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Abstract

We address the limitation of low resolution depth cam-
eras in the context of face recognition. Considering a
face as a surface in 3-D, we reformulate the recently pro-
posed Upsampling for Precise Super—Resolution algorithm
as a new approach on three dimensional points. This re-
Sformulation allows an efficient implementation, and leads
to a largely enhanced 3-D face reconstruction. Moreover,
combined with a dedicated face detection and representa-
tion pipeline, the proposed method provides an improved
face recognition system using low resolution depth cameras.
We show experimentally that this system increases the face
recognition rate as compared to directly using the low res-
olution raw data.

1. Introduction

In the past ten to fifteen years, research on automatic face
recognition has actively moved from 2-D to 3-D data mostly
acquired using high resolution (HR) laser scanners. Multi-
ple approaches have been developed for this kind of data.
Until recently the race was about designing sensors to cap-
ture data with higher levels of details and higher resolu-
tions [1l]. Today much more affordable and less bulky depth
cameras, with 3-D capabilities, have become accessible.
They are, however, of limited resolutions, and present a high
level of noise. Some examples are the 3D MLI by IEE S.A.
of resolution (56 x 64) [2], and the PMD camboard nano of
resolution (120 x 165) [3]]. Because of their low resolution
(LR) and the noisy nature of the acquired data, previously
defined 3-D face recognition algorithms are no longer en-
sured to be as effective [9]].

The multi-frame super-resolution (SR) framework is an ap-
propriate solution where it becomes possible to recover a
higher resolution frame by fusing multiple LR ones. It has
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been successfully used in the case of 2-D face images [5,16].
Similar efforts have been undertaken for 3-D facial data.
In [L1], a learning—based method has been proposed to di-
rectly find the mapping between an LR image and its corre-
sponding HR image without using multiple frames. In [12],
Peng et al. proposed to use facial features in a Maximum A
Posteriori SR framework.

Depth facial data may also benefit from the SR framework.
Recently, Berretti et al. proposed to use SR on facial depth
images once back-projected in 3-D, and defined the super-
faces approach [9]. The SR algorithm they deployed is sim-
ilar in principle to the initial blurred estimate provided in
the enhanced Shift & Add algorithm proposed by Al Is-
maeil et al. in [7]. Later on, this work was extended to
the dynamic case where the considered multiple realizations
were ordered frames constituting a video sequence [8]]. This
approach is referred to as Upsampling for Precise Super-
Resolution (UP-SR). Its key component is a prior upsam-
pling of the observed data which is proven to enhance the
registration of frames over time. In addition, it uses a bi-
lateral total variation framework as a smoothness condition.
In [[16]], a similar concept of temporal fusion was considered
for 3-D facial data enhancement. However, the increase
in resolution was induced from temporal data cumulation
without a real SR formulation or upsampling. Moreover,
smoothness was ensured by bilateral filtering as a post pro-
cessing operation and not included in the optimization ob-
jective function.

The contribution of this paper is twofold; first, we refor-
mulate UP-SR on 3-D point clouds constituting the facial
surface similarly to the work in [9]. However, by perform-
ing the deblurring phase of UP-SR, 3-D face reconstruction
results are maintained, if not enhanced. Second, we show
experimentally that using these results for 3-D face recog-
nition clearly improves the recognition rate as compared to
using raw LR acquisitions. This second contribution re-
quires a full dedicated pipeline for automatic face acqui-
sition from depth cameras. Moreover, level curves equidis-
tant from the nose tip and radially sampled are considered



as facial features for matching and comparison.

The remainder of the paper is organized as follows: Sec-
tion 2] reviews the UP-SR algorithm. Its adaptation to facial
depth data on a surface is given in Section[3] Our proposed
face recognition pipeline is detailed in Section 4 which in-
cludes a description of the considered level curves. The ex-
perimental setup and results are summarized in Section [3
Finally, we conclude with Section [6]

2. Background

In what follows, we review the UP-SR algorithm. We rep-
resent all images in lexicographic vector form. Let us con-
sider an HR depth image x of size n, and N observed
LR images yi, k = 0,..., (N — 1), of size m, such that
n = r - m, where r is the SR factor. Every frame yj is an
LR noisy and deformed realization of x modeled as follows:

vy = DHWyx + ng, k:O,...,(N—l), (D

where Wy, is an (n X n) invertible matrix corresponding
to the geometric motion between x and y;. We assume
that yq is the reference frame for which Wy = I,,. The
point spread function of the depth camera is modeled by the
(n X n) space and time invariant blurring matrix H. The
matrix D of dimension (m x n) represents the downsam-
pling operator, and the vector ny is an additive noise at k
which follows a white multivariate Laplace distribution of
mean zero and covariance ¥ = ¢2L,,, with I,,, being the
identity matrix of size (m x m).

One of the key components of UP-SR is to upsample the
observed LR images prior to any operation. We define the
resulting r-times upsampled image as:

ye 7=U -y, 2

where U is an (n x m) upsampling matrix. This allows to
directly solve the problem of undefined pixels in the SR ini-
tialization phase. It also leads to a more accurate and robust
estimation of the motion W, as it is now computed between
yr T and yo T. The following registration of frames to the
reference is consequently enhanced:

Ve =Wy 1. 3)

Without loss of generality, both H and W, are assumed
to be block circulant matrices. Choosing the upsampling
matrix U to be the transpose of D, the product UD = A
defines a new block circulant blurring matrix B = AH. We
have, therefore, BW; = W B. As a result, the estimation
of x may be decomposed into two steps; estimation of a
blurred HR image z = Bx, followed by a deblurring step.
The data model in (1) becomes

Vet=z+ve,  k=0,..,(N-1), @

Algorithm 1: UP-SR

1. Choose the reference frame yy.
for k,st,k=1,---,N,

do

2. Compute yj, 1 using .

3. Find W, by optical flow estimation.
4. Compute y, 1 using .

end do

end for

5. Find z by applying a median estimator .
6. Deduce x by deblurring using @
end for

Table 1. Classical Upsampling for Precise Super-Resolution

where vy = W,;lU - ny, is an additive noise vector of
length n. Using an Lyj—norm || - ||1, the estimate of z using
the corresponding Maximum Likelihood is

N-1
z:argmzm;) Iz =35 11 ®)

The result in (5) is, by definition, the pixel-wise temporal
median estimator z = med; {y,, 1}-

To recover x from %, an iterative optimization is performed
as a deblurring step. Considering a regularization term
I'(x), chosen to be the bilateral total variation (Bilateral
TV) given in [13], we find

fc:argmin(HBx—iHl +)\F(x)>, ©6)

where A is the regularization parameter. The UP-SR algo-
rithm is given in Table[T} and summarized in Figure[T]

3. Surface Upsampling for Precise Super-
Resolution

The different steps in UP-SR as described in Section 2 may
be directly applied on LR depth images y, of faces as those
illustrated in Figure[2] (a). The resulting reconstructed face
x is shown in Figure [2](c). While it is of higher resolution,
it presents artifacts that we argue are caused by applying
UP-SR on gridded depth data. To remedy these artifacts,
we propose in what follows to back—project the y;. frames,
E=1,---,N, to R using the intrinsic parameters of the
camera used for the acquisition. We end up with N corre-
sponding point clouds V), = {pF = (zF,yF,2F) e R3,i =
1,---,m} as shown in Figure(b). The objective is now to
reconstruct an HR point cloud X = {qf = (2F,y¥, 2F) €
R3,i = 1,--- ,n} belonging to the surface S of the orig-
inal face, i.e., X C S. We adapt the algorithm in Table E]
to point clouds, and define a modified version of the UP-
SR algorithm that we refer to as SurfUP-SR. The two main
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Figure 1. UP-SR steps on depth data and on a surface in 3-D.

(©) (d)
Figure 2. Face reconstruction with UP-SR using (a) depth images,
(b) point clouds. The corresponding results are shown in (c) and
(d), respectively.

phases are maintained: 1) estimation of Z, a blurred version
of X’; 2) deblurring by optimization as in (). The steps of
upsamling and registration need to be adapted as described
in the following sections. An illustration of differences be-
tween UP-SR and SurfUP-SR is given in Figure[l]

3.1. Surface Upsampling

Assuming that the point cloud )y is a sampling of a surface
Sk, the upsampling of ), may be reformulated as a problem
of interpolating the surface Sy, from scattered points. The
surface S; may be defined implicitly by a function f as:

f(xz,y,2) =0, Vp=(x,y,z) € S, or equivalently by
using the interpolant Py as:
’Pf(xvy):'z, VP:(x7yvz)€Sk~ (7)

The m points in Y, verify (7), hence they form a system
of m equations, from which Py may be defined. A solu-

tion using kernel regression has been proposed in [14]. An
efficient GPU implementation has been given in [13]. We
used the Matlab scatteredInterpolant function in
our implementation. Once Py is found, it is used to define
(r — 1) - m additional points belonging to Sy, for chosen
(z,y)-positions. As a result, a denser point cloud Yy, 1 con-
taining a total of n points is found such that

Vi T:yku{pf :(xfayfvzf) ERSai:m+1a"' 777'}3
3)
and (mfayf) € [_171] X [_171]

3.2. Surface Registration

The motion estimation and registration steps in UP-SR are
replaced by directly using classical 3-D point cloud regis-
tration techniques. We use iterative closest points (ICP)
to rigidly register each point cloud Vi 1 to the reference
Yo T. This is done by estimating the optimal transformation
parameters, namely, 3-D rotation Rk, translation fk, and
global scaling factor ¢y, that minimize the distance Err(-)
between the transformed and the reference point clouds
such that

[ﬁk,f:k, ai] = argminErr (aRYe T+, 7). (9)
R,t,a

The registered point cloud )}, 1 is then computed as:

Vi = @RaVi T+ (10)
With these modifications, the new SurfUP-SR algorithm is
given in Table 2] Its visual impact is shown in the example
of Figure 2] (d).
4. Proposed Face Recognition Pipeline

Our proposed pipeline is composed of three main stages:
preprocessing of raw data, feature extraction and matching.

4.1. Preprocessing

The preprocessing step is an essential step in the design of
a face recognition system as it affects the performance of



Depth data

Amplitude image

Face
detection

Raw data

_______________1___________

Nose tip detection

Face cropping

Figure 3. Preprocessing step of the facial acquisition pipeline using a depth camera.

Algorithm 2: SurfUP-SR

1. Choose the reference frame ).

for k,st.,k=1,--- N,

do

2. Compute YV 1 using .

3. Estimate Rk, fk, and &y, using ICP as in (EI)
4. Compute )}, T using @)

end do

end for

5. Find £ by applying a median estimator H
6. Deduce X by deblurring using (EI)

end for

Table 2. Surface Upsampling for Precise Super-Resolution

the system significantly. We implement fast and efficient
techniques to detect the face region and the nose tip for an
effective segmentation and alignment. We apply a face de-
tection algorithm on the amplitude or 2-D image only, then
we map the face region with the corresponding depth image
to obtain the corresponding 3-D facial region. In this work,
the Viola-Jones face detection algorithm is used for its
computational efficiency and high detection rate. Once we
detect the depth face region, we detect the nose tip repre-
sented by the point with the smallest depth value. The nose
tip is used as a basic feature for our segmentation and align-
ment. Using a spherical cropping centered at the nose tip,
we discard the ear, hair and part of the neck areas. Finally,
the ICP registration is used for alignment.

4.2. Feature extraction

We use spherical curves and their radial discretization as
features to represent each face. A spherical curve is ob-
tained by intersecting the facial surface with a sphere. In
order to have smoother and continuous curves, we apply the

(a) (b)
Figure 4. Feature extraction step using: (a) Observed LR 3-D face
with texture from amplitude or 2-D images. (b) Extracted level
curves.

interpolation technique proposed in [18]]. Spherical curves
are discretized radially by slicing the spherical intersection
curves using a plane that is parallel to the face normal and
that intersects the spherical curves radially at uniform an-
gles. Each face is represented by an indexed collection of
M x L points in 3-D, where M denotes the number of
curves per sample face and L is the number of points in each
curve. We end up with a feature vector of size M x L x 3
for each face. An example of the extracted feature curves is
shown in Figure ]

4.3. Matching

The matching step aims to associate each probe 3-D face
to the the closest 3-D face in the database by comparing
their extracted features. The comparison is carried out by an
appropriate distance measure on the space of the extracted
feature curves. We choose the cosine distance in our exper-
iments as we found it to be the best performing one. This is
confirmed by the survey of Smeets et al. [20].



(a) (d)

Figure 5. 3-D face reconstruction results. (a) 3-D laser scan ground truth. (b) One of the LR 3D faces. (c) Results of the superfaces
algorithm. (d) Results of the proposed SurfUP-SR algorithm. (e) 3-D error map corresponding to the 3-D LR face. (f) 3-D error map
corresponding to the superfaces results. (g) 3-D error map corresponding to the proposed SurfUP-SR.

5. Experimental Part

We evaluate the performance of the proposed system for
both 3-D face reconstruction and recognition. First, to eval-
uate the quality of the reconstructed 3D faces, we use the
publicly available superfaces dataset [17]. It has been ac-
quired using the well known Kinect camera [4]]. A sequence
of 2-D and depth images for 20 different subjects are pro-
vided. Moreover, an HR scanned version for each subject
is available as ground truth. The dataset has only one real-
ization for each subject which makes it not appropriate for
recognition purposes. Thus, we built our real dataset using
10 subjects with two different realizations for each subject.
The dataset is acquired using the PMD camboard nano time
of flight camera with a resolution of (120 x 165) pixels [3].

5.1. Reconstruction

In order to evaluate the quality of the reconstructed faces,
we use the above mentioned real dataset [17]. The faces in
the depth frames are of low resolution due to the object dis-
tance from the camera. To improve its quality, we conduct
the following test. We apply SurfUP-SR, and show the re-
sults for two subjects (01 and 19) using 5 LR frames. An
LR frame for each subject is shown in FigureEl(b), first and
second rows, respectively. Obtained results show that the
proposed algorithm provides a visually improved HR 3-D
faces as seen in Fig. [5](d) as compared to the LR captured
data Figure [5}(b). Moreover, our algorithm provides better
visual results than the recently proposed superfaces algo-
rithm (9], Figure[3] (c). This is due to the fact that SurfUP-
SR includes an additional deblurring step. Our results are
of sufficient quality for many applications such as 3-D face
recognition. In order to provide a quantitative evaluation,

Figure 6. Extracted level curves from 3-D faces for: (a) Ground
truth. (b) LR. (c) superfaces. (d) SurfUP-SR.

we measure the reconstruction error of SurfUP-SR and su-
perfaces against the laser scanned ground truth. In Figure[5
(f) and (g), we may see the color-coded reconstruction error
of the superfaces method [9]] and SurfUP-SR, respectively.
As expected, obtained results show that SurfUP-SR is at
least as good as superfaces and sometimes better. More-
over, by taking a look to the error range bar in Figure[5] we
note that in most areas the errors are below 0.5 cm.

5.2. Recognition

In order to test the impact of SurfUP-SR on a face recogni-
tion algorithm, we evaluate the performance of the pipeline
presented in Section 4 on the raw LR faces in our database.
We then run the same pipeline on the superresolved faces
of our database. We may see in Figure [f] the enhancement
incurred by SurfUP-SR on the quality of the extracted fea-
ture curves. Indeed, their extraction from LR faces leads to
noisy curves. For the same subject, these curves become



(b)
Figure 7. Confusion matrices. (a) Using the LR 3-D observed
faces. (b) Using the super-resolved 3-D faces by the proposed
SurfUP-SR.

smoother and less noisy if extracted from superresolved
data. The quality of these curves directly affects the final
result of the face recognition algorithm. The correspond-
ing confusion matrices are given in Figure[7[a) and in Fig-
ure[7(b). We notice an improved recognition rate from 50%
to 80% when super-resolving. This confirms the importance
of having a higher resolution for an increased recognition
rate and the effectiveness of the proposed SurfaceUP-SR.

6. Conclusion

In this paper we proposed a new multi-frame super-
resolution algorithm SurfUP-SR which improves 3-D face
recognition rate using low resolution, and cost-effective
depth cameras. We reformulated the UP-SR algorithm on
a 3-D point cloud instead of its original formulation on a
depth image. In addition, we provided a full automatic 3-D
face acquisition from depth cameras. Experimental eval-
uation of SurfUP-SR using a real low resolution 3-D face
dataset has been carried out. Obtained results show an ef-
ficient enhancement in the resolution and the quality of the
captured low resolution 3-D faces. Moreover, we showed
the impact of the proposed algorithm in decreasing the 3-D
reconstruction error, and most importantly in increasing the
3-D face recognition rate.
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