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Abstract

Within systems biology metabolomics emerged as an important field to study cellular

metabolism. The successful application of metabolomics techniques requires a close

interplay between experimental and computational approaches. In particular, stable

isotope assisted metabolomics methodologies require specialized algorithms to extract

biological information out of a metabolomics experiments. In this thesis the develop-

ment and application of novel mass spectrometry-based algorithms to analyze cellular

metabolism are presented.

First, the isotope cluster based matching (ICBM) algorithm was developed and imple-

mented as a c++ based library. The ICBM algorithm is a spectrum similarity measure

that is most efficient for the matching of compounds across different chromatograms.

Especially for non-targeted analyses, the ICBM algorithm outperforms the dot product

and other conventional tools. Moreover, the ICBM algorithm can be applied for an

efficient mass spectral library search.

Second, the ICBM algorithm was applied to characterize the metabolomes of the human

neuronal cell line LUHMES at low oxygen conditions (5%) compared to standard cell

culture conditions (20%). A difference at the metabolite level was observed when cells

were differentiated at 5% oxygen. Beside others, the major inhibitory neurotransmitter

in the mammalian central nervous system γ-aminobutyric acid (GABA) was found to

be increased at 5% oxygen.

Third, a methodology for the determination of chemical formulas and retained atoms

for mass spectral fragment ions was developed. This information about mass spectral

fragment ions is indispensable to extract more biological knowledge out of stable isotope

labeling experiments. Therefore, the fragment formula calculator (FFC) algorithm was

employed to determine the chemical formulas and retained carbon atoms of 160 mass

spectral fragment ions of central carbon metabolism.
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Chapter 1

Introduction

This chapter covers the followin publication [Wegner et al., 2012]:

Wegner, A.; Cordes, T.;Michelucci, A.; Hiller, K.

Current Biotechnology (2012), 1, 88-97

1.1 Metabolomics

In the postgenomic era, metabolomics has emerged as an important methodology within

systems biology and is defined as the analysis of the set of small molecule (or metabo-

lite) concentrations or amounts produced by a living organism. Although the concepts of

metabolomics was grounded more than 40 years ago, the first definition of metabolomics

was made by Oliver et al. in 1998 [Oliver et al., 1998]. Certainly, the analysis of

the metabolome complements the other three big “omics”, namely genomics, transcrip-

tomics and proteomics, but offers some unique advantages. Since metabolites are the

endproduct of the cell’s regulatory processes, the metabolome represents the cell’s final

phenotype. Hence it can be considered as the cell’s ultimate response to genetic or

environmental perturbations and therefore provides a closer functional link to an ob-

served phenotype [Villas-Bôas et al., 2005]. In addition, the metabolome could reflect

extra-genomic effects caused by factors like the microbiome, which are not accessible

by transcriptomics or proteomics [Hunter, 2009]. As an example, it has been shown

that the microbiome has a large effect on the blood metabolome in mice [Wikoff et al.,

2009]. However, the metabolome is much more diverse than the genome or proteome

and consists of more than four (in the case of nucleic acids) or twenty (in the case of

proteins) unique building blocks. Compared to nucleic acids and proteins, the turnover

1
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rate of metabolites is more than two magnitudes higher and lies in the range of sec-

onds [Sellick et al., 2009a]. Therefore, accurate sampling of the metabolome requires

specific techniques, both for the extraction and measurement of metabolites. Current

methodologies for quantifying the metabolome typically rely either on nuclear magnetic

resonance spectroscopy (NMR) or mass spectrometry (MS) and analyze only the parts

of the metabolome which are defined by the methodology [Issaq et al., 2009, Macel et al.,

2010].

Generally, these analyses can be distinguished between targeted and non- targeted types.

While the first focuses on a set of known metabolites, the second approach tries to get

information about all known and unknown detectable metabolites. Although a non-

targeted approach provides information about more metabolites and is able to detect

changes in unexpected parts of the metabolome, absolute quantitative information can

only be obtained by a targeted approach [Hiller et al., 2011].

While metabolomics in its original form quantifies metabolite amounts or concentrations,

metabolic flux analysis (MFA) determines absolute values for metabolic conversion rates

or fluxes through the metabolic network [Haverkorn van Rijsewijk et al., 2011, Noguchi

et al., 2009]. These fluxes are dependent on metabolite concentrations and enzyme ac-

tivities. Due to the very targeted approach of MFA, its application is limited to known

parts of the metabolic network. As an extension, non-targeted stable isotope assisted

metabolomics methodologies have been developed. These non-targeted approaches allow

to obtain information about the metabolic fate of a labeled compound and can be the

starting point for the discovery of unknown or unexpected metabolic pathways [Hiller

et al., 2010, Kusmierz and Abramson, 1994, Sano et al., 1976].

1.1.1 Metabolomics Techniques

1.1.1.1 Sample Preparation

A typical metabolomics experiment can be divided in three key steps: sample prepara-

tion, analytical metabolite detection and computational data analysis. As the turnover

rate of metabolites lies in the range of seconds, a fast and effective quenching proce-

dure is necessary to immediately freeze all biochemical reactions of the cell. To prevent

leakage of intracellular metabolites the cell membrane should not be damaged by this

process. For this reason, the predominant quenching methods use an ice-cold methanol-

water or ethanol water mixture to abolish the tertiary structure of metabolic enzymes,

thereby stopping the metabolism [Spura et al., 2009, Villas-Bôas et al., 2005]. A wide

range of protocols have been developed for the extraction and quenching of metabolites

for mammalian cells grown in suspension [Sellick et al., 2009b], for adherent mammalian
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cells, for body fluids (e.g. plasma , urine [Kind et al., 2007], cerebrospinal fluid (CSF)

[Wishart et al., 2008]) and for tissue [Wu et al., 2008]. The exact sample preparation

protocol not only depends on the biological sample, but also on the targeted metabolites

and the analytical technique [Lorenz et al., 2011].

1.1.1.2 Gas Chromatography Coupled To Mass Spectrometry

2

3 4 5

Vacuum Pump
Data Processing

Gas Chromatograph

Sample injection

Gas

1

1
2
3
4
5

Sample inlet

Interface between GC and MS
Source
Analyzer

Detector

Figure 1.1: GC/MS scheme

For most practical purposes, the two major analytical platforms for measuring metabo-

lite levels are MS [Lei et al., 2011] and NMR [Holmes, Nicholls, Lindon, Ramos, Spraul,

Neidig, Connor, Connelly, Damment, Haselden, and Nicholson, Holmes et al.]. Coupled

to a chromatographic separation technique like gas chromatography (GC)[Koek et al.,

2006] or liquid chromatography (LC) [Nordström et al., 2008, Want et al., 2005], MS of-

fers a much higher sensitivity compared to NMR. On the other hand, NMR yields specific

positional information, thus complementing the information gained by MS [Schroeder

et al., 2007]. Besides the classical GC and LC separation, ultra performance liquid

chromatography (UPLC) [Patterson et al., 2008] and capillary electrophoresis (CE) [La-

painis et al., 2009] are widely used. Since all algorithms and methods presented in this

thesis are optimized for GC/MS, I will focus on GC/MS here. Figure 1.1 depicts the

rough scheme of a GC/MS instrument. Such a device is composed of two major building

blocks: the GC and the MS. The GC separates compounds within a complex mixture
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and the MS then subsequently ionizes and detects the mass to charge ratios (m/z) of

those compounds. The most widespread ionization technique used in GC/MS is electron

M

M+

Sample 
Flow

e- e- e- e- e- e-

Electron 
Flow

Filament

Figure 1.2: Electron ionization source. Electrons are emitted by a heated filament
and accelerated towards a an anode by an appropriate potential. Typically, an energy
of 70 eV is used to generate a constant beam of electrons. When an electron hits a
neutral sample molecule, it knocks out one of its electrons, which induces vibrations,
rotations, and molecular rearrangements. As a result the molecule fragments.

ionization (EI), formerly called electron impact ionization. Figure 1.2 depicts the scheme

of an ion source. Compounds are exclusively ionized in the gas phase under vacuum to

form positive radical ions:

M + e− →M•+ + 2e− (1.1)

where M is a gaseous molecule, e− is the electron and M•+ is the resulting radical cation

of M (also called molecular ion). Since the resulting positive radical ion is highly unsta-

ble, in most cases it cannot be detected. However, EI creates reproducible fragmentation

patterns, which are characteristic for a given compound. The fragmentation of gas phase

ions is a complex and often hard-to-predict process. A detailed description can be found

elsewhere [McLafferty and Turecek, 1994]. Although the whole fragmentation process

can be very complex, there are only a few basic types of reactions that break or form

chemical bonds:
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O

O

N

Si

H Si

O

O

N•+

Si

H Si

O

O

N+

Si

H Si

-CH3•

C-
O+

N+
H Si

O
Si

e- 2e-

-

"rDA"

EI

Figure 1.3: Example of rearrangement after EI. Proposed fragmentation mecha-
nism of N ,O-bis-(trimethylsilyl)-glycine. After expulsion of a methyl radical by alpha-
cleavage next to the nitrogen, carbon monoxide loss occurs by a retro-Diels-Alder-like
reaction.

1. σ-ionization: Immediately breaks a bond (affecting mostly hydrocarbons)

2. α-cleavage: A new bond is formed from a radical site and an adjacent bond is

homolytically cleaved

3. Charge-induced heterolytic cleavage: Cleavage of a bond next to a charge-site

4. Rearrangements: Migrations of atoms or groups of atoms (Figure 1.3)

5. Displacement of atoms or groups of atoms

6. Eliminations

Once the compound molecules are ionized their mass to charge ratios are detected.

Figure 1.4 depicts a typical mass spectrum of one GC/MS fragment ion. These fragment

ions, also called isotope clusters, give rise to multiple peaks in the mass spectrum because

of naturally occurring stable isotopes. While, for example, 99% of the naturally occurring

carbons are 12C, 1% are 13C, creating these adjacent group of peaks in the mass spectrum

of a fragment ion. Every peak in a fragment’s mass spectrum corresponds to the same

elemental composition, but different isotopic composition. The mass spectrum of a

compound consists of several different isotope clusters, depending on the strength of

the fragmentation during the ionization process. In conclusion, a compound’s mass

spectrum is mainly determined by two things:

• The fragmentation after ionization

• The elemental composition of those fragment ions
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M+0 M+1 M+2 M+3
m/z

Intensity

Figure 1.4: GC/MS isotope cluster. In most cases, the highest peak within an ion
cluster originates from a straight combination of the lightest isotopes of all elements,
also called monoisotopic peak (M+0). In a given isotope cluster, all peaks are denoted
in the relationship of masses relative to the mass of the monoisotopic peak. For example,
the peak with one mass unit above the monoisotopic peak is denoted M+1. In case
of isotope clusters containing elements with a naturally high abundance of heavier
isotopes, such as chloride or bromide, the monoisotopic peak might not be the peak
with the highest intensity within the isotope cluster.

1.1.1.3 Derivatization

Most metabolites are not volatile enough to be analyzed directly by GC/MS. For that

reason, polar groups such as -CO, -COOH or -NH2 are chemically modified prior to anal-

ysis. There exist a wide range of derivatization agents, however silyl derivatives are suited

best for GC/MS analysis. In this thesis I used mainly N -Methyl-N -(trimethylsilyl)-

trifluoracetamide (MSTFA) which creates the typical trimethylsilyl (TMS) derivatives

andN -(tert-butyldimethylsilyl)-N -methyltrifluoroacetamide (MTBSTFA) which creates

the typical tert-butyldimethylsilyl (TBDMS) derivatives (Figure 1.5).

1.1.2 Methods Of Compound Identification

One of the advantages of GC/MS and electron ionization is relatively easy compound

identification (compared to e.g. LC/MS), because electron ionization generates repro-

ducible and characteristic mass spectra. These mass spectra can be collected and stored

in a reference library, which can then be used to identify compounds of GC/MS measure-

ments. To do this, a spectrum similarity score between the mass spectrum of a measured

compound (Smes) and all mass spectra in the reference library (Slib) is calculated. The

library compound with the highest spectrum similarity score is then assigned to the

measured compound. Additionally, a score based on the retention time can be calcu-

lated to discriminate compounds that have highly similar mass spectra. Usually, both
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Figure 1.5: Schematic of GC/MS derivatization. Hydrogens of polar groups
that are substituted either by a trimethylsilyl (TMS) group or a tert-butyldimethylsilyl
(TBDMS) group are shown in red. A wide range of organic compounds can be easily
derivatized to their respective TMS and TBDMS derivatives, which has the advantage
that silyl derivatives are generally less polar, more volatile and thermally more stable
than their precursors.

scores are applied to align compounds of a batch of chromatograms in a metabolomics

experiment.

1.1.2.1 Spectrum Similarity Score

In the past decades several spectrum similarity based identification algorithms have been

developed. Of these the weighted dot product has proven to perform best in terms of

accuracy [Stein and Scott, 1994]. A compound’s mass spectrum S is defined as a set of

pairs of masses and intensities:

S = (m1, i1) = p1, (m2, i2) = p2, ..., (mn, in) = pn

mi < mi+1 i ∈ N
(1.2)
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According to Stein and Scott, each mass intensity pair pi of both the measured and

reference spectrum is weighted according to the following rule:

pw = [mass]a × [intensity]b (1.3)

where a and b are the weighting factors that represent the contribution of the m/z value

and the peak intensity, respectively. Stein and Scott reported that the optimal values are

b = 0.6 for intensity scaling and a = 3 for mass weighting [Stein and Scott, 1994]. This

way, the relative influence of minor intensities at higher masses is increased. However,

several different values have been proposed to be the optimal weighting factors over

the last years. Recently, Kim et al. showed that weighting factors should be chosen

individually based on the reference library used [Kim et al., 2012].

We denote a set of weighting factors as w=(a,b). The dot product of the library (Sw
lib)

and measured (Sw
mes) spectrum is then calculated as follows:

ScoreSpecDot =
Sw
lib × Sw

mes

||Sw
lib|| ||Sw

mes||
(1.4)

As a result, the spectrum similarity score is located within the interval zero (no identity)

to one (identical spectra).

1.1.2.2 Retention Index Similarity Score

Because the retention time is dependent on the instrument used, the GC-capillary, or

the applied temperature program, etc., we use the Kovats [Kovats, 1958] retention index

(RI) for all retention time-based similarity measures. Assuming that the determined

retention indices for a certain compound are distributed in a Gaussian manner across

different chromatograms, a Gaussian function is used for the RI based similarity index

calculation:

ScoreRI = e−
(rilib−rimes)

2

2x2 (1.5)

1.1.2.3 Chromatogram Alignment

If a number of GC/MS chromatograms are to be analyzed comparatively, it is necessary

to align similar compounds among the different chromatograms. To additionally account

for the retention time of a compound, a combined similarity score Scoretotal based on

the spectrum and retention index similarity is calculated. Because the spectral profile of

a compound contains more information than the retention index, it is weighted stronger

Scoretotal = 3

√
Score2spec · ScoreRI (1.6)
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1.1.3 Targeted vs Non-Targeted Metabolomics

Although metabolism was extensively studied over the last decade and many path-

ways and their respective metabolites have been uncovered, the assumption that this

knowledge is complete is probably false, especially for disease specific alterations of

metabolism. However, a targeted approach relies partially on this assumption, because

it only takes a predefined set of metabolites into consideration. Apparently, this set does

not include unknown metabolites but can include metabolites not known to be produced

by a specific organism or under a specific condition. A non-targeted approach, however,

tries to analyze all measurable metabolites. As such, a non-targeted approach is able to

capture metabolites not yet known or not known to be produced by a specific organism

or under a specific condition. The advantage of a targeted approach is that it can ob-

tain absolute quantitative information. For that reason a non-targeted approach cannot

replace a targeted approach, but can yield additional information that is disguised by a

targeted approach. To obtain a more comprehensive view of cellular metabolism, both

techniques should be combined, with the targeted approach being preceded by the non

targeted approach. This way the non targeted approach works as a discovery tool to

better constrain the targeted analysis.

1.2 Stable Isotope Assisted Metabolomics

The above described technologies provide a tool set to conduct metabolomics research.

Although they can detect changes in metabolite concentrations, no information about

increases or decreases of fluxes in the associated pathways can be obtained. However,

metabolic fluxes reflect the quantitative endpoint of the interplay between gene expres-

sion, protein synthesis, post-translational modifications and thermodynamic constraints,

therefore representing the cell’s final phenotype. Analyzing intracellular metabolic fluxes

is essential investigating the physiological state of a cell and thereby revealing disease

specific alterations or dysregulations of metabolic conversion rates and enzyme activi-

ties. As a consequence of the complex regulation of metabolic pathways, significant flux

changes are sometimes associated only with a modest change in metabolite concentra-

tions [Fell, 2005]. To obtain information about intracellular dynamics, stable isotope

labeled components can be applied. For that, stable isotope (e.g. 13C, 15N) labeled

substrates (e.g. glucose, glutamine) are fed to the target system (e.g. cell culture, tis-

sue, whole organism) until cellular metabolism distributes the isotopes throughout the

metabolic network. Based on the reaction rates and enzyme activities present in the sys-

tem, distinct labeling patterns will arise affecting the molecular weight of the fragment

ions.
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1.2.1 Mass Isotopomer Distribution

Using an MS approach, fragment ions are separated according to their m/z ratio. Based

on the incorporated labeled atoms, the m/z ratio is shifted by one or more atomic mass

units, resulting in different shifted mass spectra. According to the international union of

pure and applied chemistry (IUPAC), an isotopomer is defined as an isomer having the

same number of each isotopic atom but differing in their positions. On the other hand,

an isotopologue is defined as a molecular entity that differs only in isotopic composition

(number of isotopic substitutions). Within the metabolic community the term mass

isotopomer is used as a synonym for isotopologue. The number of isotopomers (2n) is

therefore always larger than the number of mass isotopomers or isotopologues (n+1),

where n is the number of possible isotopic substitutions (Figure 1.6). Based on the MS

measurement, mass isotopomer distributions (MIDs) as the relative amount of each mass

isotopomer can be calculated by solving a linear equation system [Lee et al., 1991]. In

order to set-up the equation system and to calculate correct MIDs, a correction matrix

is needed that corrects the MIDs for naturally occurring stable isotopes. Figure 1.6b

depicts the correction matrix for a two carbon compound. The first column corresponds

to the natural mass isotopomer distribution of the unlabeled compound (M00, M01 and

M02 in Figure 1.6). The second column corresponds to the natural mass isotopomer

distribution if one of the 12C is replaced with a 13C (M10, M11 and M12 in Figure 1.6).

The third column corresponds to the natural mass isotopomer distribution if both of the

12C are replaced with a 13C (M20, M21 and M22 in Figure 1.6). This correction matrix

can be setup by predicting the mass spectrum of the tracer using multinomial expansion

based on the natural abundance of stable isotopes along with the chemical formula of the

fragment ion. If the chemical formula of the fragment ion is not known, the unlabeled

reference spectrum of the fragment ion can be applied [Jennings and Matthews, 2005]. In

addition to static metabolite concentrations, MIDs provide dynamic information about

how a compound is metabolized within the cell. This includes the involved pathway(s),

enzyme activities and the fate of the labeled atoms (assuming the respective pathway

intermediates can be measured). The importance of measuring MIDs is best explained

by a short example: Glucose can be metabolized to pyruvate either via glycolysis or the

pentose phosphate pathway (PPP). Depending on the respective pathway the carbon-

carbon bonds of glucose are broken and rearranged specifically. If glucose is metabolized

via the PPP, the first carbon atom is decarboxcylated in the oxidative phase, whereas

it is conserved in glycolysis (Figure 1.7). As a consequence, the relative amount of

glucose metabolized through the PPP compared to glycolysis can be revealed by using

a glucose tracer labeled on the first and second carbon atoms (1,2-13C2 glucose). The

MID of pyruvate gives direct information of the metabolic flux of glucose through the

two pathways. Pyruvate containing one stable carbon isotope (M1) was metabolized via
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Figure 1.6: Mass isotopomer distribution (MID). (a) Based on the number and posi-
tion of incorporated labeled atoms, different isotopomers are shown (12C in black, 13C
in red). The mass spectrum is depicted along with the corresponding mass isotopomer.
(b) In reality only one mass spectrum is measured for a complex mixture of mass iso-
topomers and the fraction of each mass isotopomer has to be determined by solving the
linear equation system. In this case 50% of the molecules are unlabeled, 25% contain
one stable isotope and 25% contain two stable isotopes (Figure based on [Hiller et al.,
2011])
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Glucose

Glucose-6-phosphate Ribulose-5-phosphate

Pyruvate

Figure 1.7: Simplified scheme of the pentose phosphate pathway and glycol-
ysis. The carbon backbones of every metabolite is shown in circles (12C in white and
13C in red). Since the first carbon atom originating from glucose is decarboxylated in
the oxidative phase of the pentose phosphate pathway (PPP), whereas it is conserved
in glycolysis, the number of 13C atoms in Pyruvate yield information about the activity
of the two pathways. Pyruvate containing one 13C atom was metabolized via PPP and
pyruvate containing two 13C atoms via glycolysis.

PPP and pyruvate labeled by two stable isotopes (M2) via glycolysis. The ratio of M1

and M2 mass isotopomers represent the respective flux through PPP and glycolysis.

1.3 Metabolic Flux Analysis

MFA aims to quantify all intracellular fluxes in a given system. Initial methods were

based solely on a known stoichiometry of the biochemical reaction network of interest

[Stephanopoulos, 1999, Varma and Palsson, 1994]. In that context, intracellular fluxes

can be inferred by measuring the metabolic input and output under the assumption of

a metabolic steady-state. An example for a very simple reaction network is depicted

in Figure 1.8a. In total this reaction network has 5 fluxes. The steady-state constraint

yields the following flux relations:

u = v + w v = x w = y (1.7)
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If the extracellular fluxes u and x are measured, then the fluxes v, w and y can be

calculated using the following equations:

v = x w = u− x y = u− x (1.8)

However, in living cells intracellular metabolism is much more complex than illustrated

in the example. Particularly, stoichiometric MFA fails in the following situations:

bidirectional reaction steps and certain parallel or cycle reactions [Wiechert, 2001a].

Figure 1.8b depicts the same reaction network, but with one additional reaction r. For

this reaction network intracellular fluxes cannot be inferred from measuring the extra-

cellular fluxes alone. To overcome these limitations more sophisticated methods such as

13C-MFA evolved.

Figure 1.9 depicts an overview of the experimental and computational steps necessary

to perform 13C-MFA. The first important step is to select a suitable isotopic tracer. The

precursor and the position of the label should be chosen carefully, because this heavily

influences the precision and accuracy of the flux estimation. For the example illustrated

in Figure 1.8b, only a label on the third or fourth carbon atom yields additional in-

formation in which case the flux r can be determined by the percentage of the labeled

carbons in metabolite B. A recent study evaluated different 13C tracers for their use in

13C-MFA experiments [Metallo et al., 2009]. For example, the 1,2-13C2-Glucose tracer

is suited best to study the PPP and glycolysis, whereas 1-13C-glutamine is suited best

to study the reductive flux from α-ketoglutarate to citrate. The second important step

is to create a metabolic network model that defines the metabolic reactions and atom

transitions for the pathway of interest. Once the isotopic tracer and the metabolic net-

work model are defined, a stable isotope labeling experiment is performed. For that,

13C-labeled precursors are introduced into the network. The redistribution of the label

into other metabolites is measured after the system reaches an isotopic and metabolic

steady-state assuming constant intracellular fluxes and labeling patterns. The labeling

patterns or MIDs can then be detected either by mass spectrometry or NMR. Since

intracellular fluxes cannot be measured directly, 13C-MFA estimates the cell’s flux state

based on measured MIDs. For that, an iterative non linear least squares fitting proce-

dure is applied to find a set of fluxes that account best for the observed MIDs [Wiechert,

2001b]. In order to do that, a mathematical model is required that can simulate MIDs

for a given set of steady state fluxes.

During the last years, several different approaches have been developed to mathemati-

cally describe the relation between MIDs and the corresponding fluxes. Schmidt et al.

used a matrix approach [Schmidt et al., 1997] to generate a complete set of isotopomer

balances, based on the idea of atom-mapping matrices (AMM) [Zupke and Stephanopou-

los, 1994]. Generalizing the concept of AMMs, which track the transfer of carbon atoms
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Figure 1.8: (a) A simple example network, where intracellular fluxes can be calculated
with stoichiometric MFA as shown in the text. (b) The same reaction with one addi-
tional intracellular reaction r. The carbon transitions are shown for every compound
(12C in white and 13C in black). Based on the carbon transition network the flow of
label from compound A can be traced to the metabolites B and C to infer the flux r.
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Figure 1.9: MFA overview

from reactants to products, Schmidt introduced isotopomer mapping matrices (IMMs).

In this case, isotopomer distribution vectors (IDVs) are generated for each metabolite,

which contain the molar fraction of each isotopomer. IMMs are then used to sum up the

fraction of each reactant isotopomer that form a respective product isotopomer (Figure

1.10). Later, Wiechert et al. further extended this idea and introduced the concept of

cumulative isotopomers (cumomers) [Wiechert et al., 1999]. Cumomers balances can

be calculated computationally more efficient than isotopomer balances [Wiechert et al.,

1999], but they do not reduce the size of the problem meaning that there are always

as many cumomer balances as there are isotopomer balances. To overcome this limita-

tion, Antoniewicz et al. developed the elementary metabolite unit (EMU) framework

[Antoniewicz et al., 2007]. Here, the minimal amount of information is calculated fully

describing the measured labeling states. The authors claim that the number of variables

are an order of magnitude smaller compared to the previously described techniques. It

is important to note that the size of the defined metabolic network is a critical factor
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Figure 1.10: (a) A simple reaction network model used as an example to create an
atom mapping matrix (AMM) and an isotopomer matrix (IMM). The network contains
one reaction v1. (b) Atom transition network, describing the carbon atom transitions
from compound A to B occurring in reaction v1. (c) Atom mapping matrix and metabo-
lite vector that describes the reaction network and atom transitions. (d) Isotopomer
mapping matrix that converts the isotopomer distribution vector of compound A to the
isotopomer distribution vector of compound B. The possible isotopomers are shown in
circles (12C in white and 13C in black) with the corresponding binary code.
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in 13C-MFA. As the network increases in size, more constraints (measured MIDs) are

needed to perform 13C-MFA. On the other hand, a small network may be not able to

capture the complex metabolic network present in living cells. In Chapter 3, I will intro-

duce a novel algorithm that helps to incorporate more constraints and with it a bigger

metabolic network to perform 13C-MFA.

Initially, MIDs were derived by only measuring proteogenic amino acids [Zamboni et al.,

2009]. However, the time for biomass to reach an isotopic steady-state is at least one

cell generation time [Wiechert and Nöh, 2005]. Hence, a long and cost-intensive exper-

imental duration is necessary. A more direct and intuitive way is to directly measure

MIDs for intracellular pathway intermediates of interest, though, this is challenging for

two reasons: First, the concentrations of intermediates in central carbon metabolism

are usually very low. Second, the metabolic turnover rates can be very high. However,

recent technological improvements in sample preparation and mass spectrometry have

partly overcome these limitations and allow accurate determination of MIDs for many

intracellular metabolites [Antoniewicz et al., 2007].

13C-MFA has been applied to calculate fluxes in various systems, such as bacteria, yeast,

plants and mammalian cells [Marin et al., 2004, Masakapalli et al., 2010, Niklas and Hein-

zle, 2012, Niklas et al., 2010, Raghevendran et al., 2004].

Citrate

Isocitrate

Succinyl-CoA

Succinate

Fumerate

Malate

Oxaloacetate

-ketoglutarateα

Acetyl-CoA

Glutamate

Figure 1.11: Simplified TCA cycle to demonstrate the value of stable iso-
topes. The carbon backbones are shown in red for 13C and in black for 12C. By
following the isotopic labeled atoms of glutamate the reversibility of the reactions con-
verting α-ketoglutarate to citrate becomes clear. Moreover, the reductive flux from
α-ketoglutarate to citrate can be calculated.

In summary, stable isotopes can add value to metabolomics studies in two ways: (i)

Stable isotopes can reveal unanticipated reactions that are currently not known or not

associated for a given metabolic state. (ii) Stable isotopes can be used to calculate
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absolute values for intracellular fluxes. The network in Figure 1.11 illustrates a simplified

version of the TCA cycle. The reductive and oxidative flux from α-ketoglutarate to

citrate cannot be distinguished by only measuring the metabolite concentrations of e.g.

citrate, but can be inferred from the MIDs.

1.4 Aim And Outline Of Thesis

In the emergent field of systems biology metabolomics has become a key player. Specifi-

cally, non-targeted metabolomics methodologies have proven to be indispensable. Recent

technological improvements in sample preparation and mass spectrometry have provided

the means to detect an increasing number of intracellular metabolites. However, the

ability to extract biological knowledge out of these data mainly relies on the applied

computational analysis. For that reason, novel algorithms have to be developed to ob-

tain more biological knowledge out of the flood of metabolomics data. Moreover, the

appropriate software tools have to be developed to facilitate the use of these algorithms

within the metabolomics community.

• Chapter 2 describes the development and application of non-targeted metabolomics

methodologies. First, an alternative spectrum similarity measure that is based on

the specific fragmentation patterns of electron impact mass spectra is presented.

I developed the isotope cluster based compound matching (ICBM) to overcome

the problem of mismatched compounds typically occurring during chromatogram

alignment. The ICBM algorithm allows a sensitive peak detection step without

losing the specificity of the compound matching. As such, the algorithm is most ef-

ficient for the alignment of compounds across different chromatograms. Specifically

for non-targeted analyses, the ICBM algorithm outperforms conventional tools as

for example the dot product. Moreover, this chapter includes the application of the

ICBM algorithm to characterize the metabolome of the human mesencephalic cell

line (LUHMES, Lund human mesencephalic) [Scholz et al., 2011] under different

oxygen conditions.

• Chapter 3 describes a methodology for the determination of chemical formulas

and retained atoms for mass spectral fragment ions. Chemical formulas usually

form the basis of MID calculations for specific ions. Hence, the correct assignment

of chemical formulas to fragment ions is of crucial importance for the calculation

of accurate MIDs. Furthermore, the retained carbon atoms of fragment ions are

necessary to perform 13C-MFA. However, the process of mass spectral fragmen-

tation is complex and assigning chemical formulas and retained atoms to mass
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spectral ions is non-trivial. To address this shortcoming, I developed an approach,

based on a systematic bond cleavage, to determine chemical formulas and the re-

tained atoms for GC/MS fragment ions. I applied the fragment formula calculator

(FFC) to determine the chemical formulas for a wide range of TMS and TBDMS

derivatized fragment ions.



Chapter 2

Non-Targeted Metabolomics

Methodologies

This chapter covers my contributions to publications about non-targeted metabolomics

methodologies. This includes the spectrum similarity measure “Isotope Cluster-Based

Compound Matching” and a new software tool for the non-targeted detection of stable

isotope labeled compounds. As an example to point out the importance of non-targeted

metabolomics methodologies, I will discuss the discovery of the previously unknown link

between immunoresponsive gene 1 (Irg1 ) and itaconic acid. The main results are summa-

rized with respective cross references to already published articles. For methodological

details, please consult the corresponding manuscript [Hiller et al., 2013, Michelucci et al.,

2013, Wegner et al., 2013].

Wegner, A.; Sapcariu, S. C.; Weindl, D.; Hiller, K.

Analytical chemistry (2013), 85(8), 4030-4037

Hiller, K.; Wegner, A., Weindl, D.; Cordes,T.;
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Bioinformatics (2013), 29(9), 1226-8

Michelucci, A.; Cordes, T.; Ghelfi, J.; Pailot, A.;

Reiling, Npublication given in appendix.; Goldmann, O.; Binz,T.; Wegner, A.;

Tallam, A.; Rausell, A.; Buttini, M.; Linster, C.;

Medina, E.; Balling,R.; Hiller, K.

PNAS (2013), 110(19), 7820-7825
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Figure 2.1: Example of a spectrum similarity score calculated with the
dot product. The measured spectrum is shown in blue in the positive direction
and the matched spectrum of the library is shown in red in the negative direction.
The library spectrum obviously does not match the library spectrum. However, the
spectrum similarity score calculated with the dot product is 0.9, which is relatively
high. One reason for the high score is the fact that single peaks at higher masses have
a bigger influence on the final spectrum similarity score compared to peaks at lower
masses. The peak at mass 420 in the measured spectrum dominates the final spectrum
similarity score, which leads to a false positive identification.

2.1 Isotope Cluster Based Compound Matching

A typical comparative metabolomics analysis (both targeted and non-targeted) consists

of three steps: First, compounds (clusters of ion-chromatographic peaks) are detected

in every measured chromatogram. Second, detected compounds are matched across

all chromatograms (chromatogram alignment) and quantitative values are calculated.

Third, matched quantitative values are statistically analyzed (e.g. principal compo-

nent analysis, self-organizing maps, etc.). While in the beginning metabolomics studies

mainly focused on the quantification of a targeted set of previously known metabolites,

recent studies have tried to quantify all detectable metabolite peaks within a chro-

matogram. This non-targeted approach, however, generates a bottleneck already at

the first step of analysis. Metabolites of low concentration will be hard to distinguish

from “noise peaks” (usually small peaks near the GC baseline) in the compound detec-

tion step. The more sensitive the peak detection step, the more erroneously detected

compounds are present in the data set, making it more difficult to match “real” chro-

matographic peaks across different samples. On the other hand, “real” chromatographic
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peaks might be overlooked when less sensitive settings are applied. Finding the right

tradeoff between sensitivity and specificity for the compound detection can be challeng-

ing. For a targeted approach, compounds of interest are known in advance, and optimal

compound-specific settings can be determined by evaluating the results for these com-

pounds. However, in a non-targeted methodology, such evaluation is not possible, and

compounds of interest might be inadvertently removed when less sensitive compound

detection settings are applied. Therefore, settings with a high sensitivity should be ap-

plied in these cases.

Current spectrum-matching-based identification algorithms, such as the dot-product,

struggle with data generated by non-targeted metabolomics experiments, when a highly

sensitive compound detection step was applied. One major problem of the dot-product

is that, due to the applied scaling algorithm, single peaks at higher masses can falsify

the spectrum similarity score which leads to wrongly assigned compounds in the chro-

matogram alignment step (see Figure 2.1). Consequently, quantitative values for these

mismatched compounds are calculated incorrectly which may conceal an important re-

sult or dissembles a wrong result of this experiment. To overcome this limitation I have

developed the isotope cluster based compound matching (ICBM) algorithm [Wegner

et al., 2013].

The ICBM algorithm places a higher emphasis on the specific fragmentation pattern

of EI mass spectra and takes into account the natural stable isotope abundances. The

fragmentation pattern and the distribution of natural stable isotopes are the two most

characteristic features of EI mass spectra and are, therefore, well suited to discriminate

between different mass spectra. The isotope cluster based matching algorithm consists

of four main steps (Figure 2.2):

1. All mass spectral isotope clusters are determined for the measured and the refer-

ence spectrum respectively.

2. Isotope clusters are aligned based on the m/z values of their monoisotopic peaks.

3. Two similarity scores are calculated. For isotope clusters with matching monoiso-

topic peaks, a score based on the isotope cluster’s peak ratios is calculated. For

non-matching isotope clusters and non-grouped peaks, a score based on the dot

product is calculated.

4. The two similarity scores are combined to a final score between 0 and 1, where 1

represents a perfect match and 0 a mismatch between the query and the reference

spectrum.

In contrast to the dot product, the ICBM algorithm focuses more on those features of a

compound’s mass spectrum that are characteristic for the compound. In this light, the
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Figure 2.2: Overview of the ICBM algorithm. (A) Detected isotope clusters of
the measured spectrum are colored in green and of the library in red. (B) Detected
isotope clusters are aligned based on the masses of their monoisotopic peaks. Two
isotope clusters are considered a match if the mass of their monoisotopic peak is identical
(shown in bold). After, the alignment the peaks of both spectra are divided in two
separate subsets. Peaks of identical isotope clusters are shown in blue, and peaks of
non-matching isotope clusters or not grouped within a fragment in orange. (C) Two
similarity scores based on the fragment alignment are calculated and combined.

ICBM algorithm works in part analogous to a manual inspection of the mass spectrum

by an expert.

2.1.1 Mathematical Description Of The ICBM Algorithm

I define an ion cluster as a subset of a spectrum S:

f = {pk, ..., pl}, 0 < k < l ≤ n, f ⊂ S (2.1)

where pk denotes the first peak and pl the last peak of the ion cluster. A spectrum

S can have multiple ion clusters, which are all disjointed subsets of S. As a reference

point within an ion cluster, I use the peak with the highest intensity (IM ). I will use

the term isotope cluster normalization to refer to the ratio ri of each isotope cluster’s
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peak intensity in relation to the intensity of its peak IM :

ri =
IM+i

IM
k ≤ i ≤ l (2.2)

2.1.1.1 Isotope Cluster Determination

The algorithm for the isotope cluster detection iterates through S once. All consecutive

peaks with a mass difference of one unit and decreasing intensities are grouped together

into separate isotope clusters:

mj −mj+1 = −1 ∧ IMj > IMj+1 (2.3)

In case of overlapping isotope clusters or an isotope cluster containing elements with a

high abundance of natural stable isotopes such as chlorine or bromine, the algorithm

splits them into two separate isotope clusters.

2.1.1.2 Isotope Cluster Alignment

Isotope clusters of the measured spectrum are aligned to the isotope cluster of the

library spectrum based on the mass of their monoisotopic peaks (Figure 2.2b). Two

isotope clusters are considered a match if the masses of their monoisotopic peaks are

identical. In case of a peak at mass mi present in one isotope cluster but not in its

counterpart, a peak of mass mi and intensity 0 is added to the corresponding isotope

cluster. This way, aligned isotope clusters always have the same number of peaks. The

measured and the library spectra can then be divided into two subsets of peaks. One

set contains all peaks from the matching isotope clusters (F), and the other contains the

remaining peaks of the spectrum (R).

F ∪R = S (2.4)

In the illustrated example, peaks of the set F are highlighted in blue and peaks of the

set R in orange (Figure 2.2b).

2.1.1.3 Similarity Score Calculation

On the basis of the alignment, one score is calculated for set F (matched isotope clusters)

and one score for R (non-matching isotope clusters and peaks not grouped within an

isotope cluster) (Figure 2.2c). First, for each matched isotope cluster in F, all peak

intensities are normalized by the respective monoisotopic peak. Second, the distance
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d between two isotope clusters is calculated by summing the absolute values of the

differences between corresponding normalized peak intensities:

d =
n∑

i=0

|rlibi − rmesi | (2.5)

To keep the score within the interval [0,1], the contribution of one isotope cluster pair

to the total similarity score is weighted by the number of isotope cluster peaks and an

intensity scale. Therefore, the isotope cluster’s summed intensity is divided by the total

intensity of the mass spectrum to obtain the intensity fraction of the isotope cluster in

S:

x = number of peaks within f

intensity scale =
Ifmes

ISmes

+
Iflib
ISlib

scale = intensity scale · x

(2.6)

The total isotope cluster-based distance of the two mass spectra is then calculated as

follows:

ScoreF =
1

n
·

n∑
i=0

di · scalei (2.7)

where n is the number of matched isotope clusters. This calculation transforms the

distance in the interval between zero (identical spectra) to one (no identity). To make

this score comparable to the score of the dot product, ScoreF is inverted within the

interval [0,1]:

ScoreF = 1− ScoreF (2.8)

For the remaining peak set R, a similarity score based on the dot product (see equation

1.4) is calculated. These two similarity measures are then combined to form a composite

spectrum similarity score. To reduce the bias to favor one of the two scores, a weighting

factor wF based on the summed intensities of all matched isotope clusters is calculated:

wF = (
IFmes

ISmes

+
IFlib

ISlib

) · 1

2
(2.9)

When for example the summed intensity of all matched isotope clusters encompasses

70% of the total intensity of the measured and the library spectrum, the isotope cluster-

based score is weighted with 0.7 and the dot product score with 0.3. The final spectrum

similarity score is then calculated as follows:

ScoreSpecIC = (1− wF ) · ScoreSpecDot · wF · ScoreF (2.10)
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2.1.2 Applications Of The ICBM Algorithm

The ICBM algorithm is most efficient for a non-targeted chromatogram alignment, which

has the advantage that metabolites not present in a reference library will pop up in

the analysis result as unidentified metabolites. As such, a non-targeted chromatogram

alignment is able to capture metabolites not yet known or not known to be produced

by a specific organism or under a specific condition. In case an unidentified metabolite

pops up in the analysis, there exist several strategies that can be used to identify these

compounds. One could use a different measurement technique, such as LC/MS, to infer

a chemical formula or NMR to gain structural knowledge. A more straightforward way

is to use a bigger reference library for the identification step. This assumes, however,

that the unidentified metabolite was annotated previously. The most comprehensive

EI mass spectral reference library is maintained by the National Institute of Standards

and Technology (NIST) and comprises 243,893 reference spectra of of 212,961 unique

compounds. Unfortunately, the provided NIST MS search software is only available for

windows operating systems and does not provide a relatively simple integration into third

party software. Currently, our group uses an in-house reference library containing around

400 reference spectra, which covers the most important parts of metabolism, but is

certainly not extensive enough. For that reason we acquired the NIST08 reference library

in ASCII text format to utilize it within the MetaboliteDetector software package [Hiller

et al., 2009]. However, within MetaboliteDetector the target spectrum is compared to

all spectra within the reference library for identification. If the computational time for

Figure 2.3: MetaboliteDetector library search

one spectrum comparison is 1ms then one identification using the NIST library within
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MetaboliteDetector would take around 240s. For a typical metabolomics experiment

with more than 500 metabolites the computation time will be around 33h which makes

it inconvenient for most practical purposes. One way to reduce the computational time

of one identification is to compare the target spectrum only to a subset of the reference

library. This subset can be generated with the ICBM algorithm. The overall steps are

as follows:

• Preprocessing

– Determine isotope clusters of all spectra within the reference library

– Store m/z of monoisotopic peak of the five most abundant isotope clusters

• Generate list of possible matches

– Determine isotope clusters of target spectrum

– Find all spectra within the reference library that have at least x (e.g. 5) of

the isotope clusters (matching m/z value of the monoisotopic peak)

• Find best match

– Calculate spectrum similarity score to each spectrum in the list of possible

matches

The total number of comparisons is reduced significantly by using the strategy described

above. To take advantage of the library search functionality, I implemented this feature

as well as the ICBM algorithm in the current version of the MetaboliteDetector. Cur-

rently, a mass spectral library in NIST format can be imported to an SQLite database.

This database can then be queried for selected compounds within MetaboliteDetector’s

graphical user interface. Figure 2.3 depicts the search result for tyrosine 3-TMS with

the NIST08 as the underlying reference library.

The advantage of utilizing a big reference library such as the NIST library became ap-

parent for a discovery made recently in our institute. In a non targeted metabolomics

experiment we found highly elevated levels of itaconic acid in LPS treated macrophages

compared to non-treated macrophages. Since itaconic acid was not known to be pro-

duced by mammalian cells, it was not present in our reference library. Nevertheless, it

popped up as one of the unidentified compounds in our non-targeted analysis. In fact,

it was one of the most significantly changed metabolites [Michelucci et al., 2013]. The

application of the above described ICBM library search functionality helped to iden-

tify this compound as itaconic acid. (Figure 2.4). For itaconic acid the m/z values of

the monoisotopic peaks of the 5 most abundant isotope clusters are: 147 m/z, 73 m/z,

215 m/z, 259 m/z, and 97 m/z. The NIST08 spectral library contains roughly 200,000
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Figure 2.4: Overview of ICBM library search. 1) Determination of isotope
clusters of the measured spectrum. In the case of itaconic acid the m/z values of the
monoisotopic peak of the five most abundant isotope clusters are: 147 m/z, 73 m/z,
215 m/z, 259 m/z, and 97 m/z. 2) The library is queried for the m/z values of the five
most abundant isotope cluster determined in the previous step. A list of possible hits is
generated, including all compounds that have at least 3 of the queried isotope clusters.
3) A spectrum similarity score is calculated for all compounds in the possible hit list.
4) The entry with the highest spectrum similarity score is assigned to the measured
compound

EI mass spectra. The list of possible hits, however, generated with the above stated

isotope clusters only contains 19 mass spectra (see Figure 2.4). Although the isotope

clusters at 147 m/z and 73 m/z originate from the derivatization reagent and usually

do not carry any discriminating information, in case of big reference libraries containing

mass spectra of different derivatization reagents, they help to highlight the correct com-

pounds. It should be noted that the itaconic acid could have been also identified with a

different library search program (e.g. with NIST MS search software). Nevertheless, the

integration of the ICBM library search functionality eminently improves the usability of

MetaboliteDetector.

In summary, the ICBM algorithm improves a non-targeted metabolomics experiment in

two ways: First, it improves the alignment of compounds across different chromatograms,

which is one of the main bottlenecks of a non-targeted metabolomics analysis. Second,

it helps to identify compounds when a reference library is used.
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CC C C C

GC/MS + NTFD (Non-targeted Tracer Fate Detection)
Stable isotope labeling experiment

Figure 2.5: Non-targeted tracer fate detection (NTFD). Stable-isotope labeled
compounds (in this case 13C) are fed to the cell culture. After a GC/MS measurement,
the NTFD algorithm automatically detects all labeled compounds and automatically
calculates mass isotopomer distributions (MIDs) for all detected compounds. Since
NTFD is non-targeted, not only MIDs for known labeled compounds (red triangle)
are calculated, but also MIDs for unknown labeled compounds (red triangles with
blue frame). Known compounds without label are shown as green triangles, unknown
compounds without label as blue triangles.

2.2 Non Targeted Tracer Fate Detection

The discovery of itaconic acid was relatively straightforward, because of its high intracel-

lular abundance in LPS stimulated macrophages compared to unstimulated macrophages.

Itaconic acid turned out to be an endpoint of an intracellular flux as a part of the mam-

malian immune response. In case of metabolic cycles or parallel pathways, however,

measuring metabolite concentrations is not sufficient to detect changes in intracellular

metabolic fluxes. Moreover, often only pathway intermediates can be measured. As

the intracellular concentrations of those pathway intermediates usually do not change

significantly, a stable isotope labeling experiment has to be performed to infer metabolic

fluxes from the labeling patterns of these intermediates (see Figure 1.11). Besides the

determination of intracellular metabolic fluxes, a stable isotope labeling experiment al-

lows one to follow the fate of a specific stable isotope labeled substrate within a given

system. Since cellular metabolism is highly complex and not yet fully understood, the

advantage of following the distribution of labeling in the metabolic network in a non-

targeted manner is clear. For example, disease specific alterations of metabolism may

differ from biochemical knowledge derived from textbooks or databases. One method for

the non-targeted detection of stable isotope labeled compounds was described by Hiller
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[Hiller et al., 2010] . In this section I will describe the implementation of this algorithm

in a stand alone software that allows to detect all stable isotope labeled compounds

downstream from a given substrate (Figure 2.5).

NTFD can be used as a discovery tool that can probe cellular metabolism in a non-

targeted way. Usually, the correct calculation of MIDs is a highly targeted process and

Figure 2.6: NTFD graphical user interface. The NTFD program provides an easy
to use graphical user interface which allows the user to import GC/MS data in netCDF
format. The NTFD program then performs automatically the compound detection and
detects all labeled compounds within the provided chromatograms. Finally, the MIDs
for those labeled compounds are calculated.

requires detailed information about the compounds of interest prior to the analysis. This

information includes either the unlabeled reference spectrum or the chemical formula for

the fragment ion of interest. In theory, one could investigate every potentially labeled

mass spectrum and compare it to the corresponding unlabeled mass spectrum in order

to detect all labeled compounds. However, this is a time consuming process and in case

of a low percentage of enrichment, almost impossible to catch by manual inspection.

For that reason, we developed the NTFD software package with a graphical user in-

terface (Figure 2.6) and made it publicly available for the metabolomics community at

http://ntfd.mit.edu. The NTFD program can import GC/MS data in netCDF format

and performs the following steps automatically:

• Compound detection and chromatographic deconvolution

• Chromatogram alignment

• Detection of labeled compounds

• Calculation of MIDs for labeled compounds

• Compound identification with a reference library

http://ntfd.mit.edu
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• Export of result in a tab separated format
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2.3 Metabolome Of The Neuronal Cell Line LUHMES

Dopaminergic neurons are primarily found in the substantia nigra pars compacta of

the midbrain. Although they are few in numbers (usually less than 1% of the total

number of brain neurons), they play an important role in the control of multiple brain

functions such as voluntary movement and behavioral processes [Chinta and Andersen,

2005] and constitute the major source of dopamine in the mammalian central nervous

system. The progressive degeneration of dopaminergic neurons is the major hallmark

of Parkinson’s Disease (PD). PD is one of the most common neurological disorders,

affecting around 1—2% of the over 55 years old population, with differences in gender

and increased prevalence with ageing. To date, several different processes including

inflammation, oxidative stress and mitochondrial dysfunction have been hypothesized

to be the cause of this loss of dopaminergic neurons. As dopamine metabolism itself can

be a source of oxidative stress [Meiser et al., 2013], I analyzed the metabolome of the

human dopaminergic neuronal cell line LUHMES [Scholz et al., 2011]. LUHMES are

Medium
supplement:

Day0

+bFGF

Differentiation

+tetracycline+cAMP+GDNF

Day5 Day 12

Proliferation

Neuronal precursor cell Mature neuron

Figure 2.7: LUHMES differentiation. Neuronal precursor cells can be proliferated
by adding cytokine basic fibroblast growth factor (bFGF) as a medium supplement. In
absence of bFGF these neuronal precursor cells can be differentiated to mature neurons
by adding tetracycline, dibutyryl cAMP (cAMP), and glial cell derived neurotrophic
factor (GDNF) to the medium.

human mesencephalic cells conditionally immortalized with a v-myc retroviral vector

to ensure continuous proliferation. Inactivation of this vector with tetracycline allows

differentiation into mature neurons within 5 to 12 days (Figure 2.7).

2.3.1 Oxygen Level

It has been shown previously that differentiation of neuronal precursor cells to dopamin-

ergic neurons is enhanced under low oxygen conditions [Studer et al., 2000]. Since the

in vivo oxygen level in mammalian brains is as low as 1% to 5% [Studer et al., 2000],
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I intended to test whether the metabolome of proliferating vs differentiated LUHMES

cells is affected by the oxygen level. For that reason, I cultured proliferating LUHMES

cells at a low oxygen level (5%) and at standard cell culture conditions (20%). Likewise,

I differentiated the LUHMES cells at 5% and 20% oxygen. After nine days I extracted

the intracellular metabolites and subsequently measured them with GC/MS (analytical

details can be found in ??).

After GC/MS measurement, I applied the ICBM algorithm to match compounds across

the four conditions. Figure 2.8 depicts the principal component analysis (PCA) of this

experiment. The metabolomes of proliferating and differentiated LUHMES cells are well
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Figure 2.8: PCA of differentiated and proliferating LUHMES cells at 5%
and 20% oxygen

separated, so are the metabolomes of differentiated LUHMES cells at 5% and 20% oxy-

gen. However, the metabolome of proliferating LUHMES cells cannot be distinguished

based on the two oxygen levels when all four conditions are considered.
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At the metabolome level, there is a difference between LUHMES cells differentiated at

5% oxygen and LUHMES cells differentiated at 20% oxygen. To further study the dif-

ferences in the metabolome of proliferating and differentiated LUHMES cells at different

oxygen levels, I performed an analysis of variance (ANOVA) to detect all significantly

(Bonferroni corrected p-value < 0.0003 ) changed metabolites. Overall, I was able to

detect 5 significantly changed metabolites. The corresponding bar plots are depicted

in Figure 2.9. Interestingly, lactic acid levels are higher in differentiated LUHMES cell

compared to proliferating LUHMES cells. This is in contrast to the observation that

proliferating cells mainly rely on aerobic glycolysis to produce adenosine 5-triphosphate

(ATP) [Vander Heiden et al., 2009]. However, I am presenting intracellular metabolite

levels here and lactic acid is usually excreted from the cell. The lactic acid levels in dif-

ferentiated LUHMES cells at 5% oxygen are higher compared to differentiated LUHMES

cells at 20% oxygen, because of the absence of O2 to fuel mitochondrial oxidative phos-

phorylation. An interesting difference between differentiated LUHMES cells at the two

oxygen levels is the increased abundance of γ-aminobutyric acid (GABA) at 5% oxy-

gen. GABA is the major inhibitory neurotransmitter in the mammalian central nervous

system. Recently it has been shown that dopaminergic neurons can release GABA via

the vesicular monoamine transporter VMAT2, which is also the vesicular transporter

for dopamine [Tritsch et al., 2012]. This underlines the fact that for dopaminergic cell

culture models a low oxygen level should be applied to better reflect conditions in the

brain.

In conclusion, this experiment showed that the metabolome of differentiated LUHMES

cells at 5% and 20% oxygen is clearly different. These differences do not only originate

from metabolites that have been shown before to be affected by hypoxic conditions,

such as lactic acid or citric acid [Vander Heiden et al., 2009]. For example, GABA is

not directly linked to increased aerobic glycolysis. Nevertheless, it is increased in differ-

entiated LUHMES cell at 5% oxygen. This suggests that indeed the differentiation of

dopaminergic neurons is enhanced at low oxygen levels.

2.3.2 Dopamine Metabolism

Although LUHMES should be dopamine producing cells [Scholz et al., 2011], I was not

able to detect dopamine in any of the four conditions. To estimate our analytical sen-

sitivity for dopamine by GC/MS, I determined the limit of detection with a dilution

series of dopamine standards, starting with 1.5mg/mL. As a result I calculated that we

are able to detect dopamine concentrations down to the nanomolar range in full scan

mode and down to the picomolar range in single ion mode. To further test if the ap-

plied extraction protocol is suitable for dopamine detection, we extracted and measured
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Figure 2.9: Bar plots for selected metabolites of proliferating and differen-
tiated LUHMES cells at 5% and 20% oxygen.

mouse brain extracts. Although a mouse brain contains only a few thousand dopaminer-

gic neurons [German and Manaye, 1993], a clear dopamine peak was detectable (Figure

2.10). Together with Dr Johannes Meiser, we tested if the most important enzyme of

dopamine synthesis, tyrosine hydroxylase (TH), is present in differentiated LUHMES

cells. The Western blot for TH depicted in Figure 2.11 was performed within our group

by Dr. Johannes Meiser. Based on the Western Blot, TH protein is present in differen-

tiated LUHMES cells at 2% and 20% oxygen, but not in proliferating LUHMES cells.

It is important to note that the TH protein abundance is much higher at 2% oxygen

compared to 20% oxygen. This result further endorses the fact that neuronal differenti-

ation is enhanced under low oxygen conditions. In conclusion, we have a highly sensitive

method for dopamine detection (picomolar), we are able to detect dopamine in mouse

brain extracts, and TH is present in differentiated LUHMES cells, but I was not able to
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Figure 2.10: GC/MS measurement of mouse midbrain extract. A part of the
total ion chromatogram (TIC) is shown in the upper part. Dopamine 4TMS elutes
at 28.38 minutes. The lower part shows the mass spectrum of Dopamine 4TMS. The
measured spectrum is shown in blue in the positive direction and the library spectrum
is shown in red in the negative direction.
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Figure 2.11: Tyrosine hydroxylase abundance. This Western blot was kindly
provided by Dr. Johannes Meiser.
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detect dopamine in differentiated LUHMES cells. This result suggests that the presence

of TH alone is not sufficient to classify cells as dopamine producing cells and underlines

the importance of metabolomics to study cellular phenotypes.



Chapter 3

Targeted Metabolomics

Methodologies

This chapter covers a manuscript about a methodology for the determination of chemical

formulas and retained atoms for mass spectral fragment ions. The main results are

summarized with respective cross references to the manuscript given. For methodological

details, please consult the corresponding manuscript [Wegner et al., 2014].

Wegner, A.; Weindl, D.; Jäger, C.; Sapcariu, S. C.; Dong, X.;

Stephanopoulos, G.; Hiller, K.

Analytical chemistry

3.1 Fragment Formula Calculator

As stated in section 1.1.3, non-targeted methodologies are of great importance, but

they cannot replace targeted approaches. For example, MIDs are of high importance

for stable isotope labeling experiments and can be calculated in a non-targeted way

with the NTFD algorithm. However, to make biological sense out of MIDs, detailed

information about the underlying fragment ions are necessary. Specifically, the structural

formulas for fragments ions are essential to pull out biological information of MIDs. This

information can be obtained only in a targeted way and requires the structural formula

of the molecular (Figure 3.1). For example, 13C-MFA relies on exact knowledge of

the position of the label in order to determine intracellular fluxes from MIDs using a

nonlinear least-squares parameter estimation approach (see Section 1.3). In this process,

MIDs obtained from a stable isotope labeling experiment help to constrain the fluxes in

38
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Figure 3.1: Importance of targeted methodologies. A) The labeled mass spec-
trum for the fragment ion at m/z 190 of Alanine is shown. B) In order to calculate
MIDs, either the chemical formula or the unlabeled reference spectra must be avail-
able. C) Set-up of the linear equation system. Note that this is also possible in a
non-targeted methodology when the unlabeled reference spectrum is applied. D) MIDs
can be calculated in a target and non-targeted way. E) The retained carbon atoms can
be only determined if the structural formula of the molecular ion is available. Hence
this can only be done in a targeted way. F) The calculated MIDs in combination with
the retained carbon atoms can applied in 13C-MFA.

a given system. In particular, MIDs for fragment ions containing different carbon atoms

are of high interest, since they can carry different flux information. Therefore it is crucial

to identify the structural formulas for mass spectral fragment ions. Since 13C-MFA is

based on carbon labeling, it is sufficient to identify the retained carbon atoms. However,

the process of assigning a chemical formula and retained atoms to mass spectral ions

is non-trivial and time-consuming, even for an expert. For that reason, I developed

an algorithm that can determine the chemical formulas and the retained atoms for

mass spectral fragment ions. Generally, there are two ways to determine the retained

atoms of a fragment ion: a rule-based in silico prediction or a combinatorial approach

based on a systematic bond cleavage. Rule-based algorithms rely on fragmentation
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mechanisms derived from molecules where the fragmentation is known, assuming that

similar structures will fragment the same way. However, small changes in structure can

lead to a significantly different fragmentation mechanism. Furthermore, the rule-based

approach fails for molecules where no similar fragmentation mechanism is known. Here,

I present a method to determine the chemical formulas and the retained atoms for mass

spectral fragment ions without a priori knowledge about the fragmentation mechanisms,

taking advantage of the combinatorial aspect of the problem. For that, I will apply the

molecule’s graph-theoretical representation to model the fragmentation.

3.1.1 Algorithm

I model a molecule as an undirected, connected and labeled graph G = (V,E, fV A, fV B,

fV C , fED), where V is the set of vertices corresponding to the atoms and E is the set of

undirected edges corresponding to the bonds between the atoms. The function fV A : V

→ A assigns each atom an element (e.g. carbon, hydrogen, etc.), fV B : V → B assigns

each atom an index and fV C : V → C assigns each atom the atomic mass according

to the chemical element. The function fED : V × V → D assigns each bond an order

(single, double, triple). The mass of the molecular ion corresponds to the sum of the

masses of all vertices:

W (G) =
∑
v∈V

fV C(v) (3.1)

The underlying idea of this algorithm is that the fragmentation process usually only

breaks a few bonds within the molecule. This can be simulated by removing a defined

number of edges within the molecular graph. In terms of graph theory this means to

induce a cut of a certain size in in the graph. This can leave the graph G disconnected.

The resulting connected components C = {C1, ..., Cn} of the subgraph H each have a

molecular mass:

W (Ci) =
∑

v∈V (Ci)

fV C(v) (3.2)

Since the mass m of the fragment ion is determined by mass-spectrometry, the chemical

formula of this fragment ion corresponds to a combination of connected components of

H which molecular masses W (Ci) sum up to m. Figure 3.2 illustrates this process. The

resulting subgraph (representing the chemical composition), which can be composed of

several connected components, does not necessarily represent the chemical structure,

because the formation of new bonds (e.g. fragmentation rule 4 described in Section

1.1.1.2) is not modeled. However, the number and position of atoms of the intact

compound retained in this fragment ion is uncovered.

So far, I have relied on the assumption that the correct edges are deleted from the graph.

There are two unknowns, the number and the position of edges to be deleted. To define
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Figure 3.2: Overview of FFC algorithm. (A) As input FFC needs the 2D structure
of the compound together with the mass spectrum of the ion of interest. In this example,
I present the molecule N,O-bis-(trimethylsilyl)-glycine (219 Da) and the fragment ion
at mass 176. (B) The 2D structure is first converted into a molecular graph. The
graph contains 34 vertices and 33 edges. Then all combinations of edge sets of a
certain size (in this case 3) are consecutively deleted from the graph, resulting in 5456
disconnected graphs, one for each edge set deleted. The number of resulting subgraphs
can be calculated with the binomial coefficient where n corresponds to the number of
edges and k corresponds to the cut size (Equation 3.3). For simplification, only the
edge set leading to the correct fragmentation is shown here. (C) For each disconnected
graph the connected components are determined. For every combination of connected
components where the molecular masses sum up to the mass of the fragment ion, the
atoms of these components are combined to build up a candidate formula. In this
example, the connected components shown in green and light blue with the masses 87
and 89 sum up to the target mass of 176. The candidate formula is then C6H18NO2Si2,
which is indeed the correct formula for this fragment ion. In addition to the chemical
formula, the algorithm also yields positional information about the fate of specific
atoms. For example, the carboxyl carbon of the original glycine molecule is lost in this
fragment ion. (D) Based on the candidate formula the theoretical mass spectrum is
predicted and a spectrum similarity score to the measured spectrum based on the dot
product is calculated. This is of special importance if more than one sum formula can
be derived for the target mass.
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the minimal number of edges to delete from the graph (cut size), necessary to model

the fragmentation, it is mandatory to take the fragmentation rules (as stated in Section

1.1.1.2) into consideration. Fragmentation types 1-3 cleave one bond without forming

new σ-bonds, 4 and 5 cleave one bond while forming a new one, 6 cleaves two bonds

while forming a new one. Therefore, to describe an α-cleavage or a σ-ionization, clearly

a cut size of one is sufficient. To simulate a simple elimination or a rearrangement, which

is equivalent to deleting one edge in the graph, a cut size of one is also necessary. For the

combination of a more complex rearrangement and an α-cleavage, a cut size of three is

necessary. To capture both the single and the combined fragmentations, the algorithm

is designed to work with a defined maximum cut size. The cut size starts at one and

subsequently increases until it reaches the defined maximum cut size.

One way to find the correct edges to delete from the graph is to select those edges that

are most likely to break. For example, low-energy bonds can be assumed to break more

easily. Although this is correct, additional rules are needed to describe rearrangements.

Another more straightforward way is to delete all possible combinations of edges of a

certain cut size. Certainly this includes the correct edges, but at the same time increases

the number of possible results enormously. If the number of edges is given by n and

the cut size by k, then the number of k distinct elements of n is given by the binomial

coefficient: (
n

k

)
=

n!

k! · (n− k)!
(3.3)

For example, the graph of the molecule N,O-bis-(trimethylsilyl)-glycine with the molec-

ular formula C8H21NO2Si2 has 33 edges. The number of possible distinct edge sets to

delete for a cut size of 3 is then 5456.

To find the correct edges, the resulting fragment formulas for each of these possibilities

have to be ranked according to a score. At best, this score is linked to the measured

mass spectrum. One elegant way to do so is to predict the theoretical mass spectrum

of the determined fragment formula and calculate a spectrum similarity score to the

measured mass spectrum of this fragment ion. A mass spectrum can be theoretically

predicted by using the natural stable isotopic distribution of elements and statistical

theory [Fernandez et al., 1996]. For elements that only have one naturally occurring

stable isotope of significant abundance, the distribution of isotopes can be predicted by

a binomial distribution:

mi =
n!

i! · (n− i)!
· pn−i0 · pi1 (3.4)

where n is the total number of atoms, i the number of atoms containing the heavier

isotope (e.g. 13C), p0 the natural abundance of the lighter isotope (e.g. p(12C)=0.989)

and p1 the natural abundance of the heavier isotope (e.g. p(13C)=0.01). In case an

element has several natural occurring isotopes the distribution of those isotopes within
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a molecule can be predicted by a multinomial distribution:

mi =
n!

a1! · a2! · ... · ak!
· pa00 · p

a1
1 · ... · p

ak
k (3.5)

where n is the total number of atoms, a0 to ak the number of atoms containing the

respective isotope and p0 to pk the natural abundances of those isotopes.

3.1.1.1 Reducing Algorithmic Complexity
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Figure 3.3: Graph representation of N,O-bis-(trimethylsilyl)-glycine. The
graph contains 33 edges. For a cut size of three the number of distinct edge pairs to
delete is 5456. To reduce the number of distinct edge pairs, non backbone edges (edges
that are not connected to at least one backbone atom) are grouped based on their loss
pattern. For example, edges shown in red are grouped together because their removal
leads to the loss of one hydrogen. The group of edges shown in blue lead to the loss of
a methyl group when one of these edges is removed. The group of edges shown in green
lead to the loss of a TMS group when one of these edges is removed. After reduction
to relevant backbone edges, the graph now contains only 7 distinct edge groups (as
illustrated by the numbers above the edges) which reduces the number of distinct edge
sets of size 3 from 5456 to 35.

For GC/MS, compounds are usually derivatized prior to analysis. For example, hydro-

gens in polar functional groups can be replaced with a trimethylsilyl (TMS) or tert-

butyldimethylsilyl (TBDMS) group (see Section 1.1.1.3). This makes compounds more

volatile and less reactive, but at the same time increases the computational complex-

ity of finding the correct chemical formula of a fragment ion. In case of stable isotope

labeling experiments, the interest lies normally only in labeling patterns for atoms of

the original (underivatized) molecule. As a consequence, the information obtained from

the loss of atoms originating from the derivatization agent used is often redundant. For

example, when TMS derivatization is used, a [M-15]+ fragment is often present in the

mass spectrum, originating from the loss of a methyl group from the derivatized part of

the molecule. Depending on the number of TMS groups within the molecule, there are

several possibilities for the position of the lost methyl group. Concerning the calculation

of chemical formulas, however, the position of this methyl group is not relevant and com-

putational time can thus be saved. For that reason, we divide the molecular graph into

atoms belonging to the original molecule (backbone atoms) and atoms originating from
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the derivatization agent used. Subsequently, non backbone edges (edges that are not

connected to at least one backbone atom) are grouped based on the atoms that would

be lost if this edge is deleted (Figure 3.3). For example, all edges are grouped together

where their removal would lead to the loss of one hydrogen. This reduces the number

of distinct edges significantly, thereby decreasing the combinatorial complexity for the

problem of finding the correct chemical formula. Additionally, this allows the user to

follow the fate of specific atoms in the molecular ion by selecting them as backbone

atoms.

Another advantage which makes the proposed algorithm capable of modeling rearrange-

ments is the use of connected components. Fragment ions resulting from a rearrangement

reaction are often composed of two or more disjoint substructures of the molecular ion.

Identifying these substructures is computationally challenging, as their number grows

enormously with the number of atoms. However, in our algorithm the number of these

substructures is limited by the number of connected components within the molecular

graph, making the proposed algorithm also applicable for larger molecules.

3.1.1.2 Constraining The Result Set

One major advantage of the FFC program compared to commercial softwares such as

ACD/MS Fragmenter or Mass Frontier is that it is able to incorporate stable isotope

labeled spectra in the analysis. In most cases multiple candidate formulas are available

for one fragment ion and it is not immediately clear which of those formulas is the correct

one. In these cases, a stable isotope labeled spectra of the compound of interest can help

to remove wrong candidate formulas from the the result set. For that, the FFC program

assigns each atom within the molecule a binary state: 1 means this atom is present in

this fragment ion and 0 means it is cleaved off. Consequently, each candidate formulas is

described by a set of bits depending on the atoms present in this candidate formula. In

order to include the labeled spectra in the analysis, the FFC program uses a second bit

(labeled bit set) set to describe the applied stable isotope tracer. This bit set describes

the labeling state of each atom within the molecule: 1 means this atom is labeled and

0 means the atom is unlabeled. For example, 13C3 β-Alanine has 3 labeled carbon

atoms. This means the bits corresponding to these three carbon atoms would be set to

1 and the bits corresponding to the remaining atoms to 0 (Figure 3.4). Subsequently,

each candidate formula’s bit set is combined with the labeled bit set through a logical

conjunction. The resulting bit set defines exactly how many labeled atoms are present

in this candidate formula and can be easily calculated by counting the number of 1’s

in this bit set. The number of labeled atoms can then be compared to the measured

labeled spectrum. For that, the FFC program automatically calculates the MIDs for this
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Figure 3.4: Constraining the result set. The FFC program assigns each atom
a binary state: : 1 means this atom is present in this fragment ion and 0 means it is
cleaved off. The bit set for the molecular ion of β-Alanine 3TMS is shown in the upper
left. The corresponding bit set for 13C3 β-Alanine 3TMS is shown in the upper right.
For the fragment ion at m/z 290 the FFC program calculates three possible solutions:
one with all three carbons of the β-Alanine still present and two with one carbon atom
lost. In order to get the number of labeled atoms present in the candidate formulas,
the FFC program combines each candidate formula’s bit set is with the labeled bit set
through a logical conjunction. This number can then be compared to the calculated
MIDs. In this case, all three carbons of β-Alanine are still present in the fragment ion
at m/z 290 and solutions one and three are excluded from the result set.
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fragment ion. However, for an accurate MID calculation a correction matrix is needed

to solve the linear equation system [Lee et al., 1991]. This correction matrix can either

be setup with the chemical formula or the unlabeled reference spectrum of the fragment

ion (see Section 1.2.1). Since the chemical formula is the information the FFC program

intends to calculate, the software applies the unlabeled reference spectrum to set-up the

correction matrix. Finally, all candidate formulas that contradict the MIDs are then

automatically excluded from the result set.

The FFC program can calculate MIDs for a wide range of tracers (e.g 2H, 15N, 13C or

18O). In case of d9-MSTFA, however, the number of deuterium labeled atoms can easily

grow above twenty, which can complicate the calculation of MIDs. For that reason, the

FFC program does not calculate MIDs for d9-MSTFA labeled spectra, but calculates

the number of 2H atoms as follows:

1. Calculate the maximum number of 2H labeled atoms possible:

maxL = #TMS-groups · 9

2. Find all isotope clusters in the d9-MSTFA labeled spectrum within the following

range:

m/z value of the monoisotopic peak of the fragment ion of interest (corresponds

to 0 2H) + maxL (corresponds to the maximum number of 2H)

3. Calculate a spectrum similarity score (e.g with the ICBM algorithm) between all

isotope clusters determined in the previous step and the fragment ion of interest

4. Select the isotope cluster with the highest spectrum similarity score (maxS)

5. Calculate the number of 2H labeled atoms by subtracting the m/z value of the

monoisotopic peak of maxS from m/z value of the monoisotopic peak of the frag-

ment ion of interest

3.1.2 Software Package

Further on I implemented the algorithm in the stand alone software package fragment

formula calculator (FFC). Figure 3.5 depicts the graphical user interface of the FFC

program. The FFC program is optimized to determine chemical formulas for GC/MS

fragment ions.

The input to the program consists of the 2D structure of the compound together with

the measured mass spectrum. This data can be loaded directly by the user; a MOL

file for the structure and a csv file for the mass spectrum. Additionally, FFC allows

the user to import a library in NIST format to an SQLite database which then can
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Figure 3.5: FFC graphical user interface. The window (in the upper part of the
main interface) displays the loaded spectrum. The window (in the bottom left of the
main interface) contains the compound of interest for fragment calculation shown in
the the “Compound Info” tab. The “Result” tab contains the calculated formulas for
the compound of interest at the corresponding sized fragment. If a spectrum from a
stable isotope labeling experiment was added to the analysis, the “MIDs” tab shows the
calculated MIDs for the current selected fragment. The window (in the bottom right
of the main interface) displays the chemical structure of the compound of interest. If a
result row is selected from the “Result” tab, this window visualizes the fragmentation
by highlighting lost atoms with a square and broken bonds with a dashed line.

be queried for a chemical formula or a compound’s name (Figure 3.6). Mass spectral

fragment ions are detected automatically based on the mass spectrum [Wegner et al.,

2013]. The structure is visualized based on the atom coordinates defined in the MOL

file. For clarity, atoms are colored according to the CPK scheme and hydrogens are

hidden. Candidate formulas and the corresponding atoms within the molecule can be

calculated by pressing the “Start Calculation” button. By default, all atoms within

the molecule are considered as backbone atoms, but this can be manually corrected for

derivatized compounds. The program generates a list of possible hits which are shown

in the “Result tab”. This “Result tab” includes the following entries:

• Chemical formula

• Spectrum similarity score of each predicted mass spectrum to the measured mass

spectrum based on the dot product [Stein and Scott, 1994]

• List of backbone atoms present in each candidate formula

• The average and maximum deviation from each measured to the theoretical (pre-

dicted) mass spectrum
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• The number of broken bonds

• Even electron ion (yes/no)

Figure 3.6: FFC library search interface. The FFC program allows the user to
import a library in NIST format to an SQLite database which then can be queried for
a chemical formula or a compound’s name

3.2 Fragment Formula Repository

As stated in the previous section, the chemical formula in combination with positional

information of atoms present in a fragment ion is of high importance to extract biological

information out of MIDs. For that reason, I applied the FFC program to determine the

chemical formulas and carbon atom composition for a wide range of TMS and TBDMS

derivatized compounds of central carbon metabolism.

As mentioned in Section 3.1, the use of stable isotope labeled reference standards can

greatly improve the predictive capabilities of the FFC algorithm. However, these la-

beled reference compounds are very expensive. That is why we generated fully labeled

reference spectra in our lab. For that, we used yeast grown on U-13C D-glucose as the

only carbon source (Figure 3.7). As a result we generated a comprehensive set of fully

labeled reference spectra for TMS, d9-TMS, and TBDMS derivatized compounds (Fig-

ure 3.8). Later, I used the unlabeled and fully labeled mass spectra as input for the

FFC algorithm and determined the chemical formulas and retained carbon atoms of 160

fragment ions. The chemical formulas for the TMS derivatized compounds can be found

in Table 3.1 and for the TBDMS derivatized compounds in Table 3.2.
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Figure 3.7: Overview yeast culture. Yeast was cultivated on minimal medium
with U-13C D-glucose as the only carbon source. To obtain fully labeled extracts three
overnight cultivations were applied before cell harvesting.

13C
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TBDMS

MSTFA

TBDMS
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Figure 3.8: Overview yeast measurements. Labeled and unlabeled yeast extracts
were derivatized with MSTFA and TBDMS and measured with GC/MS. The unlabeled
extracts were additional derivatized with d9-TMS.
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3.2.1 TMS Derivatized Fragment Ions

The retained carbon atoms of all compounds in Table 3.1 can be found in [Wegner et al.,

2014]. Atoms that were lost in a fragment ion are shown in red and retained atoms in

black.

Table 3.1: TMS Derivatized Fragment Ions

Compound m/z m/z 13C m/z d9-TMS Formula

Adenine 2TMS 279 284 297 C11H21N5Si2

264 269 279 C10H18N5Si2

206 211 215 C8H12N5Si

Alanine 2TMS 233 - - C9H23NO2Si2

218 220, 221 233, 236 C8H20NO2Si2

190 192 205 C7H20NOSi2

116 118 125 C5H14NSi

Aspartic acid 2TMS 277 281 295 C10H23NO4Si2

262 266 277 C9H20NO4Si2

234 237 249 C8H20NO3Si2

220 222 235 C7H18NO3Si2

160 163 169 C6H14N1O2Si

Aspartic acid 3TMS 349 354 376 C13H31NO4Si3

334 338 358 C12H28NO4Si3

306 309 330 C11H28NO3Si3

292 294 316 C10H26NO3Si3

232 235 250 C9H22NO2Si2

218 220 236 C8H20NO2Si2

β-Alanine 3TMS 305 - - C12H31NO2Si3

290 - 314 C11H28NO2Si3

248 - 272 C9H26NOSi3

232 - 250 C9H22NO2Si2

174 - 192 C7H20NSi

86 - 92 C3H6OSi

Citric acid 4TMS 480 - - C18H40O7Si4

465 471 498 C17H37O7Si4

375 381 399 C14H27O6Si3

363 368 390 C14H31O5Si3

347 352 371 C13H27O5Si3

273 278 291 C11H21O4Si2

Continued on next page



Chapter 3. FFC 51

Table 3.1 – Continued from previous page

Compound m/z m/z 13C m/z d9-TMS Formula

3-phosphoglycerate 4TMS 474 - - C15H39O7PSi4

459 462 492 C14H36O7PSi4

387 387 423 C12H36O4PSi4

357 359 384 C11H30O5PSi3

315 315 342 C9H28O4PSi3

299 299 323 C8H24O4PSi3

Glycerol-3-phosphate 4TMS 460 - - C15H41O6PSi4

445 448 478 C14H38O6PSi4

387 387 423 C12H36O4PSi4

357 359 384 C11H30O5PSi3

341 343 365 C10H26O5PSi3

299 299 323 C8H24O4PSi3

Glutamic acid 3TMS 363 368 390 C14H33NO4Si3

348 353 372 C13H30NO4Si3

320 324 344 C12H30NO3Si3

246 250 264 C10H24NO2Si2

230 234 245 C9H20NO2Si2

Glutamine 3TMS 362 367 389 C14H34N2O3Si3

347 352 371 C13H31N2O3Si3

273 278 291 C11H25N2O2Si2

245 249 263 C10H25N2O1Si2

Glycerol 3TMS 308 - - C12H32O3Si3

293 296 317 C11H29O3Si3

218 221 236 C9H22O2Si2

205 207 223 C8H21O2Si2

Glycine 3TMS 291 293 - C11H29NO2Si3

276 278 300 C10H26NO2Si3

248 249 274 C9H26NOSi3

174 175 192 C7H20NSi2

Isoleucine 2TMS 275 - - C12H29NO2Si2

260 265, 266 275, 278 C11H26NO2Si2

232 237 247 C10H26NOSi2

218 220 236 C8H20NO2Si2

158 163 167 C8H20NSi

Leucine 2TMS 275 - - C12H29NO2Si2

260 265, 266 275, 278 C11H26NO2Si2

Continued on next page
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Table 3.1 – Continued from previous page

Compound m/z m/z 13C m/z d9-TMS Formula

232 237 247 C10H26NOSi2

218 220 236 C8H20NO2Si2

158 163 167 C8H20NSi

Lysine 3TMS 362 368 389 C15H38N2O2Si3

347 353 371 C14H35N2O2Si3

200 206 209 C9H18NO2Si

174 175 192 C7H20NSi2

156 161 165 C8H18NSi

Lysine 4TMS 434 440 470 C18H46N2O2Si4

419 425 452 C17H43N2O2Si4

391 396 324 C16H43N2OSi4

317 322 344 C14H37N2Si3

174 175 192 C17H20NSi2

Malic acid 3TMS 350 354 377 C13H30O5Si3

335 339 359 C12H27O5Si3

307 311 331 C11H27NO4Si3

245 249 260 C9H17O4Si2

233 236 251 C9H21O3Si2

Phenylalanine 2TMS 309 - - C15H27NO2Si2

294 303 309 C14H24NO2Si2

266 274 281 C13H24NOSi2

218 220 236 C8H20NO2Si2

192 200 201 C11H18NSi

Proline 2TMS 259 - - C11H25NO2Si2

244 249 259 C10H22NO2Si2

216 220 231 C9H22NOSi2

142 146 151 C7H16NSi

Serine 3TMS 321 - - C12H31NO3Si3

306 309 330 C11H28NO3Si3

278 280 302 C10H28NO2Si3

218 220 236 C8H20NO2Si2

204 206 222 C8H22NOSi2

188 190 203 C7H18NOSi2

Succinic acid 2TMS 262 266 280 C10H22O4Si2

247 251 262 C9H19O4Si2

Continued on next page
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Table 3.1 – Continued from previous page

Compound m/z m/z 13C m/z d9-TMS Formula

172 176 181 C7H12O3Si

Threonine 3TMS 335 - - C13H33NO3Si3

320 324 344 C12H30NO3Si3

218 221 236 C9H24NOSi

Tyrosine 2TMS 325 - - C15H27NO3Si2

310 319 325 C14H24NO3Si2

282 290 297 C13H24NO2Si2

208 216 217 C11H18NOSi

192 200 198 C10H14NOSi

Tyrosine 3TMS 397 - - C18H35NO3Si3

382 391 406 C17H32NO3Si3

354 362 378 C16H32NO2Si3

280 288 298 C14H26NOSi2

218 220 236 C8H20NO2Si2

Uracil 2TMS 256 260 284 C10H20N2O2Si2

241 245 256 C9H17N2O2Si2

Valine 2TMS 261 - - C11H27NO2Si2

246 251 261 C10H24NO2Si2

218 220, 222 233 236 C9H24NOSi2

3.2.2 TBDMS Derivatized Fragment Ions

The retained carbon atoms of all compounds in Table 3.2 can be found [Wegner et al.,

2014]. Atoms that were lost in a fragment ion are shown in red and retained atoms in

black.

Table 3.2: TBDMS Derivatized Fragment Ions

Compound m/z m/z 13C Formula

Alanine 2TBDMS 317 - C15H35NO2Si2

302 305,306 C14H32NO2Si2

274 276 C13H32NOSi2

260 263 C11H26NO2Si2

232 234 C10H26NOSi2

Continued on next page
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Table 3.2 – Continued from previous page

Compound m/z m/z 13C Formula

Aspartic acid 3TBDMS 475 - C22H49NO4Si3

460 464 C21H46NO4Si3

418 422 C18H40NO4Si3

390 393 C17H40NO3Si3

376 378 C16H38NO3Si3

316 319 C15H34NO2Si2

302 304 C14H32NO2Si2

Citric acid 4TBDMS 648 - C30H64O7Si4

633 639 C29H61O7Si4

501 507 C23H45O6Si3

459 465 C20H39O6Si3

Fumaric acid 2TBDMS 344 - C16H32O4Si2

329 333 C15H29O4Si2

287 291 C11H20O4Si2

γ-Aminobutyric acid 2TBDMS 331 - C16H37NO2Si2

316 320 C15H34NO2Si2

274 278 C12H28NO2Si2

Glutamine 3TBDMS 488 - C23H52N2O3Si3

473 478 C22H49N2O3Si3

431 436 C19H53N2O3Si3

357 362 C17H37N2O2Si2

329 333 C16H37N2OSi2

Glutamic acid 3TBDMS 489 - C23H51NO4Si3

474 479 C22H48NO4Si3

432 437 C19H42NO4Si3

358 363 C17H36NO3Si2

330 334 C16H36NO2Si2

272 276 C12H26NO2Si2

Histidine 3TBDMS 497 - C24H51N3O2Si3

482 488 C23H48N3O2Si3

440 446 C20H42N3O2Si3

412 417 C19H42N3OSi3

280 285 C14H28N2Si2

Isoleucine 2TBDMS 359 - C18H41NO2Si2

302 304,308 C14H32NO2Si2

274 279 C13H32NOSi2

Continued on next page
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Table 3.2 – Continued from previous page

Compound m/z m/z 13C Formula

200 205 C11H26NSi

Leucine 2TBDMS 359 - C18H41NO2Si2

302 304,308 C14H32NO2Si2

274 279 C13H32NOSi2

200 205 C11H26NSi

Lysine 3TBDMS 488 - C24H56N2O2Si3

473 479 C23H53N2O2Si3

431 437 C20H47N2O2Si3

329 334 C17H41N2Si2

Malic acid 3TBDMS 476 - C22H48O5Si3

461 465 C21H45O5Si3

419 423 C18H39O5Si3

391 394 C17H39O4Si3

375 378 C17H39O3Si3

287 291 C12H23O4Si2

Ornithine 3TBDMS 474 - C23H54N2O2Si3

459 464 C22H51N2O2Si3

417 422 C19H45N2O2Si3

Serine 3TBDMS 447 - C21H49NO3Si3

432 435 C20H46NO3Si3

404 406 C19H46NO2Si3

390 393 C17H40NO3Si3

362 364 C16H40NO2Si3

302 304 C14H32NO2Si2

288 290 C14H34NOSi2

230 232 C10H24NOSi2

Succinic acid 2TBDMS 346 - C16H34O4Si2

331 335 C15H31O4Si2

289 293 C12H25O4Si2

215 219 C10H19O3Si

Tyrosine 3TBDMS 523 - C27H53NO3Si3

508 517 C26H50NO3Si3

466 475 C23H44NO3Si3

438 346 C22H44NO2Si3

364 372 C20H38NOSi2

Continued on next page
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Table 3.2 – Continued from previous page

Compound m/z m/z 13C Formula

302 304 C14H32NO2Si2

Valine 2TBDMS 345 - C17H39NO2Si2

302 304, 306 C14H32NO2Si2

288 293 C13H30NO2Si2

260 264 C12H30NOSi2



Chapter 4

Conclusion

The motivation for this thesis was to develop and apply computational mass spectrometry-

based metabolomics techniques that allow to extract more biological information out

of metabolomics data. First, I presented a spectrum matching algorithm that is es-

pecially suited to match compounds across different chromatograms in a non-targeted

metabolomics experiment. In the context of diseases, non-targeted metabolomics method-

ologies have recently become more important, because cellular metabolism may be per-

turbed in a way that deviates from classical biochemical textbook knowledge. In this

light, the ICBM algorithm can help to identify disease specific biomarkers with a higher

sensitivity or can help to pinpoint targets for possible new drug treatments.

Second, I applied the ICBM algorithm to study the cellular phenotype of the human

neuronal cell line LUHMES under different oxygen conditions. Although LUHMES cells

should be dopamine producing and the rate limiting enzyme tyrosine hydroxylase (TH)

was present in the cells, I was not able to detect dopamine in either of the two oxygen

conditions. This result underlines the importance of metabolomics to study cellular

phenotypes.

Third, I presented the FFC algorithm which can help to extract more biological infor-

mation out of stable isotope labeling experiments. Electron ionization (EI) based mass

spectrometry leads to complex mass spectra, caused by the fragmentation of the ana-

lyzed compound. The analysis of fragment ions, which contain only specific parts of the

original molecule, can provide valuable information on the positional isotopic enrichment

within the molecule of interest. The FFC algorithm can calculate chemical formulas and

retained atoms of these mass spectral fragment ions. This information is of high interest

for 13C-MFA, because it provides additional constraints for the parameter fitting. Specif-

ically, fragment ions containing different carbon atoms are of high interest, since they

can carry different flux information. The FFC algorithm can complement non-targeted

stable isotope-assisted methodologies. For example, the NTFD algorithm provided the
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means to discover unanticipated metabolites and pathways related to specific diseases,

but this information can be used only in 13C-MFA if the retained carbon atoms for the

fragment ion of interest are known. As such, the FFC and NTFD algorithms can help

to increase the size of the metabolic network that can be profiled for 13C-MFA.

Fourth, I applied the FFC algorithm to determine the chemical formulas and retained

carbon atoms of 160 mass spectral fragment ions of central carbon metabolism. This

fragment ion repository will facilitate the use of 13C-MFA to study changes in intracel-

lular fluxes. In particular, 13C-MFA can give new insights in disease specific fluxes, as

well as their regulation in central biological pathways.
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