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Problem context

Discrete-time optimisation

Minimise portfolio variance for a given expected portfolio mean

Postulate that there exists some relationship µ(s) between a signal s
and each asset return r observed at the end of the investment interval:

rt = µ(st−1) + εt ,

with E [εt |st−1] = 0.

How do we optimally use this information in an otherwise classical
(unconditional mean / unconditional variance) portfolio optimisation
process?
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Problem history

Hansen and Richard (1983): functional analysis argument suggesting
that unconditional moments should enter the optimisation even when
conditioning information is known

Ferson and Siegel (2001): closed-form solution of unconstrained
mean-variance problem using unconditional moments

Chiang (2008): closed-form solutions to the benchmark tracking
variant of the Ferson-Siegel problem

Basu et al. (2006), Luo et al. (2008): empirical studies covering
conditioned optima of portfolios of trading strategies
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Possible signals

Taken from a continuous scale ranging from purely macroeconomic indices
to investor sentiment indicators. Indicators taking into account investor
attitude may be based on some model or calculated in an ad-hoc fashion.

Examples include

short-term treasury bill rates (Fama and Schwert 1977);

CBOE Market Volatility Index (VIX) (Whaley 1993) or its European
equivalents (VDAX etc.);

risk aversion indices using averaging and normalisation (UBS Investor
Sentiment Index 2003) or PCA reduction (Coudert and Gex 2007) of
several macroeconomic indicators;
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Possible signals (2)

global risk aversion indices (GRAI) (Kumar and Persaud 2004) based
on a measure of rank correlation between current returns and previous
risks;

option-based risk aversion indices (Tarashev et al. 2003);

sentiment indicators directly obtained from surveys (e.g. University of
Michigan Consumer Sentiment Index)
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Unconditioned expected return and variance given
conditioning information

These are obtained as expectation integrals over the signal domain. If a
risk-free asset with return rt is available,

E (P) = E
[
u′(s)(µ(s)− rf 1)

]
= E [I1(u, s)]

and

σ2(P) = E
[
u′(s)

[
(µ(s)− rt1)(µ(s)− rt1)′ + σ2ε

]
u(s)

]
− µ2P

= E [I2(u, s)]− µ2P
for an expected unconditional return of µP and a conditional covariance
matrix σ2ε .
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Optimal control formulation

Minimise J[s−,s+](x , u) =

∫ s+

s−
I2(u, s)ps(s)ds as s− → −∞, s+ → +∞

subject to ẋ(s) = I1(u, s)ps(s) ∀s ∈ [s−, s+], with

lim
s→−∞

x(s) = x−, lim
s→+∞

x(s) = x+,

and u(s) ∈ U, ∀s ∈ [s−, s+]

where U ⊆ Rn, x(s) ∈ Rm and L as well as f are continuous and
differentiable in both x and u.

Since the signal s is not necessarly bounded, the resulting control problem
involves expectation integrals with infinite boundaries in the general case.
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Necessity and sufficiency results generalised

The Pontryagin Minimum Principle (PMP) and Mangasarian
sufficiency theorem are shown to continue holding if the control
problem domain corresponds to the full real axis: the corresponding
optimal control problems are well-posed.

The PMP is then used to show that the given optimal control
formulation of the conditioned mean-variance problem generalises
classical (Ferson and Siegel; Markowitz) problem expressions.
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Backtesting data set for all empirical results

11 years of daily data, from January 1999 to February 2010 (2891
samples)

Risky assets: 10 different EUR-based funds commercialised in
Luxembourg chosen across asset categories (equity, fixed income) and
across Morningstar style criteria

Money market fund (KBC) included to represent a near risk-free asset

Signals: VDAX, volatility of bond index, PCA-based indices built
using both 2 and 4 factors and estimation window sizes of 50, 100
and 200 points, Kumar and Persaud currency-based GRAI obtained
using 1 month and 3 month forward rates
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Individual backtest for all empirical results

Rebalance Markowitz-optimal portfolio alongside conditioned optimal
portfolio over the 11-year period

Assume lagged relationship µ(s) between signal and return can be
represented by a linear regression

Use kernel density estimates for signal densities

Estimate the above using a given rolling window size (15 to 120
points)

Use direct collocation discretisation method for numerical problem
solutions
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Empirical study for conditioned mean-variance problem
involving constrained portfolio weights

Mean-variance (MV) optimisation problem with and without risk-free
asset using discretised efficient frontiers

Various signals tested, best performance seen for VDAX

For VDAX, robust improvements typically of the order of 25% for
most metrics (returns, SR...), both ex ante and ex post, for different
problem parameter settings
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Empirical study for conditioned problems involving higher
moments of returns and constrained portfolio weights

Mean-kurtosis (MK) optimisation problem using discretised efficient
frontiers; mean-variance-kurtosis (MVK) and
mean-variance-skewness-kurtosis (MVSK) problems using quartic
polynomial utility functions

While MVSK objective function is nonconvex, the results obtained for
that case seem consistent with the other variants

Improvements seen with respect to classical (unconditioned) portfolio
optimisation are of the same order of magnitude as seen for the
mean-variance problem
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Optimal control translation

Two signals s(1) and s(2) with s = (s(1)s(2)), investor utility function
U(x) = a1x + a2x2, joint signal density ps give

minimise JIS (x(s), u(s)) =

∫
IS

(
a1

∂2x1
∂s(1)∂s(2)

+ a2
∂2x2

∂s(1)∂s(2)

)
ds

subject to
∂2x1

∂s(1)∂s(2)
= u′(s)µ(s)ps(s),

∂2x2
∂s(1)∂s(2)

=

((
u′(s)µ(s)

)2
+ u′(s)Σ2

εu(s)

)
ps(s),

x1(s−) = x2(s−) = 0

and u(s) ∈ U ∀s ∈ IS

as the resulting mean-variance equivalent optimisation problem
formulation.
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Multidimensional results

Optimal control problems involving a higher-dimensional objective
function integration variable and first-order state PDEs are called
Dieudonné-Rashevsky problems

Multidimensional analogues of PMP have been established (Cesari
1969) for problems of the Dieudonné-Rashevsky type

The problem with cross-derivatives just given represents a form
equivalent to Dieudonné-Rashevsky (Udriste 2010)
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2-D discretisation scheme

Use a 2-D direct collocation scheme: direct means both control and
state variables are discretised, collocation means PDE and other
constraints have to be met exactly at prespecfied (collocation) points
on the grid

Use control values constant on each surface element and state values
on vertices to which bilinear interpolation is applied

Provide analytical expressions for the (sparse) gradient and Hessian
matrices to the numerical solver so convergence rate and
computational cost remain manageable
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2-D discretisation scheme (2)

s1

s2

uapp

s1i
s1(i+1/2)
s1(i+1)

s2js2(j+1/2)s2(j+1)

(a) Control discretisation constant
over surface elements.

s1

s2

xapp

s1i
s1(i+1/2)
s1(i+1)

s2js2(j+1/2)s2(j+1)

(b) Bilinear state discretisation.
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2-D discretisation scheme convergence result

Theorem

At the collocation points si+1/2,j+1/2, the Pontryagin costate equations are
verified to order the chosen grid mesh h:

∇s · λ = −
2∑

α=1

λ
(α)
i+1/2,j+1/2

∂f
(α)
i+1/2,j+1/2

∂x
+ O(h).

Also, for any optimal control interior to the admissible set U, the proposed
scheme is consistent with the first-order condition on the Hamiltonian H

∂H
∂u(s)

= 0 ∀s ∈ IS .
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2-D discretisation gradient and Hessian matrix sparsity
patterns

Gradient dimensions for N × N-point grid and n assets are[
(N − 1)2n + 2N2

]
×
[
3(N − 1)(N − 2) + 3(N − 2) + 5

]
Hessian dimensions in that case are[
(N − 1)2n + 2N2

]
×
[
(N − 1)2n + 2N2

]
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Typical optimal weight functional

Optimal weights are found as vector functions of the two signals
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2-signal backtest

Simultaneously use VDAX (pure equity risk) and BONDIDX
(volatility of Barclays Aggregate Euro Bond Index, pure interest rate
risk) as signals

Obtain optimal portfolio weights for daily rebalancing by optimising
unconditional expected utilities for quadratic investor utility functions
U(x) = a1x + a2x2 and three different levels of risk aversion:
a2 = −0.2, a2 = −0.5 and a2 = −0.7.

Compare utilities and Sharpe ratios (ex ante and ex post), maximum
drawdowns / drawdown durations (MD/MDD) and observed returns
time paths for Markowitz, 1 signal and 2 signal strategies

Marc Boissaux & Jang Schiltz (LSF) Conditioned portfolio optimisation June 3, 2014 25 / 31



Backtest average utility values
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Backtest average Sharpe ratios
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Backtest average maximum drawdown (durations)
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Backtest cumulative return time paths, a2 = −0.5
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Summary

Improvement with a second signal is substantial ex ante, but very
marginal ex post: estimation risk larger than for a single signal

The suggested numerical solution scheme can be generalised to even
more signals, but a curse of dimensionality applies:

I computational cost: will diminish in impact over time
I statistical (kernel density estimate): fundamentally prevents the use of

more than three signals unless simplifications are made.

Marginal ex post improvements, however, suggest an averaging effect
(as seen for single PCA indices in earlier single signal study) takes
place for more signals, such that this limitation is not seen as that
restrictive
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