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ABSTRACT

The present work proposes a method for simulating linear elastic fracture and crack growth

through an isogeometric boundary element method. Non-Uniform Rational B-Splines (NURBS)

are used to approximate the geometry, boundary displacements and boundary tractions. Col-

location is employed to generate the system of equations. To avoid the degeneration of the sys-

tem matrix seen when modelling coincident crack surfaces with conventional boundary element

methods, a dual boundary element method formulation, which makes use of two independent

boundary integral equations, is applied. To capture the stress singularity around the crack tip

in the framework of linear elastic fracture mechanics, two methods are proposed: (1) a graded

knot insertion near crack tip; (2) partition of unity enrichment. A well-established CAD algo-

rithm is adopted to generate a smooth crack surface as the crack grows. TheM integral and Jk

integral methods for the extraction of stress intensity factors are compared in terms of accuracy

and e�ciency. The numerical results are compared against closed-form solutions as well as

other numerical methods, namely the collocation BEM with a Lagrangian basis, a symmetric

Galerkin BEM and extended �nite element methods. The crack growth paths obtained by the

proposed method are validated using experimental data.

KeyWords: Isogeometric analysis; NURBS; Linear elastic fracture; Boundary element method;

Crack growth.
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1 Introduction

The e�ciency of the boundary element method (BEM) in modeling fracture problems is based on

two reasons: (1) due to the integral representation of solutions inside the domain, the accuracy

of the BEM in capturing the stress concentration or singularity is higher in comparison with

domain integration methods like the �nite element method (FEM); (2) the dimensionality of

the problem in BEM is reduced by one in comparison with domain-type methods like FEM

and only the change of the boundary needs to be taken into account when crack evolves,

which greatly releases the computational burden and simpli�es the remeshing procedure. The

important issue for modeling fracture using BEM is the degeneration of the system matrix when

the source points are placed on the overlapped crack surfaces. Many works have been proposed

to address this problem. Blandford et al [1] used the multi-region method to model crack

problems by dividing the domain into sub-domains along the crack surface and introducing

arti�cial-created boundaries. This approach is cumbersome in dealing with multiple cracks and

crack propagation problems. Synder and Cruse [2] developed a modi�ed fundamental kernel for

in�nite domain containing �at, traction free crack and it works well for 2D mixed-mode crack.

However, it is hard to extend this work to the general scenarios of the crack modeling. The most

popular approach to overcome the degeneration of the system is to to prescribe displacement

boundary integral equation (BIE) on one crack surface and traction BIE on the other crack

surface. The method is called dual boundary element method (DBEM) [3]. DBEM provides

an e�cient way to model cracks of arbitrary 1D and 2D geometries [4][5][6][7]. Another way

to model crack problems is named displacement discontinuity method (DDM) [8], which is

mostly suitable for problems with symmetry. In this method, the two overlapped crack surfaces

are replaced by one of the surface, which drastically decreases the computational model size.

And the displacement and traction discontinuities on the crack surface are used as primary

quantities instead of displacement and traction on the two crack surfaces in DBEM. in such

case, even a single traction BIE can be used for fracture problems [9]. DDM is proved to

be a special formation of DBEM later by Partheymüller et al [10], and they extended the

application of DDM from symmetric loaded cracks to asymmetric loaded cracks. However the

displacement is indirect on the crack surface since only displacement discontinuity is obtained.

Additional postprocess needs to be done to retrieve the displacement solution which increases
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the computational burden. Another branch of work focuses on the Galerkin formulation of BEM,

particularly symmetric Galerkin BEM (SGBEM), for fracture mechanics, which primarily based

on DDM [11][12][13]. In Galerkin formulation, the error estimation theory is well developed

and the boundary continuity requirement is relaxed to be C0 for hypersingular BIE due to the

application of weak form [14]. However, double integrals need to be evaluated which makes it

much slower then the traditional collocation BEM. In order to make the crack modeling more

e�cient for large scale problems, some BEM-FEM coupled schemes are proposed [15][16][17].

The general idea is to subdivide the cracked domain into two sub-domains, the BEM sub-

domain and the FEM sub-domain, to take advantage of both methods. Some other methods

like boundary element-free method, which is based on moving least square approximation, is

also proposed and applied to fracture modeling [18].

The accurate evaluation of stress intensity factors (SIFs) plays a pivot role for crack growth

modeling. Nevertheless, due to the 1/
√
r stress singularity in the vicinity of the crack tip, special

care should be taken in the numerical methods in order to obtain a more accurate and reliable

SIFs. One of the ways to capture the asymptotics of the displacement and stress �elds in the

vicinity of a crack is by means of special crack tip elements. For example, so called quarter-point

element, where the middle nodes are shifted to the positions of one quarter of the element sides

from the crack edge [19][20]. This modi�cation results in the exact representation of the 1/
√
r

singularity in the near-tip stress �eld and allows to extract SIF directly [21]. Another example

is the hybrid crack element, developed in both FEM and BEM communities [22][23], which

introduces the the asymptotic behavior of the stress �eld around crack tip in to the tip-element

so that the SIFs can be output directly and accurately.

The partition-of-unity based enrichment idea [24] is widely used to capture the singularity

near the crack tip in linear elastic fracture mechanics. The popular extended �nite element

method (XFEM) [25], extended meshfree method [26] has been widely investigated for both

2D and 3D fracture propagation problems. The enriched stress �eld can result in a much more

accurate SIFs than the classical one. And the enrichment idea has been introduced in BEM

as well [18][27][28]. The virtual crack closure technique (VCCT) based on the Irwin's integral

of strain energy release rates, is another common method to extract SIFs in FEM and BEM,

and recently has been extended to XFEM and extended element-free Galerkin method (XEFG)

[29][30]. Since the near-tip singular behavior is already known as Williams solution, the idea to

3



remove the singularity is proposed and the SIFs can be output directly as well [31]. However,

the Williams solution is only valid in the near-tip region. The near-tip region is ambiguous in

practical problems. The J integral based methods are regarded as very accurate approaches

to extract SIFs in both FEM and BEM communities. Di�erent kinds of extraction from J1

(J) are developed, such as the symmetric and asymmetric decomposition of J1 [32], the M

integral (interaction energy integral) [33]. Chang and Wu [34] proposed the Jk method which

does not need to introduce any auxiliary �elds and suitable for no matter �at and curved

cracks. We note that in the implementation of FEM/XFEM and other domain type methods,

these contour integrals are always cast into domain integrals since the FEM-solution and the

related quantities are obtained inside the domain [35][36][25]. However, in BEM it is easier to

deal with the contour integrals, since obtaining solutions inside the domain requires additional

integration, while evaluating Jk, M - integrals along the crack surfaces is done directly and

straightforwardly due to the boundary nature of BEM-solutions. The later two contour integral

methods, namely Jk and M - integrals are discussed in detail in this paper.

The isogeometric analysis (IGA)[37] has been proposed as an alternative fundamental method-

ology to the traditional Lagrange polynomial based analyses. The IGA utilizes the same splines,

that are used to exactly represent the geometry, as the basis function for the approximation

of the unknown �elds, which builds up a more direct link between CAD and analysis. The

non-uniform rational B-splines (NURBS) based IGA has been widely investigated in many

areas [38][39][40][41][42]. Another, more �exible geometrical representation technique named

T-spline has been introduced to overcome the di�culties presented in NURBS, such as [43][44].

Recently the IGA has been incorporated with BEM and applied in exterior potential-�ow prob-

lems [45], potential problems [46], elastostatics [47][48], shape optimization [49], Stokes �ow

[50] and acoustic [28][51] etc. The isogeometric BEM (IGABEM) presents another way for iso-

geometric analysis due to the natural �t between the two methods. Currently, the dominated

CAD geometry only provides surface description by smooth splines. This is in consistence with

the basic feature of the BEM since only the unknown �elds (displacement and traction) along

the boundary is required to approximate. And the convergence rule of collocation BEM with

splines has been investigated earlier which forms the solid theoretical basis of the combined

methodology [52][53]. In this paper, a new application of IGABEM is discussed in detail for lin-

ear elastic fracture problems. It should be noted that knot insertion in B-splines can introduce
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discontinuities in the geometry, which makes it possible to extend IGA into the application for

fracture mechanics [54]. The higher order continuity provided by splines also enables a more

straightforward way to introduce traction BIE for crack modeling. This paper presents a basic

scheme for the fracture modeling and crack propagation for 2D domain.

The paper is organized as follows: The concept of NURBS basis is reviewed shortly in section 2.

The basic idea of DBEM for fracture modeling is brie�y reviewed in section 3, and more details

are followed involving collocation and singular integration in DBEM. Section 4 concludes the

approaches for extraction of the SIFs, based on M integral and Jk integral. section 5 outlines

a modifying-NURBS approach to simulate crack growth using NURBS based representation

for cracks. Numerical examples are shown both for fracture analysis and crack propagation, in

comparison with other popular methods like SGBEM, XFEM and XEFG.

2 NURBS basis functions

The NURBS basis functions are the generalization of B-spline functions that allows a "pro-

jection" to form complex geometries. So the basic concept of B-spline is �rst outlined here.

B-spline basis functions are de�ned over the knot vector, which is a non-decreased sequence of

real numbers given in the parameter space. A knot vector is denoted as Ξ = {ξ1, ξ2, ..., ξn+p+1},

where ξA ∈ R is the Ath parameter coordinate (knot), p is the order of the polynomial in B-

spline basis functions, n is the number of the basis functions. For a given order p, the B-spline

basis functions NA,p with 1 6 a 6 n are de�ned by the Cox-de Boor recursion:

NA,0(ξ) =


1 ξA 6 ξ < ξA+1

0 otherwise,

(1)

then, for p > 0,

NA,p(ξ) =
ξ − ξA

ξA+p − ξA
NA,p−1(ξ) +

ξA+p+1 − ξ
ξA+p+1 − ξA+1

NA+1,p−1(ξ). (2)

The continuity of B-spline basis functions at ξA can be decreased by repeating the knot several

times. If ξA has multiplicity k (ξA = ξA+1 = ... = ξA+k−1), then the basis functions are

Cp−k continuous at ξA. Particularly, when k = p, the basis is C0 and k = p + 1 leading to a
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Figure 1: Crack model

discontinuity at ξA. If the �st and last knot have k = p + 1, the knot vector is called an open

knot vector. More details can be referred in [55].

Having de�ned the B-spline basis functions N = {NA,p}nA=1, we can describe a curve C(ξ)

in Rds (ds is the spatial dimensionality, ds = 2 in this paper) by a group of control points

P = {PA}nA=1 with them as:

C(ξ) =
n∑

A=1

PANA,p(ξ) (3)

The NURBS curve is de�ned in the same way except replacing the B-spline basis functions into

NURBS basis functions. For example, a NURBS curve C(ξ) can be described as:

C(ξ) =
n∑

A=1

PARA,p(ξ) (4)

where RA,p are the NURBS basis functions, which are de�ned as;

RA,p(ξ) =
ωANA,p(ξ)∑n
B=1 ωBNB,p(ξ)

. (5)

ωB is the weight associated with the Bth control point. Note that RA,p is only non-zero on the

knot interval [ξa, ξb]) de�ned by p+ 1 control points.

6



3 Isogeometric DBEM for frature modeling

3.1 Problem formulation

Consider an arbitrary domain Ω which contains a crack as in Figure 1. The boundary Γ is

composed of Γu where Dirichlet boundary condition is prescribed with known displacement ū,

Γt where Neumann boundary condition is prescribed with known traction t̄. All the remaining

part is defaulted as traction-free boundary t̄ = 0 with the unknown displacement. The crack Γc

is composed of two coincident faces: Γc+ and Γc− and traction-free crack problem is assumed

in this work. s = (s1, s2) denotes the source point and x = (x1, x2) the �eld point. The

displacement BIE at the source point s is given by

cij(s)uj(s) +−
∫

Γ
Tij(s,x)uj(x)dΓ(x) =

∫
Γ
Uij(s,x)tj(x)dΓ(x) (6)

where the Uij , Tij are called fundamental solutions, given by

Uij(s,x) =
1

8πµ(1− ν)

[
(3− 4ν)δij ln

(
1

r

)
+ r,ir,j

]
(7)

Tij(s,x) =
1

4πµ(1− ν)r

{
∂r

∂n
[(1− 2ν)δij + 2r,ir,j ]− (1− 2ν)(r,inj − r,jni)

}
(8)

for 2D under plane strain condition, where µ = E/[2(1 + ν)], E the Young's Modulus, ν the

Poisson's ratio. Components Tij exhibit a singularity of O(1/r) and the sign −
∫
implies that

the corresponding integrals are understood in the sense of Cauchy Principal Value (CPV),

|r| = |x− s|. and Uij is weakly-singular (of order O(ln(1/r))).

The idea of the boundary element method is to discretize the boundary geometry and the

physical �elds using sets of basis functions. Subsequently, the source point is placed at the

collocation points and the displacement BIE (6) is transformed into the system of linear algebraic

equations. However, when the domain contains a crack, the collocation points on the overlapped

surfaces refer to the Figure 1 (b), Γc+ coincide with Γc− and the system matrix becomes singular.

This di�culty is overcome in dual boundary element method by prescribing traction BIE on one

of the crack faces (Γc− in Figure 1(b) ), and displacement BIE on the other crack surface (Γc+)

and the rest of the boundary Γ. The traction BIE is obtained by di�erentiation of displacement
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BIE with respect to s and multiplying the elastic tensor Eijkl:

cij(s)tj(s) + =

∫
Γ
Sij(s,x)uj(x)dΓ(x) = −

∫
Γ
Kij(s,x)tj(x)dΓ(x) (9)

Sij(s,x) = Eikpq
∂Tpj(s,x)

∂sq
nk(s), Kij(s,x) = Eikpq

∂Upj(s,x)

∂sq
nk(s) (10)

where Sij is the hypersingular kernel (O(1/r2)) and the sign =
∫
denotes the Hadamard �nite part

integrals and Kij is of order O(1/r). The fundermental solutions for traction BIE are detailed

in the Appendix A. cij(s) = 0.5δij when the source point s is on the smooth boundary.

3.2 NURBS discretisation

In the NURBS based isogeometric concept, The physical �eld is approximated by the same

NURBS basis functions which are used to describe the geometry Γ = C(ξ). The displacement

and traction can be approximated as following:

ui(ξ) =
n∑

A=1

RA,p(ξ)d
A
i (11)

ti(ξ) =
n∑

A=1

RA,p(ξ)q
A
i (12)

We de�ne an element in the parameter space as an interval between two consequent non-repeated

knots [ξa, ξb] and linearly transform it on interval [−1, 1], which is called "parent space" [37].

We de�ne ξ̂ as the parent coordinate of the �eld point x in [−1, 1], ξ̂s as the parent coordinate

of the source point s in [−1, 1], and J(ξ̂) is the Jacobian transformation from physical space to

parent space. The transformation process for one NURBS element (the knot interval [ξa, ξb])

to the parent space [−1, 1] is shown in Figure 2. And we have

ξ = ξ(ξ̂) =
(ξb − ξa)ξ̂ + (ξb + ξa)

2
,

J(ξ̂) =
dΓ

dξ

dξ

dξ̂

(13)

Then above form can also be written via the elemental approximation as:

ui(ξ̂) =

p+1∑
I=1

NI(ξ̂)d
I
i (14)
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ti(ξ̂) =

p+1∑
I=1

NI(ξ̂)q
I
i (15)

where

NI(ξ̂) = RA,p(ξ) (16)

And di, qi are displacement and traction control variables respectively. The relation of local

index I and global index A is given by the element connectivity [47]. Substituting the discretized

displacements and tractions into the BIEs will give,

p+1∑
I

CIij(s)d
I
j +

Ne∑
e=1

p+1∑
I

T Iijd
I
j =

Ne∑
e=1

p+1∑
I

U Iijq
I
j (17)

p+1∑
I

CIij(s)t
I
j +

Ne∑
e=1

p+1∑
I

SIijd
I
j =

Ne∑
e=1

p+1∑
I

KI
ijq

I
j (18)

where the the jump term and integrals of the fundamental solutions are respectively as:

CIij(s) = cijNI(ξ̂s) (19)

T Iij =

∫ 1

−1
Tij(s,x(ξ̂))NI(ξ̂)J(ξ̂)dξ̂ (20)

U Iij =

∫ 1

−1
Uij(s,x(ξ̂))NI(ξ̂)J(ξ̂)dξ̂ (21)

SIij =

∫ 1

−1
Sij(s,x(ξ̂))NI(ξ̂)J(ξ̂)dξ̂ (22)

KI
ij =

∫ 1

−1
Kij(s,x(ξ̂))NI(ξ̂)J(ξ̂)dξ̂ (23)

3.3 Treatment of singular integrals

Integration of weakly-singular, strongly-singular and hyper-singular kernels in Equations (20)-

(23) presents a major di�culty in BEM. In present work, weakly-singular integrals are evaluated

using Telles transformation [56]. Strongly-singular integrals in Equation (6) are treated in two

di�erent ways. In the �rst approach, the singularity in Tij is removed by the regularization

method, based on use of "simple solutions" [57][58], i.e. the rigid body motions, which satisfy

Equation (6) with zero tractions. Adding and subtracting term u(s) in Equation (6), the
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Figure 2: Coordinate system in IGABEM: (a) the element containing collocation point s in the
global space; (b)the parametric space and parent space

strongly-singular equation can be transformed into the regularized form:

∫
Γ
Tij(s,x)(uj(x)− uj(s))dΓ(x) =

∫
Γ
Uij(s,x)tj(x)dΓ(x) (24)

After discretisation, Equation (24) becomes

Ne∑
e=1

p+1∑
I=1

P Iijd
I
j =

Ne∑
e=1

p+1∑
I=1

U Iijq
I
j , (25)

where

P Iij =

∫ 1

−1
Tij(s,x(ξ̂))(NI(ξ̂)−NI(ξ̂s))J(ξ̂)dξ̂ (26)

A major advantage of Equation (24) is the fact, that it allows weaker continuity of NURBS

functions at the collocation points, in comparison with Equation (6), and does not require

calculation of jump term cij(s). However, when Equation (24) is used at coincident points on

crack surfaces, only singularity corresponding to one of the points is removed. There have been

many attempts to overcome this di�culty. Such as, for example, creating arti�cial integration

surfaces, which exclude the second singular point [59][60]. However, the creation and evaluation

for the arti�cial surface is not very e�cient [61] and particularly, it is cumbersome to deal with

in the framework of isogeometric analysis. Therefore, in present work, Equation (24) is used

only on non-cracked boundary, while on crack surfaces, the approach, known as the singularity

subtraction technique (SST), is used [62]. SST is applied to both, strongly-singular and hyper-
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singular integrals after the parametrization in the parent space Equations (20), (22) and (23).

The essential idea of the method is to expand the kernel, the shape function and the Jacobian

J(ξ̂) into Taylor series in the vicinity of the collocation point, and split the integrands into

regular and singular parts. Then the singular terms can be evaluated analytically, while for

regular terms standard Gauss quadrature is used. Take the hyper-singular integral term Seijl as

example:

SIij =

∫ 1

−1
Sij(s,x(ξ̂))NI(ξ̂)J(ξ̂)dξ̂ =

∫ 1

−1
F (ξ̂s, ξ̂)dξ̂, (27)

The function F (ξ̂s, ξ̂) can be expanded as:

F (ξ̂s, ξ̂) =
F−2(ξ̂s)

δ2
+
F−1(ξ̂s)

δ
+O(1) (28)

where δ = ξ̂− ξ̂s. The details to obtain F−2 and F−1 with NURBS basis are given in Appendix

A and can be referred in [62][27]. The �nal form of (27) is given by:

∫ 1

−1
F (ξ̂s, ξ̂)dξ̂ =

∫ 1

−1

(
F (ξ̂s, ξ̂)−

F−2(ξ̂s)

δ2
− F−1(ξ̂s)

δ

)
dξ̂

+ F−2(ξ̂s)

(
− 1

1− ξ̂s
+

1

−1− ξ̂s

)
+ F−1(ξ̂s)ln

∣∣∣∣∣ 1− ξ̂s
−1− ξ̂s

∣∣∣∣∣
(29)

In the Equation (29) it is implied that −1 < ξ̂s < 1, i.e. the collocation point is located inside

the element of integration. The �rst integral in (29) is regular and it is evaluated using standard

Gaussian quadrature.

3.4 Partition of unity enrichment formulation

The partition of unity (PU) enrichment method has been well applied in FEM to model the

problems with a priori knowledge about the solution. The approximation of the primary �eld

by PU enrichment is decomposed by two parts: an regular part and enriched part. The later one

allows the approximation to carry the speci�c information of the solution through additional

degrees of freedom. Simpson et al [27] �rst proposed the idea of enrichment in BEM to capture

the stress singularity around the crack tip. The enriched displacement approximation with
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NURBS basis is:

ui(x) =
∑
I∈NI

NI(x)dIi +
∑
J∈NJ

NJ(x)

4∑
l=1

φl(x)aJi , (30)

where dIi are the regular DOFs. a
J
i are the crack tip enriched DOFs. Since in BEM the crack has

been explicitly modeled by two overlapped surfaces, the Heaviside enrichment is excluded. NI

and NJ are the collections of regular control points and enriched control points, respectively.

The crack tip enrichment functions are de�ned as:

{φl(r, θ), l = 1, 4} =

{√
rsin

θ

2
,
√
rcos

θ

2
,
√
rsin

θ

2
sinθ,

√
rcos

θ

2
sinθ

}
, (31)

where (r, θ) is the polar coordinate system associated with the crack tip. If the enrichment is

done in a small vicinity of the crack tip, where the crack can be regarded as a straight line,

i.e. in Equation (31) angle θ = ±π and the set of four crack tip enrichment functions can be

reduced to one, i.e. φ =
√
r. Then Equation (32) results in:

ui(x) =
∑
I∈NI

NI(x)dIi +
∑
J∈NJ

NJ(x)φ(x)aJi . (32)

Substituting the above equation into (6) and (9) and discretising with NURBS basis, the en-

riched displacement and traction boundary integral equations can be obtained, respectively:

p+1∑
I

CIij(s)(d
I
j + φ(s)aIj ) +

Ne∑
e=1

p+1∑
I

(T Iijd
I
j + T Iijφa

I
j ) =

Ne∑
e=1

p+1∑
I

U Iijq
I
j (33)

p+1∑
I

CIij(s)t
I
j +

Ne∑
e=1

p+1∑
I

(SIijd
I
j + SIijφa

I
j ) =

Ne∑
e=1

p+1∑
I

KI
ijq

I
j (34)

Note that topological enrichment is used, i.e., only the element at the crack tip is enriched,

the enrichment terms do not need to be computed for unenriched element. Di�ering from [27]

where the discontinuous quadratic Lagrange element are enriched, the enrichment for NURBS

basis will lead to blending elements due to the continuity of the basis. The singular integration

for enriched element can be done with SST as before as long as the local expansion for φ =
√
r

is obtained.
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Figure 3: Mesh discretization for mode I crack: (a) discontinuous Lagrange element (p = 2),
(b) NURBS (p = 2)

3.5 Continuity requirements and collocation strategy

Methods of evaluating strongly-singular and hyper-singular integrals in (20), (22), (23), de-

scribed above, are implicitly or explicitly based on Taylor expansion of the integrands in the

vicinity of the collocation point. Since the essential feature of the isogemetrical approach is to

represent displacements, tractions and the geometry using the same NURBS basis functions,

special attention should be paid to the continuity of NURBS basis functions at the collocation

points.

In the classical boundary element method the common way to guarantee the existence of inte-

grals in (20), (22), (23) is by use of so-called discontinuous quadratic Largange elements [4], i.e.

placing collocation points inside an element, where the quadratic polynomials are C∞ contin-

uous. The same approach can be implemented with NURBS parametrisation, since inside the

elements NURBS basis functions are in�nitely smooth, i.e. the SST can be used directly to treat

all singularities. In Figure 3 (a) and (b) the examples of boundary discretization are shown

for classical and IGABEM respectively, where the collocation points in IGA are generated by

Greville abscissae [63] and the collocation points are moved inside the elements when necessary.

For the enrichment formulation, Since enriched DOFs are introduced, additional source points
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Figure 4: Mesh and collocation for crack surfaces

need to be collocated to balance the number of system unknown. The location of the source

points plays an important role in the condition number of the BEM system matrix. It reveals

that for crack tip enrichment, when the additional collocation points are inside the enriched

element, the system condition turns out to be normal and gives accurate solution (see [27] for

more details). Nevertheless, the speci�c location inside the crack tip element has few interference

on the �nal results. Hence in this work, the additional source points are inserted in the crack

tip element uniformly between the original collocation points. Figure (4) illustrates the scheme

applied in this paper for collocation on the crack surface.

However, the classical theory of boundary integral equations admits much weaker continuity

requirements, i.e. the Cauchy and Hadamard integrals exist for C1,α(Γ)(0 < α < 1) density

functions (known as Hölder continuous) [64]. Therefore, strongly singular and hyper-singular

equations, and all the more so the regularized equation (24), can be used at collocation points

located at the edges of the elements in IGABEM, provided that NURBS basis is su�ciently

smooth. This case corresponds to ξ̂s = ±1, therefore Equation (29) has to be modi�ed ac-

cordingly. However, collocation strategy is a subject of further research, which requires more

detailed theoretical and numerical studies.

In the present work SST is used only for the displacement BIE and traction BIE on the crack

faces. On the rest of the boundary the regularized displacement BIE (24) is imposed.
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Figure 5: Path de�nition for J integral

4 Evaluation of stress intensity factors

4.1 Jk-integral

In this section, two di�erent kinds of J integral based methods for the extraction of SIFs are

brie�y reviewed. The �rst one is the Jk method proposed in [34], which is the more general

case of the well known in fracture mechanics J integral. The de�nition of the Jk in 2D is given

as:

Jk := lim
Γε→0

∫
Γε

(Wδjk − σijui,k)njdΓ = lim
Γε→0

∫
Γε

PkjnjdΓ (35)

where Pkj is the Eshelby tensor, W = 1/2σijεij is the strain energy density, nj is the unit

outward normal of Γε. J1 represents a special case, known as J integral. Throughout the paper

we will use these two notations interchangeably. All the variables are de�ned in the crack tip

local coordinate system (x0, y0) as in Figure 5 (a). However, from the numerical point of view,

it is di�cult to calculate the limit in Equation (35), and the de�nition of Jk is usually modi�ed

in the following way. Since the integral of the Eshelby tensor is equal to zero for any closed

contour, which does not contain a defect, additional countours Γ, Γc+ , Γc− are introduced, such

that Equation (35) can be rewritten as [65]

Jk = lim
Γε→0

∫
Γε

PkjnjdΓ =

∫
Γ
PkjnjdΓ +

∫
Γc+

PkjnjdΓ +

∫
Γc−

PkjnjdΓ (36)

When k = 1 a �at crack represents a special case, because n1 = 0 along the crack surfaces, i.e.
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along the contours Γc+ , Γc− , and Equation (36) simpli�es to:

J1 =

∫
Γ
P1jnjdΓ (37)

This expression shows the path independence of J integral for �at crack. But for J2 integral,

the term from crack surface cannot be omitted since n2 = 1 and this term presents singularity

in numerical evaluation.

The more general scenario is seen for curved crack, the contribution from crack surfaces for

both J1 and J2 cannot be neglected. It should be noted that the energy densityW → 1/r when

approaching the crack tip since both σij and εij tend to 1/
√
r. For J1 integral, since n1 → 0

cancels the O(1/r) of the W , the integral from the crack surface can be performed as a regular

one in numerical implementation. While for J2, since n2 tends to unity, the integral from the

crack surface part will remain in O(1/r) singularity, and This kind of singular integral cannot

be treated in a regular way. In [65] and [34], the crack surface has been split into the far �eld

part and near-tip part (Figure 5(b)) in order to evaluate the singular integral:

Jk =

∫
Γ
PkjnjdΓ +

∫
R−r

JW Kn+
k dΓ +

∫
r
JW Kn+

k dΓ (38)

The far �eld part can be integrated by regular Gauss quadrature. The near-tip part integral

on the crack surface can be simply omitted for J1(k = 1), since n1 is mostly zero, while for

J2(k = 2), the near-tip part exhibits the O(1/r) singularity. The energy jump JW K on the

near-tip surface can evaluated as [65]:

JW K =
−4KIIσx0

E
√

2πr
+O(r1/2) (39)

where σx0 is called T-stress. Thus near-tip part of JW K can be represented as a proportion to

the r1/2

Jk =

∫
Γ
PkjnjdΓ +

∫
R−r

JW Kn+
k dΓ + Λnkr

1/2 (40)

Since two unknown variables J2 and Λ appear in the above equation, the integral cannot be

evaluated in one time. So the splitting procedure needs to be performed several times by taking

di�erent r, and a group data of J2 and Λ can be found. Finally, least square method is used

in order to �nd J2 as R = 0. In Equation (40), as long as the O(1/r1/2) can be captured, the
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Jk integral can be correctly evaluated and the SIFs can be found consequently (see Appendix

B). Nevertheless, how to choose "r" becomes path-dependent and problem-dependent in real

applications.

4.2 M integral

Another way to extract the SIFs is called M integral. By applying the J integral under two

states, one the real state (denoted with superscript "1"), the other the auxiliary state (super-

script "2"), then adding them together, the mixed term M can be obtained:

J (1+2) =

∫
Γε

[
0.5(σ

(1)
ij + σ

(2)
ij )(ε

(1)
ij + ε

(2)
ij )δ1j − (σ

(1)
ij + σ

(2)
ij )

∂(u
(1)
i + u

(2)
i )

∂x1

]
njdΓ (41)

Rearranging the two state terms gives

J (1+2) = J (1) + J (2) +M (1,2) (42)

where

M (1,2) =

∫
Γε

[
W (1,2)δ1j − σ(1)

ij

∂u
(2)
i

∂x1
− σ(2)

ij

∂u
(1)
i

∂x1

]
njdΓ (43a)

W (1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij (43b)

Once the M integral is evaluated, the SIFs can be extracted directly (see Appendix B). But we

note that in Yau et al 's work [33], �at crack surface is assumed. When applied to the practical

problems, the radius of the contour circle should be limited to guarantee the tolerance for the

assumption.

In this paper, the M integral is adopted due its e�ciency. A detailed comparison for both

methods applied in curved crack are investigated in the following sections.

Once the SIFs are obtained, the maximum hoop stress criterion is adopted to determine the

direction of crack propagation, i.e. angle θc. The θc is found when the hoop stress reaches

maximum and given as [66]:

θc = 2arctan

[
−2(KII/KI)

1 +
√

1 + 8(KII/KI)2

]
(44)
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5 2D NURBS crack propagation

To allow simulation of crack growth, a NURBS crack propagation algorithm is outlined next.

The conceptual idea for the deformation of NURBS curve is realized by moving the control

points to make the curve satisfy the external constraints under a user-de�ned function [67].

For crack growth problem, the external constraint is the movement of the position of crack

tip (or crack front in 3D). Paluszny et al implemented the idea in FEM to represent crack

growth or intersection by updating the control points to satisfy the constraints given by fracture

parameters [68]. The algorithm is brie�y reviewed as follows:

• Initiation: represent the crack by the NURBS curve.

• De�ne the space constraint (new position of the crack tip) M ′: do the BE analysis to

determine the fracture parameters. then the new crack tip M ′ can be found by the

speci�ed fracture criterion.

• Specify the parametric constraint (parametric coordinate ξ of the old crack tip) ξ: this

is the knot value of the original curve corresponding to the space constraint M ′. For

fracture problem, ξ denotes the old crack tip M .

• De�ne the localization constraint f : this is to specify the in�uence of the constraints. Here

for 2D fracture this constraint is selected as the NURBS basis functions at parametric

constraint ξ(which is called natural deformation in [67]). f(A) = RA,p(ξ), A = 1, ..., n, n

is the number of NURBS basis function of the corresponding control point PA.

• Calculating the movement vector of each control pointm(A): the movement of the control

points is given by

m(A) =
f(A)∑n

B=1RB,p(ξ)f(B)
e, e =⇀MM ′ (45)

The process to stretch NURBS curve to simulate crack growth in 2D is illustrated in Figure

6. Certain knot insertion should be done at the crack tip element in order to capture the local

changes. We note that enhancing the knot interval at the crack tip element also help to improve

the solution near the crack tip, and a graded mesh re�nement is designed as in Figure (4), where

the new knots are inserted consecutively at the (1/2)i, i = 1, 2, 3, 4... of the distance to the

crack tip in the parametric space. In this work, the crack propagation angle is de�ned by
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Figure 6: NURBS modi�cation for crack growth. (a)Original crack and new crack tip M ′;
(b)Knot insertion to enhance the crack tip; (c)Move the control points to obtain new crack
curve by the presented algorithm

Figure 7: Edge crack

maximum hoop stress criterion and the crack advance is a user-speci�ed constant in each step.

Whereas the NURBS modi�cation algorithm is not limited to the physical criterion as long as

the constraints can be given.

6 Numerical examples

In this section, several numerical examples are presented to verify the proposed method for

fracture analysis. We �rst give examples to study the behavior of the (X)IGABEM on static

fracture analysis. Then the application for the crack propagation algorithm by comparing

against an XFEM result is demonstrated.
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6.1 Edge crack

Figure (7) illustrates the edge crack model with the analytical SIF-displacement solution [69]

(refer to the auxiliary displacements in Appendix B) applied on the non-crack boundary and

zero traction is speci�ed to the crack. The parameters E = 1, ν = 0.3, a = 1, L = 2. For

mode I crack, KI = 1,KII = 0 and for mode II, KI = 0,KII = 1 in the displacement solution.

Thus the numerical displacement on the crack as well as SIFs can be compared to the analytical

solution.

In this example, we �rst investigate the capability of capturing the singularity at the crack tip

through the enrichment, adaptive re�nement and uniform mesh through mode I crack. Then

the SIFs comparison is made under uniform meshes between Lagrange element and NURBS

element.

6.1.1 Studying on capturing crack tip singularity

Accurate approximation of the solutions near the crack tip is crucial to a more accurate evalu-

ation of fracture parameters like SIFs. Three scenarios are studied here, the uniform mesh, the

graded re�nement of crack tip element and the enrichment of crack tip element. The latter two

is based on the uniform mesh. Figure (8) shows the displacement uy along upper crack surface

for mode I problem. The crack is discretised by 3 uniform elements. It can be observed that

the all the numerical displacements agrees well with analytical solution, although the mesh is

coarse, and the graded re�nement and enrichment method gives a better result near the crack

tip. To further assess the accuracy of these methods, the error of displacement L2 norm on the

crack surfaces which is given as

eL2 =

√√√√∫Γc
(u− uext)T(u− uext)dΓ∫

Γc
uTextuextdΓ

(46)

is plotted in Figure (9). It should be noted that the graded re�nement for crack tip element

by knot insertion described in Figure (4) cannot be done with in�nite times in practice. With

more knots inserted, higher and higher accuracy can be obtained, however, the system condition

becomes worse due to the concentration of collocation points near the crack tip. So we only

checks the convergence results by inserting the knots at (1/2)i consecutively until i = 4. It
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Figure 8: uy along the upper crack surface

can be seen that enrichment achieves an accuracy between those by the knot insertion of 3

and 4 times for the crack tip element while the convergence rate is improved. In the following

examples for static crack and crack propagation, only the graded mesh re�nement by 4 times

knot insertion is studied further.

6.1.2 SIFs comparison with Lagrange basis

To give a basic cognition for the IGABEM for fracture, the SIFs given by M integral are

compared to that from Lagrange element under uniform mesh without any special treatment for

crack tip. A convergence check for the error of normalized SIFs KI ,KII is shown in Figure (10).

It can be observed that the precision with NURBS is much better than that of discontinuous

Lagrange basis. It may not be fair to compare them as in Figure (3) since discontinuous

Lagrange basis introduces too many nodes in average. Thus the convergence results is re-

plotted in terms of element number per edge in Figure (11). In the initial mesh models, the

result of KI from Lagrange basis is better than NURBS, but with the mesh further re�ned, the

results from NURBS tend to be more accurate results.

Further investigation on SIFs evaluation by graded mesh re�nement is done in the following

examples.
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Figure 12: Physical model of inclined center crack problem

6.2 Inclined centre crack

In this example, The SIFs are further calculated for a plate with an inclined crack under remote

biaxial tension such that σ = σ0 is applied in y-direction and σ = λσ0 is applied in x-direction,

where λ is the load ratio and σ0 = 1. The inclined centre crack with the angle β varies from 0

to π/2, see Figure (12). The edge length of the plate L = 1, crack length 2a = 0.02. L >> a

so that the numerical results can be compared with the analytical solution for an in�nite plate,

given in [70]. The material parameters E = 1, ν = 0.3. The SIFs in this example obtained by

M integral can be compared to the analytical ones as follows:

KI = σ
√
πa(cos2β + λsin2β) (47a)

KII = σ
√
πa(1− λ)cosβsinβ (47b)

Here 2 uniform elements are used on non-crack geometry. The mesh of the crack surface has been

re�ned uniformly for both discontinuous Lagrange basis BEM (LBEM) and NURBS (IGABEM).

The local graded re�nement for crack tip element described in Figure (4) is also performed based

on the uniform re�nement (the corresponding result is denoted as IGABEM(r)). Assuming the

number of elements for crack is m, a convergence check is done with crack angle β = π/6 at

the load ratio λ = 0.5 (biaxially loaded). The results are given in Table (1) and (2). Here the
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SGBEM results [13] are also given as a reference. It can be concluded that the proposed local

crack tip re�nement gives a very good accuracy for practical applications.

Then SIFs are compared for di�erent angles at λ = 0 (uniaxially loaded). In this case, the crack

is discretized by 4 uniform elements, and for IGABEM, the crack tip element is further re�ned

in the same fashion. The SIFs are given in Table (3).

KI/K
exact
I

m SGBEM LBEM IGABEM IGABEM(r)

3 0.9913 1.00451 1.00982 1.00120

4 1.0002 1.00333 1.00769 1.00105

5 1.0001 1.00268 1.00633 1.00090

6 1.0002 1.00230 1.00539 1.00080

7 1.0003 1.00206 1.00474 1.00074

8 1.0003 1.00190 1.00426 1.00070

9 1.0003 1.00177 1.00389 1.00066

10 1.0003 1.00167 1.00359 1.00064

11 1.0003 1.00159 1.00336 1.00062

12 1.0003 1.00152 1.00316 1.00060

14 1.0003 1.00142 1.00285 1.00058

Table 1: Normalized KI in inclined centre crack

KII/K
exact
II

m SGBEM LBEM IGABEM IGABEM(r)

3 1.0075 1.00104 1.00647 1.00146

4 1.0009 1.00129 1.00656 1.00129

5 1.0010 1.00158 1.00607 1.00113

6 1.0009 1.00160 1.00550 1.00102

7 1.0014 1.00153 1.00500 1.00096

8 1.0005 1.00143 1.00458 1.00091

9 0.9997 1.00134 1.00424 1.00087

10 1.0009 1.00126 1.00396 1.00085

11 0.9992 1.00119 1.00373 1.00083

12 1.0013 1.00112 1.00353 1.00081

14 1.0004 1.00102 1.00322 1.00079

Table 2: Normalized KII in inclined centre crack

6.3 Arc crack

The circular arc crack under remote uniform biaxial tension is checked to further validate the

e�ectiveness of the proposed method. The problem is de�ned in Figure (13). Here L = 1,

2a = 0.01, L >> a, E = 1, ν = 0.3. In the test σ = 1, β = π/4. The analytical SIFs are given
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KI KII

β Exact IGABEM(r) SGBEM Exact IGABEM(r) SGBEM

0 1.0000 1.0006(6.0e− 4) 1.0002(2.0e− 4) 0.0000 0.0000(< 1.e− 4) 0.0000(< 1.e− 4)

π/12 0.9330 0.9336(6.4e− 4) 0.9332(2.1e− 4) 0.2500 0.2503(1.2e− 3) 0.2502(8.0e− 4)

π/6 0.7500 0.7505(6.7e− 4) 0.7502(2.7e− 4) 0.4330 0.4336(1.4e− 3) 0.4334(9.2e− 4)

π/4 0.5000 0.5003(6.0e− 4) 0.5001(2.0e− 4) 0.5000 0.5006(1.2e− 3) 0.5004(6.0e− 4)

π/3 0.2500 0.2501(4.0e− 4) 0.2500(< 1.e− 4) 0.4330 0.4335(1.2e− 3) 0.4333(6.9e− 4)

5π/12 0.0670 0.0670(< 1.e− 4) 0.0670(< 1.e− 4) 0.2500 0.2503(1.2e− 3) 0.2502(8.0e− 4)

π/2 0.0000 0.0000(< 1.e− 4) 0.0000(< 1.e− 4) 0.0000 0.0000(< 1.e− 4) 0.0000(< 1.e− 4)

Table 3: SIFs and relative error (in the brackets) for the inclined centre crack

Figure 13: Physical model of arc crack
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by [71] as:

KI = σ
√
πa

cos(β/2)

1 + sin2(β/2)
(48a)

KII = σ
√
πa

sin(β/2)

1 + sin2(β/2)
(48b)

2 elements are used for non-crack edge and m elements are used to discretize the cracks with

crack tip elements re�ned as in Figure (4). A convergence check for SIFs are listed in Table 4.

Here the SIF extraction from both Jk integral method and M integral method is compared for

contour integration. Both methods use a same radius R, and the partition of the crack surface

for Jk integral is done by experience at r = 0.03R, 0.04R, 0.05R, 0.06R, 0.07R. It can be found

that the results of the two methods are comparable. But we note that the Jk integral method

is more computationally expensive than M integral as 1)it needs to integrate on crack surface;

2) the crack surface needs to be partitioned which is not convenient in IGA; 3) the integration

needs to be repeated several times in order to get a least square approximation. All these points

are avoided inM integral method. What's more, the partition of the crack surface into far �eld

and near-tip �eld by experience which is not robust in practical applications.

KI/K
exact
I KII/K

exact
II

m M integral Jk integral M integral Jk integral

10 1.00045 0.99972 0.97506 1.00309

14 1.00014 0.99979 0.98621 1.00248

17 1.00011 0.99982 0.98642 1.00217

20 1.00009 0.99985 0.98657 1.00195

23 1.00002 0.99987 0.99407 1.00176

26 1.00002 0.99989 0.99413 1.00163

Table 4: SIFs in arc crack

6.4 Crack growth in plate with rivet holes

Crack propagation by IGABEM is checked in this case. The problem is adopted from the XFEM

work by Moës et al [25]. The geometry and load condition are illustrated in Figure 14. The

material parameters E = 1000, ν = 0.3. 12 elements are used for each circle and 3 elements for

each edge and initial cracks. The crack tip elements are further re�ned (without enrichment) by

the way described in previous section so that the knot level is enhanced for stretching the crack.

The same parameters (θ = π/4, initial crack length a = 0.1) are used in order to compare the

crack evolution path directly.
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Figure 14: Physical model of rivet holes plate with initial cracks emanated from holes. The
initial crack lengths are 0.1, (Moës et al, 1999)

��
� CRACK GROWTH IN A COMPRESSIVE FIELD �
�

Figure ��� Crack paths for the coarse �black�
and �ne �red� meshes�

cent papers of Ingra�ea and Heuze ������ and Nemat�Nasser and Horii ������� Crack

growth in a compressive �eld is observed in the fracture of geomaterials such as rocks

under large geotectonic states of stress� A condition known as axial splitting often

occurs in which the initial crack in an overall compressive �eld will turn and propa�

gate in the direction of the applied load� Nemat�Nasser and Horii ������ presented

experimental results in which thin slits were cut in glass and resin plates� They found

that cracks oriented at an angle to the principle compressive load almost invariably

propagated in the direction of the load� If no lateral loads were applied� the fracture

tended to be stable and the propagating cracks arrest if the magnitude of the applied

load is not su	ciently increased�

The numerical simulation of fracture in a compressive �eld was presented by In�

gra�ea and Heuze ������� In that study� the contact between the crack faces was not

considered� and �nite elements with remeshing were used to model the crack prop�

agation� For traditional formulations� the modeling of contact on the crack faces is

(a)

(b)

Figure 15: Crack path comparison (a)XFEM (Moës et al, 1999), ∆a = 0.1 for black lines and
∆a = 0.05 for red lines; (b)IGABEM, ∆a = 0.05 for black lines
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Figure 16: SIF comparison for the whole process of crack propagation. XFEM(M) is from Moës
et al, 1999, XFEM* is from the in-house XFEM code

Assume that crack advance ∆a in each step is a constant and ∆a = 0.05, which is the same

as the �ne mesh model in [25]. the crack has propagated 16 steps and the crack path obtained

by IGABEM is shown in Figure (15). It �ts well compared to the red path by XFEM and

the IGABEM path seems a bit smoother than the XFEM result. The tip position and SIFs in

each step are further compared(Table (5)). It can be observed that the tip position is generally

equivalent. However, the SIFs show signi�cant di�erence for some steps, as plotted in Figure

(16).

6.5 Three holes plate bending problem

The example of three point bending beam with three holes is simulated to further check the

robustness of IGABEM for crack propagation. The geometry and load condition are illustrated

in Figure (17). The material parameters E = 1000, ν = 0.37 are used in the simulations. Plane

strain condition is assumed. With the variation of the position of the initial crack, di�erent

crack trajectories are obtained by experiment [72]. Here the position of the initial crack is set as
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IGABEM XFEM* XFEM(M)

Step xc yc xc yc xc yc
Initial 2.1488 2.5707 2.1488 2.5707 2.1488 2.5707

1 2.1986 2.5665 2.1986 2.5662 2.1986 2.5663

2 2.2481 2.5596 2.2481 2.5593 2.2481 2.5595

3 2.2981 2.5575 2.2981 2.5570 2.2981 2.5575

4 2.3481 2.5564 2.3480 2.5556 2.3481 2.5581

5 2.3981 2.5573 2.3980 2.5564 2.3981 2.5562

6 2.4480 2.5598 2.4480 2.5587 2.4480 2.5600

7 2.4980 2.5614 2.4979 2.5604 2.4980 2.5608

8 2.5463 2.5485 2.5463 2.5477 2.5465 2.5488

9 2.5885 2.5217 2.5885 2.5209 2.5886 2.5219

10 2.6324 2.4978 2.6324 2.4968 2.6321 2.4972

11 2.6824 2.4986 2.6823 2.4990 2.6820 2.4998

12 2.7324 2.5000 2.7323 2.4997 2.7320 2.5013

13 2.7823 2.5035 2.7821 2.5036 2.7819 2.5037

14 2.8311 2.5144 2.8307 2.5157 2.8306 2.5151

15 2.8805 2.5217 2.8802 2.5223 2.8802 2.5217

Table 5: Tip position for left crack tip with ∆a = 0.05 in. XFEM(M) is from Moës et al, 1999,
XFEM* is from the in-house XFEM code

Figure 17: Physical model of three points bending beam with 3 holes

30



d = 5 in, a = 1.5. This example has been reported by using XFEM and XEFG [73] as well. The

crack advance ∆a is set to be 0.052 in for both XFEM and IGABEM. The model is discretized

by 27869 nodes and 55604 triangular elements for XFEM. And for IGABEM, 82 elements and

230 DOFs are used. Crack tip mesh re�nement is used without enrichment. It is not mentioned

in [73] about the XEFG model size, and the crack increment ∆a = 0.1 for XEFG. Figure (18)

and Figure (19) compares the crack growth path using all the mentioned methods. All the

crack paths agree well with the experiment. Of course, due to the di�erences in the setup of

mesh discretisation and crack increment, the numerical results are di�erent from each other

without any doubt. It can be observed from Figure 20 that the IGABEM has slightly better

�tting with the crack trajectory than the XFEM when the crack pass through the �rst hole.

Figure (21) compares the SIFs from XFEM and IGABEM. We note that signi�cant di�erence

occurs when crack passes nearby the �rst hole. A possible explanation for this could be that in

XFEM the size of the pr-enriched zone is too big and interferes with the outer boundary, where

the asymptotics of the solutions is di�erent from
√
r while in IGABEM, since adaptive mesh

re�nement is performed, no any priori assumption is made.

6.6 Crack propagation in an open spanner

The last example is to simulate the failure process of an open spanner due to the crack propa-

gation, in which the geometry is taken directly from CAD. The physical con�guration is shown

in Figure (22). Assuming that a small defect has initiated from the surface at the area of the

high concentrated stress from elastostatic analysis [47]. The initial geometry with the crack for

analysis is given in Figure (23). The crack will grow at ∆a = 0.1. Figure (24) presents the

deformed geometry with crack. This example gives a straightforward illustration the concept

of the seamless incorporation of CAD and failure analysis.

7 Conclusion

A detailed procedure to model linear elastic fracture problem using the NURBS based IGABEM

is proposed in this work. The dual BIEs is introduced so that cracks can be modeled in a single

domain. Di�erent treatments for crack tip singularity are investigated including crack tip graded

mesh re�nement and partition of unity enrichment. The popular approaches to extract SIFs
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Figure 21. Schematic drawing of beam with
holes subjected to 3-point bending (dimensions

in inches) [19].

Figure 22. Final crack for setup B with crack
length increment equal to 0:5 in.

Figure 23. Final crack growth results for setup
A with crack length increment equal to 0:25 in.

Figure 24. Final crack growth results for setup
A with crack length increment equal to 0:1 in.

6. REMARKS AND CONCLUSIONS

Two contributions have been made in this paper:

• a vector level set method for lines of discontinuity with a geometric update procedure
has been developed;

• a new method for discontinuous approximation for entities such as cracks has been
developed for meshless methods.

The new method for discontinuity representation is particularly e�ective at crack tips. The
method is a discontinuous variant of the method of clouds [12], but this represents the �rst

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:923–944

Figure 18: Crack path by XEFG at ∆a = 0.1 (Ventura et al, 2002)

Figure 19: crack path
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Figure 20: Zoom plot of the crack path
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Figure 21: Comparison of the SIFs for the whole process of crack propagation

uniform refinement applied around the boundary for both p = 2
and p = 3. In addition, the problem was analysed using quadratic
isoparametric boundary elements using an equivalent mesh refine-
ment strategy. Exactly the same number of Gauss points were used
to evaluate each of the boundary integrals given by the second and
third terms in Eq. (31) for both the IGABEM and BEM analyses.

Fig. 25 illustrates an IGABEM mesh with three elements per line
and the deformed IGABEM profile. Excellent agreement with the
analytical solution is seen. Using the following definition to calcu-
late the relative L2 error norm in displacements around the
boundary:

eL2 ¼
ku� uexkL2

kuexkL2

; ð49Þ

where

kukL2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
C

Xdp

i¼1

ðuiÞ2 dC

vuut ; ð50Þ

a comparison can be made between IGABEM and BEM (Fig. 26). In
the case of IGABEM with p = 2 and quadratic BEM, both methods
converge at the same rate but importantly, IGABEM demonstrates
a consistently lower error for all meshes. For IGABEM with p = 3,

we see, as expected, that a higher convergence rate is obtained with
lower errors than the equivalent second order mesh.

5.2. L-shaped wedge

The next problem which was considered was the L-shaped
wedge which exhibits a singularity at the wedge apex. The analyt-
ical solution to this problem is given by Szabó and Babuška [19]
where a wedge angle of 2a = 3p/2 was used. Considering only
the mode 1 loading case, exact tractions were applied along all
faces with appropriate displacement constraints as shown in
Fig. 27. Material properties E = 1e5 and m = 0.3 were used under
plane strain conditions. The problem was solved using four differ-
ent methods: quadratic BEM with uniform h-refinement, IGABEM
with p = 2 and uniform h-refinement, IGABEM with p = 3 and
uniform h-refinement and finally IGABEM with p = 2 and graded
h-refinement towards the wedge apex. For the case of one element
per line and p = 2, the control points are shown in Fig. 28(a) with
collocation points and elements shown in Fig. 28(b). The knot vec-
tor for this example is given by

N ¼ 0;0;0;1=6;1=6;2=6;2=6;3=6;3=6;4=6;4=6;5=6;5=6;1;1;1f g;
ð51Þ

Fig. 32. Open spanner problem.
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Figure 22: Boundary conditions, materials and geometry of the open spanner (Simpson et al,
2012)
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Figure 23: Control points and NURBS curve of the open spanner

Figure 24: The deformed geometry after 10 steps crack propagation
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are compared in the framework of IGABEM and it proves that the M integral is more e�cient

for SIF extraction in IGABEM. The cracks are modeled directly by NURBS, and an algorithm

for modifying the NURBS curve is implemented to describe the crack propagation. Numerical

examples shows that:

(1) The IGABEM can obtain a higher accuracy than Lagrange basis based BEM for the same

model size or DOFs;

(2) Both crack tip graded mesh re�nement and enrichment can capture the singular behavior

near the crack tip, and the graded mesh re�nement is selected to apply in the crack growth;

(3) The proposed crack growth procedure can lead to C1 smooth crack trajectory and agrees

well with those results from XFEM.

The authors believe that the crack propagation in three dimensional domain would bene�t more

thanks to the smooth crack representation and higher order continuous NURBS basis, which

would provide a distinct solution scheme for fracture analysis when compared to the idea in the

framework of FEM/XFEM.
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Appendix A

The fundamental solutions for traction BIE are:

Kij =
1

4π(1− ν)r
[(1− 2ν)(δijr,k + δjkr,i − δikr,j) + 2r,ir,jr,k]nk(s) (49)

Sij =
µ

2π(1− ν)r2

{
2
∂r

∂n
[(1− 2ν)δikr,j + ν(δijr,k + δjkr,i)− 4r,ir,jr,k]

+ 2ν(nir,jr,k + nkr,ir,j)− (1− 4ν)δiknj

+ (1− 2ν)(2njr,ir,k + δijnk + δjkni)
}
nk(s)

(50)
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Now we present the SST formula for the hyper-singular integral as following. Expanding the

components of distance between �eld and source points as Taylor series in parent space gives:

xi − si =
dxi

dξ̂

∣∣∣
ξ̂=ξ̂s

(ξ̂ − ξ̂s) +
d2xi

dξ̂2

∣∣∣
ξ̂=ξ̂s

(ξ̂ − ξ̂s)2

2
+ · · ·

:= Ai(ξ̂ − ξ̂s) +Bi(ξ̂ − ξ̂s)2 + · · ·

= Aiδ +Biδ
2 +O(δ3)

(51)

and

A :=

(
2∑

k=1

A2
k

) 1
2

C :=

2∑
k=1

AkBk

(52)

The �rst and second derivatives are:

dxi
dξ

=
dNa

dξ
xai

d2xi
dξ2

=
d2Na

dξ2
xai

dxi

dξ̂
=

dxi
dξ

dξ

dξ̂

d2xi

dξ̂2
=

d2xi
dξ2

(dξ
dξ̂

)2

(53)

The derivative r,i can be expressed as

r,i =
xi − si
r

=
Ai
A

+

(
BiA−Ai

AkBk
A3

)
δ +O(δ2)

:= di0 + di1δ +O(δ2)

(54)

The term 1/r2 can be expressed as

1

r2
=

1

A2δ2
− 2C

A4δ
+O(1)

:=
S−2

δ2
+
S−1

δ
+O(1)

(55)
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The component of Jacobian from parametric space to physical space can be expressed as:

J1(ξ) = J10(ξs) + J11(ξs)(ξ − ξs) +O((ξ − ξs)2)

= J10(ξs) +
dξ

dξ̂

∣∣∣
ξ=ξs

J11(ξs)δ +O(δ2)

J2(ξ) = J20(ξs) + J21(ξs)(ξ − ξs) +O((ξ − ξs)2)

= J10(ξs) +
dξ

dξ̂

∣∣∣
ξ=ξs

J21(ξs)δ +O(δ2)

i.e.,

Jk(ξ) := Jk0(ξs) +
dξ

dξ̂

∣∣∣
ξ=ξs

Jk1(ξs)δ +O(δ2)

(56)

and we note that

J(ξ) =
√
J2

1 (ξ) + J2
2 (ξ) =

√(
dy

dξ

)2

+

(
−dx
dξ

)2

n(ξ) =
[dy
dξ
,−dx

dξ

]
i.e.,

nk(ξ) = Jk(ξ)/J(ξ)

(57)

And the NURBS basis function is also expanded as:

Na(ξ̂) = Na(ξ̂s) +
dNa

dξ

∣∣∣
ξ=ξs

(ξ − ξs) + · · ·

= Na(ξ̂s) +
dNa

dξ

∣∣∣
ξ=ξs

dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

δ + · · ·

:= Na0(ξ̂s) +Na1(ξ̂s)
dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

δ +O(δ2)

(58)

The detail form of hyper-singular kernel Sij is (plane strain)

Sij(s,x) =
µ

2π(1− ν)r2

{
2
∂r

∂n
[(1− ν)δikr,j + ν(δijr,k + δjkr,i − 4r,ir,jr,k)]

+ 2ν(nir,jr,k + nkr,ir,j)− (1− 4ν)δiknj

+ (1− 2ν)(2njr,ir,k + δijnk + δjkni)
}
nk(ξ̂s)

:=
1

r2
h(ξ̂)

(59)
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Noting that nk(ξ) = Jk(ξ)/J(ξ), Use the above expansions to rewrite h(ξ) as:

h(ξ̂) =
h0(ξ̂s)

J(ξ)
+
h1(ξ̂s)

J(ξ)
δ +O(δ2) (60)

h0(ξ̂s) =
(

2ν(Ji0dj0dk0 + Jk0di0dj0) + (1− 2ν)(2Jj0di0dk0 + δijJk0 + δjkJi0)

+ (1− 4ν)δikJj0

) µ

2π(1− ν)
nk(ξ̂s)

(61)

h1(ξ̂s) =
[
2(dl1Jl0 + dl0Jl1)

(
(1− 2ν)δikdj0 + ν(δijdk0 + δjkdi0)− 4di0dj0dk0

)
+ 2ν

(
Ji0(dj1dk0 + dj0dk1) + Ji1dj0dk0 + Jk0(di1dj0 + di0dj1) + Jk1di0dj0

)
+ (1− 2ν)

(
2(Jj1di0dk0 + Jj0(di1dk0 + di0dk1)) + δijJk1 + δjkJi1

)
− (1− 4ν)δikJj1

] µ

2π(1− ν)
nk(ξ̂s)

(62)

Thus,

h(ξ̂)Na(ξ̂)J(ξ̂) =
(
h0(ξ̂s) + h1(ξ̂s)δ +O(δ2)

)(
Na0(ξ̂s) +

dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

Na1(ξ̂s)δ +O(δ2)
)

= h0Na0 + (h1Na0 + h0Na1
dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

)δ +O(δ2)

(63)

F (ξ̂s, ξ̂) =
1

r2(ξ̂s, ξ̂)
h(ξ̂)Na(ξ̂)J(ξ̂)

=
(S−2

δ2
+
S−1

δ
+O(1)

)(
h0Na0 + (h1Na0 + h0Na1

dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

)δ +O(δ2)
)

=
S−2h0Na0

δ2
+
S−1h0Na0 + S−2(h1Na0 + h0Na1

dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

)

δ
+O(1)

:=
F−2

δ2
+
F−1

δ
+O(1)

(64)

Appendix B

Once the J1 and J2 are evaluated properly, KI and KII can be found easily. Since

J1 =
K2
I +K2

II

E′
(65a)

J2 = −2KIKII

E′
(65b)
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where E′ = E/(1− ν2) for plane strain condition. And KI and KII can be solved as [65]:

KI = ±
{E′J1

2

[
1±

(
1−

(J2

J1

)2)1/2]}1/2
(66a)

KII = ±
{E′J1

2

[
1∓

(
1−

(J2

J1

)2)1/2]}1/2
(66b)

The signs of KI and KII correspond to the signs of crack opening displacement Ju1K and Ju2K,

respectively. If Ju1K > 0, KI > 0. The term in brace can be determined as :

if|Ju1K| ≥ |Ju2K|, take+ (67a)

if|Ju1K| < |Ju2K|, take− (67b)

Combined with Equation 65a, the following relationship can be obtained for the M integral,

M (1,2) =
2

E′
(K

(1)
I K

(2)
I +K

(1)
II K

(2)
II ) (68)

Let state 2 be the pure mode I asymptotic �elds with K
(2)
I = 1, K

(2)
II = 0 and KI in real state

1 can be found as

K
(1)
I =

2

E′
M (1, mode I) (69)

The KII can be given in a similar fashion.

40



The auxiliary stress �eld σ
(2)
ij and displacement �eld u

(2)
j are given as:

σxx =
K

(2)
I√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
− K

(2)
II√
2πr

sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)
σyy =

K
(2)
I√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

K
(2)
II√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2

τxy =
K

(2)
I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
+

K
(2)
II√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
ux(r, θ) =

KI

2µ

√
r

2π
cos

θ

2

(
κ− 1 + 2sin2 θ

2

)
+

(1 + ν)KII

E

√
r

2π
sin

θ

2

(
κ+ 1 + 2cos2

θ

2

)
uy(r, θ) =

KI

2µ

√
r

2π
sin

θ

2

(
κ+ 1− 2cos2

θ

2

)
+

(1 + ν)KII

E

√
r

2π
cos

θ

2

(
1− κ+ 2sin2 θ

2

)

(70)

where (r, θ) are the crack tip polar coordinates and

µ =
E

2(1 + ν)
(71)

κ =

 3− 4ν, Plane strain

(1− ν)/(3 + ν), Plane stress
(72)

The auxiliary strain �eld can be obtained by di�erentiating uj with respect to the physical

coordinate.
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