. [RV95], [DV00]).

Recently, it has been proven that the groups PSLy(F,) are Galois groups over Q for all
¢ > 3, by considering the Galois representations attached to an explicit elliptic surface (see
[Zyw13]).

Results on generically large image of compatible families of 3-dimensional Galois repre-
sentations associated to some smooth projective surfaces and to some cohomological modular
forms are obtained in [DV04]. The effective control of primes with large image for the resid-
ual 3-dimensional Galois representations attached to some explicit examples gives us that the
groups PSL3(F,), PSU;3(Fy), SL3(FFy), SU3(F,) are Galois groups over Q, for explicit infinite



families of primes ¢ (cf. [DV04]).

In the case of 4-dimensional Galois representations, we have results on large image for com-
patible families of Galois representations attached to abelian surfaces defined over Q without
complex multiplication, to Siegel modular forms of genus two and to some pure motives (cf.
[LD98], [DKRO1], [Die02b], [DV11]). The effective control of primes with large image in some
explicit cases gives us that the groups PGSp,(FFy), for all £ > 3; and the groups PGSp,(Fys),
PSp4(Fy2), PSL4(F,) and PSU4(FFy), for explicit infinite families of primes ¢, are Galois groups
over Q (cf. [AdV11], [DKRO1], [Die02b], [DVO0S]).

In the next section we consider the image of residual Galois representations attached to
principally polarized abelian varieties of dimension n, which provides Galois realizations over
Q of the general symplectic group GSps,, (Fy), for almost all ¢.

Finally, we remark that, using these methods, we can expect to obtain realizations of the
groups PSLa(Fyr), PGLa(Fyr), PGSpy,, (Fer) and PSp,,, (Fr) as Galois groups over Q. In fact,
by considering compatible systems of Galois representations attached to certain automorphic
forms, we know (cf. [Wie08], [DW11], [KLS08], [AdDSW13]) that these groups are Galois
groups over Q, for infinitely many integers r and infinitely many primes £. More precisely, we
have:

e “Vertical direction”: For every fixed prime ¢, there are infinitely many positive inte-
gers 7, such that PSLy(FFyr) can be realized as a Galois group over Q. Moreover, for
each n > 2, there are infinitely many positive integers r, such that either PGSp,,, (F-)
or PSpy,, (Fyr) are Galois groups over Q (cf. [Wie08], [KLSO08]).

e “Horizontal direction”: For every fixed r, there is a positive density set of primes ¢, such
that PSLy(FFyr) can be realized as a Galois group over Q. Moreover, for each n > 2,
there is a set of primes ¢ of positive density for which either PGSps,, (F¢r) or PSpy,, (Fyr)
are Galois groups over Q (cf. [DW11], [AdDSW13)).

2 Galois representations attached to abelian varieties

2.1 The image of the /-torsion Galois representation

Let A be an abelian variety of dimension n defined over Q. The set of Q-points of A admits a
group structure. Let £ be a prime number. Then the subgroup of the Q-points of A consisting
of all /-torsion points, which is denoted by A[/], is isomorphic to (Z/¢Z)?" and it is endowed
with a natural action of Gg. Therefore, it gives rise to a (continuous) Galois representation

Bae: Gg — GL(A[]) ~ GLy, (Fy).

As explained in Section 1, we obtain a realization of the image of p4, as a Galois group
over Q.

In this section, we will consider principally polarized abelian varieties, i.e. we will consider
pairs (A, \), where A is an abelian variety (defined over Q) and A : A — AY is an isogeny of
degree 1 (that is, an isomorphism between A and the dual abelian variety AY), induced from



an ample divisor on A. Not every abelian variety A admits a principal polarization A and,
when it does, it causes certain restrictions on the image of p4 4.

Let V be a vector space of dimension 2n, which is defined over F, and endowed with a
symplectic (i.e. skew-symmetric, nondegenerate) pairing (-,-) : V x V' — Fy. We consider the
symplectic group

Sp(V, (-,-)) :={M € GL(V) : Yuy,vy € V, (Mv1, Mve) = (v1,v2)}
and the general symplectic group
GSp(V, (-,-)) :={M € GL(V) : 3m € F such that Yvi, vy € V, (Mv1, Mva) = m(vi,v2)}.

When A is a principally polarized abelian variety, the image of p4 , lies inside the general
symplectic group of A[¢] with respect to a certain symplectic pairing. More precisely, denote
by 1¢(Q) the group of /-th roots of unity inside a fixed algebraic closure Q of Q. Recall that
the Weil pairing ey is a perfect pairing

ec: Alf] x AV[0] = pe(@).

If (A, A) is a principally polarized abelian variety, we can consider the pairing

et A[f] X A[E] — ,u,g((@)
(P,Q) = ee(P,ANQ))

which is a non-degenerate skew-symmetric pairing (i.e. a symplectic pairing), compatible with
the action of Gg. This last condition means that, for any o € G,

(GZ,A(Pa Q))U = eé,)x(PU7 QU)'

Note that Gg acts on £,(Q) via the mod ¢ cyclotomic character xy, so that (eg (P, Q))7 =
(ee (P, Q))Xe(?)If we fix a primitive /-th root of unity ¢;, we may write the pairing e, )
additively, i.e. we define

)+ AlL] x A > F,

as (P, Q) := a such that (* = ey \(P, Q).

In other words, we have a symplectic pairing on the Fy-vector space A[¢] such that, for all
o € Gg, the linear map p(o) : A[f] — A[{] satisfies that there exists a scalar, namely x,(c¢),
such that

(p(o)(P),p(0)(Q)) = xe(0)(P, Q). (1)

That is to say, the image of the representation p, , is contained in the general symplectic
group GSp(A[{], (-, -)) ~ GSpy, (Fe).

The determination of the images of the Galois representations p, , attached to the (-

torsion of abelian varieties is a topic that has received a lot of attention. A remarkable result
is proven by Serre in [Ser00]:

Theorem 2.1 (Serre). Let A be a principally polarized abelian variety of dimension n, defined
over a number field K. Assume that n = 2,6 or n is odd and furthermore assume that
End(A) = Z. Then there exists a bound Ba g such that, for all ¢ > By i,

Tmp s, = GSp(A[f]) = GSpay, (Fr).



For arbitrary dimension, the result is not true (see e.g. [Mum69] for an example in dimen-
sion 4). However, one eventually obtains symplectic image by making some extra assumptions.
For example, there is the following result of C. Hall (cf. [Halll]).

Theorem 2.2 (Hall). Let A be a principally polarized abelian variety of dimension n defined
over a number field K, such that End(A) = Z, and satisfying the following property:

(T) There is a finite extension L/K so that the Néron model of A/L over the ring
of integers of L has a semistable fiber with toric dimension 1.

Then there is an (explicit) finite constant Ba i such that, for all £ > Ba i,
Imp, o =~ GSp(A[f]) =~ GSpy,, (Fy).

Remark 2.3. In the case when A = J(C) is the Jacobian of a hyperelliptic curve C' of genus
n, say defined by an equation Y2 = f(X) with f(X) € K[X] a polynomial of degree 2n + 1,
Hall gives a sufficient condition for Condition (T) to be satisfied at a prime p of the ring of
integers of K'; namely, the coefficients of f(X) should have p-adic valuation greater than or
equal to zero and the reduction of f(X) mod p (which is well-defined) should have one double
zero in a fixed algebraic closure of the residue field, while all the other zeroes are simple.

Applying the result of Hall with K = Q yields the following partial answer to the inverse
Galois problem:

Corollary 2.4. Let n € N be any natural number. Then for all sufficiently large primes £,
the group GSps,, (F¢) can be realized as a Galois group over Q.

Although it should be possible to find an upper bound for the constant B4 g, it would be
far from optimal (see Lemma 4 of [Halll] and [MW93]).

In the case of curves of genus 2, Le Duff has studied the image of the Galois representations
attached to the (-torsion of J(C'), when Condition (T) in Theorem 2.2 is satisfied. The main
result in [LD98] is the following:

Theorem 2.5 (Le Duff). Let C' be a genus 2 curve defined over Q, with bad reduction of
type (II) or (IV) according to the notation in [Liu93] at a prime p. Let ®, be the group of
connected components of the special fiber of the Néron model of J(C) at p. For each prime ¢
and each prime q of good reduction of C, let Py (X) = X4+ aX3?+0X2% 4 qaX + ¢* € Fy[X]
be the characteristic polynomial of the image under pjcy of the Frobenius element at q and
let Que(X) = X?+aX +b—2q € Fy[X], with discriminants Ap and Ag respectively.

Then for all primes £ not dividing 2pq|®p| and such that Ap and Ag are not squares in
Fy, the image of pycy, coincides with GSpy(Fy).

Using this result, he obtains a realization of GSp,(Fy) as Galois group over Q for all odd
primes ¢ smaller than 500000.
2.2 Explicit surjectivity result

A key point in Hall’s result is the fact that the image under p, , of the inertia subgroup at
the place p of L which provides the semistable fiber with toric dimension 1 is generated by a
nontrivial transvection (whenever ¢ does not divide p nor the cardinality of the group ®, of



connected components of the special fiber of the Néron model at p). A detailed proof of this
fact can be found in Proposition 1.3 of [LD9S].

We expand on this point. Given a finite-dimensional vector space V over [y, endowed
with a symplectic pairing (-,-) : V x V — Fy, a transvection is an element T € GSp(V, (-, "))
such that there exists a hyperplane H C V satisfying that the restriction T'|y is the identity
on H. If T is not the identity, we say that it is a nontrivial transvection. It turns out that the
subgroups of GSp(V, (-,-)) that contain a nontrivial transvection can be classified into three
categories as follows (for a proof, see e.g. [AdDW14, Theorem 1.1]):

Theorem 2.6. Let £ > 5 be a prime, let V be a finite-dimensional vector space over Fy,
endowed with a symplectic pairing (-,-) : V xV — Fy and let G C GSp(V, (-,)) be a subgroup
that contains a nontrivial transvection. Then one of the following holds:

1. G is reducible.

2. There exists a proper decomposition V. = @,.;V; of V into equidimensional non-
singular symplectic subspaces V; such that, for each g € G and each i € I, there exists
some j € I with g(V;) €V} and such that the resulting action of G on I is transitive.

3. G contains Sp(V, (-, -)).

Remark 2.7. Assume that V is the ¢-torsion group of a principally polarized abelian variety A
defined over Q and (:, -) is the symplectic pairing coming from the Weil pairing. If G = Imp, ,
satisfies the third condition in Theorem 2.6, then G = GSp(V, (-,-)). Indeed, we have the
following exact sequence

1= Sp(V, () = GSp(V, (,-)) = F) = 1,

where the map m : GSp(A[/], (-,-)) — F,* associates to M the scalar a satisfying that, for all
u,v € V, (Mu, Mv) = a(u,v). By Equation (1), the restriction of m to Im(p4 ,) coincides
with the mod ¢ cyclotomic character xy,. We can easily conclude the result using that yy is
surjective onto F} .

Even in the favourable case when we know that Im(p, ¢) contains a transvection, we still
need to distinguish between the three cases in Theorem 2.6. In this paper, we will make use
of the following consequence of Theorem 2.6 (cf. Corollary 2.2 of [AdK13]).

Corollary 2.8. Let £ > 5 be a prime, let V be a finite-dimensional vector space over Fy,
endowed with a symplectic pairing (-,-) : V. xV — Fy and let G C GSp(V, (-,-)) be a subgroup
containing a transvection and an element whose characteristic polynomial is irreducible and
which has nonzero trace. Then G contains Sp(V, (-, -)).

In order to apply this corollary in our situation, we need some more information on the
image of p, ;. We will obtain this by looking at the images of the Frobenius elements Frob,
for primes ¢ of good reduction of A.

More generally, let A be an abelian variety defined over a field K and assume that ¢
is a prime different from the characteristic of K. Any endomorphism « of A induces an
endomorphism of A[/f], in such a way that the characteristic polynomial of « (which is a
monic polynomial in Z[X], see e.g. §3, Chapter 3 of [Lan59] for its definition) coincides, after
reduction mod ¢, with the characteristic polynomial of the corresponding endomorphism



of A[f]. In the case when K is a finite field (say of cardinality ¢), we can consider the
Frobenius endomorphism ¢, € Endg(A), induced by the action of the Frobenius element
Frob, € Gal(K/K). Then the reduction mod ¢ of the characteristic polynomial of ¢, coincides
with the characteristic polynomial of p4 ¢(Froby). This will turn out to be particularly useful
in the case when A = J(C) is the Jacobian of a curve C' of genus n defined over K, since
one can determine the characteristic polynomial of p ;¢ ¢(Froby) by counting the Fgr-valued
points of C, for r =1,... n.

As a consequence, we can state the following result, which will be used in the next section.

Theorem 2.9. Let A be a principally polarized n-dimensional abelian variety defined over
Q. Assume that there exists a prime p such that the following condition holds:

(Tp) The special fiber of the Néron model of A over Q, is semistable with toric
dimension 1.

Denote by ®, the group of connected components of the special fiber of the Néron model at p.
Let q be a prime of good reduction of A, let A, be the special fiber of the Néron model of A
over Qq and let Py(X) = X?" +aX?~ ! + ...+ ¢" € Z[X] be the characteristic polynomial of
the Frobenius endomorphism acting on A,.

Then for all primes ¢ which do not divide 6pq|®pla and are such that the reduction of
Py(X) mod ¢ is irreducible in Fy, the image of p4, coincides with GSpy,, (Fy).

Remark 2.10. The condition that ¢ does not divide a corresponds to the Frobenius element
having non-zero trace modulo #.

3 Galois realization of GSp,,(IF;) from a hyperelliptic curve of
genus n

Let C be a hyperelliptic curve of genus n over Q, defined by an equation Y2 = f(X) where
f(X) € Q[X] is a polynomial of degree 2n + 1. Let A = J(C) be its Jacobian variety.
We assume that A satisfies condition (7},) for some prime p. In this section we present an
algorithm, based on Theorem 2.9, which computes a finite set of prime numbers ¢ for which
the Galois representation p4 , has image GSpy, (Fy). We apply this procedure to an example
of a genus 3 a curve using a computer algebra system.

3.1 Strategy

First, to apply Theorem 2.9, we restrict ourselves to hyperelliptic curves of genus n whose
Jacobian varieties will satisfy Condition (7},) for some p. Namely, we fix a prime number p
and then choose f(X) € Z[X] of degree 2n + 1 such that both of the following conditions
hold:

1. f(X) only has simple roots over Q, so that Y2 = f(X) is the equation of an hyperelliptic
curve C over Q.

2. All coefficients of f(X) have p-adic valuation greater than or equal to zero, and the
reduction f(X) mod p has one double zero in F,, and its other zeroes are simple. This
ensures that A = J(C) satisfies Condition (7},) (see Remark 2.3).



Any prime of good reduction for C' is also a prime of good reduction for its Jacobian A.
Primes of good reduction for the hyperelliptic curve can be computed using the discriminant
of Weierstrass equations for C' (see [Loc94]). In our case, it turns out that any prime not
dividing the discriminant of f(X) is of good reduction for C, hence for A.

We take such a prime number ¢ of good reduction for A. Recall that P,(X) € Z[X] is the
characteristic polynomial of the Frobenius endomorphism acting on the fiber A,.

Let S, denote the set of prime numbers ¢ satisfying the following conditions:

(i) ¢ does not divide 6pq|®,|, nor the coefficient of X?"~! in P,(X),
(ii) the reduction of P,(X) modulo ¢ is irreducible in F,.

Note that condition (i) only rules out a finite number of primes ¢. By Theorem 2.9, for each
¢ € S, the representation p4 , is surjective with image GSpy,,(IF¢). Also, primes in S; can be
computed effectively up to a given fixed bound.

Since we want the polynomial P,(X) (of degree 2n) to be irreducible modulo ¢, its Galois
group G over Q must be a transitive subgroup of Ss, with a 2n-cycle. Therefore, by an
application of a weaker version of the Chebotarev density theorem due to Frobenius ([SL96],
“Theorem of Frobenius”, p. 32), the density of S, is

#{o € G: there exists a 2n-cycle 7 in Sg, such that o is conjugate to 7}
#G ‘

This estimate is far from what Theorem 2.2 provides us, namely that the density of £’s with

Im(pa,e) = GSpy, (Fr) is 1.
This leads us to discuss the role of the prime ¢. First of all, we can see that

USq = {¢ prime, £ 1 6p|®,|, p ¢ surjective},
q

where the union is taken over all primes ¢ of good reduction for A. Note that the inclusion
C follows directly from Theorem 2.9. To show the other inclusion D, now suppose that
the representation at ¢ is surjective and that ¢ { 6p|®,|. Its image contains an element of
GSp,,, (F¢) with irreducible characteristic polynomial and nonzero trace, by Corollary 2.8.
Moreover, by the Chebotarev density theorem, the image is topologically generated by the
images of Frobenius elements at all unramified primes. The representation takes values in a
finite discrete group, so there exists ¢ # ¢ such that ¢ is a prime of good reduction for A and
P a,(Frobg) has irreducible characteristic polynomial and nonzero trace, hence £ € S;.

Moreover, if, for some fixed ¢, the events “¢ belongs to S,” are independent as ¢ varies,
the density of primes ¢ for which p, , is surjective will increase when we take several different
primes ¢. A sufficient condition for this density to tend to 1 is that there exists an infinite
family of primes ¢ for which the splitting fields of P,(X) are pairwise linearly disjoint over Q.

Therefore, it seems reasonable to expect that computing the sets S, for several values of
q increases the density of primes ¢ for which we know the surjectivity of p, ,. This is what
we observe numerically in the next example.

3.2 A numerical example in genus 3
We consider the hyperelliptic curve C of genus n = 3 over Q defined by Y2 = f(X), where
FX)=X3(X —1)(X +1)(X —2)(X +2)(X —3) +7(X — 28) € Z[X].



This is a Weierstrass equation, which is minimal at all primes ¢ different from 2 (see [Loc94,
Lemma 2.3]), with discriminant —2'2 7. 73 . 1069421 - 11735871491. Thus, C has good re-
duction away from the primes appearing in this factorization. Clearly, p = 7 is a prime for
which the reduction of f(X) modulo 7 has one double zero in F7 and otherwise only simple
zeroes. Therefore, its Jacobian J(C') satisfies Condition (77). As we computed with MAGMA,
the order of the component group ®7 is 2. Recall that P,(X) coincides with the characteristic
polynomial of the Frobenius endomorphism of the reduced curve C' modulo g over F,.

In this example, we first take ¢ = 11. Indeed, our method provides no significant results
for ¢ € {3,5} because for ¢ = 3 the characteristic polynomial P,(X) is not irreducible in Z[X]
and for ¢ = 5 it has zero trace in Z. The curve has 11,135 and 1247 points over Fij, [Fq;2
and Fy s, respectively. The characteristic polynomial Pj;(X) is

Pu(X)=X%—-X°4+7X% - 35X3 + 77X% - 121X + 1331

and it is irreducible over Q. Its Galois group G has order 48 and is isomorphic to the wreath
product S5 ¢ S3. This group is the direct product of 3 copies of S5, on which S3 acts by
permutation (see [JK81, Chapter 4]).

An element of Sy 1S3 can be written as ((a1,a2,as),0), where (a1, az2,a3) denotes an
element of the direct product So x Sy X Sy and ¢ an element of S3. The group law is defined
as follows:

((alv az, a’3)’ U)((allv CL/2, ag)7 U/) = ((al’ az, a3)(a/1’ a/2’ aé)g’ UUI)’

where (af, b, a%)? = (a;(l),a;@),a;(s)).

For example, with respect to this law, one can check that the element ((1,0,0),(123)) is
of order 6 in S ! S3 - here, 0 denotes the identity permutation of S5 and 1 the transposition
(12). More generally, for any element ((a1, a2, a3), o) of S21S3 to be of order 6, we must have
that o is a 3-cycle in Ss.

One can also view the wreath product Sy ! S5 as the centralizer of (12)(34)(56) in Sg,
through an embedding ¥ : Sy S35 — Sg whose image is isomorphic to the so-called Weyl
group of type Bs ([JK81, 4.1.18 and 4.1.33]). More precisely, under 1, the image of an
element ((a1,a9,as),0) € S21S3 is the permutation of Sg that acts on {1,2,...,6} as follows:
it first permutes the elements of the sets {1,2}, {3,4} and {5,6} separately, according to ay,
ay and ag respectively, and then permutes the elements of the set {{1,2},{3,4},{5,6}} with
respect to o. For example, under 1, the image of ((1,0,0), (123)) is the 6-cycle (135246).

One sees that the elements of the group S2 !S53 that are 6-cycles in Sg are precisely the
elements ((1,0,0),v), ((0,1,0),7), ((0,0,1),v) and ((1,1,1),7) with v = (123) or v = (132).
All of these elements are conjugate; this corroborates Theorem 4.2.8 of [JK81], according to
which the cardinality of the conjugacy class in G of ((1,0,0), (123)) is 8, and all elements
of order 6 in Sy S3 are conjugate (see [JK81, Section 4.2] or [Gra08, Section 3.1]). In
[Tay12], Taylor provides a complete list of conjugacy class representatives for Ss 1 .S3 as well
as the cardinalities of these conjugacy classes. Note that ¢ sends an element of the form
((a1,a2,as),v), where either only two a;’s are 1 or none is 1, to a product of two disjoint
3-cycles in Sg.

To conclude, the Galois group G, viewed as a subgroup of Sg, contains exactly 8 elements
that are 6-cycles. Therefore, the density of S1p is 8/48 = 1/6.
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We can compute P,(X) using efficient algorithms available in MAaGMA [BCP97] or SAGE
[ST14], which are based on p-adic methods. We found that there are 6891 prime numbers
11 < £ < 500000 that belong to Sy1. For these ¢, we know that the image of p4 , is GSpg(IF¢),
so the groups GSpg(F) are realized as Galois groups arising from the /-torsion of the Jacobian
of the hyperelliptic curve C'. For instance, the first ten elements of 11 are

47,71,79,83,101, 113, 137, 251, 269, 271.

Also, the proportion of prime numbers 11 < £ < 500000 in S71; is about 0.1659, which is quite
in accordance with the density obtained from the Chebotarev density theorem.

By looking at polynomials P,(X) for several primes g of good reduction, we are able to
significantly improve the known proportion of primes ¢, up to a given bound, for which the
Galois representation is surjective. Namely, we computed that

{¢ prime, 11 < £ < 500000} € | ] S,
11<g<571

As a consequence, for any prime 11 < ¢ < 500000, the group GSpg(Fy) is realized as a
Galois group arising from the ¢-torsion of the Jacobian of the hyperelliptic curve C'. This is
reminiscent of Le Duff’s numerical data for GSp,(F;) (see Theorem 2.5).

Combining all of the above suggests that the single hyperelliptic curve C' might provide a
positive answer to the inverse Galois problem for GSpg(F,) for any prime ¢ > 11.
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