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Abstract. Many laws, e.g., those concerning taxes and social benefits,
need to be operationalized and implemented into public administration
procedures and eGovernment applications. Where such operationaliza-
tion is warranted, the legal frameworks that interpret the underlying
laws are typically prescriptive, providing procedural rules for ensuring
legal compliance. We propose a UML-based approach for modeling pro-
cedural legal rules. With help from legal experts, we investigate actual
legal texts, identifying both the information needs and sources of com-
plexity in the formalization of procedural legal rules. Building on this
study, we develop a UML profile that enables more precise modeling of
such legal rules. To be able to use logic-based tools for compliance analy-
sis, we automatically transform models of procedural legal rules into the
Object Constraint Language (OCL). We report on an application of our
approach to Luxembourg’s Income Tax Law providing initial evidence
for the feasibility and usefulness of our approach.

1 Introduction
Legal compliance is a major concern for governments. In domains such as tax-
ation and social benefits, laws need to be operationalized so that they can be
implemented into administrative procedures and software systems. Such opera-
tionalization is typically performed by putting in place a legal framework, com-
prised of legislation, regulations, and circulars, aimed at providing a detailed
interpretation of the underlying laws. These frameworks are often prescriptive:
they provide step-by-step guidance in the form of procedural rules as to what
needs to be done for compliance. Procedural legal rules are closely linked to
the behavior of eGovernment applications. To illustrate, consider Article 2 from
Luxembourg’s Income Tax Law [14], describing how taxpayers are classified as
resident and non-resident:

Article 2.1Individuals are considered resident taxpayers if they have their address in the
Grand Duchy. Individuals are considered non-resident taxpayers if they do not reside in
the Grand Duchy but have a local income within the definition of Article 156.

To be able to analyze whether a software system complies with the taxpayer
classification described in the law, one could develop a UML model like the one
in Fig. 1: The domain model in Fig. 1(a) captures the main concepts and associ-
ations in Article 2 of the Income Tax Law; and the OCL expression in Fig. 1(b),
1 The article has been translated from the original French text and simplified.
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written in the context of TaxPayer, provides a procedural rule for distinguishing
between resident and non-resident taxpayers (L. 2-5 and 7-13, respectively).
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1. context TaxPayer inv ResidentialStatus:
2. let hasLocalAddress:Boolean = self.addresses!
3. select(a:Address | a.country = Country::LU)!notEmpty() in
4. if hasLocalAddress then
5. self.oclIsTypeOf(ResidentTaxPayer)
6. else
7. let hasLocalIncomes:Boolean = self.incomes!
8. select(i:Income | i.oclIsTypeOf(LocalIncome))!notEmpty() in
9. if hasLocalIncome then
10. self.oclIsTypeOf(NonResidentTaxPayer)
11. else
12. false
13. endif
14. endif
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Fig. 1. (a) domain model for a legal article, (b) pro-
cedural rule for the article (expressed as OCL)

To be a resident taxpayer,
one must have a Luxembour-
gish address (L. 2-3). If such
an address exists (L. 4), the
taxpayer is deemed resident
(L. 5). To be a non-resident
taxpayer, one must have a lo-
cal income (L. 7-8) but no lo-
cal address. If these require-
ments are met (L. 9), the tax-
payer is deemed non-resident
(L. 10). A model like that in
Fig. 1 makes the underlying le-
gal article amenable to au-
tomated analysis. In particu-
lar, one can use such a model
to check whether the outcome
produced by a software system
is consistent with the law. For example, using existing OCL evaluators such as
Eclipse OCL [11], one can verify if a system correctly classifies taxpayers (in-
stances of the model in Fig. 1(a)) into resident and non-resident.

Before a model such as the one in Fig. 1 can be used for automated analysis,
it needs to be reviewed and validated by legal experts. To aid with validation, it
is helpful to express procedural rules such as that in Fig. 1(b) in a visual manner.

This paper develops a visual and at the same time semantically-precise way
to model procedural legal rules. Our approach follows the Domain-Specific Mod-
eling (DSM) paradigm; but rather than building a new language, we use UML’s
built-in customization mechanism, namely profiles [22], to adapt UML for use
in our context. Using UML is motivated by its widespread use, commercial tool
support, and the availability of standard extension mechanisms in the language.

Our work addresses a real need observed during our collaboration with our
public service partner, CTIE (Centre des Technologies de l’Information de l’Etat).
CTIE is Luxembourg’s national center for information technologies and respon-
sible for developing eGovernment services for the state. CTIE already applies
Model Driven Engineering (MDE), including UML and its extensions, for sys-
tem development and is interested in enhancing its development methods with
means for modeling legal rules. An important consideration for CTIE is for the
models to be palatable to governmental stakeholders without IT background,
but who have familiarity with simple conceptual models and business process
models from earlier exposure and training.

The approach we propose in this paper is not meant as a general solution
for modeling all types of legal rules. In particular, we focus on prescriptive legal
frameworks where legal rules are procedural. This situation is typical of highly-
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regulated domains such as taxation and social benefits. In general, however,
many legal frameworks, e.g. privacy laws, are declarative, with rules defined
using deontic notions, i.e., permissions, obligations, and prohibitions [24]. Our
current solution does not extend to declarative legal rules. In the rest of this
paper, we therefore take legal rule to mean “procedural” legal rule.

The starting point for our work is a field study, where we interacted with le-
gal experts and analyzed several legal statutes, to identify both the information
needs and the sources of complexity in the formalization of (procedural) legal
rules (Section 2). Drawing on our field study, we define a UML-based methodol-
ogy for modeling legal rules (Section 3). The core component of the methodology
is a customization of UML Activity Diagrams, defined through a UML profile
(Section 4). To use for analysis purposes the models resulting from our approach,
we provide an algorithm for automatic transformation of the models into OCL
(Section 5). We report on a case study, providing initial evidence for the feasibil-
ity and usefulness of our approach (Section 6). Finally, we compare our approach
with related work and suggest avenues for future work (Sections 7–8). The paper
is accompanied by a technical report [26] where we provides additional details
about our UML profile and automated transformation to OCL.

2 Field Study of Legal Rules

Our field study applies a Grounded Theory (GT) process [8], whereby obser-
vations and analysis of collected data are used for defining the problems to be
addressed. In our context, we apply GT to define (1) what needs to be expressed
in models of legal rules, i.e., the information requirements that such models
should meet; and (2) factors that lead to complexity in models of legal rules and
thus need special consideration in an approach targeted at building such models.

We began our field study with a series of meetings with legal experts, totaling
≈ 15 hours. The purpose of these meetings was (a) for the researchers to develop
familiarity with legal concepts; (b) to define a suitable scope for the laws to
consider; and (c) to identify representative legal rules for further investigation.
Taxation was selected as the scope for the study, partly because of the priorities
of the legal experts in our study, and partly because of the tax law’s large societal
impact. Our field study resulted in several observations, outlined below.
Information Requirements. To identify the information needs in the speci-
fication of legal rules, we analyzed selected legal texts concerned with personal
income taxes. While personal income taxes are only one facet of the tax law,
the experts deemed the scope to be largely representative within the tax do-
main and the closely related domain of social benefits delivery. With help from
legal experts, we identified, read, and interpreted the legal provisions relevant
to personal income taxes. Our analysis covered a summary of direct taxes levied
by the Government of Luxembourg, 16 articles from Luxembourg’s Income Tax
Law (for brevity, referred to as LITL in the remainder of this paper), three
regulations, one tax scale, and several official web pages and circular letters.

While reading the above material, we applied a standard technique from qual-
itative data analysis [8, 21, 9] for analyzing text, and classifying, describing, and
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Art. 105bis […]The commuting expenses deduction is defined as a function over the distance between the 

principal town of the municipality on whose territory the taxpayer's home is located and the place of taxpayer's

work. The distance is measured in units of distance expressing the kilometric distance between [principal] towns. 

A ministerial regulation provides these distances. 

The amount of the deduction is calculated as follows: 

If the distance exceeds 4 units but is less than 30 units, the deduction is € 99 per unit of distance.

The first 4 units are not taken into account and the deduction for a distance exceeding 30 units is limited to € 2,574.

Fig. 2. Excerpt of Article 105bis from LITL (translated from French)

connecting the information presented in it. We annotated each important con-
cept with a label denoting the nature of the concept, i.e., a meta-concept. Each
time that a new meta-concept was encountered, we defined it in a glossary. As we
proceeded through the text, we either created new labels or reused previous ones
based on the definitions we had. We illustrate our analysis over an excerpt, shown
in Fig. 2, of Art. 105bis of LITL. The excerpt, a simplified translation of the orig-
inal French text, covers many of the information requirements identified by our
study. The meta-concepts gleaned from the excerpt are shaded and labeled.

The (Legal) Rule the excerpt is concerned with is calculating the deduction
a taxpayer is eligible for in relation to their commuting expenses. A rule may de-
pend on several Provisions. It is important to maintain traceability from rules to
the provisions they depend on. This is necessary both for reasoning about com-
pliance and also for managing change in a predictable way. For the commuting
expenses deduction, these provisions are: Art. 105bis of LITL, and an abstract
reference to a ministerial regulation. LITL does not cite any regulation explic-
itly, as regulations may vary from year to year. The regulation that was in effect
for commuting distances at the time our study was conducted is the ministerial
regulation of February 6, 2012 (“règlement ministériel du 6 février 2012”).

Each rule is made up of a set of Decisions and Operations, describing the
(procedural) flow of the rule. An example decision from the excerpt is: “If the
distance exceeds 4 units but is less than 30 units”; an example operation is setting
“the deduction [amount to be] e99 per unit of distance”.

There are several Data Elements in the excerpt, denoting inputs to, outputs
from, or intermediate values computed within the rule. For example, distance
is an input to and amount is the output from the rule. The constants in the
text, e.g., e2,574, are marked as input. This choice is motivated by the fact that
constants may change over time and thus need to be treated explicitly.

Data elements are typed. The types are sometimes specified in the text, e.g.,
the excerpt states that distance is measured in certain units; but most often, the
types are implicit, e.g., for monetary values and dates. One of the goals of our
analysis was to identify and restrict the data types associated with the inputs
and outputs of legal rules. Doing so is important for improving consistency. For
example, all mathematical operations, e.g., summation and multiplication, over
monetary values have to be consistent in how they round decimal values with
precision points. A uniform treatment requires a specific data type to be defined
for monetary values and used consistently in all legal rules.
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For data elements that represent inputs, it is important to maintain trace-
ability to the sources where the inputs come from. Some inputs are obtained
directly from legal texts, e.g., the constants in the excerpt of Fig. 2. Alterna-
tively, an input may be provided based on expert judgment by a legal agent. For
example, to decide whether a company is eligible for certain deductions, a tax
officer may need to determine whether the accounting performed by the com-
pany is adequate. Finally, an input may be derived from a physical or electronic
data record, e.g., the distance input mentioned in the excerpt.

We distinguish different sources for inputs. The distinctions are important
for better elaboration and validation of legal rules. For example, elaborating the
inputs derived from electronic records often requires consultation with both legal
experts and IT staff; whereas, inputs based on expert judgment or legal texts
typically only concern legal experts.
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Fig. 3. Information model for legal rules

Based on our analysis above, we
have developed an abstract informa-
tion model, shown in Fig. 3, for legal
rules. The model is organized into
three packages, in line with the three
main observations from the analysis,
namely: (1) capturing legal rules as
decisions and operations, (2) main-
taining traceability, (3) restricting
data types to what is essential.

The Process package in Fig. 3 defines the concepts related to the flow of a rule.
Each Legal Rule is made up of a set of Steps, which can be either Decisions or
Operations. Each step has Data Objects as input and output. The Traceability
package groups the information sources to which traceability needs to be main-
tained from the elements in the Process package. Rules need to be traceable to
Legal Texts. Inputs need to be linked to the Legal Text, Legal Agent, or Record
where they originate from. The Datatype package contains a partial list of data
types identified in our study. There is a special data type, named Domain Object,
to enable handling instances of domain concepts, e.g., TaxPayer (see Fig. 1(a)).
In addition, the data types include a composite type, Set, to enable handling
sets of objects. Note that the data types in Fig. 3 are specific to the tax law and
may require tailoring if the approach is applied to other laws and regulations.
Complexity factors. We considered nine legal rules from LITL in our analysis
of complexity factors. Six of these concern requirements on taxpayers’ records
(e.g, the taxpayer classification in Fig. 1). The rest concern the calculation of in-
come tax credits. We captured these rules in OCL (total of 108 OCL lines, exclud-
ing comments and blanks). Our investigation of the resulting OCL constraints
alongside our interactions with legal experts led to the following observations:
– Navigation: Navigation expressions in OCL tend to be lengthy for legal rules.
For example, Art. 127 of LITL sets a cap on the costs a taxpayer can claim for
the care of dependents. Calculating this cap requires identifying the dependents
who live in the same household as the taxpayer but are not taxpayers them-
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selves, and for whom the taxpayer receives some allowance. The corresponding
OCL navigation expression (the OCL context being TaxPayer) is as follows:

self.taxPayerDependents→select(dependent:Person| not dependent.oclIsTypeOf(TaxPayer) and
dependent.addresses→intersection(self.addresses)→notEmpty() and
dependent.allowances.amount→sum()>0)

The complexity of navigation expressions is caused in part by the expressive
(and thus long) labels of domain model elements in legal contexts, and in part
by the richness of legal rules and the need for multiple navigation levels.
– Branching : Legal rules often have numerous decision branches, capturing the
different cases where they apply and the corresponding actions to take. To il-
lustrate, we recall the example of Fig. 1. Even for the simple task of classifying
taxpayers into resident and non-resident, we need two if-then-else statements
(or similarly complex propositional logic equivalents of if-then-else). This num-
ber rises to six or seven for more complex rules. Feedback from legal experts
indicate that branching statements negatively impact comprehension.
– Iteration: OCL iterator operations (e.g., select, exists, forAll, iterate) are
often inevitable in legal rules. For instance, in the navigation expression given
earlier for identifying eligible dependents, one has to iterate over the dependents
to determine which ones satisfy the desired criteria. Our interaction with legal
experts suggests that iterations, specially nested ones, reduce comprehensibility.

Our approach, described next, take steps to address the observed information
requirements and complexity factors.

3 Modeling Methodology
Model the 
domain

Model the
legal rules

Relevant
legal texts

UML
Profile

Domain 
model

Legal rules
(Activity

Diagrams)
Transform legal 
rules into OCL

OCL Legal rules
(OCL)

Analysis

 
 

 
 

 
 

 
 

Fig. 4. Methodology

An overview of our modeling methodology is shown
in Fig. 4. The legal texts and the specific provisions
within them that are relevant to the legal rules of
interest are provided as input by legal experts. The
modeling step in the methodology includes two paral-
lel but interrelated tasks: (1) modeling the domain and
(2) modeling the legal rules. Both tasks require close
interaction with legal experts to ensure a sound un-
derstanding of the underlying legal notions. The first
task results in a domain model, providing a precise
representation of the concepts and relationships in the input legal texts. As is
common in object-oriented analysis, we use UML class diagrams for representing
domain models [18]. A domain model excerpt for Article 2 of LITL was shown
in Fig. 1(a). We follow standard practices for domain modeling and thus do not
elaborate this task further. For guidelines, see [18].

The second modeling task, i.e., modeling of the legal rules, is performed using
a customization of UML Activity Diagrams (ADs). ADs have long been used for
modeling procedural aspects of systems and organizations [17]. The procedural
nature of legal rules makes ADs a good match for our needs. Our customization
of AD’s is based on UML profiles [22].

The domain model in our methodology is an instrument for elaborating the
information that legal rules use as input. It is thus best to conduct tasks (1) and
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Table 1. UML profile stereotypes
Stereotype Description UML Metaclass(es) Concept &

Package
«rule» Defines an activity as a legal rule Activity Legal Rule«iterative» Defines an iterative region ExpansionRegion

«context» Defines the OCL context in which a
legal rule is being specified Activity Auxiliary

«decision» Defines a decision step DecisionNode
Operation

P
ro

ce
ss

«calculate» Defines an operation that calculates
a value OpaqueAction

«assert» Defines an operation that checks an
assertion OpaqueAction Auxiliary

«in» Defines an input to a legal rule ActivityParameterNode,
InputPin Data Object

«out» Defines an output from a region OutputPin

«intermediate» Defines an intermediate value result-
ing from a calculation CentralBufferNode Auxiliary

«formula» Defines the formula for a calculation Constraint Auxiliary

«statement» Defines the logical expression for an
assertion Constraint Auxiliary

«fromlaw» Declares a (constant) input as origi-
nating from a legal text

ActivityParameterNode,
InputPin Legal Text

T
ra

ce
ab

il
it
y

«fromagent» Declares an input as being provided
by a legal expert

ActivityParameterNode,
InputPin Legal Agent

«fromrecord» Declares an input as being retrieved
from a record (e.g., a database)

ActivityParameterNode,
InputPin Record

«query» Defines the query for obtaining an
input from its respective source Comment Auxiliary

(2) in tandem and not sequentially. Doing these tasks in parallel ensures that the
domain model is aligned with the legal rules in terms of data needs, and further
narrows the scope of domain modeling to what is necessary for supporting the
legal rules of interest. Once the legal rules have been modeled using our tailored
AD notation, the models are automatically translated into OCL. The resulting
OCL expressions along with the domain model can then be used for automated
analysis using OCL evaluators [11] and OCL solvers [7, 1].

Our main technical goal in this paper is to present the profile we have devel-
oped to customize ADs for expressing legal rules, and to describe how ADs built
using our profile are transformed into OCL. The profile and the OCL transfor-
mation are respectively tackled in Sections 4 and 5.

4 UML Profile for Legal Rules
Our profile’s stereotypes are shown in the first column of Table 1, followed by
a description in the second column. The third column shows the UML meta-
class(es) that each stereotype extends. We distinguish two kinds of stereotypes:
(1) those that directly represent concepts from the information model of Fig. 3,
and (2) those that are auxiliary, providing additional information about model
elements. The fourth column in Table 1 shows the mapping between the stereo-
types and the concepts and packages of our information model. Auxiliary stereo-
types are marked as Auxiliary in the column. The Datatype package of the
information model is not represented through stereotypes. Instead, typing infor-
mation is attached directly to the input and output nodes of ADs. The profile
diagram, the relevant fragment of the UML metamodel, and our datatype library
are provided in the supplementary material [26].

We illustrate our profile over the Commuting Expenses Deduction rule from
the excerpt of Article 105bis given in Fig. 2. The French term for this deduction
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Fig. 5. Activity Diagram for Commuting Expenses Deduction (FD)

is “Frais de Déplacement”. We refer to this deduction as FD. In Fig. 5, we show
how the FD rule is modeled using an AD. The «rule» stereotype applied to
the AD in this figure indicates that the AD is a legal rule. The AD is further
annotated with a «context» stereotype denoting the OCL context in which the
AD is being specified. The context is always an instance of a class from the
underlying domain model. For the AD in Fig. 5, the context is an instance of the
TaxPayer class from the domain model.

The core of the AD in Fig. 5 is a calculation procedure. The procedure yields
a value of 0 (zero) when a taxpayer is deemed not eligible for FD, i.e., when
distance > minimal_distance is false. For an eligible taxpayer, the procedure
yields the result of multiplying three quantities: (1) a flat rate (constant) from
the law, denoted flat_rate, (2) the distance between a taxpayer’s work and home
addresses, denoted distance, and (3) a prorated ratio representing the full-time
equivalent period during which the taxpayer has been employed over the course
of the tax year, denoted prorata_period. The formula applies up to a maxi-
mum home-to-work distance threshold, denoted maximal_distance and specified
in the law. Beyond this threshold, a nominal rate, denoted maximal_flat_rate,
is applied irrespective of distance but prorated as discussed above.

As illustrated in Fig. 5, the decisions and calculations are marked respectively
with the «decision» and «calculate» stereotypes. Each calculation has a «for-
mula» constraint attached, providing the formula for the calculation. The result
of a calculation is always stored in a (typed) intermediate variable marked by
the «intermediate» stereotype, e.g., expected_amount in Fig. 5.

Each legal rule concludes with an assertion: an operation marked by the «as-
sert» stereotype and providing an implicit Boolean output for the rule. Specifi-
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cally, an assertion is used to ascertain that the outcome produced by a system
or a human agent matches the outcome envisaged by the legal rule. Associated
with an assertion is a constraint with the «statement» stereotype, defining the
Boolean claim that needs to be checked. For example, the assertion in Fig. 5
checks whether the value of FD on a taxpayer’s file, denoted actual_amount,
matches the value computed by the rule, denoted expected_amount.

Inputs to decisions and operations are represented by small rectangles with a
gray shade and an «in» stereotype. The origin of each input is captured through
one of the following stereotypes: «fromlaw», «fromrecord» or «fromagent». Each
input has a query attached to it, represented as a comment with a «query»
stereotype. A query provides details on how an input is obtained from its source.
The «fromlaw» stereotype is used for inputs that are constants and specified in a
legal text, e.g., flat_rate. For these inputs, the query provides a traceability link
to the legal provision where the constant is defined. The «fromrecord» stereotype
is used for inputs derived from a record, e.g., incomes. For these, the query is
an OCL expression over the underlying domain model. Additional information
may be provided along the OCL expression such as the legal text that describes
the input, e.g., distance. Finally, «fromagent» stereotype is applied to inputs
that originate from a legal agent, e.g., tax_year. For these, the query provides
information about the agent type (role) authorized to provide the input as well
as the question that the agent needs to answer.

The legal rule in Fig. 5 takes into account the fact that a taxpayer may have
multiple (simultaneous or sequential) employment activities, and thus multiple
incomes and work addresses. To correctly compute the FD for a taxpayer, one
needs to iterate over all incomes gained by the taxpayer and ensure that the
computation of the FD portion for each income is consistent with the law. To
capture this iterative behavior, we use expansion regions from the AD notation.
An expansion region is an activity region that executes multiple times over the
elements of an input collection [22]. The legal rule of Fig. 5 has one expansion
region with incomes as its input collection. UML provides three execution modes
for expansion regions: iterative, parallel, and stream [22]. Of these, our profile uses
only the iterative mode, marked by the «iterative» stereotype. In this mode, exe-
cutions are performed sequentially and according to the order of elements in the
input collection. The name of the region’s expansion node, inc in our example,
serves as an alias for the iterator element in an individual execution. This alias
can be used in the OCL expressions associated with the inputs of the expansion
region, e.g., the OCL expression in the query attached to prorata_period.

The expansion region in the legal rule of Fig. 5 does not require an explicit
output because the assert operation occurs within the expansion region. Our
profile allows expansion regions to have an explicit output. This is useful for
capturing complex iterative calculations, e.g., computing the total amount of
benefits received by the dependents of a taxpayer. We use the «out» stereotype
to denote the (explicit) output of an expansion region, if one exists.

Consistency Constraints. To apply our profile in a sound manner, a number
of consistency constraints need to hold. We provide a complete list of these
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constraints in the supplementary material [26]. The consistency constraints are
aimed at enforcing the following: (1) Completeness of the information in models
of legal rules, e.g., to ensure that the source for each input has been specified
through the application of an appropriate stereotype and a query; (2) Mutually
exclusive application of certain stereotypes, e.g., to ensure that each input has
one and only one source stereotype («fromlaw», «fromrecord» or «fromagent»)
applied to it; and (3) Restrictions on the structure of ADs. Most notably, these
structural restrictions ensure that the flows do not give rise to cyclic paths, and
further that only the notational elements allowed by our methodology are being
used. All consistency constraints can be enforced as the models are being built.

We next describe how ADs built using our profile are transformed into OCL.

5 Transforming Legal Rules into OCL
In this section, we provide an algorithm to automatically transform ADs to OCL,
and illustrate this model-to-text transformation over the Commuting Expenses
Deduction (FD) rule discussed in Section 4. The choice of OCL as the target
language for the transformation is motivated by OCL being part of the UML and
further to benefit from existing testing and simulation frameworks, e.g., [1], that
are built around OCL. This section does not cover all the implementation details
of our transformation. See the supplementary material for full details [26].

The algorithm for the transformation, named ADToOCL and shown in
Alg. 1, takes as input an Activity Diagram, AD, and an element ∈ AD. Specifi-
cally, AD is an instantiation of the UML metamodel fragment for activity mod-
eling, and element is an object within this instantiation. We assume that AD sat-
isfies the consistency constraints of our profile (Section 4). To ensure consistency
between the semantics of activity diagrams and that of the OCL constraints gen-
erated from them, we further assume that AD uses only deterministic decisions.

Initially, the algorithm is called over AD with element pointing to the root
Activity instance in AD. In Fig. 6, we show the OCL constraint resulting from
the application of Alg. 1 to the FD rule of Fig. 5. Note that when our approach is
applied, analysts work over the ADs and are not exposed to such complex OCL
constraints. The generated constraints are meant for use by OCL engines.

The transformation is based on a set of predefined patterns. These patterns
are detailed in the supplementary material [26]. Each pattern is defined as a
graph P . If P is matched to a subgraph of AD rooted at element, the appropriate
OCL fragment for P is generated. For example, consider the intermediate value
expected_amount in FD. There is a pattern, Intermediate Value Pattern, that
deals with such values. This pattern has the following shape: an action with
the «calculate» stereotype connected by a flow to an intermediate value with
the «intermediate» stereotype. The application of this pattern generates a let
expression which defines an intermediate value based on a given calculation.
This pattern is applied three times during the transformation of FD for the
three calculations that lead to expected_amount. The OCL fragments for these
three applications are shown on L. 15, 22, and 28 of the constraint in Fig. 6.

The transformation process is recursive and mimics a depth-first traversal
of the underlying graph of AD. There are three main parts to this process: (1)



Using UML for Modeling Procedural Legal Rules 11

Alg. 1: ADToOCL
Inputs : (1) An Activity Diagram, AD. (2) An element 2 AD.
Output: An OCL string, result.

1 if (element is NULL) then
2 return ' ' /* Return empty string */
3 end if
4 Let P be the transformation pattern applicable to element.
5 Let input1, . . . , inputn be the non-declared inputs required by P .
6 foreach inputi do
7 result result+ADToOCL(AD, inputi)
8 end foreach
9 if (element is not a DecisionNode) then

10 Let st1, st2 respectively be the opening and closing OCL fragments obtained from applying P .
11 Let next be the next element to visit. /* ... chosen based on P and its outgoing flow */
12 result result+st1+ADToOCL(AD, next)+st2
13 if (element is an ExpansionRegion with an output) then
14 Let out denote the output element.
15 result result+ADToOCL(AD, out)

16 end if
17 else
18 Let f1, . . . , fm be the outgoing flows from element. /* m � 1 */
19 foreach fi do
20 if (i = 1) then
21 result result+'if('+element.name+')='+fi.name+'then'+ADToOCL(AD, fi.target)
22 else
23 result result+'else if('+element.name+')='+fi.name+'then'+ADToOCL(AD, fi.target)
24 end if
25 end foreach
26 result result+'else false'+

m times
z }| {
'endif'+. . .+'endif'

27 end if
28 return result
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1. context TaxPayer inv FD:
2. let tax year:Date = self.tax year in
3. let incomes:Set(Income) = self.incomes!select(i:Income | i.year = tax year) in
4. incomes!forAll(inc:Income |
5. let distance:DistanceUnit = inc.distance in
6. let minimal distance:DistanceUnit =
7. Constant::MINIMAL DISTANCE.oclAsType(DistanceUnit) in
8. if (distance > minimal distance) = true then
9. let maximal distance:DistanceUnit =
10. Constant::MAXIMAL DISTANCE.oclAsType(DistanceUnit) in
11. if (distance < maximal distance) = true then
12. let flat rate:MonetaryValue =
13. Constant::FLAT RATE.oclAsType(MonetaryValue) in
14. let prorata period:Numeric = inc.prorata period in
15. let expected amount:MonetaryValue = prorata period * flat rate * distance in
16. let actual amount:MonetaryValue = inc.getFD(tax year).amount in
17. actual amount = expected amount
18. else if (distance < maximal distance) = false then
19. let maximal flat rate:MonetaryValue =
20. Constant::MAXIMAL FLAT RATE.oclAsType(MonetaryValue) in
21. let prorata period:Numeric = inc.prorata period in
22. let expected amount:MonetaryValue = prorata period * maximal flat rate in
23. let actual amount:MonetaryValue = inc.getFD(tax year).amount in
24. actual amount = expected amount
25. else false endif
26. endif
27. else if (distance > minimal distance) = false then
28. let expected amount:MonetaryValue = 0 in
29. let actual amount:MonetaryValue = inc.getFD(tax year).amount in
30. actual amount = expected amount
31. else false endif endif
32. )
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Fig. 6. Generated OCL expression for the example of Fig. 5 (FD)
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input declarations (Alg. 1, L. 4-8); (2) transformation of all elements other than
decisions (Alg. 1, L. 10-16). Within this class of elements, additional processing
is necessary for expansion regions to propagate their output if they have one
(Alg. 1, L. 13-16); and (3) transformation of decision nodes (Alg. 1, L. 18-26).

The first part of the transformation process concerns identifying all inputs to
be declared before transforming a given element (Alg. 1, L. 5). Each such input
is transformed into a let expression (Alg. 1, L. 6-8). To illustrate, consider the
decision distance > minimal_distance in FD. The inputs to this decision are
transformed into L. 5-7 of the constraint in Fig. 6. This is performed before the
transformation of the decision itself (Fig. 6, L. 8). An input may have dependen-
cies to other inputs, e.g., incomes (Fig. 6, L. 3) depends on tax_year (Fig. 6, L. 2).
Such dependencies are handled through the recursive call of L. 7 in Alg. 1.

The second part of the process handles non-decisions. This is where the initial
call to Alg. 1 begins to unwind. The initial call is handled by the Context Pat-
tern, which transforms the context information attached to an Activity instance
via the «context» stereotype. There are no inputs associated with the Context
Pattern. Handling the pattern thus reduces to executing L. 10-12 of Alg. 1. The
opening OCL fragment (st1) resulting from the application of this pattern is L. 1
of Fig. 6; the closing fragment (st2) is empty. Then, on L. 12 of Alg. 1 a recursive
call is made with next set to the initial node of FD. The unwinding of this re-
cursive call generates the remainder of the OCL constraint (Fig. 6, L. 2-32). On
the left side of Fig. 6, we mark the scope of each recursive call and the respective
pattern. To avoid clutter, calls that handle input declarations are not marked.

The third and final part of the process transforms decisions into if-then-else
statements. This part is analogous to what we previously described.

We have implemented our transformation using Acceleo [10] – a model-to-text
transformation tool for Eclipse. Our Acceleo implementation is closely aligned
with the way we present the transformation in Alg. 1. While we currently support
only OCL as the target language for the transformation, it is possible to modify
our text generation rules to support other languages, e.g., Alloy [16].

6 Evaluation
We report on an industrial case study where we apply our approach to LITL. The
case study is an initial step towards answering the following Research Questions
(RQs): RQ1. Is the approach expressive enough to model complex legal rules?
RQ2. Is the level of effort required by our approach reasonable? And, RQ3. Are
the ADs built using our approach structurally less complex than OCL constraints
written directly? In the longer term, we plan to perform more extensive user
studies to evaluate the approach in a more thorough manner.

Our case study builds on an initiative by the Government of Luxembourg
to improve its eGovernment services in the area of taxation. One of the main
objectives of the initiative is to ensure that these services remain verifiably com-
pliant with the tax law as the law evolves. A key prerequisite for verification of
compliance is to have analyzable models of the tax law. Our case study develops
such models for a substantial fragment of the income tax law. The case study
was conducted in collaboration with our public service partner, CTIE.
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Study selection and execution. Our study concerns a set of legal rules from
LITL. Luxembourg has two complementary schemes for income taxes: (1) with-
holding taxes from salaries, and (2) assessing taxes based on a declaration. Our
study focuses on the former scheme. The basis for withholding is a tax card, de-
tailing the tax deductions and credits that apply to an income. Deductions are
expense items subtracted from the gross income before taxes. Credits are items
applied either against the taxes due or paid to the taxpayer in cash. A tax card
provides information about five deductions and three credits. The deductions are
for commuting expenses (FD), miscellaneous expenses (FO), spousal expenses
(AC), extraordinary expenses (CE), and special expenses (DS). CE is decom-
posed into three sub-categories and DS into six. The credits are for salaried
workers (CIS), pensioners (CIP), and single parents (CIM).
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The above deductions and credits give rise to 15 legal
rules. We applied our methodology described in Section 3
for expressing these rules. This resulted in a domain model
and 15 ADs built using our profile. The domain model has
7 packages, 61 classes, 15 enumerations, 106 attributes, and
24 operations. The distribution for the number of elements
in the ADs is given in the box plot of Fig. 7. The element
count for each AD is the sum of the number of inputs, outputs, decisions, actions,
flows, intermediate variables, expansion regions, and constraint/comment boxes.

Discussion . We next discuss the RQs that motivated our study. The three tax
credits in our study (CIS, CIP, and CIM) were used previously in our inves-
tigation of OCL complexity factors (Section 2) along with six other rules that
are unrelated to the case study. Since we had a priori knowledge about the tax
credits, the AD models for the tax credits are uninteresting for RQ1. To mitigate
learning effects, we further exclude these three models when discussing RQ2.

RQ1. Our profile provided enough expressiveness to conveniently capture
the legal rules in our study. One of the factors we considered in our models was
to avoid nested structures, particularly nested expansion regions. Although our
profile and OCL transformation can handle nesting, models containing nested
structures can be hard to comprehend. In our study, we could avoid nesting in
all models by choosing a suitable OCL context for each of the legal rules.

RQ2. We are interested in measuring the level of effort as an indicator for
whether the approach has a realistic chance of adoption in practice. The ADs
were built by the first author, who has 6 years of formal training in computer
science and 3 years of experience in MDE. The models were built following a half-
day tutorial on personal income taxes by legal experts. The domain model was
developed simultaneously with the ADs, as suggested in Section 3. Developing
the 12 ADs for tax deductions took ≈ 40 person-hours (ph) including the effort
spent on the domain model. This is an average of 3.3 ph per AD. The 3 ADs for
tax credits took ≈ 7 ph to build, i.e., an average of 2.3 ph per AD. Only the tax
deductions are representative in terms of effort, due to reasons discussed earlier.
Once built, the ADs were presented to a group of six legal experts in a half-day
training and walkthrough session. We received positive feedback from the legal
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Table 2. Comparison of complexity: direct use of OCL vs. OCL fragments in ADs
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experts involved in our study; however, we have not yet conducted a detailed
user study to thoroughly assess our approach. We consider the overall effort to
be worthwhile as the resulting models provide a complete characterization of the
tax card, which applies to a large majority of the taxpayers.

RQ3. Our profile limits the use of OCL to the inputs, formulas, and state-
ments of ADs. In this way, the profile to a large extent shields users from OCL
and the structural complexity of OCL expressions. Reynoso et al. [23] argue
that reductions in OCL structural complexity bring about reductions in cogni-
tive complexity and improvements in understandability. The aim of RQ3 is to
measure the value of our profile in terms of structural complexity reduction when
compared to the situation where legal rules are directly written in OCL. This
comparison provides preliminary insights as to whether our profile can result in
more intuitive and understandable specifications of legal rules.

To answer RQ3, the second author manually wrote constraints for the tax
deductions, in a similar manner to the tax credits (Section 2). We then com-
pared these constraints to the OCL expressions used in the ADs, i.e., the OCL
expressions to which the users of our profile are exposed. For the comparison, we
selected a subset of the OCL structural complexity metrics proposed by Reynoso
et al. [23]. Our selection was driven by what we deemed relevant to the com-
plexity factors observed in our field study (Section 2). Specifically, we consider
the following metrics: number of navigations (C1), number of if-then-else state-
ments (C2), number of operations on collections, e.g., any, sum, excludes (C3),
and number of iterative operations, e.g., select, forAll (C4). C1 and C2 respec-
tively reflect the navigation and branching complexity factors; C3 and C4 both
relate to the iteration complexity factor.

Table 2 shows the metrics, across all the deductions and credits, for manually-
written OCL constraints (denoted, M) vs. the OCL fragments used in the ADs
(denoted, A). As the table suggests, the ADs built using our approach lead to
reductions in structural complexity. In particular, the AD’s reduce on average: C1

by 45%, C2 by 100%2, C3 by 72%, and C4 53%. The structural complexity that
carries over to the ADs is primarily caused by the OCL expressions that define
the inputs to the ADs. To validate the ADs with non-software engineers, one can
replace these expressions with intuitive descriptions without any impact on the
ADs. Finally, we need to emphasize that the complexity reductions seen are only
suggestive of benefits, but not definitive evidence for them. Further empirical
validation remains essential to determine whether the complexity reductions
indeed translate into improved understandability.

2 The 100% reduction is due to the fact that the ADs in our study do not contain
if-then-else statements, as all branching behaviors are captured using decision nodes.
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7 Related Work
In this section, we compare our approach with several areas of related work.
Legal rules. van Engers et al. [28] express legal rules via OCL; however, they use
OCL directly in their specifications. Our approach provides a model-based solu-
tion for expressing legal rules. Breaux et al. [5] describe a rule-based framework
for legal requirements. Nevertheless, they do not operationalize these require-
ments. The legal rules in our approach are in contrast executable.
Verification of legal compliance. Compliance verification has long been stud-
ied for business processes in domains such as healthcare [12, 13] and finance [15].
Few strands however address compliance for software systems. Notable among
these is work by Maxwell et al. [19], where they derive system compliance rules
from legal texts, and by Breaux [4] where he extracts finite state machines from
legal texts to guide system compliance checking. These earlier strands focus on
capturing the functional requirements of software systems. Our approach instead
focuses on modeling software systems in terms of inputs and expected outputs
(as envisaged by the law), and irrespectively of specific system functions.
Visualization of logical languages. Bottoni et al. [3] and Stein et al. [27]
propose visualizations for OCL, and Amàlio et al. [2] – for the Z language [25].
These approaches are not tailored to legal rules and lack means for addressing
the information requirements and complexity factors discussed in Section 2.
Model-to-OCL transformation. Cabot et al. [6] construct OCL transforma-
tions of domain-specific language rules, and Milanović et al. [20] derive OCL
constraints from integrity rule models. These approaches neither address legal
rules nor tackle the transformation of activity diagrams, as done in our approach.

8 Conclusion
We proposed a UML-based approach for modeling procedural legal rules. The
key component of the approach is a profile for activity diagrams. To enable
automated compliance analysis, we defined a transformation that produces OCL
specifications from activity diagrams built using our profile. We presented a
preliminary evaluation of our approach.

Our approach focuses on prescriptive legal frameworks. In the future, we
would like to investigate how and to what extent our approach can accommodate
declarative frameworks and notions such as permissions and obligations. Another
topic for future work is to conduct more field studies and generalize our UML
profile to a larger set of legal domains. Further, a more thorough evaluation of
our approach is essential. In particular, the legal experts in our study underwent
training before they were able to understand our models. Legal experts trained
in other approaches, e.g., mathematical logic, may have done equally well. User
studies are necessary to determine what advantages and disadvantages our ap-
proach offers compared to the direct use of logic. Finally, we plan to study how
our models can support automated analysis tasks such as simulation.
Acknowledgments. Financial support was provided by CTIE and FNR under
grant number FNR/P10/03. We are grateful to members of Luxembourg Inland
Revenue Office and CTIE for sharing their valuable insights with us.



16 G. Soltana et al.

References

1. Ali, S., Zohaib Iqbal, M., Arcuri, A., Briand, L.: Generating test data from OCL
constraints with search techniques. IEEE Transactions on Software Engineering
39(10), 1376–1402 (2013)

2. Amàlio, N., Kelsen, P., Ma, Q., Glodt, C.: Using VCL as an Aspect-Oriented
Approach to Requirements Modelling. Transactions on Aspect-Oriented Software
Development 7, 151–199 (2010)

3. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: Consistency checking and
visualization of OCL constraints. In: Proc. of 3rd Intl. Conf. on The Unified Mod-
eling Language: Advancing the Standard (UML’00). pp. 294–308 (2000)

4. Breaux, T.: A method to acquire compliance monitors from regulations. In: Proc.
of 3rd Intl. Wrkshp. on RE and Law (RELAW’10). pp. 17–26 (2010)

5. Breaux, T.: Exercising due diligence in legal requirements acquisition: A tool-
supported, frame-based approach. In: Proc. of 17th IEEE Intl. Requirements En-
gineering Conf. (RE’09). pp. 225–230 (2009)

6. Cabot, J., Clarisó, R., Guerra, E., Lara, J.: A UML/OCL framework for the anal-
ysis of graph transformation rules. Software and Systems Modeling 9(3), 335–357
(2010)

7. Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL class diagrams us-
ing constraint programming. In: Proc. of 2008 IEEE Conf. on Software Testing
Verification and Validation Wrkshp. (ICST’08). pp. 73–80 (2008)

8. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. SAGE Publications, 3rd edn. (2008)

9. Dey, I.: Qualitative data analysis - A user-friendly guide for social scientists. Rout-
ledge (1993)

10. Eclipse Foundation: Acceleo - transforming models into code. http://www.
eclipse.org/acceleo/, last accessed: March 2014

11. Eclipse Foundation: Ecore tools. http://www.eclipse.org/ecoretools/, last ac-
cessed: March 2014

12. Ghanavati, S., Amyot, D., Peyton, L.: Towards a framework for tracking legal
compliance in healthcare. In: Proc. of 19th Intl. Conf. on Advanced Information
Systems Engineering (CAiSE 2007). pp. 218–232 (2007)

13. Goedertier, S., Vanthienen, J.: Designing compliant business processes with obliga-
tions and permissions. In: Proc. of 7th Wrkshp. on Business Process Management
(BPM’06). pp. 5–14 (2006)

14. Gov. of Luxembourg: Modified income tax law of december 4, 1967 (2013)
15. Hassan, W., Logrippo, L.: Requirements and compliance in legal systems: a logic

approach. In: Proc. of 1st Intl. Wrkshp. on RE and Law (RELAW’08). pp. 40–44
(2008)

16. Jackson, D.: Software Abstractions Logic, Language, and Analysis. The MIT Press
(2006)

17. Korherr, B., List, B.: Extending the UML 2 activity diagram with business process
goals and performance measures and the mapping to BPEL. In: Proc. of 2nd Intl.
Wrkshp. on Best Practices of UML (ER BP-UML’06). pp. 7–18 (2006)

18. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development (3rd Edition). Prentice Hall (2004)

19. Maxwell, J., Anton, A.: Checking existing requirements for compliance with law
using a production rule model. In: Proc. of 2nd Intl. Wrkshp. on RE and Law
(RELAW’09). pp. 1–6 (2009)



Using UML for Modeling Procedural Legal Rules 17

20. Milanovic, M., Gasevic, D., Giurca, A., Gerd, W., Devedzic, V.: Towards shar-
ing rules between OWL/SWRL and UML/OCL. Electronic Communications of
European Association of Software Science and Technology 5, 2–19 (2007)

21. Miles, M., Huberman, A.: Qualitative data analysis: an expanded sourcebook.
SAGE (1994)

22. Object Management Group: UML 2.2 superstructure specification (2009)
23. Reynoso, L., Genero, M., Piattini, M.: Towards a metric suite for OCL expressions

expressed within UML/OCL models. Journal of Computer Science and Technology
4(1), 38–44 (2004)

24. Ruiter, D.: Institutional Legal Facts: Legal Powers and Their Effects. Kluwer Aca-
demic Publishers (1993)

25. Smith, G.: The Object-Z specification language. Kluwer (2000)
26. Soltana, G., Fourneret, E., Adedjouma, M., Sabetzadeh, M., Briand, L.:

Using UML for modeling legal rules. Tech. Rep. TR-SnT-2014-3, Interdis-
ciplinary Centre for Security, Reliability and Trust (SnT) (March 2014),
http://people.svv.lu/soltana/Models14.pdf

27. Stein, D., Hanenberg, S., Unland, R.: A graphical notation to specify model queries
for MDA transformations on UML models. In: Proc. of 2nd Conf. on Model Driven
Architecture: Foundations and Applications (MDAFA’04). pp. 60–74 (2004)

28. van Engers, T., Gerrits, R., Boekenoogen, M., Glassée, E., Kordelaar, P.: POWER:
using UML/OCL for modeling legislation - an application report. In: Proc. of 8th
Intl. Conf. on Artificial Intelligence and Law (ICAIL’08). pp. 157–167 (2001)


