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Abstract

This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element
Method (FEM) to study the tractive performance of a rubber tire in interaction with granular terrain. The presented
approach is relevant to all engineering devices interacting with granular matter which causes response forces.

Herein, the extended discrete element method (XDEM) is used to describe the dynamics of the granular assembly.
On the one hand, the discrete approach accounts for the motion and forces of each grain individually. On the other
hand, the finite element method accurately predicts the deformations and stresses acting within the tire tread. Hence,
the simulation domain occupied by the tire tread is efficiently described as a continuous entity. The coupling of
both methods is based on the interface shared by the two spatially separated domains. Contact forces develop at the
interface and propagate into each domain. The coupling method enables to capture both responses simultaneously
and allows to sufficiently resolve the different length scales. Each grain in contact with the surface of the tire tread
generates a contact force which it reacts on repulsively. The contact forces sum up over the tread surface and cause
the tire tread to deform. The coupling method compensates quite naturally the shortages of both numerical methods.
It further employs a fast contact detection algorithm to save valuable computation time.

The proposed DEM-FEM Coupling technique was employed to study the tractive performance of a rubber tire with
lug tread patterns in a soil bed. The contact forces at the tread surface are captured by 3D simulations for a tire slip
of s7 = 5%. The simulations showed to accurately recapture the gross tractive effort Ty, running resistance Tk and
drawbar pull Tp of the tire tread in comparison to related measurements. Further, the traction mechanisms between
the tire tread and the granular ground are studied by analysing the motion of the soil grains and the deformation of the
tread.

Keywords: Tire Tread, Soil, Traction, DEM - FEM Coupling, Finite Element Method (FEM), eXtended Discrete
Element Method (XDEM)

1. Introduction

A broad range of engineering applications faces
multi-scale problems. A large number of these prob-
lems involve heterogeneous materials such as granu-
lar media. Applications in fracture mechanics, soil-
structure interaction, fluidized particle beds and tire-
terrain interaction are major fields to name a few when
it comes to dealing with different length scales.

The combination of discrete and continuum approaches
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(CCDM - Combined Continuum and Discrete Model)
is a powerful tool to account for different scales within
problems.

Traditional numerical methods, such as the Finite Ele-
ment Method (FEM), describe materials as continuous
entities. This assumption allows an increasing number
of engineering problems to be solved conveniently at
the macroscopic scale. But this approach inherits one
fundamental drawback the averaging of all individual
characteristics of the grain scale.

However, high performance computer technique now
enables the employment of methods, such as the Dis-
crete Element Method (DEM), able to account for the
individual behaviour of each grain within a granular as-
sembly. This allows to derive the macroscopic char-
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acteristics from the behaviour observed at each single
grain. But since the discrete approach requires for con-
tact detection, calculation of all contact reactions and
a high resolution of the time scale, the method inherits
large computation time as a significant disadvantage.
Hence, the idea seems quite natural to utilize the ad-
vantages of both the continuum and the discrete ap-
proach and thereby compensating the shortages of each
method. The field of coupling between continuum and
discrete methods can be separated into two parts, meth-
ods with overlapping and methods with separated phys-
ical domains. Applications with overlapping domains
are computations of the fracture and fragmentation of
materials and structures, multiscale problems of het-
erogeneous materials, hypervelocity impacts on struc-
tures, fluid - solid interaction, as applied by Morris
et al. (2006), Nitka et al. (2009), Beissel et al. (2006)
and Idelsohn et al. (2006), respectively. However, in
the field of coupling methods with non-overlapping do-
mains major contribution evolve from the research field
of fluid flows with solid parts, as investigated by Tsuji
et al. (1993) and Xu and Yu (1998). Further, valuable
effort comes from the field of soil mechanics and ter-
ramechanics where soil structures have to be reinforced,
see Villard et al. (2009). Non-overlapping applications
with a more dynamical interaction come from vehicle
- soil or tire - terrain interaction as investigated in this
study and by Nakashima and Oida (2004), Nakashima
et al. (2009) and Horner et al. (2001).

The purpose of the computation of tire - terrain interac-
tion is the study of the traction mechanisms between the
tread and the granular ground. The traction force is not
only the integral force of the friction of each individ-
ual grain in contact with the tire surface. The traction
is also influenced by interlocking mechanisms between
tread parts and the granular material.

2. Extended Discrete Element Method (XDEM)

The Lagrangian Time-Driven Method is applied to
each discrete particle of a moving ensemble. The en-
semble is thereby defined as a system of a finite number
of particles with a distinctive shape and material prop-
erties.

The state of the particles is predicted through integration
in time of the equations of rigid body motion. Thereby,
the timescale is subdivided by the discrete timestep
length dt and the state of each particle of the granu-
lar ensemble is predicted at every discrete timestep ¢;,
i.e. position, velocity, orientation and angular velocity,.
Newton’s second law for translation and rotation of each

modeling

Figure 1: Particle deformations modeled by overlap

particle in the ensemble is integrated over time. There-
fore, all forces and torques acting on each particle need
to determined at every timestep.

Two bodies colliding experience small deformations
which causes stress to develop at the contacting sur-
face. However, the deformations between two colliding
gains are modelled by means of an overlap 6 between
the two geometrical shapes as shown in fig. 1. The de-
veloping collision forces are derived from the overlap
geometry, material properties and kinematic quantities
of the adjoining particles. The collision force develop-
ing between a grain and a boundary wall is also mod-
elled based on the overlap ¢ resulting from the grain ge-
ometry and the surface.

2.1. Equations of Rigid Body Motion

In this study, the translation of a rigid body, i.e. dis-
crete particle, is predicted by the explicit integration of
Newton’s second law. Further, Euler’s equation of rota-
tional motion is used to determine the evolution of the
orientation of a particle, i.e. grain, over time.

2.1.1. Particle Translation
Farticle Forces

The position of a rigid body in space is defined
uniquely by the three component vector x, referring to
the three spatial dimensions. The change in position oc-
curs with a forces F; acting on a particle. The force
vector F; acting on a particle i is the sum of all collision
ﬁf, gravitational F % and external forces ﬁl ¢ineq. 1.!

ﬁ,-:ﬁf+ﬁf+ﬁf D

However, the collision force ﬁf of a particle i is the
sum of all collision forces I*jfj generated while colliding

IThe roman indices i, J, k identify the ith particle out of n,
ie.i = (1,2,..,n)
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Figure 2: Particle force due to colliding with particle 2
and 3

with the neighbouring bodies j. This is mathematical
described by eq. 2 where n is the number of neighbour-
ing particles in contact and boundary shapes interacting
with the particle i, as shown in fig. 2.

F; = Z Fj o)

j=Lj#i

At the point of collision, each collision force ﬁfj is
composed of a tangential ﬁfj’ and normal component

F .". The normal unit vector fz’f/. points from the center
of the particle j to the center of i with the tangential
direction 7; orthogonal to 7t;,.

Time Integration of the Particle Position
The translation of a rigid body, i.e. discrete particle,
is described by Newton’s second law. Newton’s well-
known equation 3 relates to the kinematic quantities at
the center of gravity of a particle i as follows:
g’ _dv _ . _F ;
a?z ~ ar YT m ©)
where m; denotes the particle mass, V; the velocity, d;
acceleration, X; center of gravity and F the force acting
on the particle.
Consequently with the summation of all forces acting on
a particle, Newton’s second law in eq. 3 is used to obtain
the new particle acceleration which can be expressed by
X — x — x. To further follow the evolution of a gran-

.. d .
ular ensemble, the new position & and new velocity

;""" of every particle are computed by numerical inte-
gration over every discrete time dt between ¢ and ¢ + dr.

From the investigations of Samiei (2012), this study

draws the conclusion to employ the Velocity Verlet
method to predict the new particle states. The Velocity
Verlet showed the best balance between accuracy and
computational effort in relation to the snow simulations
ahead. The method proposed by the French physicist
Loup Verlet can be derived by an approximation of a
Taylor series. The basic Verlet method makes use of a
central difference approximation, where the new parti-
cle position )E}Hdt is predict as follows:

—{t+dt
i

1
= B +vdr+ zci;t - df? 4)

The new particle velocity v;"*" is determined as follows:

1
‘7l\_t‘+dt — \7;t + E(d;t + (Z’H—dl)dt (5)

t. t+drt -
where @, is the sum of all currentand @; " is the sum of

all new forces. Concerning the implementation, this ap-
proach does not allocate additional memory as the pre-
diction of the new velocity is split into a predictor and
corrector phase of the procedure. In detail this means
that the current acceleration a_}Hh is determined and
added on the new velocity ahead of the prediction of
the new forces. After the prediction of the new forces
the new velocity is corrected by adding the new accel-
eration.

2.1.2. Particle Rotation
Notation

The orientation of a rigid body in space can be de-

fined by the three Euler angles ¢,. The change of ori-
entation occurs with a torque M; acting on a particle.
A change in orientation causes a new state of the Eu-
ler angles, hence, the angles present a sequence of three
rotations about the axes of the reference system. By def-
inition within XDEM, the first rotation is about X3 by
the angle ¢, the second about X;S by the angle ¢, and
the final rotation is again around X;’S but by the angle
#3.
However, the new orientation, i.e. the new Euler angles,
can be derived in all three spatial dimensions from the
total torque M; that acts on a particle. But this inher-
its somehow more complexity compared to translational
motion. Therefore, three different co-coordinate sys-
tems have be defined for the evolution of the new orien-
tation which are the space-fixed coordinate system X,
the co-moving coordinate system Xc and the body-fixed
coordinates X B.
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Figure 3: Particle torque during collision with two
neighbours

Particle Torques
The total torque M; on a particle i is composed of
.. . -
collision M and external moments M? as follows:

M; = M¢ + M¢ (6)
The torque ]\7’11C on a particle i developed during a colli-

sion is the sum of all the forces ﬁfj acting at the collision

point times the relative distance ij to center of mass of
the particle: '

M= MG = ) dx %)
Jj=L# Jj=L#
The mathematical formulation of eq. 7 is illustrated ac-
cordingly in fig. 3.

Time Integration of the Particle Orientation

In XDEM, the Euler equation of rotational motion is
applied to predict a change of the particle orientation,
which can be written as follows:

M} 1110} — wiwl (I - I33)
M} | =| Ind} - wiwi(lzs — 1) ¥
M3 I30% — wiwi (1) — In)

where M? and &P describe the torque and the angular
velocity of the bodies in the body-fixed coordinate sys-
tem, respectively. To make use of the moment of inertia
I, in the principal directions, i.e. Ij, I and I33, of
a shape the torque in eq. 8 has to be transformed into
body-fixed coordinates. The three equations are solved
for the three unknown angular velocities w? of a parti-
cle.? Thereafter, the change in Euler angles ¢, is pre-

>The Greek indices ,, p» v identify the three spatial components
of a quantity.
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Figure 4: Contact configuration and normal overlap of
grain i and j

dicted by making use of the relations in Eqgs. 9.

w? sin g3 + w¥ cos ¢

(?1 sin ¢2
¢ | = w8 cos g3 — WP sin ¢y
¢3 B B .: B COos ¢2
w8 — (WP sin g3 + WP cos ¢3)——=
. — (wy sings + wy' cos ¢3) S

Finally, the angular velocities is transformed back into
space-fixed coordinates as this is the reference system.

2.2. Model of Grain Collision
2.2.1. Contact Properties
The forces and torques developing between colliding
grains are estimated from the contact properties at the
point of contact. The properties are described within
the local contact frame which is defined by the normal
fz’ij and tangential t_:, unit vector at the contact point, as
show in fig. 4. The normal direction 7, ; of a contact is
given by eq. 10 and points always from grain j to grain
i.
X —X;
T Py
| - 7
Having the normal direction estimated the location of
the point of contact x%; j itself is given by eq. 11.

Rij = Tty (=% - %)

(10)

an

The velocity ¥, ; at the contact point is predicted by
eq. 12 taking into account the angular and translational

velocities of the contacting particles, as shown in fig. 5.
Vo= (@ xd+8) — (@ xdy+ 7)) (12)

The normal and tangential velocity, v;; and Vi j respec-
tively, at the point of contact are defined as:

13)

.
Vi o= (W i) - ity

€))



= Vj (14)

The tangential direction ﬁj of the contact configuration
is defined as the direction of the tangential velocity at
the contact point by eq. 15.

> Viij
ii = 13
)
The effective radius R;; and reduced mass m, . of two

grains in contact are determined according to the theory
of Hertz (1881) by eq. 16 and eq. 17, respectively.

1 1 1

~
|

15)

—_— = — 4 —
R.. r. r. (16)
ij
1 1 1
- = — 4 = 17
m m., m
ij i j

The characteristics of a collision are the duration of a
contact 7., the normal o and tangential overlap &; ; and
the relative velocity 17” at the point of contact. Here,
the normal overlap 5;“]. represents the deformations of
the grains in normal direction. As deformation causes
stress, the normal overlap is finally used to estimated
the resulting normal force F ;- Hence, the tangential
overlap represents the deformation of the asperities at
the grain surface. Therefore, the tangential overlap is
employed to predict the frictional force F l."j’." in tangen-
tial direction.

Eq.18 evaluates the normal overlap o with the radii 7;
and r; of the spherical particles and is presented in fig. 4.

8 = ri+r—|% -2 (18)
The duration of a collision ¢, is defined as the time for

which normal overlap is existing continuously. The col-
lision time is estimated as follows:

te = t—1y = i, -dt (19)

Figure 6: Tangential overlap of grain i and j

where ¢ denotes either the end time of the contact or the
current time, #; denotes the start time of the contact and
i. the total number of time steps in contact. The number
of time steps of a contact is given by i, = t./dt. As
to be seen in fig. 6, the tangential overlap derives from
the relative tangential path taken by the point of contact
over the entire time spent in a collision. Therefore, the
tangential overlap (5§j is calculated as follows:

50 = |80
2 ky (20)
8(r) = Zv’ij<t6+i~dt)~dt
i=1

where ¢ equals the current time step, # the start time of
the contact and i, the total number of time steps during
a contact. Thus eq. 20 predicts 6;1. as the sum of all tan-
gential velocities over the contact time.
The effective Young’s modulus E; ; at the interface of
two colliding grains is predicted according to Hertz
(1881) given by:
2 2
L - - + Q 1)
ij Ei Ej

2.2.2. Hertz-Mindlin Collision Model

The Hertz-Mindlin model is based on the theory of
Hertz (1881). The normal elastic force and the normal
energy dissipation are modeled based on the theory pro-
posed by Mindlin (1949). The formula for the normal
force can be written as follows:

=3 VR () + o (60)' 1) 5

The equation for the normal dissipation coefficient ¢, is
proposed by Tsuji et al. (1992) as follows:

5 mij - kn .
c,=lne: \| ———— with
72 + Ine? (23)
4
ko= Eij- \JR;j

3



The tangential force is a function of static and dynamic
friction whereby the static friction is model by a spring-
dashpot model:

ﬁlcjt - min[ (k, . 6;}. +¢- 5?;’) o ﬁfjn ] (24)

where 6! is the tangential spring displacement which is
defined as the total displacement in the tangential direc-
tion since the beginning of this contact. The tangential
stiffness is estimated by eq. 25.

ki=8-Gij |Rij- &, (25)

where G;; is the effective shear modulus defined in
eq. 26.

— = + _  (26)

The tangential dissipation coefficient is derived from the
tangential stiffness using eq. 27.

5.4 -myj k)

—lneq|——— 0T
c=ime 6 - (7% +1ne?)

27)

3. Finite Element Method (FEM)

The tire tread investigated in this study is described as
a continuous body. The displacement or change of the
configuration of a continuous body is the sum of mo-
tion, i.e. translation and rotation, and the deformation
of its shape. Thereby, the deformational part reflects
the stresses acting inside the body. A configuration of a
continuum body describes a continuous number of ma-
terial points occupying a certain amount of space at a
particular time. Deformation, i.e. the change of shape
or size of the body, equals the change between the ini-
tial and the current configuration. The deformation can
thereby described as the change in distance between two
neighbouring material points between initial and cur-
rent configuration. To analyse the evolution of defor-
mation of a continuous body it is necessary to describe
the change of configurations throughout time. There-
fore, the method discretized the volume of a body by
means of a mesh, as exemplified in fig. 7. This mesh
is represented by a finite number of nodes spanning a
finite number element over the body volume. The dis-
placements of the body shape are predicted at the mesh
nodes and thus the deformations and stresses are derived
over the finite elements.

Figure 7: Finite element mesh of a portion of a tire
tread.

3.1. Elastic Body Deformation

In this study, the investigated tire tread is described
by a fully time dependent model of linear elastic defor-
mation. The deformation of an elastic continua is de-
scribed by the differential form of Newton’s second law
of eq. 28. 3 Contrary to the discrete approach this equa-
tion is valid in every volume point of the continuum.

o> _ 0oap

—2 = +pb, 28
P o s p (28)

Notice within this context u, describes the displacement
where in the discrete form the position ¥; is placed. In
eq. 28, p is the density, oo reflects the internal forces
due to stresses and the final term represents body forces
b. As the density and body forces are prescribed, six
unknowns remain within the symmetric stress tensor
by three equations. To yield closure of the system the
stresses and deformations are linked by Hooke’s gener-
alized elastic law which can be written as follows:

Bua (9uﬁ
+ —_—
Oxg  0x,

ou,
O’aﬁz/l—éaﬁ+/,l

Ox, 29

where 0o describes the stresses, A and u are the Lame’s
linear elastic parameter.In this section d,5 describes the
Kronecker symbol. The law describes the isotropic lin-
ear elasticity.

3The Greek indices a, 8, y identify the three spatial components
of a physical quantity, i.e. @ = (1,2,3)



3.2. The Finite Element Formulation

The discretization of the governing eq. 28 in time
is described by a three-point central difference scheme.
The scheme is employed by introducing the superscript
t reflecting the time level and can be written as follows:

— t
ulzd — 2yt + _ 00 4
dr? 6Xﬁ

p +pb, (30)

where all quantities superscripted with ¢ are time de-
pendent and dt sets the time step length. For the spatial
approximation the straightforward Galerkin method is
applied to the governing eq. 28. Thereby, the displace-
ment field is approximated at n discrete nodal points of
finite element mesh as follows:

o = ) uf - Nj(xa) 3D
j=1

where N are trial functions of the finite element and u}
contains n - 3 unknowns to predict, where 3 stands for
the three spatial dimensions.

As the Galerkin method inserts the approximation i,
for u, aresidual results. By multiplication with the trial
function the resulting residual is required to vanish.
The final discretized form of the governing eq. 28 to
compute isotropic elastic deformation can be written:

u* =20 —u" " M7lar - (-Ku' + b)) (32)

where M = le'jﬁ being the mass matrix of the system.

Mgfg thereby holds the following entries:
Mgﬁ = fg :N; - N;dQ (33)

where 2 describes the whole domain of the body and is
replaced by the domain £, of the element e, restricting i
and j to be nodes of the finite element. Further, —Ku’ +
b’ is the discretized form of o7z, + pb},. K thereby
equals the stiffness matrix of the system with the entries
K jﬁ . The stiffness matrix holds thereby the following

L
entires:

Kz(jﬁ = L [,u(N,»,y-N,-,y)ﬁaﬁ + ﬂ'N[’a'Njﬁ
+ /l‘Niﬁ'Nj’a ] ag
where i and j run over all nodal points n of the mesh

while @, 8 and vy are presenting the three spatial dimen-
sions (= 1, 2, 3). The term b holds all nodal forces.

(34)

3.3. The Computational Algorithm

Looking at the time-stepping scheme of eq. 32 one
notices that it gains the new value u*% just by conduct-
ing vector addition, matrix-vector and scalar multiplica-
tion. Hence, the scheme is an explicit procedure without
a linear equation system to be solved. Eq. 32 is assum-
ing that u’ and u'~¥ are already predicted. Therefore,
the computational algorithm starts at ¢ = # by solving
the stationary elasticity problem Ku® = b implicitly
before it enters the time loop. Thus, the linear equation
system Ku’ = b’ needs to be solved ones for t = #; by
an iterative method. The solution provides u”. There-
after, u and u’ are equalized which implies the entire
system is stationary unless b’ changes which is a rea-
sonable assumption. While solving eq. 32 at every time
step fo + i - dt, the initial gained stiffness matrix K of the
stationary solution is reused.

3.4. Linear Equation System

By discretizing partial differential equations by the
finite element method one mostly needs to solve a sys-
tem of linear algebraic equations. In this study the C++
libraries of the finite element toolbox DiffPack are uti-
lized to assemble and solve such a system. For that pur-
pose the libraries offer direct and iterative methods and
also provide flexible functionality to utilize the specific
matrix and vector structure assemble.

The time-stepping scheme of eq. 32 does not require
any solving of a linear equation system. However, the
initial prediction of the stationary elasticity problem
Ku® = b" is a solution of a system of linear alge-
braic equations. Therefore, the linear equation system
Ku”® = b" needs to be solved for n - 3 unknowns con-
tained in the vector u.

In this study, the Conjugate Gradient Method as an suc-
cessful iterative method to solve A-x = b linear systems
is chosen to do so.

4. Efficient XDEM - FEM Coupling Method

The coupled computation conducted in this study are
separated into two domains the Finite Element and the
Discrete Element simulations. These two domain stay
separated through the entire time loop and integrate
their quantities without interfering. Only, at characteris-
tic points within a the time loop necessary data is shared
to update each domain.



S
T

NN SIS S S SERETISEIS

Figure 9: Binary Tree with stored bounding volumes exemplified by a tire tread. The root bounding volume encapsu-
lates the entire surface elements while bottom branch holds a single surface triangle.

4.1. Coupling Procedure

Within the context of explicit time integration the
procedure of the DEM - FEM coupling algorithm is rel-
atively straight forward. The procedure is schematically
depicted in fig. 8. Before the procedure enters the time
loop to predict the motion of particles and the deforma-
tion of the solid body, an initiation phase is required to
establish the foundation for later information exchange.
The surface elements of the mesh of the body have to
be linear triangle elements as the efficient contact de-
tection is base on the intersection between spheres and
triangles. As depicted in fig. 8 the initiation starts with
solving the stationary problem with in the FEM domian.
This step provides two informations to the procedure.
First, it established the matrices and initial displacement
values for eq. 32 of the FEM domain. On the other hand
it serves with the first deformed structure for the DEM
domain.

The second step of the initiation phase mirrors the de-
formed surface elements of the FEM mesh into DEM
domain. At any time, the DEM domain sees the de-
formed surface elements of the finite element mesh as
geometrical boundary conditions. On this basis the cou-
pling algorithm is linking the particular surface element
with the according boundary shape between FEM and

Initiation
+ solve — Ku® = b°
— mirror displaced surface elements
Time Loop —i—t; =ty +i-dt

— integrate time step
of particle motion, eq.3 & 8§

— transfer contact forces

— predict potential contact pairs
— compute contact forces

+ interpolate forces onto
finite element

— integrate time step ¢
of body deformation, eq. 32

— update boundary shapes

Figure 8: General Procedure of the Coupling Algorithm



DEM domain respectively.

The loop over time is separated into four major parts.
First, the motion of the granular assembly is integrated.
This step integrates the position and orientation of par-
ticles according to eq. 1 and 9. In the second step,
the impacts between particles and the elastic body are
predicted. Third, the deformation of elastic body due
to the impacting forces can be solved by the FEM
scheme. The last part of the procedure updates posi-
tion of the boundary shapes before the particle motion
is re-predicted within the new time step.

In the second step, between the integration of the mo-
tion of particles and the integration of the deformation
of the elastic body, the contact forces need to be com-
puted and transferred. This step is partitioned into three
sub steps.

First the potential contact pairs are detected by means of
an efficient contact detection algorithm, which quickly
separates the important particle - surface element pairs
from the huge number of possible contact pairs within
the system. The fundamentals of the algorithm are ex-
plained below.

The second sub step computes contact forces for all
pairs provided by the contact detection algorithm. The
contact force between particle and triangular element
is also derived by an representative overlap. The over-
lap prediction in this particular geometrical case is de-
scribed in the following sections. However, the contact
force is added to the particle forces and the counter force
is transfer to the according surface element of the FE
mesh.

The third sub step interpolates the counter force onto the
nodal forces of the finite element.

In the third step elastic deformation are executed which
incorporates the insertion of interpolated contact forces
into the force vector ' of the finite element formulation.
Then, the new displacement value u’*! will be gain by
solving eq. (32).

In the final step, each boundary shape within the DEM
domain is updated according to the appropriate surface
element. Therefore, the position and displacement vec-
tor of every nodal point of the surface mesh are added
and the appropriate vertex of the triangular boundary
shape is equalized with the result.

4.2. Contact Detection

An efficient coupling of discrete and finite elements is
based on a fast contact detection. Hence, the coupling
and quantity exchanging procedure is based on the in-
formation which pairs of particles and elements are in
contact. To avoid proofing each pair for contact an al-
gorithm for quick contact detection has been developed.

The algorithm is predicated on a binary tree structure
storing cubic bounding volumes. Fig. 9 shows a binary
tree with bounding volumes stored at every tree level on
the example of a tire tread.

The root node is encapsulating all surface elements of
the meshed body. By accessing a lower level of the tree
the bounding volume of the previous level is split into
half by spatial dimensions and number of elements en-
capsulated. The final branches of the binary tree only
hold the reference to a single surface element.

For the prediction of contact pairs the algorithm simply
runs along the branches. The algorithm detects whether
a particle is within the dimensions of the bounding vol-
ume of one of the two child branches. If this is the case
the algorithm repeats the detection on the next lower
level. As the algorithm reaches a bottom node of the
binary tree, the particle and the remaining surface ele-
ment will be returned a potential contact pair. In any
other case the contact detection algorithm restarts with
next particle.

4.3. Contact Prediction

For each detected contact pair, particle - triangular fi-

nite element, the particular overlap ¢;; and point of con-
tact )?U are predicted for the contact force computation.
The contact prediction between a sphere and triangle
can be separated into three contact situations as depicted
in fig. 10. The spherical particle can thereby intersect
with the interior, the edges or a vertex of the triangular
shape.
By means of the natural coordinates of a linear triangle
an efficient and quick prediction of the contact situation
is enabled. The natural coordinates can be presented as
the portion of area A; to entire triangle area Ay which
can be formulated as follows:

o -
1 2—AA 3—AA

=i (35)

Thus, any point aligning in the plane of a triangle may
be located in terms of natural coordinates ¢; as illus-
trated in fig. 11.

4.4. Point Force to Nodal Force

Within the FEM domain impacting particles are
recognised as point forces acting on the surface of an
element, as illustrated in fig. 12. But the displacement
are computed at the nodal points of an element. Hence,
the point force has to be interpolated consistently onto
the nodes to account for them within the finite element
formulation of eq. (32). The force interpolation is based
on the virtual work equivalent to secure consistent nodal



Figure 10: Three Contact Situations of Sphere - Triangle Intersection: Contact Point within Triangle Dimensions,
Triangle Edge Intersection and Triangle Vertex Contact, respectively.

Figure 11: Constant lines of natural coordinates of a triangle.

Figure 12: Particle force interpolated onto a linear tri-
angle element.

forces for FEM. This equivalent states that the work of
the particle force paired with the interpolated displace-
ment equals the work achieved by the nodal forces and
nodal displacement. Nakashima and Oida (2004) and
Horner et al. (2001) used the same approach to couple
DEM - FEM for analysing vehicle - soil and tire - soil
interaction.

Looking at the contact situation in fig. 12, the finite ele-
ment sees a point force acting on certain point of its sur-
face. A point force can be written as the force multiplied
by the Dirac functions. Eq. 36 represents the particle
force F acting on the point P({7, ¢2, L) of the triangle
surface in natural coordinates.

Fi-8(L —80) 8L —-0)6G-8)  (36)

Let 6ii, be the virtual node displacement and f; the
paired nodal force, then the left side term of eq. 38 rep-
resents the virtual work at the nodes. The right side term
is the virtual work achieved by external forces.

Z W, = W (37)

Zﬁ-aﬁ,,=fﬁ-5ﬁds (38)
" s



Zﬁéﬁ,l:fﬁ-[ZNn-aﬁn] ds
n S n

The interpolated virtual displacement for a linear trian-
gle is described as follows:

il = N1(£y) - 8y + No(&p) - Gidy + N3({3) - 6id3

where N;, N, and N3 are the shape function of a three
node finite element, i.e. linear triangle. Introducing this
into eq. 38, where &ii, is the virtual nodal displacement
and N, (Z,) - 6il,, its associated variation, and cancelling
éit, from both sides yields the following equation:

ﬁ=fﬁwmww (39)
S

Interpreting the surface integral by means of the natural
coordinates and substitute the particle reaction force in
eq. 39 by eq. 36 the following equation yields:

1

ﬁ=fﬁﬁ@—§ymmwQ

0

(40)

fQ(x)~6(x—y)dx=Q(y) — asysb (4]
b

Using the integration law 41 of a Dirac function gives
the distribution of the point forces F to the node force
by means of the shape functions as formulated in eq. 42.

(fo=Nuch-F )

(fr=nN) Fi=F ) (42)

5. Simulation of Tire - Soil Interaction

The coupling approach between XDEM and FEM is
employed to predict the tractive performance of a rub-
ber tire in interaction with soil terrain. This allows to
resolve the response of the rolling tire during the inter-
action with the terrain as well as the reaction of the soil
bed on the tread. The simulation is set up according
to the measurements of Shinone et al. (2010) for later
comparisons with the numerical results.

5.1. Experimental Setup

The simulation is composed of two phases which are
a phase of vertical tire sinkage followed by the horizon-
tal travel of tire through the granular terrain by the angu-
lar velocity w, and translational velocity v;,. Fig. 13 de-
picts the two phases of tire travel schematically. During
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Figure 13: Sinkage and travel phase of tire - soil inter-
action

the sinkage phase the tire sinks into the soil bed un-
der the constant velocity v, until the contact force F
is reached. F is thereby the sum of all vertical forces.
Thereafter the tire travels through the soil bed in hori-
zontal direction with a predefined tire slip s7.

_ (w-Rr—Vy)
(I.);'RT

st 100 [%]

During the horizontal travel of the tire through the soil
bed the the running resistance T, gross tractive effort
Ty and drawbar pull Tp are recorded for later compar-
ison with the experimental results. The running Tk re-
sistance is predicted as the sum of all forces in opposite
direction of travel which develop between the tire sur-
face and grains in contact. This is indicated in fig. 13
and can be written as follows:

TR=Zf,<O

The gross tractive effort T as the the resistance counter
part is thus predicted as:

TH=Zf,>O



Table 1: Tire Travel Properties Dimensions

Sinkage Velocity vy [m/s] 0.1
Contact Force Fg [N] 5000
Horizontal Velocity v; [m/s] 0.976
Angular Velocity w, [rad/s] 1.80
Tire Slip s7 [%] 5.0

/
“\

it
T

e

T

Figure 14: Initial soil bed and and tire configurations.

Finally the drawbar pull is calculated using the Tk and
Ty as follows:

Tp=Ty— Tkl

All properties describing the tire motion through the soil
bed are composed in table 1. Fig. 14 shows the ini-
tial configuration of the meshed tire volume and the set-
tled soil bed. The spatial dimensions of the tire tread
and the soil bed are documented in table 2. Hence,
the soil bed contains three layers of spherical particles
of different radii which increasing with increasing soil
bed height. Further, the top layer consists of particles
with the smallest radius which have been randomly dis-
tributed and settled in a previous simulation to approxi-
mate a natural terrain environment. The bed is confined
by rigid walls with the same material properties as the
soil particles. Thus, the soil bed bottom is approximated
as hard soil ground.

The tire tread consist of a lug pattern whereby the the
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Table 2: Tire Tread and Soil Bed Dimensions

Tire size  165/65R13
Radius Ry [m] 0.544
Tread Width [m] 0.165
Wall Thickness [m] 0.016
Groove Depth [m] 0.015
Inflation Pressure [MPa] 0.14
No. Elements 24287
Bed Length [m] 1.0
Bed Width [m] 1.0
Bed Height [m] ~ 0.14
No. Grains 21812

Grain Diameter [ mm] 15.6, 7.8, 6.9 +0.345

lugs are arranged in a alternating apposition. Further,
the tire tread is approximate by tetrahedral finite ele-
ments with linear shape functions. However, the dis-
placements at the nodes of the tire tread naturally con-
tacting the rim are fixed. The inner surface of the tread
experience the normal stress resulting from the inflation
pressure.

The element of the outer surface of the tire tread are
allowed to interact with soil grains according the de-
scribed coupling procedure.

The deformation of the tire is predicted by the linear
elastic finite element description and the soil bed motion
is computed by the described discrete element method.
Thus, the collision forces developing during the interac-
tion between soil grains and between a soil grain and a
tire element are predicted by the Hertz Mindlin model.
The material properties used in the FEM, DEM and cou-
pled prediction are stated in table 3.

5.2. Traction Performance and Deformation

Shinone et al. (2010) measured the drawbar pull and
torque of lugged tire treads at different slip configura-
tions. The investigations were conducted with a single-
wheel tester composed of a soil bin and a driving unit
of the tire. The tires measured had a similar nominal
size as the simulated tire tread, i.e. 165/60R13, with
535 mm diameter and 170 mm width. The measured
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Figure 15: Gross Tractive Force, Running Resistance and Drawbar Pull versus tire slip. The black symbols indicate
the measurements by Shinone et al. (2010) of lugged tire treads at different slip values. The blue symbols and error
bars show the mean, min and max of the simulation results at a slip of 5%.

Table 3: Material and Contact Parameters

Tread Soil
Density plkg/m’] 1100.0 2600.0
Young’s Modulus  E [kPa] 20000.0 57.0
Poisson Ratio v 0.45 -
Shear Modulus G [kPa] - 4.0
Friction Coeff. u 0.3 0.6
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torque of the tire was used to predict the gross tractive
effort Ty = M/Rr. The running resistance R was then
predicted from the difference of gross tractive effort and
drawbar pull [Tg| = TyTp. The measurement results for
lugged tire treads are shown as black symbols in fig. 15
at different slip values. Fig. 15 also contains the re-
sults of the coupled XDEM - FEM simulation at the slip
value of 5.0%. The simulation results are shown as blue
symbols of the mean value together with the min and
max deviation. The overall traction performance has
been predicted very successfully even though the tire
mesh and soil resolution are rather coarse. This proofs
the validity of the method for the application pf tire trac-
tion performance also in wake of this the dependence of
the simulation properties should be investigated. Due to
the interaction with tire tread the soil grains are com-
pacted below and displaced onto the side of the tire
which can be seen in fig. 16. Fig. 16 shows the tire
from the backward position looking into the direction
of travel. The soil grains are coloured by the velocity
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(a) Final sinkage position of the tire.
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(b) The tire during travel through the soil bed.

Figure 16: Back view in travel direction of the tire dur-
ing interaction with soil. The deformed tire coloured by
the strain component £33 of direction of sinkage. The
soil grains are coloured by their velocity component in
direction of travel.

component in the direction of travel. Two progressing
time steps are shown in fig. 16. The first depicts tire at
the final sinkage position and the second whilst travel
through the soil bed. The tire is represented in its de-
formed state and coloured by the strain component £33
in sinkage direction. The displacement of the soil next
to the tire is clearly visual as well as the deformation of
the tire wall due to the interaction forces. Fig. 17 repre-
sents the same two timesteps shown in fig. 16 but in side
view. The soil bed is thereby cut beneath the tire tread
to allow an inside view. The colouring of the soil and
tire is still by travel velocity and sinkage strain, respec-
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(b) The tire during travel through the soil bed.

Figure 17: Side view perpendicular to the travel direc-
tion of the tire during interaction with soil. The de-
formed tire is coloured by the strain component £33 of
direction of sinkage. The soil grains are coloured by
their velocity component in direction of travel and the
bed is depict clipped beneath the tread.

tively. This view visualizes clearly the maximum strain
of the tire at the upper portion of the side wall due to
the compression of the tread into the soil bed. Further,
the acceleration of the soil grains beneath the the tread
against the direction of travel is visual when one com-
pares the two timesteps depict. The increase in velocity
of the grains results from the grip of the tire into the bed
whilst forward motion.

This grip of the footprint of the tire tread into soil bed is
even more apparent in fig. 18. Fig. 18 shows a layer of
the soil bed at the height of the tire lugs. With the mo-
tion of the tire into the direction of travel the majority
of particles beneath the tread experiences an accelera-



(b) The tire during travel through the soil bed.

Figure 18: Top view of soil bed during interaction with
the tire. The soil grains are coloured by their velocity in
direction of travel.

tion against the travel direction of tire under the applied
slip. This portion of the particles cause the gross trac-
tive effort predicted previously. A minor portion of the
soil grains is pushed ahead of the tread. These grains
develop forces against the travel direction of the tire
and thus cause the running resistance. Also, under the
rolling of the tire tread through the bed the lugged tread
patterns are pressed into the soil due to the traction de-
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(d) The tire during travel through the soil bed.

Figure 19: Bottom view of the tire during interaction
with soil. The deformed tire is depicted and coloured
by the strain components &;, of direction of travel and
&33 of direction of sinkage.

veloped.

Fig. 19 depicts the bottom view of the tire tread at the
same two timesteps. The strain component 33 in direc-
tion of sinkage and the component &, in the direction of
travel. The arrow in fig. 19 indicates the travel direction.
Component £33 indicates the maximum deformation on



the tread shoulder under the load pressure developed be-
tween tire and soil during sinkage. The first moment
shows a symmetric distribution of the strain at the end
of the sinkage phase. In component &, the maximum
of the strain develops at the front part of the footprint
due to the soil grains producing the running resistance.

6. Conclusions

A simulation technique has been developed and suc-
cessfully applied to describe the interaction between a
tire tread and a granular terrain. It supports the under-
standing of the nature of traction which consequently
reveals measures to improve both traction and driving
safety.

The Extended Discrete Element Method (XDEM) is
employed to describe the mechanical behaviour of the
soil. Contrary to a continuum mechanics approach soil
is considered to exist of discrete grains are allowed to
collide with each other. Therefore, a grain-scale con-
tact models describes the interaction between the soil
grains and the tire tread. The grain-scale response of
each grain in contact with the tire surface is transferred
to the tread by means of an interface coupling. Due
to the response forces the tire tread develops deforma-
tions which are approached by a continuum description.
Therefore, the tire tread itself is described by the Finite-
Element-Method (FEM) which evaluates the elastic de-
formation due to contact forces of the terrain.

Hence, the following three key developments have been
successfully conducted within this study: the continu-
ous description of the tire tread; the DEM - FEM in-
terface coupling; the discrete approach for the granular
terrain;

The development of the DEM FEM interface meant
to derive a coupling algorithm which enabled to con-
nect the two domains efficiently. These developments
first allowed the efficient detection of contact between
the grains and the tread surface and also the transfer of
forces and geometrical information between the DEM
and FEM domain. The coupling algorithm connects
the surface of the FEM mesh and its boundary surface
in DEM. It further transfers the forces caused by the
impacting grains onto the appropriate finite elements.
Thereafter, it updates the boundary surface in DEM in
accordance to the deformation predicted by the finite el-
ement solver. In order to describe the complex surface
of a tire tread, the DEM software needed to be extended
by a triangulated surface approximation. These triangu-
lar elements of the surface reflect the surface elements
of a FEM mesh. A binary tree based algorithm has been
developed and successfully employed for an efficient
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detection of contacts between the grains and the com-
plex FEM surface.

However, the simulation technique proofed to be able
to predict accurately the traction behaviour of tire tread
-terrain interactions. The gross tractive effort, rolling re-
sistance and draw-bar pull have been compared success-
fully to measurements by Shinone et al. (2010). The
principal deformations of the tire tread and the granular
terrain could be described by the DEM - FEM coupling
method. However, the linear elastic description of the
tire tread and the discretization as a whole rubber body
are a first simple approach. For future works the tire
model should be extended to non-linear deformations.
The different layers and compounds of a modern high-
tech tire have to be accounted in future predictions.
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