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Abstract

Recently, two operators - the down-admissible and up-complete operators - have
been proposed, in the context of aggregating argument labellings, for repairing a given
initial labelling so that it becomes rational, in the sense that it respects the attack
relation between the arguments. The purpose of this research note is to give some initial
thoughts on defining dialogue games for each of them, as well as for their combination.

1 Introduction

In the field of abstract argumentation [7], dialogue games provide a useful tool to
understand the various different argumentation semantics that have been proposed,
and provide a firm link between such semantics and natural forms of discussion [8].
Recently a new research strand on aggregation of argument labellings has emerged
[1, 5], in which the evaluations of several agents over a set of arguments are aggregated
into a group evaluation. Typically, simple-minded aggregation procedures such as the
credulous or sceptical operators [5] suffer from the problem that their output fails to be
collectively rational, i.e., the output labelling fails to pay sufficient respect to the attack
relation between the arguments. In [5], one suggested remedy is to perform a repair to
the output labelling by a combination of two operators called the down-admissible and
up-complete operators. These concepts can be defined in two alternative ways: either in
terms of minimising, respectively maximising according to a natural “committedness”
ordering between labellings, or as the result of certain transition sequences from one
labelling to another. So far what is missing is a dialogue-style characterisation of
these concepts. In particular we would like to be able to define a dialogue procedure
for establishing whether a given argument is accepted in the down-admissible or up-
complete labellings of a given initial labelling. The purpose of this note is to give some
initial thought on how to define dialogue games for each individually, as well as their
combination.

The plan of this note is as follows. In the next section we give necessary background
concepts from abstract argumentation and define the down-admissible and up-complete
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labellings. Then we informally describe the down-admissible and up-complete dialogue
games in sections 3 and 4 respectively. Finally we describe a dialogue game for the
combined game in Section 5.

2 Abstract argumentation

We start by assuming a countably infinite set U of argument names, from which all pos-
sible argumentation frameworks are built. We restrict ourselves to finite argumentation
frameworks.

Definition 1 An argumentation framework (AF for short) A “ pArgs,áq is a pair
consisting of a finite set Args Ď U of arguments and an attack relation áĎ ArgsˆArgs.

An AF can be visualised as a directed graph, with nodes and edges representing
arguments and attacks respectively.

Example 1 The AF pta1, a2, a3u, tpa1, a2q, pa2, a1q, pa2, a3qu can be pictured as follows.

a1 a2 a3

An AF is evaluated by assigning one of the labels in, out or undec to each argument
in Args, standing for accepted, rejected and undecided respectively [2, 4]. Given an AF
A, an A-labelling is a function L : Args Ñ tin, out, undecu. We denote the set of all
possible A-labellings by LabspAq. For each x P tin, out, undecu we denote by xpLq the

inverse image of x under L, and we let decpLq
def
“ inpLq Y outpLq, i.e., decpLq denotes

the set of arguments decided (either accepted or rejected) by L. Finally given A Ď Args
we denote by LrAs the restriction of L to A.

We can compare different labellings according to how committed they are [5]. Given
any two A-labellings L1, L2 we write L1 Ď L2 iff both inpL1q Ď inpL2q and outpL1q Ď

outpL2q. In other words every argument labelled in (resp. out) by L1 is also labelled
in (resp. out) by L2. It is easy to see Ď forms a partial order over LabspAq.

A major research question in abstract argumentation theory has been that of es-
tablishing when a given A-labelling can be said to represent a rational evaluation of
the arguments in Args. Of course such an evaluation should somehow respect the
attack relation. Several definitions, or so-called argumentation semantics, have been
proposed. A fundamental concept is that of a complete labelling.

Definition 2 Let A “ pArgs,áq be an AF and L be an A-labelling. We say L is a
complete A-labelling iff, for all a P Args:

• If Lpaq “ in then Lpbq “ out for all b P Args s.t. bá a.

• If Lpaq “ out then Lpbq “ in for some b P Args s.t. bá a.

• If Lpaq “ undec then Lpbq ‰ in for all b P Args s.t. bá a and Lpcq “ undec for
some c P Args s.t. cá a.

We denote the set of complete A-labellings by ComppAq.

2



Example 2 Consider the AF from Example 1. Then there are three possible complete
labellings for this framework, which can be pictured as follows.

a1 a2L a3 a1 a2L’ a3 a1 a2L” a3 in out undec

Complete labellings form the basis of several other semantics such as grounded,
preferred, stable [7]. For instance the grounded A-labelling GrpAq is defined to be the
(unique) complete A-labelling L such that inpLq is Ď-minimal among all labellings
in ComppAq. Due to their fundamental nature and intuitiveness, we focus mainly on
complete labellings in this paper. We will, however, also use the concept of admissible
A-labelling, which is an A-labelling that satisfies the first two restrictions of Definition
2, but not necessarily the third. An example of an admissible A-labelling in Example
2 would be L such that Lpa1q “ in, Lpa2q “ out and Lpa3q “ undec.

2.1 Down-admissible and up-complete

We begin with the down-admissible construction, which uses the definition of the ‘com-
mittedness’ relation Ď between A-labellings.

Definition 3 ([5]) Given an A-labelling L, the down-admissible labelling of L, de-
noted by ç L, is the (unique) greatest element (under Ď) of the set of all admissible
A-labellings M such that M Ď L.

A constructive definition of çL is given in [5]. It can be arrived at by just iteratively
relabelling every argument that is illegally in or illegally out with undec until no illegal
in or out labels remain. We will refer to such a sequence of changes as a transition
sequence. The end result is a labelling that is admissible.

Example 3 Consider the sequence of the 3 leftmost labellings of the AF A shown
below.1 (In this, as with all our pictures, a node with solid boundary denotes an in-
labelled argument, a dotted boundary denotes out, and a solid grey node indicates
undec).

c

a

a'

b
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d

in out undec

c
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d c
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a
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c d

The initial labelling L is on the far left. The only argument illegally labelled in or out
in L is c (because it is out but none of its attackers is in), so its label is changed to
undec (2nd labelling). This change in turn causes d to become illegally in, so then d’s
label is also changed to undec. At this point there are no illegally in or out arguments
left and so the procedure stops with çL as the 3rd labelling.

1Figure courtesy of Edmond Awad.
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As the example illustrates, çL might not be a complete labelling. To ensure a complete
labelling we need an additional step which applies the up-complete operator.

Definition 4 ([5]) Given an admissible A-labelling L, the up-complete labelling of L,
denoted by äL, is the (unique) smallest element (under Ď) of the set of all complete
A-labellings M such that L Ď M .

There is also a constructive definition of äL in [5]. Just iteratively change every
illegally undec argument to in or out as appropriate, until no illegally labelled argu-
ments remain. As with the down-admissible procedure above, we shall also use the
term “transition sequence” to refer to such sequences of changes in this context.

Example 4 Consider the sequence of the 3 rightmost labellings in Example 3, which
starts with L1 “çL from the previous example. There is one illegally undec argument,
namely c. Since both attackers a, b are labelled out, we change c’s label to in. At this
point d becomes illegally undec because it now has an attacker c which is in. Hence
we change d’s label to out. Now there are no illegally undec arguments and so the
process stops and returns the rightmost labelling as äL1.

We denote by ê L the composite operation of performing the down-admissible
followed by the up-complete procedures on L.

3 The down-admissible game

In what follows we let Linit denote some given initial A-labelling. What we are looking
for is some dialogue game that, for any given a P Args, establishes whether rçLinit spaq “
in, i.e., whether a is labelled in by the down-admissible labelling of Linit .

The idea behind the down-admissible game is to re-apply the admissibility (Socratic)
game [3] in the specific context of down-admissible. The goal of the admissibility game
is to establish, for some given a P Args, whether there exists some admissible A-
labelling L such that Lpaq “ in. The game has two players M (whose aim is to
establish the claim) and S (whose aim is to refute the claim). M begins the discussion
by stating “inpaq”, and then each player takes turns to put forward arguments, with
M making moves always of the form “inpb1q” and S making moves always of the form
“outpc1q”, according to the following informal protocol. (We refer to [3] for the formal
details.)

(1) Each move of M (except the first) contains an attacker of the argument in the
directly preceding move of S.

(2) Each move of S contains an attacker of an argument contained in some (not
necessarily the directly preceding) move of M.

(3) S is not allowed to repeat his moves.

(4) M is allowed to repeat his moves.

(5) If S uses an argument previously used by M, then S wins the game.

(6) If M uses an argument previously used by S, then S wins the game.
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(7) If M cannot make a move any more, then S wins the game.

(8) If S cannot make a move any more, then M wins the game.

In essence, what the admissibility game does is to try to construct an admissible la-
belling around a (via the in-arguments stated by M). However, what we are interested
in is an admissible labelling that is actually contained (Ď) in the initial labelling. After
all, an argument is labelled in by the biggest admissible labelling that is Ď-smaller
than the initial labelling (that is, by the down-admisisble) iff it is labelled in by at
least one admissible labelling that is Ď-smaller than the initial labelling. That is, it
is sufficient to find an admissible labelling (that labels our argument in) within the
boundaries of the initial labelling.

To make sure the game stays within the boundaries of the initial labelling we have
to add additional rules to the 8 above:

(9) If M makes a move inpaq and a is not labelled in by the initial labelling then M
loses the game (that is, S wins).

(10) If S makes a move outpaq and a is not labelled out by the initial labelling then
S wins the game (that is, M loses).

We call this revised admissibility game the down-admissible game.

Conjecture 1 Let a P Args and Linit P LabspAq. There exists an admissible labelling
L1 Ď Linit such that L1paq “ in iff player M can win the down-admissible game for
argument a.

Since, as mentioned above, we have rç Linit spaq “ in iff there exists an admissible
labelling L1 Ď Linit such that L1paq “ in, the above conjecture would be enough to
give us our desired procedure for establishing whether rçLinit spaq “ in. To prove this
conjecture it is likely to be helpful to realise that:

Correctness - the down-admissible game constructs an admissible labelling within (Ď)
the initial labelling.

Completeness - If there exists an admissible labelling within (Ď) the initial labelling
then this admissible labelling serves as some kind of “roadmap” (see [3]) for playing
the down-admissible game and winning it (the trick is that as long as M is only playing
moves that are in in the admissible labelling, he’s going to win).

4 The up-complete game

We are now interested in establishing whether räLinit spaq “ in. For this, we will base
our procedure on the grounded persuasion game [6], which was introduced to establish
whether a given argument was labelled in by the grounded A-labelling GrpAq. In that
game there are 2 players P (the proponent), whose aim is to establish the claim for
a given argument a, and O (the opponent), whose aim is to refute the claim. There
are four kinds of move claim, why, because and concede, and the game is played
according to the following rules (again, we refer the reader to [6] for the precise formal
definition).
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• P and O take turns. Each turn of P contains a single move claim or because. In
each turn O plays one or more moves. O’s turn starts with an optional sequence
of concede moves and finishes (when possible) with a single why move.

• P gets committed to arguments used in claim and because moves. O gets com-
mitted to arguments used in concede moves.

• P starts with claim inpaq where a is the main argument of the discussion. claim
cannot be repeated later in the game.

• In consecutive turns P provides reasons for the directly preceding why L move of
O by moving because L1 where L1 is a reason for L (and where L1, L here are
partial labellings).

• P can play because only if the reason given does not contain any arguments
already mentioned (in P’s commitment store) but not yet accepted (not in O’s
commitment store). We call such arguments open issues.

• O addresses the most recent open issue L (inpa1q or outpa1q) in the discussion.
If O is committed to reasons for L it must concede L otherwise O questions all
reasons that O is not committed to with why.

• O can question with why just one argument.

• The moves claim, concede and because can be played only if new commitments
do not contradict a previous one.

• The discussion terminates when no more moves are possible. If O conceded the
main argument then P wins, otherwise O wins.

Now, the trick is that with just a small modification, we can re-apply the grounded
persuasion game to establish whether räLinit spaq “ in. The key concept here is that of
the commitment store. Each player (P and O) has his own commitment store, which
is essentially a partial function from Args to tin, outu. In the grounded persuasion
game both players start with the empty commitment store, and they gradually build
up commitments during the course of the game.

If we want to use the grounded persuasion game to compute äLinit then the only
thing we have to do is to start with the initial labelling Linit instead of with the
empty labelling. That is, at the start of the game each player has a commitment store
equal to Linit (that is, as for the in- and out-labelled arguments. The undec-labelled
arguments are simply omitted from the partial labelling.) We call the resulting game
the up-complete game (for a) with initial commitment store Linit .

Example 5 Suppose the AF and initial admissible labelling Linit shown below.
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We are interested in whether argument j is labelled in by äLinit . However, we’re
not interested in arguments k or l, and we’re not interested in the entire up-complete
labelling. Here’s how the discussion would go:

1. P : claim inpjq
2. O : why inpjq
3. P : because outpiq
4. O : why outpiq
5. P : because inpdq
6. O : why inpdq
7. P : because outpcq
8. O : concede outpcq
9. O : concede inpdq
10. O : concede outpiq
11. O : concede inpjq

Note that the concede move by O on line 8 is made because O already knows the
reason why c is out, because he is committed (initial labelling) that b is in. The
winner of this game is P.

The fact that P wins this game has to do with making the right choice (choosing d
instead of h). Let’s see what happens when P makes the wrong choice.

1. P : claim inpjq
2. O : why inpjq
3. P : because outpiq
4. O : why outpiq
5. P : because inphq
6. O : why inphq
7. P : because outpgq
8. O : why outpgq
9. P : because inpfq
10. O : why inpfq
11. P : because outpeq
12. O : why outpeq

Now P cannot move anymore. P cannot move because outpeq is already an open issue.

Hence we see that what matters is not whether the claim is successfully defended
in a particular game (as a game can go wrong due to wrong decisions of P). What
matters is that there exists at least one game that is won by the proponent P.

Conjecture 2 Let Linit be an admissible A-labelling and a P Args. Then räLinit spaq “
in iff it is possible for P to win the up-complete game for a with initial commitment
store LrdecpLqs (that is, iff there exists at least one up-complete game for a with initial
store LrdecpLqs that is won by P).

Why is this game actually correct? The trick is that in a successful game, the
sequence of concede moves of the opponent actually constitutes a transition sequence
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(each concede move being a transition step) of the procedure for computing the up-
complete. That is, in order to prove completeness and correctness it suffices to show
that:

1. If there exists an up-complete game for argument a that is won by the proponent
then its sequence of concede moves coincides with a transition sequence that
ultimately labels a in, which then implies that a is labelled in by the up-complete
labelling.

2. If a is labelled in by the up-complete labelling then there exists an up-complete
game whose sequence of concede moves constitutes a transition sequence that
ultimately labels a in.

There might be a small issue that still needs to be taken care of regarding the
well-definedness of a game that is lost. Suppose that in the above example e would be
labelled in and f would be labelled out (instead of undec). Now consider the following
game:

1. P : claim inpjq
2. O : why inpjq
3. P : because outpiq
4. O : why outpiq
5. P : because inphq
6. O : why inphq
7. P : because outpgq
8. O : why outpgq

Now, at this moment P should not be allowed to reply with

9. P : because inpfq

as P is already committed to outpfq, since this is in the initial labelling (and therefore
in the initial commitment store of P).

5 The combined game

We now know what the two individual games (the up-complete and the down-admissible
games) look like. The next question is whether there’s any way of combining them.
After all, what we are interested in in aggregation setting such as [1, 5] is, given an
initial labelling Linit , whether an argument a is in in êpLinitq. We do this as follows.
First, run the up-complete game based directly on Linit (instead of on ç pLinitq). If
the proponent can win this game, then comes the second phase (the second challenge).
Now we run the down-admissible game on the arguments in Linit that were actually
used for forcing the concedes in the up-complete game. Perhaps an example will make
things clear.

Example 6 Suppose the AF and the initial labelling Linit are as indicated below.
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Suppose i is the argument we are interested in. The proponent could try to win the
up-complete game in the following way:

1. P : claim inpiq
2. O : why inpiq
3. P : because outphq
4. O : why outphq
5. P : because inpdq
6. O : concede inpdq
7. O : concede outphq
8. O : concede inpiq

Note we need a small alteration of the up-complete game such that moves 7,8 be-
come necessary, because we need to explicitly identify which arguments from Linit are
actually used (in this case inpdq).

Then comes the second game, the down-admissible game based on the arguments of
Linit used in the up-complete game. That is, the down-admissible game will be played
on inpdq.

1. M : inpdq “I have an admissible labelling in which d is in”
2. S : outpcq “Then in your labelling c must be out, based on what grounds?

Now M will lose the game as M can only move inpaq or inpbq, both of which are
not supported by Linit , so rule (9) of the down-admissible game applies. So although
the proponent (P in the up-complete game and M in the down-admissible game)
wins the first game (the up-complete) he loses the second game (the down-admissible).
Therefore, proponent loses the combined game.

Proponent would have done better if he chose a different way of winning the up-
complete game:

1. P : claim inpiq
2. O : why inpiq
3. P : because outphq
4. O : why outphq
5. P : because inpgq
6. O : why inpgq
7. P : because outpfq
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(These last two steps are not required in the up-complete games defined earlier, but
we might still need them.) The down-admissible game would then need to be about
an attacker of f that can be claimed in.

1. M : inpeq
2. S : outpfq
3. M : inpeq

So here M wins the discussion (the down-admissible game). Notice that the game
stays within the boundaries of Linit , as required. So the proponent wins the combined
game if he wins both the up-complete game and the down-admissible game.

Conjecture 3 Let Linit be an A-labelling and a P Args. rê pLinitqspaq “ in iff the
proponent can win the combined game (that is, if the proponent has a way of winning the
up-complete game in a way that also allows him to win the subsequent down-admissible
game.)

In Example 6 the up-complete game only uses one single argument from Linit (inpdq
and outpfq respectively). What happens if the up-complete uses more than one argu-
ment? Then, the opponent can choose which argument the proponent should defend
in the subsequent down-admissible game. This is because all arguments used by the
up-complete game should be in the down-admissible labelling.

One of the challenges is how to redefine the up-complete game such that it explicitly
identifies the arguments of Linit that are actually used. Let’s first examine what goes
wrong otherwise, using Example 6.

1. P : claim inpiq
2. O : why inpiq
3. P : because outphq
4. O : concede outphq
5. O : concede outpiq

(Note that O concedes in step 4 because O knows why h is out, because O is already
committed to the fact that d is in, since this is in the initial labelling.)

But in that case, the game will not even be able to reach argument f , which would
seem vital for winning the subsequent down-admissible game.

Our impression is that this can be fixed by giving Linit a special position in the
game. Instead of loading it as the initial commitment store at the beginning of the
game, we give it a special status as the “background labelling” of the game. The rule is
that whenever the proponent (P) does a claim move or a because move of something
that is in the background labelling, the opponent (O) has to concede immediately.
Our guess is that this would fix the problem. Moreover, it can also be applied to the
up-complete game on itself (and not just to the up-complete game in the particular
context of êpLinitq).
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